地质补勘工程量怎么算
『壹』 怎样进行地质勘探测量
作为从事地质工程的技术人员,除了应掌握地质勘探工程的专业知识外,还应熟悉勘探工程中的测量工作,尤其是现在测量电子仪器的广泛使用,测量仪器操作越来越简单,应具 有参与或组织实施测量业务的能力,合理使用测量资料。
地质勘探测量通常包括地质填图、勘探工程、地质剖面等测量工作。
第一节 概述
地质勘探是为了详细查明地下资源,并确定矿物位置、形状及储量。地质勘探一般分为普查、详查和精查三个阶段。普查阶段是根据在地表上所发现的矿点(矿体露头)以及配合地表揭露工程和少量的勘探工程等手段所进行的地质观察。初步查明矿产的品种、矿体的规模、形状和产状,确定矿石的品位和储量。详查阶段亦称勘探阶段,是在普查基础上对矿区进行更详细的勘查,目的是查明矿区的地质构造、矿体产状、矿石品位、物质成份及储量等获得更可靠的地质资料。精查是在普查和详查的基础上,进一步查明矿产品的埋藏情况,确定矿体的品位、储量、开采价值、开采方法等,为下一步开矿作好准备。地质勘探工程测量是为地质勘探提供可可靠的测绘资料,配合地质勘探作业以保证任务的完成。
地质勘探工程测量的主要工作任务是:
1.为勘探工程的设计和研究地质构造提供勘探区域的控制测量和各种比例尺的地形图; 2.根据地质工程的设计,在实地给出工程施工的位置和方向(又称定位和定线); 3.竣工后测出工程点的平面坐标和高程;
4.提供编制地质报告和储量计算的有关图纸资料。
为了进行上述测量工作,应首先在勘探区建立测量控制网,控制网的等级应以《地质勘察测量规程》为依据,并结合勘探区的地形条件和勘探网的密度和精度要求,还应同时满足矿区所需比例尺地形图测量的需要,其它测量工作在控制测量的基础上进行。一般情况下作为地质勘探区首级平面控制网,可根据勘探面积、勘探网密度和地形条件,布设四等或5″级导线网,若有GPS接收机,也可布设相应等级的GPS控制网,在此基础上再以交会、导线等方法进行加密。高程控制网根据不同的精度要求,可采用水准测量、三角高程测量或GPS测高。
当勘探区已建立地形测量控制,如果精度能满足勘探工程测量的需要时,应利用其作为一切勘探工程测量的平面和高程控制,不必重新布网。如其密度不够,可在原有基础上进行加密。
勘探区的地形测量是为地质勘探工程服务的,测图比例尺的大小是随地质勘探对矿石储量计算的精度要求不同而变化的。储量计算的越精确,测图比例尺就越大,随着勘探工程的进展,勘探工程所需的地形图比例尺也逐渐变大。一般应满足大比例尺(1:500~1:5000)测图的需要。
第二节 地质填图测量
在矿区勘探工程中,首先要进行地质填图,通过地质填图来详细查清地面地质情况,划分岩层,确定矿体分布,以便正确了解矿床与地质构造的关系及规律,为下一步的勘探工作提供可靠的依据,并作为储量计算的地表依据。
一、地质填图的比例尺
地质填图是用地形图作为底图,将矿体的分布范围及品位变化情况、围岩的岩性及地层
的划分、矿区的地质构造类型以及水文地质情况等填绘到地形图上,即成为一张地质地形图。在地质工作的各个阶段,要填绘不同比例尺的地质图。在普查阶段,要填绘1:10万或1:20万的区域地形图,详查阶段,要填绘1:1万、1:2 .5万或1:5万的地质地形图。在精查阶段,填图比例尺依据矿床的具体情况而定,若矿床的生成条件简单,产状较有规律,规模较大,品位变化较小,则采用的比例尺就小,反之较大。一般规模大、赋存条件简单的矿床如煤、铁等沉积矿床,通常用1:1万至1:5万比例尺的地质地形图;对于规模较小、赋存条件较复杂的矿床如铜、铅、锌等有色金属的内生矿床,通常用1:2000和1:1000的地质地形图;对于某些稀有金属矿床,还可采用更大的比例尺,如1:500。一般地形图的比例尺应与地质填图的比例尺相同,
二、地质填图的方法
地质填图测量包括地质点测量和地质界线测量两个步骤,其中地质点测量是最基本的测量工作。
地质点是指勘探矿区地表上反映地质构造的点,如露头点、构造点,岩体和矿体界线点、水文点等。它们是地质人员进行地质调查的地质观察点,是填绘地形图的重要依据。这就需要采用适当的方法将地质点测绘在地形图上。地质点的位置是地质人员在实地观察确定的,确定后用红油漆或插一小红旗作为标记,并编号。
测定地质点前应准备好作为底图的地形图,控制点资料,并对控制点进行检查。要充分利用测区已有的控制点,如果控制点不足,可采用导线测量等方法加密。地质点测量作业方法、程序及要求与地形测图的碎部点测量完全相同,地质点测量一般由地质人员与测量人员共同完成。地质人员在选择地质点,描述地质内容和绘绘制地质蓝草图时,兼职立尺员,测量人员按照地形图中测碎部点的方法,测定地质点的平面位置和高程,最后制成地质地形图。
矿体及岩层界线的圈定:在测定地质点的基础上,根据矿体和岩层的产状与实际地形的关系,将同类地质界线点连接起来,并在其变换处适当加密点,地质界线的圈定一般由地质人员现场进行,也可野外记录,室内圈定。图12-1是地形图作为底图绘出的部分地质图,图中虚线表示的是根据地质点和地质界线的观测资料圈定的地质界线,例如虚线1~2表示侏罗系(J)和三叠系(T)地层的分界线(P为二叠系、C为石炭系、D为泥盆系、S为志留系)
三、地质填图中的注意事项
1、 地质人员在进行地质点观察时,应携带地形图,并绘制草图
3
2、 地质填图应充分利用已有的控制点,包括图根点,控制点经检查符合要求的情况下,
可以直接使用。当控制点丢失或破坏时,必须重新建立图根控制。
3、 地质点测量根据具体的条件可采用:平板仪极坐标法,经纬仪配合小平板仪法,有
条件可采用全站仪进行数字化成图方法测设或用RTK直接测量地质点的坐标。
第三节 勘探工程测量
一、勘探线、勘探网的测设
在地质勘探过程中,各种勘探工程如槽、井、钻孔和坑道等一般都是沿着一定直线方向布设的,这些直线叫勘探线。勘探线又彼此交叉构成一定形状的格网,称为勘探网
(一)勘探线、勘探网的布设形式
勘探工程的布设,一般是平行于矿体走向或者垂直于矿体的走向。人们把平行于矿体走向的勘探线称为横向勘探线。垂直于矿体走向的勘探线称为纵向勘探线。纵横勘探线相互交叉构成勘探网。勘探网的形状和密度由矿体的种类及产状确定。一般有正方形、矩形、菱形和平行线型。
勘探网内勘探线的间距是根据矿床类型、勘探阶段要求探明的储量等级而定,一般在20米至1000米之间。为了控制勘探线和勘探网的测设精度,也须遵循先整体后局部的原则,首先在矿区中布设一基线,然后再布设其它勘探线。如图12-3所示,M、N为基线。勘探网上点的编号以分数形式表示,分母代表线号,分子代表点号,以通过基线P的零点为界,西边的勘探线用奇数表示,东边的用偶数表示;以基线为界,以北的点用偶数号表示,以南的用奇数表示。
0
2
表示基线与东第一条勘探线的交点。 (二)勘探线、勘探网的测设 1、基线的测设
在已建立测量控制网的情况下,根据地质勘探工程的设计坐标和已知测量控制点的坐标反算测设数据,直接将地质勘探工程测设到实地上。在尚未建立控制网的勘探区,若没有全站仪,应首先布置勘探基线作为布设勘探网的控制。由地质人员和测量人员实地确定基线的方向和位置,基线一般由三点组成,
『贰』 水文地质条件补充勘探
(一)物探
要准确确定小矿越界采空区及其积水情况,必须在采用人工调查方式的基础上,采用地面瞬变电磁方法进一步确认15采区东北部、23采区东部及31采区西部小媒矿越界采空及积水情况,保证采区开拓掘进的安全。探测范围约3km2。
对西翼采区(约3km2)采用地面三维地震勘探查明二1煤煤层中构造发育情况,控制落差在5m以上的断层。
(二)水文地质钻探
水文地质钻探与地下水观测系统建设同步进行,在地面观测孔及井下观测孔施工过程中探查L5-6灰岩、L1-3灰岩和奥陶系灰岩富水性,具体要求按水文地质勘探规程。
(三)水文地质试验
根据对超化煤矿现有资料的分析,地面观测孔完成后可进行抽水试验和连通试验,井下疏水巷和疏水钻孔完成后可进行井下放水试验,也可采用脉冲干扰试验的方法。
1.抽水试验
(1)抽水试验目的
1)确定抽水井(孔)特征曲线和实际涌水量,评价含水层的富水性,推断和计算井(孔)最大涌水量与单位涌水量;
2)确定含水层水文地质参数,为评价地下水资源、预测矿井涌水量、确定矿井疏干排水方案等提供依据;
3)判定龟山断层性质,了解各灰岩含水层(组)之间的水力联系。
(2)抽水试验安排
1)正式抽水试验:在WO2孔进行正式抽水试验一次,试验时段约144h。要求进行3次降深非稳定流抽水试验,原有灰岩水文孔和新增水文孔约11个孔均进行观测。在抽水试验过程中,同时进行地下水示踪试验,探查龟山断层的导水性,L1-3灰岩和奥陶系灰岩含水层的连通性以及含水层间的水力联系(见水文地球化学探查)。
2)简易抽水试验:地面各观测孔钻进至目的层位均进行简易抽水试验1次,试验时段72h。要求做一次最大降深抽水试验,是否有观测孔不做要求。
(3)水位、水量观测基本要求
1)观测孔及抽水主孔静止水位观测。一般每小时测定一次,3次所测数字相同或4h内水位相差不超过2cm,即为静止水位。
2)动水位及水量观测。抽水孔动水位、水量的观测与观测孔水位的测量工作需同时进行。较远的观测孔,可在开泵后延迟一段时间观测。
i.按稳定流公式计算参数时,抽水孔的观测时间间距视稳定情况而定。一般开泵后水位和水量波动较大,应每5~10min观测一次。然后,视稳定程度,改为15min或30min观测一次;
ii.按非稳定流计算参数时,抽水孔应保持出水量(或水位)为常量。若前后两次观测的流量变化超过5%时,应及时调整。观测时间主要应满足于绘出计算用的各种曲线图,特别是对数关系曲线。要求在开泵的头10~20min内,尽可能准确记录较多的数据。一般观测时间间距如下(min):1,2,2,5,5,5,5,5,10,10,10,10,10,20,20,20,30,30……
iii.一般情况下,抽水试验结束或中途因故停泵,应进行恢复水位观测。观测时间间距,应按水位恢复速度确定。一般为1,3,5,10,15,30……单位为分钟,直至完全恢复。观测精度的要求同静止水位的观测。
3)稳定标准要求。①抽水过程中的水位和水量历时曲线不能有逐渐增大或减少的趋势;②在稳定时间段内,主孔水位波动值不超过水位降低值的1%;当降深小于10m时,水位波动值不应超过3~5cm。观测孔水位波动值不应超过2~3cm;③抽水量波动值不超过正常流量的5%,当水量很小时可适当放宽;④当主孔和观测孔的水位与区域地下水位变化趋势及幅度基本一致时可以视为稳定。
2.井下放水试验
放水试验可在不同阶段按解决问题的不同分别进行。
1)在22,21,23采区井下水文地质观测孔施工期间,在钻孔钻至设计深度并埋设孔口装置后,进行简易放水试验,观测钻孔涌水量和钻孔水压(水位)。当已有多个观测孔时,一孔放水时,应在其他孔进行水压(水位)观测,特别应注意观测水位恢复曲线。观测数据可用于计算含水层水文地质参数,评价工作面或采区涌水量。
2)在疏水巷中布置的放水孔全部完成后,在西翼采区和东翼采区联合进行一次L1-3灰岩含水层放水试验。放水孔分布在21,22,31采区,计12个孔,预计稳定放水量1000~1200m3/h,观测系统则尽可能利用井田范围内已完成的井上、下观测孔,约33个,包括L5-6灰岩观测孔、L1-3灰岩和奥陶系灰岩观测孔。试验采用大流量、大降深、非稳定流方法,放水试验时间包括水位恢复观测共15~20d。此次试验将对L5-6灰岩、L1-3灰岩和奥陶系灰岩含水层进行联合观测,充分暴露块断内L1-3灰岩含水层的水文地质条件,L5-6灰岩、L1-3灰岩和奥陶系灰岩含水层间的水力联系,查明块断水文地质边界条件,计算含水层水文地质参数,预计矿井涌水量。同时,放水试验时L1-3灰岩和奥陶系灰岩含水层的水位动态也将为深部开采的防治水方案提供重要依据。
(四)水文地球化学探查
1.取水样地点和方法的要求
为了建立不同含水层的水质判别标准,应在钻孔中或井下采取不同含水层的水样,即:二1煤顶板砂岩水、老窑水、L7-8灰岩水、L5-6灰岩水、L1-3灰岩水和奥陶系灰岩水。
取样点的分布应尽量广泛,同一个钻孔的水质应定期化验,跟踪水质变化。这样所建立的判别函数更具代表性,不会因“特例”而出现不应有的误判。
2.水样采取数量和测试要求
奥陶系灰岩水水样:在新布奥陶系灰岩观测孔、原有观测孔及奥陶系灰岩供水孔中分别采取,观测孔中取样要求使用定深取样器,经洗孔后在孔内取一组水样,一部分做水质全分析,一部分做δT,δD,δ18O值的测定。
二1煤顶板砂岩水和L7-8灰岩水样:在地面不同观测孔内分别取样,各取3组,做水质简分析。
老窑水水样:在井下老窑水出水点分别采取,共取3组,做水质全分析。
L1-3灰岩水样在井下放水孔中采取,各放水块段分别采取,共取3组,一部分做水质全分析,一部分做δT,δD,δ18O值的测定。
3.放水试验时的水样分析要求
在放水前3日内,于放水孔和观测孔采集简易水质分析样。
当放水量达到最大且各观测孔水位基本稳定时,在所选孔中再取3组同位素水样,而当整个放水试验结束且观测孔水位恢复水位稳定时,再取最后3组水质简分析样和环境同位素样。
水样的采取方法应按照部颁“煤炭资源地质勘探地表水、地下水长期观测及水样采取规程”执行。
(五)岩石力学参数测试
煤层底板隔水层岩石力学性质是底板隔水层抗水压能力及带压开采理论计算的重要数据,因此,在地面观测孔施工过程中应采取相应层位的岩样,做岩石力学试验。
地面2个奥陶系灰岩孔及3个L1-3灰岩孔分别采取二1煤底板岩样,用以测定隔水层岩石力学性质,每孔取1组,每组18个岩样,共计5孔(组)。
单孔岩样测试项目:密度:1块;容重:1块;抗压强度:3块;抗拉强度:3块;弹模与泊松比:1块;抗剪:6块;渗透性:3块。
『叁』 工程地质勘查预算标准
以工程建筑为目的,对岩石和土进行的各种试验的总称。岩土试验是工程地质勘察的重要组成部分,分为使岩、土试样脱离母体的取样试验和在岩、土体上直接进行的原位试验。取样试验主要测定:①表征岩、土结构和成分的指标。如岩石的密度、吸水率和饱和吸水率等;土的粒度级配、天然含水率、密度、液限和塑限、胀缩性指标、崩解性指标、毛管水上升高度等。②渗透性指标。③变形性能和强度指标。变形指标,如岩石的各种模量以及土的压缩系数和变形模量;强度指标,如岩石的单轴抗压强度和抗拉强度以及岩、土的内摩擦角和内聚力。测定岩、土内摩擦角和内聚力的剪切试验,分为直剪试验和三轴剪切试验。前者是试样在不同的压应力作用下直接施加剪应力,并使之沿预定的面发生剪切变形直至破坏。原位试验主要包括以下项目:①载荷试验,是在试坑或钻孔中模拟天然地基条件施加垂直荷载,观测沉降与荷载的关系。根据荷载与沉降关系曲线确定地基土体的承载力和计算变形模量。②旁压试验,是将旁压器安置在钻孔中,通入高压水使旁压器向孔壁施加水平压力,孔壁土体发生变形,测量压力与孔壁土体的变形,绘出压力-变形曲线,并据以求得地基承载力。③十字板剪切试验,是将十字板头(由4块矩形钢板呈十字形焊接在轴杆上)压入钻孔中,等速转动轴杆带动十字板头,根据对所施加的纯扭矩与土体对十字板头的阻抗力矩相平衡的原理,计算土体的抗剪强度。此种试验仅适用于饱水的粘性土。④触探,是将一定形状的特制探头压入或用重锤击入钻孔孔底,根据土体对探头贯入的阻抗力,求得土体的某些工程地质参数。用静力将锥形探头压入土体中的为静力触探,由试验可直接测得贯入阻力以及锥头阻力和侧壁摩擦力。利用它们可以对土体分层,确定土体的承载力,或者通过经验关系或估算粘性土体的压缩变形指标、饱水粘性土体的抗剪强度以及砂土的密实度等。用一定质量的重锤将锥形探头击入土体中的为动力触探。动力触探以一定落矩将探头击入土体中一定深度所需要的锤击数为主要指标。标准贯入试验实质上是一种管状探头(常称为标准贯入器)的动力触探。根据不同类型动力触探的锤击数,可以确定不同类型土体的地基承载力,或者通过经验关系,估算粘性土和砂土的抗剪强度,以及粘性土的压缩变形指标,判断粘性土的稠度状态以及砂土的密实度和振动液化的可能性。勘察时对土质取样试验后所了解到的信息是后续工程设计、施工等各项工作的基础,只有知道了土质的情况,才能地基基础的类型及地基处理的方法,才能准确的设计工程图纸,也才有可能根据施工图纸做出准确的工程造价的估算、预算。
『肆』 地质勘探属于工程测量么
和测量有共同的相似点…但不属于工程测量…
『伍』 为什么做了地质勘察,还要做施工补充勘察
目的是为了解决编制各个建筑物及其各个部分的施工详图时的工程地质问题。主要是利用各种开挖面和施工导硐进行,必要时还可布置专门性的平硐、大口径钻井以及现场试验等。
为了提供各设计阶段所需的工程地质资料,勘察工作也相应地划分为选址勘察(可行性研究勘察)、初步勘察、详细勘察三个阶段。对于工程地质条件复杂或有特殊施工要求的重要建筑物地基,尚应进行预可行性及施工勘察;对于地质条件简单,建筑物占地面积不大的场地,或有建设经验的地区,也可适当简化勘察阶段。
(5)地质补勘工程量怎么算扩展阅读:
施工补充勘察的作用:
1、查明工程影响范围内地基土的地层结构、岩土类别、埋藏条件、分布规律及各岩土层的物理力学性质,并评价其工程特性。查明基岩浅埋区覆盖层厚度及基岩风化层厚度、破碎程度;
2、查明拟建场地内地下水类型、埋藏条件及其特性,并对地下水对建筑材料的腐蚀性作出评价;
3、查明场地有无影响工程稳定性的不良地质现象(暗渠、暗塘、地下障碍物、防空洞、旧基础、孤石、甲烷等) 及分布范围,分析其对工程可能产生的影响,并提出整治建议;
4、对基坑开挖的支护方法和降水措施提出建议,对开挖可能导致的岩土问题(如流砂、突涌等)进行预估,提供深基坑围护设计、施工所需的各种参数;
5、结合场地各地段的工程地质条件,提出合理、经济的基础方案,并提供相应的设计参数。提供可供选择的桩基持力层以及相关的桩基设计参数。
『陆』 工程地质勘察的工作量
主要根据工程类别与规模、勘察阶段、场地工程地质的复杂程度和研究状况、工程经验、建筑物等级及其结构特点、地基基础设计与施工的特殊要求等六个方面而定。
『柒』 工程地质勘探如何收费
如果,采用桩基础的话,一般地层,主楼长方向布置六根桩足够了,宽度回方向上布置五根桩答也足够了。一共是30根桩。单根桩的深度按20米计算,一共是600米。勘探施工一般都是在桩的位置上打孔进行勘探,加上场地外围打六个20米的控制孔一共需要1000米进尺,当然,地层变化不大的时候,可以大幅削减勘探孔的数量,比如桩位的勘探孔可以跳着打等,这样的话,进尺大约是在500~1000m,按照市场上的价格,土层勘探一般是120元/米,总价就是6~12万元。前期的地质勘察费用,以及勘探中的青苗赔偿什么的忽略不计。
『捌』 地坑的工程量怎么算
『玖』 地质补勘是在什么时候进行的,是在地质详勘后局部进行的吗地质初勘和地质详勘分别一般是多少米一个孔
可以这么理解,地质补勘一般是针对有前期勘察中发现的有价值的地段进行的勘察,相比较而言,补勘时一般选在数据异常的地段,有工业价值的元素含量高的地段。具体多少米一个孔针对不同的矿种是不一样的,和用于勘探的资金也是有关系的。
『拾』 建设工程地质勘探有多大工程量
建设工程地质勘探有多大工程量,要看工程大小。
工程地质勘察的任务主要有下列几个方面:
1、查明工程建筑地区的工程地质条件,阐明其特征、成因和控制因素,并指出其有利和不利的方面。
2、分析研究与工程建筑有关的工程地质问题,做出定性和定量的评价,为建筑物的设计和施工提供可靠的地质资料。
3、选择工程地质条件相对优越的建筑场地。建筑场地的选择和确定对安全稳定、经济效益影响很大,有时是工程成败的关键所在。在选址或选线工作中要考虑许多方面的因素,但工程地质条件常是重要因素之一,选择有利的工程地质条件,避开不利条件,可以降低工程造价,保证工程安全。
4、配合工程建筑的设计与施工,据地质条件提出建筑物类型、结构、规模和施工方法的建议。建筑物应适应场地的工程地质条件,施工方法和具体方案也与地质条件有关。
5、提出改善和防治不良地质条件的措施和建议。任何一个建筑场地或工程线路,从地质条件方面来看都不会是十全十美的,但从工程措施角度来看几乎任何不良地质条件都是能克服的,场地选完之后,必然要制定改善和防治不良地质条件的措施。只有在了解不良地质条件的性质、范围和严重程度后才能拟定出合适的措施方案。
6、预测工程兴建后对地质环境造成的影响,制定保护地质环境的措施。大型工程的兴建常改变或形成新的地质营力,因而可以引起一系列不良的环境地质问题,如开挖边坡引起滑坡、崩塌;矿产或地下水的开采引起地面沉降或塌陷;水库引起浸没、坍岸或诱发地震等,所以保护地质环境也是工程地质勘察的一项重要任务。