当前位置:首页 » 地质问题 » 水文地质参数有什么意义

水文地质参数有什么意义

发布时间: 2021-02-27 09:47:48

㈠ 估算水文地质参数

(一)泥质含量计算

含水层含水量预测综合物探技术

式中:GR、GRmin、GRmax分别为实测、纯砂岩和纯泥岩的自然伽马测井值。

其值对Vsh作非线性校正:

含水层含水量预测综合物探技术

式中:C为非线性校正系数(Hilchie指数),当地层为老地层时取值2,当地层为古、新近系地层时取值3.7;Vsh'为非线性校正后的泥质含量。

(二)确定孔隙度

粒间孔隙度就是通常所说的有效孔隙度,通常利用孔隙度测井方法(包括密度测井、声波测井和电阻率测井)确定。

(1)对泥质砂岩来说,密度测井响应方程为

含水层含水量预测综合物探技术

式中:DEN为密度测井值;ρφ、ρsh、ρma分别为孔隙流体、泥质和石英的体积密度;φ、Vsh、Vma分别孔隙度、泥质和石英的相对体积。

由上式可得孔隙度φ:

含水层含水量预测综合物探技术

(2)对声波测井来说,有

含水层含水量预测综合物探技术

式中:Δt为声波时差测井值;Δtφ、Δtsh、Δtma分别为孔隙流体、泥质和石英的声波时差。

由上式可得孔隙度φ:

1)利用声波时差确定孔隙度时,对非压实或疏松地层需进行压实校正,其中H为深度,CP为校正压实系数,CP=1.68-0.0002×H。

含水层含水量预测综合物探技术

2)若考虑泥浆影响时,则按以下公式计算孔隙度:

含水层含水量预测综合物探技术

(3)电阻率测井

当岩石含100%饱和流体时,若孔隙流体的电阻率为Rf,岩石的电阻率为Rt,虽然Rf的变化引起Rt的变化,但它们的比值Rt/Rf却总保持不变(保持常数F),该比值称为地层因素F。

含水层含水量预测综合物探技术

该比值与孔隙流体的电阻率无关,与岩性、孔隙度以及孔隙结构、胶结物等因素有关。有如下关系式:

含水层含水量预测综合物探技术

式中:a为比例系数,与岩性有关;m为胶结系数,与岩石结构及胶结程度有关。

由上式得到

含水层含水量预测综合物探技术

(三)地下水电阻率计算

地下水电阻率计算通常包括视地下水法、径向比值法和自然电位测井法,以下为各方法的计算原理。

(1)视地下水法

阿尔奇公式:

含水层含水量预测综合物探技术

式中:Rt为地层电阻率;Rw为地下水电阻率;φ为孔隙度;Sw为含水饱和度;n为饱和度指数;m为胶结系数,与岩石结构及胶结程度有关;在完全含水地层上Rt=Ro(Ro为完全含水地层电阻率),Sw=1。

于是

含水层含水量预测综合物探技术

阿尔奇公式适合于纯砂岩,考虑到有些含水层含一定泥质,此时,饱和度方程应选用泥质砂岩模型,例如:Simandoux(1963)模型和Fertl等(1971)模型,在完全含水地层上有Simandoux公式:

含水层含水量预测综合物探技术

Fertl公式:

含水层含水量预测综合物探技术

式中:Rsh为泥质电阻率,可以用纯泥岩电阻率代替。

(2)径向比值法

径向比值法计算地下水电阻率主要考虑冲洗带含水饱和度、电阻率以及泥浆滤液电阻率等因素。

冲洗带含水饱含度Sxo

含水层含水量预测综合物探技术

又有 与以上式相除得

含水层含水量预测综合物探技术

式中:Rxo为冲洗带电阻率;Rmf为泥浆滤液电阻率;Sxo为含水饱和度。

在完全含水地层上Sxo=Sw,Rt=Ro因此:

含水层含水量预测综合物探技术

(3)自然电位测井法

自然电位测井法计算地下水电阻率主要考虑井中扩散吸附电动势,地下水泥浆矿化度等因素。

井中扩散吸附电动势可表示为

含水层含水量预测综合物探技术

式中:Cw,Cm分别为地下水,泥浆矿化度;Eda为扩散吸附电动势;Kda为扩散吸附电动势系数。

满足:

含水层含水量预测综合物探技术

在理论上,地下水等效电阻率Rwe与Cw之间成反比关系,泥浆滤液电阻率Rmfe与Cm之间成反比关系,所以有

含水层含水量预测综合物探技术

式中:USSP=Eda称为静自然电位,可以通过自然电位USP校正得到USSP,(4-18)式便是自然电位测井确定地下水电阻率Rw的理论依据。

(四)地下水矿化度计算

地下水分为淡水、咸水和卤水。地下水电阻率的大小直接反映含水层水的矿化度。利用水文测井资料估算的地下水矿化度,有助于评价含水层水的质量。地下水矿化度,是评价含水层水质的一个重要指标[8]。一般通过自然电位测井和地层电阻率求得。

(1)自然电位测井法

自然电位测井计算地下水矿化度的公式是

含水层含水量预测综合物探技术

式中:Cmf为泥浆滤液矿化度。

(2)由地层水电阻率Rw换算矿化度

矿化度与Rw之间有如下关系:

含水层含水量预测综合物探技术

式中:P为地下水的矿化度,10-6

(五)计算渗透率

绝对渗透率是岩石中只有一种流体时测量的渗透率,常用k表示。绝对渗透率只与岩石孔隙结构有关,而与流体性质无关。

目前国内外广泛应用孔隙度φ和吸附水饱和度Swb统计它们与渗透率的关系,所建立的经验方程一般有如下形式:

含水层含水量预测综合物探技术

式中:C、x、y为地区经验系数。

应用孔隙度、吸附水饱和度参数也可以计算含水层的渗透率。计算渗透率的经验公式可借用石油测井的公式:

含水层含水量预测综合物探技术

(六)计算吸附水饱和度

岩石中的水包括:①重力水:可以自由流动的水;在有条件下流动的水。②吸附水:吸附在岩石颗粒表面的水;滞留在微小毛细管中的水。吸附水饱和度Swb是描述地层特性的一个非常重要的参数。它对于确定储层含水饱和度Sw、含水率、油水相对渗透率Kro,Krw等方面有重要意义。影响吸附水饱和度的因素很多,其主要影响因素有:①泥质含量:含水层中随泥质增大,吸附水饱和度增大;②细粉砂含量:随细粉砂含量的增大,岩石颗粒表面的总面积(比面)增大,使吸附水饱和度增大;③粒度中值:随泥质砂岩粒度中值减小,吸附水饱和度增大;④孔隙度:随泥质砂岩孔隙度减小,吸附水饱和度增大;⑤渗透率:渗透率对吸附水饱和度是一个综合影响因素,因为渗透率与孔隙度、粒度中值和泥质含量等有关。

因此,影响吸附水饱和度的因素有泥质含量、孔隙度、粒度中值、粉砂含量、渗透率等。因为吸附水饱和度影响因素多且复杂,很难从理论上直接推导确定吸附水饱和度的测井解释方程。一般利用岩心分析吸附水饱和度、岩心分析孔隙度、渗透率、粒度中值,测井计算泥质含量等资料统计得到的它们之间的关系式。

确定吸附水饱和度(Swb)经验公式:

含水层含水量预测综合物探技术

如果 ;如果Swb<15,令Swb=15,最后Swb=Swb/100,则有

含水层含水量预测综合物探技术

式中:

对于疏散砂岩:

含水层含水量预测综合物探技术

中等胶结砂岩:

含水层含水量预测综合物探技术

砂岩:

含水层含水量预测综合物探技术

含水层含水量预测综合物探技术

式中:Md为粒度中值;Rwb、Rt、Rxo、Rmf分别为吸附水电阻率、地层电阻率、冲洗带电阻率、泥浆滤液电阻率;其他符号含义见前面公式。

(七)计算重力水饱和度

孔隙中水以重力水和残余水两种形式存在,一部分是有效孔隙中重力水;另外一部分是吸附在泥质颗粒表面和微孔隙中的残余水(吸附水和微孔隙水)。重力水饱和度越高,指示含水层渗透性越好。如果含水层没有重力水饱和度,则该地层为非渗透性的隔水层。

在水位以下,重力水饱和度Swm=Sw-Swb=1-Swb

(八)计算含水量

含水量的含义:岩石所能容纳的最大水体积与岩石总体积之比。引入重力水的概念,可动含水量应定义为:岩石所能容纳的可动含水体积与岩石总体积之比,基于此定义,计算含水量。假设岩石总体积V为1(相对体积),则可动含水量Qwn计算方法如下:

含水层含水量预测综合物探技术

式中:Qwn为含水量;φ为孔隙度;V为岩石总体积。

通过上述水文地球物理测井求取水文地质参数方法介绍,对以后地下水勘查工作具有有益的帮助,同时也可以看出,水文地球物理测井的发展方向是对测井资料的深分析、深处理及对新方法、新技术引进及应用分析,使水文地球物理测井能获取让地球物理学家和水文地质学家更感兴趣的水文地质参数,推动水文地球物理测井工作的进一步发展。

依据以上的工作得到如下的结论:根据潮白河地区和保定地区的地质特点,分别建立了适合该地区的测井资料的含水层判别函数,采用Bayes判别分析对样本数据的回判率比较高,达到95%以上。

㈡ 有关参数的物理意义

(一)基础地质参数

1.地质、水文地质条件

浅层地温能资源蕴藏在地下岩土体内,其储藏、运移以及开采利用都受到区域地质、水文地质条件的严格制约,不同区域的资源利用方式和规模存在较大差异。因此,全面了解区域的地质、水文地质条件十分重要。

2.第四系岩性和厚度

平原是由多条河流冲洪积作用形成的,在冲洪积扇的顶部至下部,第四系厚度逐渐增大,含水层由单一、厚度较大逐渐过渡为多层、单层厚度较薄,颗粒由粗变细,岩性由砂卵砾石、黏性土互层逐渐过渡为多层的粘砂、粉细砂。

3.浅层地温能资源条件分区

根据浅层地温能资源开发利用形式的不同,考虑到项目的初投资、运行状况以及地质环境影响等因素,结合不同地区地质、水文地质条件的特点,划分出地下水地源热泵系统的适宜区、较适宜区、一般适宜区和严禁应用区,以及地埋管地源热泵系统的经济区、较经济区和欠经济区。

4.地下水水位

地下水水位(m)是评价浅层地温能资源的一个重要参数。在评价浅层地温能资源静态储量时,将地下水面以上划分为包气带,将地下水面以下划分为饱水带,再分别计算静态储量;在评价地下水地源热泵适宜区可开采资源量时,地下水水位一方面影响单井出水量,另一方面也会影响单井回灌量。

5.变温带厚度

地壳按热力状态从上而下分为变温带、常温带、增温带。变温带的地温受气温的控制呈周期性的昼夜变化和年变化,随着深度的增加,变化幅度逐渐变小。气温的影响趋于零的地层叫常温带,常温带以上的地层厚度即为变温带厚度(m)。

(二)常规物理参数

1.岩土体天然密度

单位体积岩土体的质量称为岩土体的密度(g/cm3)。

2.岩土体天然含水率

岩土体中所含水的质量与岩土体颗粒质量之比称为岩土体的天然含水率(%)。

3.岩土体孔隙度

岩土体中孔隙所占体积与总体积之比称为岩土体的孔隙度(%)。

(三)热物理参数

1.岩土体的比热容

单位质量的岩土体温度升高1℃吸收的热量(或降低1℃释放的热量)叫做该岩土体的比热容(kJ/(kg·℃))。

2.岩土体热传导系数(热导率)

在岩土体内部垂直于导热方向取两个相距1m,面积为1m2的平行平面,若两个平面的温度相差1℃,则在1s内从一个平面传导至另一个平面的热量就定义为该岩土体的热导率(W/(m·K))。

3.平均热导率

该参数是利用Fluent软件模拟换热孔的温度场影响半径时需要设置的一个重要的参数,也是标示当地岩土体平均换热能力的一个重要指标。它定义为指定深度内各种岩土层热导率按厚度加权的平均值(W/(m·K))。

4.传热系数

进行换热量现场测试,计量地埋管换热器的进出水温度、流量,在热交换达到稳定的条件下,计算得到换热孔每延长米在温差1℃(循环液平均温度与岩土体原始温度比)时的换热功率即为地埋管换热器的传热系数kz(W/(m·K))。

㈢ 水文地质参数的确定

一、给水度

给水度在地下水分析研究中是一个十分重要的水文地质参数。一般认为,给水度指单位体积的饱和岩体中所能释放的重力水体积和饱和岩体体积之比。通常在应用中,普遍把地下水位上升某一高度能储蓄多少水也同样用给水度μ来表示。显然,地下水位降幅给水度与地下水位升幅饱和差,两者不可能相等,但是在潜水位变动带中,它们的数值是很接近的。目前,分析计算给水度值的方法很多,但各种方法都有一定的假设和适用条件,有些方法在使用中还存在这样或者那样的问题,故在实际工作中,能够常用的方法亦不太多。

鉴于上述情况,根据灌区实际情况,采用地下水长观资料和灌区非稳定抽水试验相结合分析计算μ,利用地下水位动态资料及气象资料,依据阿维扬诺夫经验公式的假定,用相关分析法求μ,对地下水浅埋区、径流作用较为微弱的地区比较适宜。泾河二级阶地地区,由于阶面宽阔、水力比降比较平缓,潜水水位变幅带岩性在垂向与径向的分布差异较小,潜水流向多呈北西-南东向,渗径长,径流作用相对微弱。对于含水层下部有粗颗粒分布的一级阶地地区,取其大值平均值,其余则取算术平均值。非稳定流抽水试验求μ,是在泰斯公式基础上演变而来的,因而推导其数学模型时,假定了若干边界条件,实际试验中,边界条件比较复杂,很难对假设条件完全符合。利用水位恢复法确定μ,然后和地下水位动态资料分析对比,并根据灌区内含水层岩性、富水性及水文地质资料综合分析、比拟,给出了7区各水文地质分区的给水度值(表7-1)。

二、渗透系数

渗透系数为水力坡度(又称水力梯度)等于1时的渗透速度。影响渗透系数K值大小的主要因素是岩性及其结构特征。确定渗透系数K值有抽水试验、室内仪器(吉姆仪、变水头测定管)测定、野外同心环或试坑注水试验以及颗粒分析、孔隙度计算等方法。其中,采用稳定流或非稳定流抽水试验,并在抽水井旁设有水位观测孔,确定K值的效果最好。根据灌区抽水试验资料及相关水文地质勘察规范确定渗透系数K(表7-2)。

表7-1 灌区给水度μ值 Table7-1 Specific yield in Jinghui Canal Irrigation District

表7-2 灌区渗透系数K值 Table7-2 Hydraulic conctivity in Jinghui Canal Irrigation District

三、降水入渗补给系数

降水入渗是指大气降水除去地表径流,坑、塘滞蓄、植物截流及蒸发外,通过地表下渗到地层中的水量和降水量之比,称为降水入渗系数,用a′表示,在水文计算中经常采用。而计算降水对地下水的补给时,则将渗入地表以下的水量分为两部分:一部分补给地下水位以上饱气带士壤的含水量,另一部分是当含水量超过了士壤的田间最大持水量时,在重力作用下继续下渗补给地下水,引起地下水位的上升,后一部分补给地下水的水量与降水量之比,称为降水入渗补给系数,用a表示。目前计算a值的方法较多,主要的有水均衡法,回归分析法,地中渗透仪实测法及通过雨后地下水位的升幅和给水度的乘积与降水量之比来推求。根据灌区现有的地下水观测资料,采用地下水升幅法进行分析计算,确定各计算分区的降水入渗补给系数年均值

在平原地区,利用降水过程前后的地下水水位观测资料,可以计算潜水含水层的一次降水入渗系数,可采用下式近似计算:

α=μ(hmax-h±∆h·t)/X (7-1)

式中:a为次降水入渗系数;hmax为降水后观测孔中的最大水柱高度,m;h为降水前观测孔中的水柱高度,m;∆h为临近降水前,地下水水位的天然平均降(升)速,m/d;t为从h变到hmax的时间,d;X为t日内降水总量,mm。

在平原区,地下水侧向流动比较缓慢,天然条件下,地下水位升幅完全代表了地下水含水层所获得的降水入渗补给量。因此,年降水入渗补给系数为降水所引起的地下水升幅之和乘以给水度与年降水量的比值。

灌区农业节水对地下水空间分布影响及模拟

式中:μ为给水度;∆hi为降水引起的次水位升幅;N为全年降水次数,i<N;∑pi=p年为年降水总量;Ni为年内降水引起水位升幅的有效补给的次数,N1<N。

根据灌区地下水位动态资料及降水等观测资料,采用地下水升幅法进行分析计算,不同埋深计算分区的降水入渗补给系数见表7-3。

表7-3 灌区年降水入渗补给 Table7-3 precipitation infiltration supply coefficient in Jinghui Canal Irrigation District

四、灌溉入渗补给系数

灌溉入渗补给系数即灌溉水灌入田间后(田间面积包括斗渠系在内),由于士壤的垂直下渗作用,入渗水量一部分被作物吸收利用;一部分蓄存于饱气带士壤空隙中;还有一部分水(超过士壤最大持水量的多余水量),在重力作用下继续下渗,补给地下水,引起地下水位上升。把这后一部分补给地下水的水量与田间净灌水量之比,称为灌溉入渗补给系数。灌溉入渗补给系数包括渠灌田间入渗补给系数β和井灌回归补给系数β

灌溉入渗补给系数与士壤的性质、士壤垂向渗透系数、灌水量大小以及地下水埋深密切相关。灌水量大、士壤垂直入渗速度大、地下水埋藏浅、则灌溉入渗补给系数大,反之则小。在进行地下水资源评价时,灌溉入渗补给量是潜水含水层的最重要的补给源之一,而灌溉入渗补给量计算的准确与否,则取决于灌溉入渗补给系数(β)值。

由于时间及资料所限,采用实际调查法,结合灌区较长系列的地面水引灌资料及地下水位动态资料,通过对较大范围内与灌溉入渗补给有关的诸因素进行调查,并与该范围内地下水位动态资料相关联,然后分析计算灌溉入渗补给系数。调查内容包括,观测井在斗渠系范围各放水时段的田间净灌水量;各放水时段的实际灌溉面积;各放水时段实际灌溉面积内,由灌溉入渗引起的地下水位升幅值;灌前或灌后有无降雨及开采因素存在。计算公式如下:

灌溉入渗补给系数指某一时段田间灌溉入渗补给量与灌溉水量的比值,即

β=hr/h(7-3)

式中:β为灌溉入渗补给系数;hr为灌溉入渗补给量,mm;h为灌溉水量,mm。

灌溉入渗补给系数也可采用试验方法加以测定。试验时,选取面积为F的田地,在田地上布设专用观测井。测定灌水前的潜水位,然后让灌溉水均匀地灌入田间,测定灌水流量,并观测潜水位变化(包括区外水位)。经过∆t时段后,测得试验区地下水位平均升幅∆h,用下列公式计算:

灌区农业节水对地下水空间分布影响及模拟

式中:μ为给水度;∆t为计算时段,s;∆h为计算时段内试验区地下水位平均升幅,m;Q为计算时段内流入试验区的灌水流量,m3/s;F为小区试验区面积,m2。结合灌区实际调查资料和小区试验资料确定灌溉入渗补给系数(表7-4)。

表7-4 灌区灌溉入渗补给系数 Table7-4 Irrigation in filtration supply coefficient in Jinghui Canal Irrigation District

井灌回归补给系数β是指地下水开采回归水量与地下水开采量之比值,综合灌区实际,井灌回归补给系数统一取0.17。

五、渠系渗漏补给系数

渠系渗漏补给系数是指渠系渗漏补给量Q渠系与渠首引水量Q渠首引的比值。渠系渗漏补给系数m值主要的影响因素是渠道衬砌程度、渠道两岸包气带及含水层岩性特征、包气带含水量、地下水埋深、水面蒸发强度、渠系水位以及过水时间。可根据渠系有效利用系数η确定m值。

渠系有效利用系数η为灌溉渠系送入田间的水量与渠首引水量的比值,数值上等于干支斗农毛各级渠道有效利用系数的乘积(本次渠系渗漏补给量仅计算干、支两级渠道,斗、农、毛三级渠道的渠系渗漏补给量计入田间入渗补给量中,故η值在使用上是干、支两级渠道有效利用系数的乘积)。计算公式:

m=γ·(1-η) (7-5)

式中:γ为修正系数(无因次)。实际上,渠系渗漏补给量是指Q渠道引·(1-η)减去消耗于湿润渠道两岸包气带士壤和浸润带蒸发的水量、渠系水面蒸发量、渠系退水量和排水量。修正系数γ为渠系渗漏补给量与Q渠道引·(1-η)的比值,通过有关试验资料或调查分析确定。γ值的影响因素较多,主要受水面蒸发强度和渠道衬砌程度控制,其次还受渠道过水时间长短、渠道两岸地下水埋深以及包气带岩性特征和含水量多少的影响。γ值的取值范围一般在0.3~0.9之间,水面蒸发强度大(即水面蒸发量E0值大)、渠道衬砌良好、地下水埋深小、间歇性输水时,γ取小值;水面蒸发强度小(即水面蒸发量E0值小)、渠道未衬砌、地下水埋深大、长时间连续输水时,γ取大值。通过灌区相关资料调查分析,灌区干支渠系渗漏补给系数取0.1156。

六、潜水蒸发系数

潜水蒸发系数是指潜水蒸发量E与相应计算时段的水面蒸发量E0的比值,即

C=E/E0 (7-6)

影响潜水蒸发系数C的主要因素是水面蒸发量E0、包气带岩性、地下水埋深Z及植被状况等。可利用浅层地下水水位动态观测资料通过潜水蒸发经验公式拟合分析计算。根据灌区水均衡试验场地中渗透仪对不同岩性、地下水埋深、植被条件下潜水蒸发量E的测试资料与相应水面蒸发量E0计算潜水蒸发系数C。分析计算潜水蒸发系数C时,使用的水面蒸发量E0一律为E601型蒸发器的观测值,应用其他型号的蒸发器观测资料时,应换算成E601型蒸发器的数值。据此计算灌区年平均蒸发强度的范围为0.1947~0.3143mm/d,平均值为0.2550mm/d,蒸发系数值为0.0711~0.1029,平均值为0.0875。

㈣ 水文参数是什么

水文参数是表征与岩石性质、水文气象等因素的数量指标,主要包括:
1、降水入渗系数
2、潜水蒸发强度
3、灌溉水回渗补给系数等
狭义的水文地质参数是表征含水介质水文地质性能的数量指标,主要包括:
1、含水层的渗透系数和导水系数
2、层压含水层的储水系数
3、潜水含水层的给水度
4、弱透水层的越流系数
5、含水介质的水动力弥散系数等
水文参数和狭义的水文地质参数统称为水文地质参数。

㈤ 水文地质参数变化

一、太原盆地水文地质参数计算

水文地质参数的选取直接影响着地下水资源计算量的大小和可信度,研究水文地质参数具有十分重要的意义。本次相关的水文地质参数主要有降水入渗补给地下水系数(α)、潜水蒸发极限深度(L)、蒸发强度(ε)、灌溉回渗地下水系数(β)、疏干给水度(μ)、导水系数(T)、弹性储水系数(s)、渗透系数(K)、河流渗漏补给系数、渠系渗漏补给系数等。

(一)降水入渗补给地下水系数(α)

影响降水对地下水的补给量的因素很多,主要有地形、包气带岩性及结构、地下水位埋深、降水特征及土壤前期含水量等。

降水入渗补给系数为降水入渗补给地下水量与降水量之比值。年降水入渗补给系数为年内所有场次降水对地下水入渗补给量总和与年降水总量的比值,其表达式为:

山西六大盆地地下水资源及其环境问题调查评价

式中:α年是年降水入渗补给系数;pri是场次降水入渗补给量,mm;P是年降水量,mm;n是年降水场次数。

用长期动态观测孔求取年降水入渗系数的计算方法:

山西六大盆地地下水资源及其环境问题调查评价

式中:μ∑Δh是年内各次降水入渗补给地下水量之和;P是年降水量;Δh是某次降水引起的地下水位升幅值。

根据动态资料分析计算,在前人试验的基础上,综合考虑各方面的因素,给出盆地区降水入渗补给地下水系数(详见第四章)。

(二)地下水蒸发极限深度(L)、蒸发强度(ε)

蒸发极限深度就是指浅层水停止蒸发或蒸发量相当微弱时,浅层水位埋深值。蒸发强度就是在极限蒸发深度以上,单位时间浅层水的蒸发量。

影响地下水蒸发的主要因素是地下水位埋深、包气带岩性和水面蒸发强度等。

理论上,当水位埋深处于蒸发极限深度时,地下水在无补给、无开采的条件下,动态曲线近于平直。

地下水蒸发极限深度(L)

蒸发极限深度通常采用迭代法、试算法和经验公式计算(L),公式如下:

迭代法:

试算法:

经验公式法:

式中:ΔT1、ΔT2为计算时段,d;H1、H2、H3为时段内水位埋深,m;Z1、Z2为时段内水面蒸发强度,m/d;

经计算,太原盆地孔隙水区不同岩性的蒸发极限深度依包气带岩性不同分别为:亚砂、亚粘土互层为3.5m,亚砂土为4.0m,粉细砂、亚砂土互层为4.5m。

地下水蒸发强度

计算公式:

式中:Z0是液面蒸发强度,mm/d;ΔH是浅层水降落间段的平均水位埋深,mm;Z是蒸发强度,mm/d。

由本区浅层水水位埋深图(详见第四章)可看出,水位埋深小于4m的区域在北部太原市和南部平遥、介休一带,根据上式计算太原、平遥、介休等地的地下水蒸发强度见表3-1。

表3-1 太原盆地孔隙水区地下水蒸发强度

(三)灌溉回渗地下水系数(β)

是指田间灌溉补给地下水的量与灌溉总量的比值。影响灌溉回渗系数和因素主要有岩性、水位埋深、土壤含水率、灌溉定额等多种。

计算公式:

式中:μ是给水度;Δh是由灌溉引起的地下水位平均升高值,m;Q是灌溉水量,m3;F是面积,m2

本次工作在盆地太原市小店区郜村、汾阳市贾家庄镇东马寨村和榆次市杨盘等3个地方布置了3组灌溉入渗试验,地表岩性郜村为粉质粘土、东马寨上部为粉质粘土,下部为粉土,杨盘为粉土,化验室给水度试验结果分别为0.195、0.11、0.143。郜村在37m×37m的面积上布置10眼观测孔,水位埋深1.2~1.3m,累计灌溉水量160m3,10个孔平均水位上升值为0.1912m,根据上式计算得灌溉入渗地下水系数为0.32;东马寨村水位埋深1.95~2.44m,在26m×26m的面积上布置10眼观测孔,灌溉水量60m3,观测孔平均水位上升值为0.465m,计算得灌溉入渗地下水系数为0.58;杨盘布3个观测孔,水位埋深5.76~6.01m,灌溉面积100m2,灌溉水量100m3,平均水位上升高度为0.27m,计算得灌溉入渗系数为0.039。

从以上试验数据可以看出,不同水位埋深、不同岩性地区灌溉入渗系数有很大区别。综合考虑各种因素,灌溉回渗地下水系数选用值见表3-2。

表3-2 灌溉回渗地下水系数

(四)弹性贮水系数S、导水系数T、给水度μ、渗透系数K

盆地区大部分地区都进行过1∶5万比例尺的农田供水水文地质勘查,做过大量单孔和多孔抽水试验,本次在文水文倚、汾阳等5地分别作了5组抽水试验,用非稳定流公式,降深-时间半对数法计算结果如下:文倚导水系数T=1983.59~2181.95m2/d,渗透系数K=32.19~35.4m/d,弹性贮水系数S=1.79×10-3;汾阳县贾家庄镇东马寨村抽水试验求得导水系数T=325.84~376.5m2/d,渗透系数K=5.65~6.53m/d。结合以往本区的工作成果,给出太原盆地浅层孔隙潜水和中深层孔隙承压水水文地质参数,详见参数分区图3-13和参数分区表3-3。

表3-3 太原盆地中深层孔隙承压水及浅层孔隙潜水参数分区

图3-13 太原盆地参数计算分区图

二、大同盆地水文地质参数计算

由本区浅层水2004年水位埋深图可看出,水位埋深小于4m的区域主要分布于盆地中部冲积平原区,盆地南部怀仁、山阴、应县、朔州分布面积较大。根据计算和以往试验资料,本区蒸发强度确定值见下表(表3-4)。

表3-4 大同盆地孔隙水区地下水蒸发强度

据“山西省雁同小经济区水资源评价、供需平衡研究报告”中搜集的本区灌溉回渗试验数据取得不同水位埋深、不同岩性、不同灌溉定额的灌溉回渗系数,灌溉回渗系数选定值见表3-5。

盆地区大部分地区都进行过1/5万比例尺的农田供水水文地质勘查,做过大量单孔和多孔抽水试验。本次工作搜集本区以往抽水试验孔117个,本次在大同县党留庄乡、怀仁县金沙滩镇、怀仁县新发村、怀仁县榆林村、山阴县张庄乡、朔州市城区沙塄乡等6地分别作了6组抽水试验,采用AquiferTest计算程序,非稳定流方法计算,本次抽水孔具体情况和计算结果见表3-6和表3-7 。

表3-5 灌溉回渗地下水系数

表3-6 大同盆地本次抽水试验数据统计

表3-7 大同盆地本次抽水试验计算成果表

结合以往本区的工作成果,给出大同盆地浅层孔隙潜水和中深层孔隙承压水水文地质参数,详见参数分区图3-14、图3-15和参数分区表3-8、表3-9 。

图3-14 大同盆地降水入渗系数分区图

图3-15 大同盆地浅层、中深层孔隙水参数分区图

表3-8 大同盆地浅层孔隙潜水参数分区表

续表

表3-9 大同盆地中深层孔隙承压水参数分区

三、忻州盆地

忻州盆地地下水资源较为丰富,开采条件优越,20世纪70年代之前地下水开采规模较小;70年代初至80年代末随着农业灌溉的普及,工业生产的发展和城市规模的扩大,地下水开采量迅速增加。开采对象以浅层水为主,造成浅层水水位普遍有所下降(但下降幅度不大)。从20世纪90年代至今,虽然地下水开采量具有逐年增大的趋势,但增加幅度较小,且中层井数量逐渐增多,形成了浅层水、中层水混合开采的新模式,地下水位总体处于动态平衡状态。受地下水人工开采的影响,降水入渗系数及导水系数等水文地质参数发生了一定程度的变化。

区内降水入渗系数的变化除了与年降水量及降水特征有关外,主要与浅层地下水位埋深关系较为密切。已有资料表明,在山前倾斜平原区,浅层水位埋深一般大于7m,因水位下降使降水入渗系数发生了不同程度的减小。在冲积平原区浅层水位埋深一般小于7m,水位下降的结果引起了降水入渗系数有所增大。不同地貌单元降水入渗系数的变化见第五章。

从20世纪70年代以来,区内含水层的导水系数发生了较为明显的减小,主要体现在因浅层地下水位下降,使浅层含水层上部处于疏干状态,含水层厚度减小,直接导到导水系数减小。因浅层水水位下降幅度不同,导水系数减小的程度也存在差异,从本次地下水侧向补给量计算断面附近的井孔资料分析,含水层厚度一般减小了3~6m,导水系数由70年代中期的60~250m2/d,减少到目前的50~200m2/d左右。

忻州盆地给水度根据不同地貌单元含水层岩性、分选性及富水性综合确定见表3-10及图3-16 。

表3-10 忻州盆地浅层含水层给水度分区

图3-16 忻州盆地给水度分区图

四、临汾盆地

经过搜集以往资料,调查和计算确定临汾盆地降水入渗系数见表3-11。临汾盆地渗透系数及给水度分区见图3-17,表3-12。

表3-11 临汾盆地平原区降水入渗系数统计

图3-17 研究区渗透系数及给水度分区图

表3-12 临汾盆地参数分区表

五、运城盆地

运城盆地地下水长观网建站年代较远,积累了大量的地下水位监测资料,且经过多次的地质、水文地质勘察、地下水资源评价工作,取得了大量的降水入渗值,参考前人综合成果,结合目前包气带岩性、地下水位埋深,给出运城盆地降水入渗补给系数,见表3-13。

表3-13 运城盆地平原区降水入渗系数统计

渠系有效利用系数除受岩性、地下水埋深影响外,还与渠道衬砌程度有关。修正系数r为实际入渗补给地下水量与渠系损失水量Q的比值,是反映渠道在输水过程中消耗于湿润土壤和侵润带蒸散损失量的一个参数,它受渠道输水时间、渠床土质及有无衬砌、地下水埋深等因素的影响。一般通过渠道放水试验获得。本次评价主要参考运城市水利局相关试验成果,见表3-14。

表3-14 运城盆地万亩以上灌区η、r、m值统计

灌溉回归补给系数β值与岩性、植被、地下水埋深及灌溉定额有关,一般通过灌溉入渗试验求得,本次评价主要参照运城市水利部门资料综合确定,详见表3-15。

表3-15 运城盆地灌溉回归系数β取值

河道渗漏补给系数是河道渗漏补给地下水量与河道来水量的比值。其值大小与河床下垫面岩性、流量、地下水位埋深及渗漏段长度有关。运城盆地沿中条山前发育数条季节性河流,河床下垫面主要为砂卵砾石,当洪雨季节,地表河床水位远高于地下水位,为地表水的入渗造就了十分便利的条件。根据河道渗漏资料,可建立如下数学模型:

山西六大盆地地下水资源及其环境问题调查评价

式中:m是河道渗漏补给系数;A是计算系数,A=(1-λ)×(1-φ)L,φ是单位千米损失率;L是河道渗漏长,km,Q径是河道来水量,m3/s。

据运城市水利部门研究成果,A值约为0.090。

含水层的渗透系数主要由野外抽水试验通过稳定流及非稳定流计算公式求得,各勘探部门在运城盆地先后进行过各种勘察,进行了大量的抽水试验工作,积累了丰富的资料,参考本次抽水试验成果对以往参数进行了修正,取值结果见表3-16 。

表3-16 运城盆地松散岩类K值选定表

降雨入渗补给系数在同岩性、同降雨量情况下,随地下水位埋深的增大,降雨入渗补给系数会达到一个最大值之后趋于减少或变为常数。运城盆地北部的峨嵋台塬及闻喜北塬,其地下水位埋藏深,地表主要以黄土类为主,降水入渗主要依靠黄土垂直节理裂隙及“流海缝”以“活塞式”注入地下,多年来其降水入渗系数基本为常量,经用动态分析法计算其降水入渗系数在0.108~0.11间;在盆地中部的冲湖积平原区,其地表岩性主要以Qp3+Qh冲湖积相的亚砂土、亚粘土、粉细砂为主,由于开采强烈,区域水位严重下降,地表数米至几十米内均为饱气带,为降水入渗准备了调蓄空间,加强了降水向地下水的转化。根据盆地地下水长观孔资料及次降雨资料,计算出盆地冲湖积平原地带,降水入渗系数在0.1~0.162之间,总体上上游大于下游。而在东部及南部的山前倾斜平原区,地下水位埋深一般大于5m、乃至几十米,地表岩性大多为亚砂土及亚粘土,尤其是在一些沟口附近,从地表往下几十米范围内为干砂卵砾石,一般降雨基本上不产生地表径流,这无疑加大了降水的转化。据相关资料计算,降水入渗系数高达0.21~0.30。因过去所做的工作不系统,没有对降雨入渗系数进行系统分类,不便比较,但根据运城盆地饱气带岩性、地下水变动情况,除峨嵋台塬及黄土丘陵区变化不大外,其他地区降雨入渗系数无疑有增大趋势。

盆地内抽水井的含水层,大多为数个含水层混合开采。现根据本次抽水计算值,对历次研究成果中的K值加以修正,得出运城盆地各个地貌单元的渗透系数。总体来说,黄河岸边低阶地区K值最大为11.3~14.6m/d,中条山山前倾斜平原次之,为5.45~6.12m/d,最次为闻喜北垣K=1.10m/d左右。

根据地貌单元、含水层岩性、地下水水力特征及各参数特征,将运城盆地划分为10个参数分区,见表3-17及图3-18。

表3-17 运城盆地水文地质参数分区

六、长治盆地

根据水文地质条件,长治盆地参数分区见图3-19,表3-18 。

图3-18 运城盆地水文地质参数分区表

图3-19 长治盆地参数分区图

表3-18 长治盆地浅层孔隙潜水参数分区

(一)降水入渗补给系数变化

根据《太原市地下水资源评价报告》研究成果,盆地区亚砂土、极细砂、细砂的降水入渗系数随着地下水位埋深的增大而增大,当水位埋深超过一定值以后,降水入渗系数开始趋于稳定;降水量越大,降水入渗系数在相同的岩性和地下水位埋深条件下也越大。对于亚砂土、极细砂、细砂在相同水位埋深和降水情况下,细砂的降水入渗系数>极细砂的>亚砂土的。总体来说,颗粒越粗,降水入渗系数也越大。

α随降水量的变化,非饱和带在降水入渗补给地下水过程中起调节作用,降水入渗补给过程要滞后于降水过程,其滞后时间的长短、特征与非饱和带的重力水蓄水库容关系密切,地下水埋深越大,其蓄水库容也越大,调节能力也越强,滞后现象也越明显。

在亚砂土、极细砂和细砂3种岩性中,降水量相等时,降水入渗系数从大到小的顺序为细砂、极细砂、亚砂土。场次降水量的影响表现为α次先是随着降水量的增大而变大,当降水量超过一定数值后,α次反而呈减少趋势,这个降水量即是最佳降水量。α年与α次有相同的规律性,从入渗机制分析,α年也存在最佳年降水量。

当地下水埋深为零时,降水入渗补给系数亦为零,然后随埋深的增加由小变大;当地下水埋深到达某一定值时,降水入渗补给系数达到最大值即最佳降水入渗补给系数,并由此随埋深的增加由大到小,到达一定的埋深时,趋于定值。地下水埋深对降水入渗补给系数的影响,可从3方面来说明。

埋深反映了蓄水库容的大小。当埋深为零时,即蓄水库容为零,这时无论降水量多大,均无入渗补给的可能。当埋深增加时,地下水库得到了降水入渗补给量,此时降水入渗补给系数大于零,降水入渗补给系数随埋深的增加而增大。当地下水达到最佳埋深时,其对应的降水入渗补给系数为最佳降水入渗补给系数,原因是由于条件一致的地区中的依次降水,其入渗补给量随地下水埋深的变化必存在一个最大值。当地下水埋深较小时,由于地下水蓄水库容较小,形成蓄满产流,不能使降水全部入渗;当地下水埋深再增大时,则损失较最佳埋深为大,故降水入渗补给系数随埋深的增加而减小。对于不同级别的降水量,α最大值出现的地下水位埋深区域也不同。最佳埋深与岩性和降水量有关。

地下水埋深在某种程度上反映了土壤水分的多少。土壤水垂直分布大体可概化为3种状况。第1种情况是地下水埋深较小,毛管上升水总能到达地表;第2种情况是地下水埋深较大时,毛管上升水无法到达地表;第3种情况是地下水埋深介于两者之间,在此埋深内,由于地下水位是升降变化,毛管上升水有时达到地表,有时达不到地表。这3种情况将对降水入渗补给量有不同的影响。第1种情况,降水一开始,水即可通过毛管在重力作用下迅速向下移动,地下水位在降水开始后很快上升。第2种情况,降水首先应满足土壤缺水的需要,而后在重力作用下通过空隙下渗补给地下水。其渗漏途径较第1种情况长,入渗方式也有差异。

图3-20 渗透系数与深度关系图

不同地下水位埋深条件对降水入渗补给系数取值的影响。盆地太谷均衡实验场的水分势能实验最大深度为8.2m,有观测点41个。多年资料的分析结果表明,土壤水分势能变化从地面往下可分为3个变化带———剧烈变化带、交替变化带和稳定带,剧烈变化带埋深为0~1.1m,土壤水分势能变幅大于200×133Pa;交替变化带埋深1.1~3.6m,土壤水分势能变幅大于(100~200)×133Pa之间;埋深3.6m以下为稳定带,其土壤水分势能变幅小于100×133Pa,其中埋深在4.5~5.0m以下的稳定特性更为明显,其土壤水分势能的变幅一般不超过50×133Pa,其土壤水分全年为下渗状态。表明埋深在5.0m以下为稳定入渗补给,反映在降水入渗补给系数上随埋深增加,α将趋于稳定,故当埋深大于5.0m时,α值可取定值,不再随埋深而变化。原因是地下水埋深已到达或超过地下水极限埋深,损失趋于定值,水分不向上运动,必然向下运动,故形成了降水入渗补给系数随地下水埋深变化的稳定值。

(二)渗透系数变化

孔隙含水介质的渗透能力不仅取决于粒径大小、颗粒级配、胶结程度,还与其埋深有关。同一岩性的孔隙含水介质,随着深度的增加,介质被压密,渗透系数会减小。

根据河北平原山前冲洪积扇扇顶区数百个钻孔资料的统计,各种含水介质的渗透系数随埋深增加呈指数衰减,部分深层不同岩性渗透系数随埋深的变化规律参考下述经验公式:

岩性为卵砾石时,渗透系数与埋深关系式:

K=K0e-0.0131h R=0.877

岩性为砂砾石时,渗透系数与埋深关系式:

K=K0e-0.0116h R=0.869

岩性为中粗砂时,渗透系数与埋深关系式:

K=K0e-0.0057h R=0.896

K为埋深处的渗透系数;K0为地表浅层的渗透系数;h为埋深;R为相关系数。

因此,对于同一种岩性,其渗透系数大小与深度有关(图3-20)。

㈥ 常用水文地质参数的类型

1.渗透系数K

根据达西定律,渗透系数是水力坡度等于1时的渗透流速。对于具体工程,土层的渗透系数关系到降水设计方案的选择、水位降深的大小及基坑涌水量的大小,影响到降水时间的长短及工期。渗透系数选取正确与否直接关系到降水的成败,该参数是基坑降水设计中最重要的水文地质参数之一。土层的渗透系数可由岩土工程勘察报告提供。对于勘察报告中没有提供该参数或提供的参数未经试验取得,对一些中小工程,可采用经验值;对于一些重大工程,应进行水文地质补充勘察、试验,来确定水文地质参数。

影响渗透系数主要因素为渗透流体和土的颗粒大小、形状、级配以及密度。渗透流体的影响主要是粘滞度,而粘滞度又受温度影响。温度越高,粘滞度越低,渗流速度越大。

土颗粒的影响是颗粒越细,渗透性越低;级配良好的土,因细小颗粒充填在大颗粒的孔隙中,减小孔隙了尺寸,从而降低渗透性。土的密度增加,孔隙减小,渗透性也会降低。

影响粘性土渗透性的主要因素为颗粒的矿物成分、形状和结构(孔隙大小和分布)。粘土颗粒的形状为扁平的,有定向排列作用,因此渗透性具有显著的各向异性性质。层状粘土水平方向的渗透性往往远大于垂直方向;而黄土和黄土状土,由于垂直大孔隙发育,其中的垂直方向的渗透性大于水平方向。

2.降水影响半径R

根据裘布依理论,井点系统开始抽水后,地下水位围绕抽水井形成了降落漏斗。随着抽水时间的延长,地下水流出现相对稳定状态,降落漏斗的曲线逐渐向外扩大直至达到稳定。在距离降水井距离为R的地方,观测不到地下水位的变化,该稳定的降落漏斗的半径即为降水影响半径R。

当要求计算精度不高时,可采用经验值或经验公式计算。对计算精度要求较高的工程应采用现场抽水试验的方法确定降水影响半径。

3.给水度μ

给水度表示潜水含水层的释水能力,它表示单位面积的含水层当潜水面下降一个单位长度时,在重力作用下所能释放出的水量。给水度大,说明含水层能够释放的水量大,反之则小。

给水度大小与含水层岩性有关。松散沉积物含水层的颗粒粗、大小均一,则给水度大;反之,颗粒细、大小不均,则给水度小。

在基坑降水设计计算中,给水度可采用经验值。对重要工程可采用室内实验、室外抽水试验来确定该值。

4.贮水系数S

贮水系数S(或弹性给水度μ*)是指承压含水层的测压水位下降或上升1个单位时,单位水平面积的含水层(厚度为M)释出或存储的水的体积称之为贮水系数。无量纲。

5.导水系数T

导水系数是表示含水层导水能力的大小的参数,它是渗透系数与含水层厚度的乘积。

6.导压系数α

压力传导系数是表示水压力向四周扩散、传递的速率,为导水系数与贮水系数的比值。贮水系数、导水系数可由现场抽水试验确定。

渗透系数和降水影响半径是进行稳定井流计算的主要水文参数,进行非稳定流计算则需用到贮水系数、给水度、导水系数。

㈦ 急!!水文地质参数在各行业中的用途!!

水文地质学是研究地下水补给、径流、排泄等运动规律的学科,1856年,法国水回利学家达西(Darcy)发现了达答西定律,Q=2.73KMS/log(R/r),奠定了水文地质学的基础。达西定律是计算矿坑(井)涌水量的主要公式。水文地质参数主要有渗透系数K,单位涌水量q,导水系数T,影响半径R等,在矿床水害治理、供水水文地质、环境地质、水利建设、工程等方面有广泛的应用。一般由稳定流和非稳定流理论求得,有了上述参数,可以预测矿坑涌水量,水源井的涌水量,以及水源井之间的间距等。用不同的方法计算出的参数可能不同,一般情况下,稳定流法求得的渗透系数偏大,非稳定流法求得的渗透系数偏小或接近真实,但有一个原则就是,在做水害防治时,要知道参数偏大为好,而作为供水水源地预测涌水量时,参数是可以偏小些的。请指正。

㈧ 水文地质参数

20世纪60年代以来,原甘肃省水文二队对流域水文地质参数研究及试验方面做了大量工作,主要有1964~1969年玉门镇、安西南桥子地渗仪观测资料及不同年代的大量抽水试验资料,本次工作以收集分析整理前人资料为主。流域内各盆地含水层渗透系数及给水度分布如图3-4,图3-5。

图3-4 疏勒河流域平原区含水层渗透系数分区图

图3-5 疏勒河流域平原区含水层给水度分区图

一、玉门-踏实盆地

玉门-踏实盆地属南盆地,其南部为大厚度砂砾卵石层,其间赋存潜水,渗透系数56.16~127.70m/d(表3-4),给水度0.25~0.30。北部细土平原为潜水-承压水,含水层岩性为砂及砂砾石,渗透系数9.27~76.64m/d(表3-5),给水度0.10~0.20。

表3-4 玉门-踏实盆地潜水带渗透系数统计表

表3-5 玉门-踏实盆地潜水-承压水带渗透系数统计表

二、安西-敦煌盆地

安西-敦煌盆地属北盆地,北截山前缘地带及党河洪积扇为单一潜水区,岩性以砂砾石为主,渗透系数53.6~61.36m/d(表3-6),给水度0.1~0.25;小宛至疏勒河下游的广大细土平原为潜水-承压水区,渗透系数0.39~21.58m/d(表3-7),给水度0.05~0.2。

表3-6 安西-敦煌盆地潜水带渗透系数统计表

表3-7 安西-敦煌盆地潜水-承压水带渗透系数统计表

三、花海盆地

花海盆地属北盆地,南部含水层岩性为砂砾石,为单一潜水区,渗透系数10~20m/d,给水度0.15~0.25,中部递变为含砾中粗砂、砂,北部为中细砂和细粉砂,为潜水-承压水区,渗透系数0.084~5.87m/d(表3-8),给水度0.10~0.15。

表3-8 花海盆地潜水-承压水带渗透系数统计表

由于前人所做的抽水试验均为稳定流抽水试验,且钻孔多为小口径,滤水管为木质滤水管,因此所得的渗透系数值均偏小。

㈨ 水文地质参数的选择

基坑降水设计方案来是否可行,能否将地自下水降下去,水文地质参数的选择至关重要。

采用稳定流计算基坑涌水量,常用的水文地质参数有渗透系数K、影响半径R;对于非稳定流,还需用到导水系数T、贮水系数S和压力传导系数α。常用的水文地质参数的选取方法在前几章已有论述,设计时可参考选用。对于一些地质条件复杂、降水要求较高的工程,应通过现场水文地质试验确定上述水文地质参数。

降水影响半径R宜通过现场抽水试验或根据当地经验确定。当基坑侧壁安全等级为二、三级时,可按经验公式计算,对于潜水含水层一般采用公式(3-38)进行计算。对于承压含水层,一般采用公式(3-39)进行计算。如采用经验值,可利用表3-4、表3-5选取。

㈩ 核磁共振要素与水文地质参数关系

基于核磁共振理论,由Bloch方程推导出来的含水层含水量在π/2脉冲交变磁场作用后,发射线框中的交变电流可表达为[7]

含水层含水量预测综合物探技术

式中:I0为电流振幅;ω0为激励频率。

其接收线圈测得的横向核磁共振信号感应电动势:

含水层含水量预测综合物探技术

式中初始振幅:

含水层含水量预测综合物探技术

式中:M是核磁化强度,是在平衡条件下单位体积内的磁矩;β1⊥是垂直于地磁场的比感应矢量的分量;γ为磁旋比;p为外激励脉冲的持续时间;n(t)为含水层单位体积内的含水量。

式(2-31)表明,核磁共振信号的初始振幅与含水层含水量成正比。可见,利用核磁共振技术是一种直接找水方法,其核磁共振信号的初始振幅E0(t)是指示水层含水量的直接地球物理要素。

综上述地球物理要素与松散含水层水文地质参数理论分析表明,二者之间存在着内在的相关关系。其关联性如图2-8所示。由此可见,由地球物理参数可直接或间接地求解出水文地质参数,也是物探技术用于含水层含水量预测的理论基础。

图2-8 地球物理要素与水文地质参数关系框图

以地球物理要素与松散含水层水文地质参数相关性为纽带,我们可以通过物探技术获取松散含水层的地球物理异常响应,获取地下含水层水文地质属性,由其预测出地下含水层水文地质参数和含水层含水量成为可能,从而为建立综合物探方法进行含水层含水量预测提供理论基础。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864