地下水水文地质参数有哪些
❶ 水文地质参数的确定
一、给水度
给水度在地下水分析研究中是一个十分重要的水文地质参数。一般认为,给水度指单位体积的饱和岩体中所能释放的重力水体积和饱和岩体体积之比。通常在应用中,普遍把地下水位上升某一高度能储蓄多少水也同样用给水度μ来表示。显然,地下水位降幅给水度与地下水位升幅饱和差,两者不可能相等,但是在潜水位变动带中,它们的数值是很接近的。目前,分析计算给水度值的方法很多,但各种方法都有一定的假设和适用条件,有些方法在使用中还存在这样或者那样的问题,故在实际工作中,能够常用的方法亦不太多。
鉴于上述情况,根据灌区实际情况,采用地下水长观资料和灌区非稳定抽水试验相结合分析计算μ,利用地下水位动态资料及气象资料,依据阿维扬诺夫经验公式的假定,用相关分析法求μ,对地下水浅埋区、径流作用较为微弱的地区比较适宜。泾河二级阶地地区,由于阶面宽阔、水力比降比较平缓,潜水水位变幅带岩性在垂向与径向的分布差异较小,潜水流向多呈北西-南东向,渗径长,径流作用相对微弱。对于含水层下部有粗颗粒分布的一级阶地地区,取其大值平均值,其余则取算术平均值。非稳定流抽水试验求μ,是在泰斯公式基础上演变而来的,因而推导其数学模型时,假定了若干边界条件,实际试验中,边界条件比较复杂,很难对假设条件完全符合。利用水位恢复法确定μ,然后和地下水位动态资料分析对比,并根据灌区内含水层岩性、富水性及水文地质资料综合分析、比拟,给出了7区各水文地质分区的给水度值(表7-1)。
二、渗透系数
渗透系数为水力坡度(又称水力梯度)等于1时的渗透速度。影响渗透系数K值大小的主要因素是岩性及其结构特征。确定渗透系数K值有抽水试验、室内仪器(吉姆仪、变水头测定管)测定、野外同心环或试坑注水试验以及颗粒分析、孔隙度计算等方法。其中,采用稳定流或非稳定流抽水试验,并在抽水井旁设有水位观测孔,确定K值的效果最好。根据灌区抽水试验资料及相关水文地质勘察规范确定渗透系数K(表7-2)。
表7-1 灌区给水度μ值 Table7-1 Specific yield in Jinghui Canal Irrigation District
表7-2 灌区渗透系数K值 Table7-2 Hydraulic conctivity in Jinghui Canal Irrigation District
三、降水入渗补给系数
降水入渗是指大气降水除去地表径流,坑、塘滞蓄、植物截流及蒸发外,通过地表下渗到地层中的水量和降水量之比,称为降水入渗系数,用a′表示,在水文计算中经常采用。而计算降水对地下水的补给时,则将渗入地表以下的水量分为两部分:一部分补给地下水位以上饱气带士壤的含水量,另一部分是当含水量超过了士壤的田间最大持水量时,在重力作用下继续下渗补给地下水,引起地下水位的上升,后一部分补给地下水的水量与降水量之比,称为降水入渗补给系数,用a表示。目前计算a值的方法较多,主要的有水均衡法,回归分析法,地中渗透仪实测法及通过雨后地下水位的升幅和给水度的乘积与降水量之比来推求。根据灌区现有的地下水观测资料,采用地下水升幅法进行分析计算,确定各计算分区的降水入渗补给系数年均值
在平原地区,利用降水过程前后的地下水水位观测资料,可以计算潜水含水层的一次降水入渗系数,可采用下式近似计算:
α=μ(hmax-h±∆h·t)/X (7-1)
式中:a为次降水入渗系数;hmax为降水后观测孔中的最大水柱高度,m;h为降水前观测孔中的水柱高度,m;∆h为临近降水前,地下水水位的天然平均降(升)速,m/d;t为从h变到hmax的时间,d;X为t日内降水总量,mm。
在平原区,地下水侧向流动比较缓慢,天然条件下,地下水位升幅完全代表了地下水含水层所获得的降水入渗补给量。因此,年降水入渗补给系数为降水所引起的地下水升幅之和乘以给水度与年降水量的比值。
灌区农业节水对地下水空间分布影响及模拟
式中:μ为给水度;∆hi为降水引起的次水位升幅;N为全年降水次数,i<N;∑pi=p年为年降水总量;Ni为年内降水引起水位升幅的有效补给的次数,N1<N。
根据灌区地下水位动态资料及降水等观测资料,采用地下水升幅法进行分析计算,不同埋深计算分区的降水入渗补给系数见表7-3。
表7-3 灌区年降水入渗补给 Table7-3 precipitation infiltration supply coefficient in Jinghui Canal Irrigation District
四、灌溉入渗补给系数
灌溉入渗补给系数即灌溉水灌入田间后(田间面积包括斗渠系在内),由于士壤的垂直下渗作用,入渗水量一部分被作物吸收利用;一部分蓄存于饱气带士壤空隙中;还有一部分水(超过士壤最大持水量的多余水量),在重力作用下继续下渗,补给地下水,引起地下水位上升。把这后一部分补给地下水的水量与田间净灌水量之比,称为灌溉入渗补给系数。灌溉入渗补给系数包括渠灌田间入渗补给系数β渠和井灌回归补给系数β井。
灌溉入渗补给系数与士壤的性质、士壤垂向渗透系数、灌水量大小以及地下水埋深密切相关。灌水量大、士壤垂直入渗速度大、地下水埋藏浅、则灌溉入渗补给系数大,反之则小。在进行地下水资源评价时,灌溉入渗补给量是潜水含水层的最重要的补给源之一,而灌溉入渗补给量计算的准确与否,则取决于灌溉入渗补给系数(β)值。
由于时间及资料所限,采用实际调查法,结合灌区较长系列的地面水引灌资料及地下水位动态资料,通过对较大范围内与灌溉入渗补给有关的诸因素进行调查,并与该范围内地下水位动态资料相关联,然后分析计算灌溉入渗补给系数。调查内容包括,观测井在斗渠系范围各放水时段的田间净灌水量;各放水时段的实际灌溉面积;各放水时段实际灌溉面积内,由灌溉入渗引起的地下水位升幅值;灌前或灌后有无降雨及开采因素存在。计算公式如下:
灌溉入渗补给系数指某一时段田间灌溉入渗补给量与灌溉水量的比值,即
β=hr/h灌(7-3)
式中:β为灌溉入渗补给系数;hr为灌溉入渗补给量,mm;h灌为灌溉水量,mm。
灌溉入渗补给系数也可采用试验方法加以测定。试验时,选取面积为F的田地,在田地上布设专用观测井。测定灌水前的潜水位,然后让灌溉水均匀地灌入田间,测定灌水流量,并观测潜水位变化(包括区外水位)。经过∆t时段后,测得试验区地下水位平均升幅∆h,用下列公式计算:
灌区农业节水对地下水空间分布影响及模拟
式中:μ为给水度;∆t为计算时段,s;∆h为计算时段内试验区地下水位平均升幅,m;Q为计算时段内流入试验区的灌水流量,m3/s;F为小区试验区面积,m2。结合灌区实际调查资料和小区试验资料确定灌溉入渗补给系数(表7-4)。
表7-4 灌区灌溉入渗补给系数 Table7-4 Irrigation in filtration supply coefficient in Jinghui Canal Irrigation District
井灌回归补给系数β井是指地下水开采回归水量与地下水开采量之比值,综合灌区实际,井灌回归补给系数统一取0.17。
五、渠系渗漏补给系数
渠系渗漏补给系数是指渠系渗漏补给量Q渠系与渠首引水量Q渠首引的比值。渠系渗漏补给系数m值主要的影响因素是渠道衬砌程度、渠道两岸包气带及含水层岩性特征、包气带含水量、地下水埋深、水面蒸发强度、渠系水位以及过水时间。可根据渠系有效利用系数η确定m值。
渠系有效利用系数η为灌溉渠系送入田间的水量与渠首引水量的比值,数值上等于干支斗农毛各级渠道有效利用系数的乘积(本次渠系渗漏补给量仅计算干、支两级渠道,斗、农、毛三级渠道的渠系渗漏补给量计入田间入渗补给量中,故η值在使用上是干、支两级渠道有效利用系数的乘积)。计算公式:
m=γ·(1-η) (7-5)
式中:γ为修正系数(无因次)。实际上,渠系渗漏补给量是指Q渠道引·(1-η)减去消耗于湿润渠道两岸包气带士壤和浸润带蒸发的水量、渠系水面蒸发量、渠系退水量和排水量。修正系数γ为渠系渗漏补给量与Q渠道引·(1-η)的比值,通过有关试验资料或调查分析确定。γ值的影响因素较多,主要受水面蒸发强度和渠道衬砌程度控制,其次还受渠道过水时间长短、渠道两岸地下水埋深以及包气带岩性特征和含水量多少的影响。γ值的取值范围一般在0.3~0.9之间,水面蒸发强度大(即水面蒸发量E0值大)、渠道衬砌良好、地下水埋深小、间歇性输水时,γ取小值;水面蒸发强度小(即水面蒸发量E0值小)、渠道未衬砌、地下水埋深大、长时间连续输水时,γ取大值。通过灌区相关资料调查分析,灌区干支渠系渗漏补给系数取0.1156。
六、潜水蒸发系数
潜水蒸发系数是指潜水蒸发量E与相应计算时段的水面蒸发量E0的比值,即
C=E/E0 (7-6)
影响潜水蒸发系数C的主要因素是水面蒸发量E0、包气带岩性、地下水埋深Z及植被状况等。可利用浅层地下水水位动态观测资料通过潜水蒸发经验公式拟合分析计算。根据灌区水均衡试验场地中渗透仪对不同岩性、地下水埋深、植被条件下潜水蒸发量E的测试资料与相应水面蒸发量E0计算潜水蒸发系数C。分析计算潜水蒸发系数C时,使用的水面蒸发量E0一律为E601型蒸发器的观测值,应用其他型号的蒸发器观测资料时,应换算成E601型蒸发器的数值。据此计算灌区年平均蒸发强度的范围为0.1947~0.3143mm/d,平均值为0.2550mm/d,蒸发系数值为0.0711~0.1029,平均值为0.0875。
❷ 描述地下水水文地质条件的基本内容和常用参数
遥感是以航空摄影技术为基础,在本世纪60年代初发展起来的一门新兴技术。开始为航空遥感,自1972年美国发射了第一颗陆地卫星后,标志着航天遥感时代的开始。经过几十年的发展,目前遥感技术已广泛应用于资源环境、水文、气象,地质地理等领域,成为一门实用的,先进的空间探测技术。
遥感是利用遥感器从空中来探测地面物体性质的,它根据不同物体对波谱产生不同响应的原理,识别地面上各类地物,具有遥远感知事物的意思。也就是利用地面上空的飞机、飞船、卫星等飞行物上的遥感器收集地面数据资料,并从中获取信息,经记录、传送、分析和判读来识别地物。
遥感技术主要特点为:
1.可获取大范围数据资料。遥感用航摄飞机飞行高度为10km左右,陆地卫星的卫星轨道高度达910km左右,从而,可及时获取大范围的信息。例如,一张陆地卫星图象,其覆盖面积可达3万多km2。这种展示宏观景象的图象,对地球资源和环境分析极为重要。
2.获取信息的速度快,周期短。由于卫星围绕地球运转,从而能及时获取所经地区的各种自然现象的最新资料,以便更新原有资料,或根据新旧资料变化进行动态监测,这是人工实地测量和航空摄影测量无法比拟的。例如,陆地卫星4、5,每16天可覆盖地球一遍,NOAA气象卫星每天能收到两次图象。Meteosat每30分钟获得同一地区的图象。
3.获取信息受条件限制少。在地球上有很多地方,自然条件极为恶劣,人类难以到达,如沙漠、沼泽、高山峻岭等。采用不受地面条件限制的遥感技术,特别是航天遥感可方便及时地获取各种宝贵资料。
4.获取信息的手段多,信息量大。根据不同的任务,遥感技术可选用不同波段和遥感仪器来获取信息。例如可采用可见光探测物体,也可采用紫外线,红外线和微波探测物体。利用不同波段对物体不同的穿透性,还可获取地物内部信息。例如,地面深层、水的下层,冰层下的水体,沙漠下面的地物特性等,微波波段还可以全天候的工作。
用处:
一、遥感在资源调查方面的应用
遥感在资源调查中可发挥很大的作用,特别在自然资源调查中,近年来做了很多工作,取得了丰硕的成果和可观的效益。其主要表现在国民经济建设中的农业、林业、地质矿产及水利建设等部门中。
(一)在农业、林业方面的应用
遥感在农林方面的应用主要是在农、林土地资源调查、土地利用现状调查、农林病虫害、土壤干旱、盐化、沙化的调查及监测,以及农作物长势的监测与估产、森林资源的清查等方面。近年来,在牧场草场资源调查、短中期农林灾害、农用水资源,以及野生动物生态环境调查等方面也相继开展工作,取得了成果。
遥感在土地资源与土壤调查中,得到广泛应用。遥感加快了调查工作的进度,工作精度、质量也有很大提高。例如,我国利用560幅陆地卫星图像,仅用两年时间完成了全国15种土地利用类型的分析和量算统计工作,提供了全国和分省的土地利用基本数据和有关图件。
作物估产是体现遥感在农业方面综合应用的最好例证。自1974年以来,美国、前苏联、阿根廷、中国、日本、印度等国先后进行了不同范围、不同作物的估产工作。美国对世界小麦产量的估产精度已达90%以上,并扩大到对玉米、大豆等八种以上作物的估产。我国于1983—1986年在京津冀进行跨省市的统一网络较大范围冬小麦遥感估产试验,精度也超过90%。
遥感在林业上的应用也很广泛。例如,我国近年完成的“三北”防护林遥感综合调查。在包括西北大部、华北北部和东北西北部总面积为128万平方公里的“三北”造林一期工程的调查中,完成了对现有防护林类型、分布、面积和保存率;草地数量、质量和分布;土地资源类型、分布、数量及利用现状的调查。提供了200余幅各类遥感专题系列图,并建成了全区资源与环境信息系统,为掌握防护林区现状、林区的进一步发展和规划奠定了基础。
(二)在地质矿产方面的应用
遥感在地质及其矿产资源方面的应用主要表现在基础地质工作、矿产地质工作,以及工程地质、地震地质、灾害地质的地质综合调查等方面的应用。遥感已成为地质矿产调查研究中的一种先进工作手段和重要方法。
遥感图像视域宽阔,客观真实地反映出各种地质现象及其相互间的关系,形象地反映出区域地质构造,以及区域构造间的空间关系,为跨区域甚至全球的区域地质研究提供了极有利的条件和基础。例如近年来对雅鲁藏布江深断裂带的延伸和走向的研究、郯 断裂的延伸和走向问题的论证,以及重新修编的1∶400万中国构造体系图的工作,都是建立在遥感图像基础上的新的认识和发现的体现,解决了一些地质学界长期争论或按常规很难解决的问题。遥感为持不同学术观点的地质学者提供了一个可共同参照的基础,推动和促进了地质学的发展。
遥感在矿产地质工作中的应用已取得许多成果,获得了一致的好评。例如,我国地矿系统采用遥感地质调查方法,在小秦岭金矿田地区划分出线性构造1030条,环形构造138个,古采峒1000余处;综合化探、物探成果提出13个远景地段。经检查发现含金石英脉带、蚀变构造带22条,已见金矿3处,全部工作仅历时一年时间。又如:煤田总公司在东北大兴安岭西坡,采用遥感地质方法圈定出17个含煤盆地,其中4个属新发现,新增储量540亿吨。类似的实例不胜枚举,遥感地质方法已成为矿产地质工作的重要方法。
工程地质、地震地质、水文地质以及灾害地质等综合地质调查中也广泛地应用了遥感这一现代化手段。仅在1980—1985年期间,地矿部遥感地质工作者就为较大工程做了工程稳定性评价课题13个,研究大型滑坡4个。地矿部遥感中心在长江三峡的重庆至宜昌间先后进行了彩色及侧视雷达成像飞行。利用获得的资料对三峡库区进行了详细的工程地质判读分析,对新滩坡体的形态、形成机理及发展趋势作了较为详细的分析,为国家提供了有关三峡工程建设的基础资料。
基于遥感在地质矿产调查中广泛的应用以及取得的显著效益,我国地勘部门相继成立了专业的遥感应用和科研机构,遥感地质队伍也不断扩大,成果累累,展现出遥感在地质矿产资源方面美好的发展前景。
(三)在水文、水资源方面的应用
遥感在水文水资源方面的应用,如水资源的调查、流域规划、水土流失调查、冰雪监测、海口海岸带及浅海地形调查、海洋调查研究等方面,都能发挥重要作用。特别是在人类足迹难以到达的荒凉地区,遥感技术可成为水文水资源调查的有效手段。例如,我国青藏高原在以往300年来先后经历了150多次探险考察,曾查出500多个湖泊,而近年来采用航空像片、卫星图像判读,不仅对这些湖泊的面积、形状进行了修正定位,而且还补充了地面考察或地图上未标明的300多个湖泊。
遥感图像,特别是红外遥感图像在识别含水层、判断充水断层、查明富水地段位置方面是很有利的。例如,美国在夏威夷群岛,利用红外遥感发现了200多处地下淡水出露点,从而解决了该岛对淡水的需求。我国在大连地区开展航空热红外遥感试验,在该地区沿海共发现22处从未有历史记录的淡水泉点,通过对这些泉点的分析,确定了地下淡水排泄地段,为解决沿海地区人畜饮水水源提供了一个重要途径。
利用遥感图像进行海岸带岸线测量、河口及近岸悬浮泥沙运移,以及海洋环境监测,诸如海水温度、盐度、水深、洋流、波浪、潮汐等海洋诸要素的测量,都可发挥重要作用,对海洋的开发具有重要意义,特别是遥感图像可提供大尺度、现实性强、多层次、全天候、客观逼真的丰富信息,为海洋研究及指导海洋渔业生产提供了基础。
二、遥感在环境监测评价及对抗自然灾害方面的应用
(一)在环境监测方面的应用
遥感在环境监测中主要是利用遥感提供的瞬间成像的大范围图像,对大气污染、水体污染、土地污染以及海洋污染等进行监测。由于遥感所提供的信息快速及时,现实性好,以及真实客观、形象的特点,可实时地了解和掌握污染源的位置、污染物的性质、污染物的动态变化,以及污染对环境的影响,为及时采取防护或疏导措施,以及环境评价提供了基础。例如,地矿部水文方法队与地质遥感中心合作,对长江下游苏州河口至吴凇口的水污染现状做了调查研究,他们利用航空热红外扫描图像,共判读出异常点29处,绘制了约25公里江段的污染判读图。他们还对北起大连,南至海南岛海岸沿线的港口及海上平台对海水的污染情况进行了航空红外监测,为国家海洋局执法提供了依据。
长江三峡水利枢纽工程是一项规模宏大、技术复杂、具有重大经济效益和社会效益的巨大工程,但是,在长江干流上兴建三峡大坝,必将对其生态、环境及社会产生深刻地影响。为此,在系统地开展三峡工程对生态与环境的影响及其对策的研究中,以及在实地调查工作中都采用了遥感综合分析的方法,充分发挥了遥感在三峡环境论证与信息储备中的作用。并在库区环境本底调查、环境演变分析、环境动态监测等方面取得许多明显成效,为我国三峡工程的科学决策提供了可靠的资料和基础。
近年来,我国相继在长春、太原、北京、天津、广州等大中城市,利用航空遥感进行城市环境的监测和评价,这标志着我国遥感在环境监测方面的应用正向更为广泛深入的方向发展。
(二)在对抗自然灾害中的应用
自然灾害是指环境异常或环境的突发性变化,给人类生活和生存带来的灾难。近年来遥感技术在预报灾害方面取得很多重要成就,成为预报自然灾害的有力工具和手段。
气象卫星当前已进入业务性运转,形成多层次的预报网络,在灾害性天气监测、天气分析预报、气象研究等方面,发挥了十分重要的作用。我国“风云一号”“风云二号”气象卫星的研制和相继发射成功,标志着我国的气象预报技术已从单项、短期、小范围的预报发展成综合性、中长期、大范围的准确预报。为我国的旱情、洪水,以及滑坡、泥石流和病虫害的准确预报提供了可靠资料,为采取减灾措施提供了可靠基础。
森林火灾一直是威胁林业建设的重要灾害之一,早在70年代,我国就进行机载遥感—林火探测实验,在3000米高空通过热红外传感器可发现地面 0.1平方米的火源。1987年5月,黑龙江省大兴安岭森林特大火灾中,遥感在准确确定火源位置、范围,以及火源蔓延趋势,为扑灭大火提供及时准确的火情信息上,以及在监测火势发展,灾后评估火灾损失和恢复重建规划方面,都发挥了重要的作用,获得显著的社会经济效益。
近年来,在利用多时相遥感资料和地理信息系统技术对黄土高原水土流失进行综合调查和研究;利用全球定位系统(GPS)技术,监测地壳及其板块的运动,进行大区域的地球动力学研究,探索地震的发生机理,进行地震的中长期预报;利用多时相大比例尺航空遥感图像结合气象预报资料和地面勘查进行滑坡、泥石流的调查与监测,保障重点工程及铁路沿线的安全;以及利用远距离卫星通讯技术,提高灾害预报的及时性和准确性,为救灾和决策提供依据等方面,都取得很大成效和重大的进展。
三、遥感在区域分析及建设规划方面的应用
遥感图像是地表面一定区域景观的真实、客观的记录和形象显示。地理学区域分析亦充分利用和发挥了遥感图像的这一特点和优势,成为遥感在地理学应用的重要方面。例如,我国早期开展的滕冲、长春、新疆及长江中下游地区的遥感试验,以及近年来开展的黄土高原遥感综合调查,“三北”防护林遥感综合调查等大型遥感工程中,都是以遥感区域分析为先导,以区域分析为基础,取得的成果。我国在遥感的区域分析应用中,已形成一定特色,进入世界先进水平行列。
近年来随着城市化及城市建设的热潮,城市遥感方兴未艾。城市遥感可提供诸如城市土地利用现状,城市用地分析,城市环境监测及评价,城镇布局结构分析,城市道路交通分析,城市人口分析及城镇的生态分析等城市发展的基础信息,为城市建设规划及决策服务。例如,由北京市政府和地质矿产部、城乡建设部联合组织实施的“北京航空遥感(8301工程),于1983年开始遥感飞行,到1986年底,在城市环境地质、城市建设、农业水利建设、生态环境、影像地图以及文物、古建筑等诸多方面,共获得41项研究成果,有23项填补了北京市基础资料的空白,取得了良好的经济效益和社会效益。
继北京市之后,城市遥感在全国各大、中城市较为普遍地开展起来,并在应用的深度和广度上有不同程度的提高。特别是随着城市遥感应用的深化,城市地理信息系统的建立及在城市总体规划、城市建设的辅助决策中的应用,将城市遥感应用提高到一个更高层次的阶段。
四、遥感在全球性宏观研究中的应用
遥感的全球性研究虽然目前尚未系统地进行,形成规模。但是,随着社会经济的发展,特别是诸如世界人口增加,资源危机,环境恶化等一系列涉及全球性的问题,越来越引起人们的关注。全球性研究(Global Study)已提到日程上,得到世界各国普遍的重视,全球性研究必将有一个较大的发展。
全球研究的目的主要是宏观地、整体性地对人类赖以生存的岩石圈、大气圈、水圈、生物圈的研究,以此带动区域性研究的深化,促进全球环境的改善。因此,这无疑为遥感发挥自身的特点和优势,开拓的又一应用领域。遥感可为全球研究提供各种便利条件,促进全球性研究的进一步开展和深化。例如,可利用遥感全球定位系统(GPS)监测和研究板块的运移,深大断裂活动,研究环形构造的成因及其机制;利用气象卫星资料及其它遥感信息,进行全球性气象研究及世界灾情的预报;海洋动力学研究,地球表面固态水的分布,世界冰川的进退,以及世界大环境的监测和治理等。遥感必将在全球性研究中发挥出更大的作用,做出更大的贡献。
当前,全球性研究已陆续开展,1992年已确定为国际空间年(ISY);一种全新的数字式全球变化网络全书将问世,它将说明遥感可以对监测全球变化做出的贡献。我国已决定积极地参与“地圈与生物圈”(IGBP)、“国际空间年”(ISY)、“国际减灾十年”等科技项目合作。承接全球变化地图集与全球变化电子网络全书等部分项目的工作。中国将对全球性研究作出贡献。
五、遥感在其它方面的应用
(一)在测绘制图方面的应用
航空摄影测量一直是测绘制图的一种主要资料来源和重要的技术方法,形成了完整而系统的学科体系。当代遥感的发展使测绘制图的资料来源更为多样化,资料的准确可靠性及其快速及时性和适时动态性等方面都有较大的改观;成图周期大为缩短;影像地图、数字地图等新图种和制图新工艺大量涌现,使测绘制图产生了新的变化和进展。例如,我国依据近年来所发射的卫星获得的图像,完成了黄河三角洲1∶5万,1∶10万地图的编制,绘制完成了我国第一幅南沙群岛影像地图。遥感还能在各种气候气象条件复杂,常规方法难于进行工作的地区获得资料,填补地面工作的空白。例如,巴西亚马孙河流域有近500万平方公里的热带雨林区,那里人烟稀少,云雾终日不散,常规测量工作难于进行。利用遥感侧视雷达技术,在不到一年的时间里就完成了该地区1∶40万雷达扫描成像工作,取得了有价值的资料,为该地区测量制图提供了基础。利用遥感图像进行各种专题图的编制,以及编制中小比例尺大区域的省(区)、全国乃至大洲影像地图已较普遍,西欧各国已应用SPOT卫星资料修编和更新1∶5万地形图等。随着遥感信息在空间分辨率、光谱分辨率以及时相分辨率方面的提高,遥感将为测绘制图技术的发展应用,开拓出更加美好的前景。
(二)在历史遗迹、考古调查方面的应用
近年来在进行野外考古调查中,配合应用遥感图像分析,发现了许多重大的历史遗迹,取得显著的成果。例如,英国遥感专家通过计算机增强的卫星图像,在英国伦敦以北约30公里的地下发现了罗马时代的古城堡遗迹。我国也曾利用遥感提供的信息,进行北京圆明园遗迹考察,长城遗迹的考察,以及内蒙古金代古城的发现等方面取得很好的效果。遥感为野外考古调查带来了变革,成为考古工作者有力的工具和手段,促进和加快了野外考古工作。
(三)军事上的应用
遥感在军事上的应用是不言而喻的。事实上,军事应用是遥感最早最成功的应用,今天遥感的发展是得利于遥感军事上成功的应用而迅速发展起来的。目前,发射的绕地球运行的卫星,绝大部分是与军事有关的。当今战争的胜负,不仅决定于军事实力(人力、武器)的对比上,准确可靠的信息获取,传输和决策对战争的胜负起着关键性的作用。英国、阿根廷的马岛战争、中东战争,以及海湾战争都充分证实了遥感在军事战争中所起到的至关重要的作用。
❸ 水文地质参数系列的建立
确定正确可靠的参数,是进行地下水资源计算的关键问题之一。本次要求的目的是补充完善和深入研究水文地质参数获取的技术方法,水文地质条件变化较大区段的各种水文地质参数获取方法和数据做重点研究。本次调查主要补充部分单井稳定流抽水试验、孔组非稳定流抽水试验、河渠渗漏试验、井灌回渗试验、示踪试验等获取水文地质参数的方法要求。
计算中的主要水文地质参数有降水入渗系数、给水度、河渠水渗漏系数、灌溉水回渗系数、潜水蒸发极限临界深度、含水层和弱透水层的渗透系数和储水系数以及越流系数等。
具体技术要求按 GWI-A4 执行。
❹ 常用水文地质参数的类型
1.渗透系数K
根据达西定律,渗透系数是水力坡度等于1时的渗透流速。对于具体工程,土层的渗透系数关系到降水设计方案的选择、水位降深的大小及基坑涌水量的大小,影响到降水时间的长短及工期。渗透系数选取正确与否直接关系到降水的成败,该参数是基坑降水设计中最重要的水文地质参数之一。土层的渗透系数可由岩土工程勘察报告提供。对于勘察报告中没有提供该参数或提供的参数未经试验取得,对一些中小工程,可采用经验值;对于一些重大工程,应进行水文地质补充勘察、试验,来确定水文地质参数。
影响渗透系数主要因素为渗透流体和土的颗粒大小、形状、级配以及密度。渗透流体的影响主要是粘滞度,而粘滞度又受温度影响。温度越高,粘滞度越低,渗流速度越大。
土颗粒的影响是颗粒越细,渗透性越低;级配良好的土,因细小颗粒充填在大颗粒的孔隙中,减小孔隙了尺寸,从而降低渗透性。土的密度增加,孔隙减小,渗透性也会降低。
影响粘性土渗透性的主要因素为颗粒的矿物成分、形状和结构(孔隙大小和分布)。粘土颗粒的形状为扁平的,有定向排列作用,因此渗透性具有显著的各向异性性质。层状粘土水平方向的渗透性往往远大于垂直方向;而黄土和黄土状土,由于垂直大孔隙发育,其中的垂直方向的渗透性大于水平方向。
2.降水影响半径R
根据裘布依理论,井点系统开始抽水后,地下水位围绕抽水井形成了降落漏斗。随着抽水时间的延长,地下水流出现相对稳定状态,降落漏斗的曲线逐渐向外扩大直至达到稳定。在距离降水井距离为R的地方,观测不到地下水位的变化,该稳定的降落漏斗的半径即为降水影响半径R。
当要求计算精度不高时,可采用经验值或经验公式计算。对计算精度要求较高的工程应采用现场抽水试验的方法确定降水影响半径。
3.给水度μ
给水度表示潜水含水层的释水能力,它表示单位面积的含水层当潜水面下降一个单位长度时,在重力作用下所能释放出的水量。给水度大,说明含水层能够释放的水量大,反之则小。
给水度大小与含水层岩性有关。松散沉积物含水层的颗粒粗、大小均一,则给水度大;反之,颗粒细、大小不均,则给水度小。
在基坑降水设计计算中,给水度可采用经验值。对重要工程可采用室内实验、室外抽水试验来确定该值。
4.贮水系数S
贮水系数S(或弹性给水度μ*)是指承压含水层的测压水位下降或上升1个单位时,单位水平面积的含水层(厚度为M)释出或存储的水的体积称之为贮水系数。无量纲。
5.导水系数T
导水系数是表示含水层导水能力的大小的参数,它是渗透系数与含水层厚度的乘积。
6.导压系数α
压力传导系数是表示水压力向四周扩散、传递的速率,为导水系数与贮水系数的比值。贮水系数、导水系数可由现场抽水试验确定。
渗透系数和降水影响半径是进行稳定井流计算的主要水文参数,进行非稳定流计算则需用到贮水系数、给水度、导水系数。
❺ 华北平原水文地质参数系列
一、降水入渗系数(α)
根据降水入渗条件的变化特征,华北平原不同地貌单元、不同年降水量、包气带不同岩性和厚度的降水入渗系数见表3-2-1~3-2-3。山前冲洪积平原包气带岩性多为砂类土和砂卵砾石,水位埋深大,降水入渗系数一般大于0.25,山前平原的冲洪积扇扇间的黏性土分布地带,地下水位埋深较大,降水入渗系数只有0.1左右;古黄河冲积平原的包气带岩性多为砂类土和砂卵砾石,降水入渗系数最大,一般在0.25~0.4;中部和滨海平原为0.15~0.25。详见表3-2-1~3-2-3。
表3-2-1 华北平原山前平原降水入渗系数
表3-2-2 华北平原中部和滨海平原降水入渗系数
表3-2-3 华北平原古黄河冲积平原降水入渗系数
二、灌溉入渗系数(β)
华北平原灌溉入渗系数总的规律是与水位埋深、包气带岩性关系紧密(表3-2-4)。山前平原,包气带结构相对疏松,水位埋深一般大于10m,灌溉入渗系数在0.15~0.25之间;中部平原水位埋深也较大,包气带主要为粘土、粉质粘土与粉土互层,灌溉入渗系数在0.05~0.15;滨海平原,水位埋深小,包气带粉质粘土、粉砂、粉土,灌溉入渗系数在0.15~0.3。
三、含水层给水度(μ)
华北平原不同地貌单元、不同含水层岩性的水位变动带给水度值见表3-2-5,可以看出山前冲洪积平原从粘土到卵砾石,给水度从0.03~0.28;中部冲湖积平原从粘土到粗砂,给水度0.025~0.16;滨海平原给水度0.05~0.075。总分布规律是山前冲洪积平原含水层给水度大于中部冲湖积平原和东部滨海平原含水层。
四、深层承压水弹性释水系数(μe)
深层承压地下水弹性储水系数主要受含水层岩性控制。华北平原不同地貌单元的深层地下水弹性储水系数见表3-2-6,可以看出:山前冲洪积平原深层承压含水层弹性储水系数大于中部冲湖积平原,中部冲湖积平原深层承压含水层弹性储水系数大于滨海海积平原。
表3-2-4 华北平原灌溉入渗系数
表3-2-5 华北平原水位变动带不同岩性给水度
表3-2-6 原不同地貌单元深层承压地下水弹性释水系数
五、含水层渗透系数(K)
渗透系数分布规律为垂向上部含水层(Ⅰ、Ⅱ含水组)大于下部含水层(Ⅲ、Ⅳ含水组)。在平面上,粗颗粒含水介质(中粗砂—砾石、卵石),山前平原渗透系数大于中部与滨海平原,细颗粒含水介质(粉砂—中砂),山前平原、中部平原、滨海平原渗透系数差异不大(表3-2-7~表3-2-8)。表3-2-7 水平渗透系数 (单位:m·d-1)
中国北方地下水系统
表3-2-8 垂直渗透系数 (单位:m·d-1)
六、潜水蒸发系数(C)
华北平原山前和中部平原大部分区域因水位下降、包气带变厚,当水位埋深超过3m时,蒸发系数趋为零;中部平原当水位埋深超过5m时,潜水蒸发接近零;在东部滨海平原,水位埋深相对要浅,蒸发系数较山前和中部平原要大。华北平原各地貌单元不同包气带岩性、不同地下水位埋深的潜水蒸发系数(表3-2-9)。
七、华北平原水文地质参数主要特征
1)华北平原降水入渗系数、含水层给水度和深层承压含水层弹性释水系数有着相同的分布规律:从山前冲洪积平原、中部冲湖积平原到东部滨海平原,参数由大到小逐渐变化。
表3-2-9 华北平原潜水蒸发系数
2)渗透系数分布规律为垂向上上部含水层大于下部含水层;在平面上,粗颗粒含水介质(中粗砂—砾石、卵石),山前平原渗透系数大于中部与滨海平原;细颗粒含水介质(粉砂—中砂),山前平原、中部平原、滨海平原渗透系数差异不大。
3)灌溉入渗系数是与水位埋深、包气带岩性关系紧密,总规律是山前平原与滨海平原系数接近,都大于中部平原灌溉入渗系数。
4)潜水蒸发系数大小随潜水水位埋深增大而减小,随包气带岩性颗粒减小而减小。山前和中部平原大部分区域因水位下降,包气带变厚,蒸发系数变小甚至趋为零;滨海平原,水位埋深相对要浅,蒸发系数较山前和中部平原要大,但与开采前相比变小。
❻ 与预测松散含水层含水量有关的水文地质参数
一般来说,预测和计抄算松散含水层含水量的水文地质参数包括:渗透系数、导水系数、给水度、贮水系数、越流系数、影响半径、降雨入渗系数,及单孔单位涌水量等。地下含水层的深度、厚度、范围和空间展布等参数,地下水补、径、排条件也是评价含水层含水量的重要因素。这些参数能够表征松散含水层的空间结构及水文地质属性,其数值大小是含水层富水性的综合反映。常见水文地质参数的基本定义及含义见表2-1。
表2-1 常用水文地质参数概念及物理定义汇总表
❼ 水文地质参数变化
一、太原盆地水文地质参数计算
水文地质参数的选取直接影响着地下水资源计算量的大小和可信度,研究水文地质参数具有十分重要的意义。本次相关的水文地质参数主要有降水入渗补给地下水系数(α)、潜水蒸发极限深度(L)、蒸发强度(ε)、灌溉回渗地下水系数(β)、疏干给水度(μ)、导水系数(T)、弹性储水系数(s)、渗透系数(K)、河流渗漏补给系数、渠系渗漏补给系数等。
(一)降水入渗补给地下水系数(α)
影响降水对地下水的补给量的因素很多,主要有地形、包气带岩性及结构、地下水位埋深、降水特征及土壤前期含水量等。
降水入渗补给系数为降水入渗补给地下水量与降水量之比值。年降水入渗补给系数为年内所有场次降水对地下水入渗补给量总和与年降水总量的比值,其表达式为:
山西六大盆地地下水资源及其环境问题调查评价
式中:α年是年降水入渗补给系数;pri是场次降水入渗补给量,mm;P是年降水量,mm;n是年降水场次数。
用长期动态观测孔求取年降水入渗系数的计算方法:
山西六大盆地地下水资源及其环境问题调查评价
式中:μ∑Δh次是年内各次降水入渗补给地下水量之和;P年是年降水量;Δh次是某次降水引起的地下水位升幅值。
根据动态资料分析计算,在前人试验的基础上,综合考虑各方面的因素,给出盆地区降水入渗补给地下水系数(详见第四章)。
(二)地下水蒸发极限深度(L)、蒸发强度(ε)
蒸发极限深度就是指浅层水停止蒸发或蒸发量相当微弱时,浅层水位埋深值。蒸发强度就是在极限蒸发深度以上,单位时间浅层水的蒸发量。
影响地下水蒸发的主要因素是地下水位埋深、包气带岩性和水面蒸发强度等。
理论上,当水位埋深处于蒸发极限深度时,地下水在无补给、无开采的条件下,动态曲线近于平直。
地下水蒸发极限深度(L)
蒸发极限深度通常采用迭代法、试算法和经验公式计算(L),公式如下:
迭代法:
试算法:
经验公式法:
式中:ΔT1、ΔT2为计算时段,d;H1、H2、H3为时段内水位埋深,m;Z1、Z2为时段内水面蒸发强度,m/d;
经计算,太原盆地孔隙水区不同岩性的蒸发极限深度依包气带岩性不同分别为:亚砂、亚粘土互层为3.5m,亚砂土为4.0m,粉细砂、亚砂土互层为4.5m。
地下水蒸发强度
计算公式:
式中:Z0是液面蒸发强度,mm/d;ΔH是浅层水降落间段的平均水位埋深,mm;Z是蒸发强度,mm/d。
由本区浅层水水位埋深图(详见第四章)可看出,水位埋深小于4m的区域在北部太原市和南部平遥、介休一带,根据上式计算太原、平遥、介休等地的地下水蒸发强度见表3-1。
表3-1 太原盆地孔隙水区地下水蒸发强度
(三)灌溉回渗地下水系数(β)
是指田间灌溉补给地下水的量与灌溉总量的比值。影响灌溉回渗系数和因素主要有岩性、水位埋深、土壤含水率、灌溉定额等多种。
计算公式:
式中:μ是给水度;Δh是由灌溉引起的地下水位平均升高值,m;Q是灌溉水量,m3;F是面积,m2。
本次工作在盆地太原市小店区郜村、汾阳市贾家庄镇东马寨村和榆次市杨盘等3个地方布置了3组灌溉入渗试验,地表岩性郜村为粉质粘土、东马寨上部为粉质粘土,下部为粉土,杨盘为粉土,化验室给水度试验结果分别为0.195、0.11、0.143。郜村在37m×37m的面积上布置10眼观测孔,水位埋深1.2~1.3m,累计灌溉水量160m3,10个孔平均水位上升值为0.1912m,根据上式计算得灌溉入渗地下水系数为0.32;东马寨村水位埋深1.95~2.44m,在26m×26m的面积上布置10眼观测孔,灌溉水量60m3,观测孔平均水位上升值为0.465m,计算得灌溉入渗地下水系数为0.58;杨盘布3个观测孔,水位埋深5.76~6.01m,灌溉面积100m2,灌溉水量100m3,平均水位上升高度为0.27m,计算得灌溉入渗系数为0.039。
从以上试验数据可以看出,不同水位埋深、不同岩性地区灌溉入渗系数有很大区别。综合考虑各种因素,灌溉回渗地下水系数选用值见表3-2。
表3-2 灌溉回渗地下水系数
(四)弹性贮水系数S、导水系数T、给水度μ、渗透系数K
盆地区大部分地区都进行过1∶5万比例尺的农田供水水文地质勘查,做过大量单孔和多孔抽水试验,本次在文水文倚、汾阳等5地分别作了5组抽水试验,用非稳定流公式,降深-时间半对数法计算结果如下:文倚导水系数T=1983.59~2181.95m2/d,渗透系数K=32.19~35.4m/d,弹性贮水系数S=1.79×10-3;汾阳县贾家庄镇东马寨村抽水试验求得导水系数T=325.84~376.5m2/d,渗透系数K=5.65~6.53m/d。结合以往本区的工作成果,给出太原盆地浅层孔隙潜水和中深层孔隙承压水水文地质参数,详见参数分区图3-13和参数分区表3-3。
表3-3 太原盆地中深层孔隙承压水及浅层孔隙潜水参数分区
图3-13 太原盆地参数计算分区图
二、大同盆地水文地质参数计算
由本区浅层水2004年水位埋深图可看出,水位埋深小于4m的区域主要分布于盆地中部冲积平原区,盆地南部怀仁、山阴、应县、朔州分布面积较大。根据计算和以往试验资料,本区蒸发强度确定值见下表(表3-4)。
表3-4 大同盆地孔隙水区地下水蒸发强度
据“山西省雁同小经济区水资源评价、供需平衡研究报告”中搜集的本区灌溉回渗试验数据取得不同水位埋深、不同岩性、不同灌溉定额的灌溉回渗系数,灌溉回渗系数选定值见表3-5。
盆地区大部分地区都进行过1/5万比例尺的农田供水水文地质勘查,做过大量单孔和多孔抽水试验。本次工作搜集本区以往抽水试验孔117个,本次在大同县党留庄乡、怀仁县金沙滩镇、怀仁县新发村、怀仁县榆林村、山阴县张庄乡、朔州市城区沙塄乡等6地分别作了6组抽水试验,采用AquiferTest计算程序,非稳定流方法计算,本次抽水孔具体情况和计算结果见表3-6和表3-7 。
表3-5 灌溉回渗地下水系数
表3-6 大同盆地本次抽水试验数据统计
表3-7 大同盆地本次抽水试验计算成果表
结合以往本区的工作成果,给出大同盆地浅层孔隙潜水和中深层孔隙承压水水文地质参数,详见参数分区图3-14、图3-15和参数分区表3-8、表3-9 。
图3-14 大同盆地降水入渗系数分区图
图3-15 大同盆地浅层、中深层孔隙水参数分区图
表3-8 大同盆地浅层孔隙潜水参数分区表
续表
表3-9 大同盆地中深层孔隙承压水参数分区
三、忻州盆地
忻州盆地地下水资源较为丰富,开采条件优越,20世纪70年代之前地下水开采规模较小;70年代初至80年代末随着农业灌溉的普及,工业生产的发展和城市规模的扩大,地下水开采量迅速增加。开采对象以浅层水为主,造成浅层水水位普遍有所下降(但下降幅度不大)。从20世纪90年代至今,虽然地下水开采量具有逐年增大的趋势,但增加幅度较小,且中层井数量逐渐增多,形成了浅层水、中层水混合开采的新模式,地下水位总体处于动态平衡状态。受地下水人工开采的影响,降水入渗系数及导水系数等水文地质参数发生了一定程度的变化。
区内降水入渗系数的变化除了与年降水量及降水特征有关外,主要与浅层地下水位埋深关系较为密切。已有资料表明,在山前倾斜平原区,浅层水位埋深一般大于7m,因水位下降使降水入渗系数发生了不同程度的减小。在冲积平原区浅层水位埋深一般小于7m,水位下降的结果引起了降水入渗系数有所增大。不同地貌单元降水入渗系数的变化见第五章。
从20世纪70年代以来,区内含水层的导水系数发生了较为明显的减小,主要体现在因浅层地下水位下降,使浅层含水层上部处于疏干状态,含水层厚度减小,直接导到导水系数减小。因浅层水水位下降幅度不同,导水系数减小的程度也存在差异,从本次地下水侧向补给量计算断面附近的井孔资料分析,含水层厚度一般减小了3~6m,导水系数由70年代中期的60~250m2/d,减少到目前的50~200m2/d左右。
忻州盆地给水度根据不同地貌单元含水层岩性、分选性及富水性综合确定见表3-10及图3-16 。
表3-10 忻州盆地浅层含水层给水度分区
图3-16 忻州盆地给水度分区图
四、临汾盆地
经过搜集以往资料,调查和计算确定临汾盆地降水入渗系数见表3-11。临汾盆地渗透系数及给水度分区见图3-17,表3-12。
表3-11 临汾盆地平原区降水入渗系数统计
图3-17 研究区渗透系数及给水度分区图
表3-12 临汾盆地参数分区表
五、运城盆地
运城盆地地下水长观网建站年代较远,积累了大量的地下水位监测资料,且经过多次的地质、水文地质勘察、地下水资源评价工作,取得了大量的降水入渗值,参考前人综合成果,结合目前包气带岩性、地下水位埋深,给出运城盆地降水入渗补给系数,见表3-13。
表3-13 运城盆地平原区降水入渗系数统计
渠系有效利用系数除受岩性、地下水埋深影响外,还与渠道衬砌程度有关。修正系数r为实际入渗补给地下水量与渠系损失水量Q损的比值,是反映渠道在输水过程中消耗于湿润土壤和侵润带蒸散损失量的一个参数,它受渠道输水时间、渠床土质及有无衬砌、地下水埋深等因素的影响。一般通过渠道放水试验获得。本次评价主要参考运城市水利局相关试验成果,见表3-14。
表3-14 运城盆地万亩以上灌区η、r、m值统计
灌溉回归补给系数β值与岩性、植被、地下水埋深及灌溉定额有关,一般通过灌溉入渗试验求得,本次评价主要参照运城市水利部门资料综合确定,详见表3-15。
表3-15 运城盆地灌溉回归系数β取值
河道渗漏补给系数是河道渗漏补给地下水量与河道来水量的比值。其值大小与河床下垫面岩性、流量、地下水位埋深及渗漏段长度有关。运城盆地沿中条山前发育数条季节性河流,河床下垫面主要为砂卵砾石,当洪雨季节,地表河床水位远高于地下水位,为地表水的入渗造就了十分便利的条件。根据河道渗漏资料,可建立如下数学模型:
山西六大盆地地下水资源及其环境问题调查评价
式中:m河是河道渗漏补给系数;A是计算系数,A=(1-λ)×(1-φ)L,φ是单位千米损失率;L是河道渗漏长,km,Q径是河道来水量,m3/s。
据运城市水利部门研究成果,A值约为0.090。
含水层的渗透系数主要由野外抽水试验通过稳定流及非稳定流计算公式求得,各勘探部门在运城盆地先后进行过各种勘察,进行了大量的抽水试验工作,积累了丰富的资料,参考本次抽水试验成果对以往参数进行了修正,取值结果见表3-16 。
表3-16 运城盆地松散岩类K值选定表
降雨入渗补给系数在同岩性、同降雨量情况下,随地下水位埋深的增大,降雨入渗补给系数会达到一个最大值之后趋于减少或变为常数。运城盆地北部的峨嵋台塬及闻喜北塬,其地下水位埋藏深,地表主要以黄土类为主,降水入渗主要依靠黄土垂直节理裂隙及“流海缝”以“活塞式”注入地下,多年来其降水入渗系数基本为常量,经用动态分析法计算其降水入渗系数在0.108~0.11间;在盆地中部的冲湖积平原区,其地表岩性主要以Qp3+Qh冲湖积相的亚砂土、亚粘土、粉细砂为主,由于开采强烈,区域水位严重下降,地表数米至几十米内均为饱气带,为降水入渗准备了调蓄空间,加强了降水向地下水的转化。根据盆地地下水长观孔资料及次降雨资料,计算出盆地冲湖积平原地带,降水入渗系数在0.1~0.162之间,总体上上游大于下游。而在东部及南部的山前倾斜平原区,地下水位埋深一般大于5m、乃至几十米,地表岩性大多为亚砂土及亚粘土,尤其是在一些沟口附近,从地表往下几十米范围内为干砂卵砾石,一般降雨基本上不产生地表径流,这无疑加大了降水的转化。据相关资料计算,降水入渗系数高达0.21~0.30。因过去所做的工作不系统,没有对降雨入渗系数进行系统分类,不便比较,但根据运城盆地饱气带岩性、地下水变动情况,除峨嵋台塬及黄土丘陵区变化不大外,其他地区降雨入渗系数无疑有增大趋势。
盆地内抽水井的含水层,大多为数个含水层混合开采。现根据本次抽水计算值,对历次研究成果中的K值加以修正,得出运城盆地各个地貌单元的渗透系数。总体来说,黄河岸边低阶地区K值最大为11.3~14.6m/d,中条山山前倾斜平原次之,为5.45~6.12m/d,最次为闻喜北垣K=1.10m/d左右。
根据地貌单元、含水层岩性、地下水水力特征及各参数特征,将运城盆地划分为10个参数分区,见表3-17及图3-18。
表3-17 运城盆地水文地质参数分区
六、长治盆地
根据水文地质条件,长治盆地参数分区见图3-19,表3-18 。
图3-18 运城盆地水文地质参数分区表
图3-19 长治盆地参数分区图
表3-18 长治盆地浅层孔隙潜水参数分区
(一)降水入渗补给系数变化
根据《太原市地下水资源评价报告》研究成果,盆地区亚砂土、极细砂、细砂的降水入渗系数随着地下水位埋深的增大而增大,当水位埋深超过一定值以后,降水入渗系数开始趋于稳定;降水量越大,降水入渗系数在相同的岩性和地下水位埋深条件下也越大。对于亚砂土、极细砂、细砂在相同水位埋深和降水情况下,细砂的降水入渗系数>极细砂的>亚砂土的。总体来说,颗粒越粗,降水入渗系数也越大。
α随降水量的变化,非饱和带在降水入渗补给地下水过程中起调节作用,降水入渗补给过程要滞后于降水过程,其滞后时间的长短、特征与非饱和带的重力水蓄水库容关系密切,地下水埋深越大,其蓄水库容也越大,调节能力也越强,滞后现象也越明显。
在亚砂土、极细砂和细砂3种岩性中,降水量相等时,降水入渗系数从大到小的顺序为细砂、极细砂、亚砂土。场次降水量的影响表现为α次先是随着降水量的增大而变大,当降水量超过一定数值后,α次反而呈减少趋势,这个降水量即是最佳降水量。α年与α次有相同的规律性,从入渗机制分析,α年也存在最佳年降水量。
当地下水埋深为零时,降水入渗补给系数亦为零,然后随埋深的增加由小变大;当地下水埋深到达某一定值时,降水入渗补给系数达到最大值即最佳降水入渗补给系数,并由此随埋深的增加由大到小,到达一定的埋深时,趋于定值。地下水埋深对降水入渗补给系数的影响,可从3方面来说明。
埋深反映了蓄水库容的大小。当埋深为零时,即蓄水库容为零,这时无论降水量多大,均无入渗补给的可能。当埋深增加时,地下水库得到了降水入渗补给量,此时降水入渗补给系数大于零,降水入渗补给系数随埋深的增加而增大。当地下水达到最佳埋深时,其对应的降水入渗补给系数为最佳降水入渗补给系数,原因是由于条件一致的地区中的依次降水,其入渗补给量随地下水埋深的变化必存在一个最大值。当地下水埋深较小时,由于地下水蓄水库容较小,形成蓄满产流,不能使降水全部入渗;当地下水埋深再增大时,则损失较最佳埋深为大,故降水入渗补给系数随埋深的增加而减小。对于不同级别的降水量,α最大值出现的地下水位埋深区域也不同。最佳埋深与岩性和降水量有关。
地下水埋深在某种程度上反映了土壤水分的多少。土壤水垂直分布大体可概化为3种状况。第1种情况是地下水埋深较小,毛管上升水总能到达地表;第2种情况是地下水埋深较大时,毛管上升水无法到达地表;第3种情况是地下水埋深介于两者之间,在此埋深内,由于地下水位是升降变化,毛管上升水有时达到地表,有时达不到地表。这3种情况将对降水入渗补给量有不同的影响。第1种情况,降水一开始,水即可通过毛管在重力作用下迅速向下移动,地下水位在降水开始后很快上升。第2种情况,降水首先应满足土壤缺水的需要,而后在重力作用下通过空隙下渗补给地下水。其渗漏途径较第1种情况长,入渗方式也有差异。
图3-20 渗透系数与深度关系图
不同地下水位埋深条件对降水入渗补给系数取值的影响。盆地太谷均衡实验场的水分势能实验最大深度为8.2m,有观测点41个。多年资料的分析结果表明,土壤水分势能变化从地面往下可分为3个变化带———剧烈变化带、交替变化带和稳定带,剧烈变化带埋深为0~1.1m,土壤水分势能变幅大于200×133Pa;交替变化带埋深1.1~3.6m,土壤水分势能变幅大于(100~200)×133Pa之间;埋深3.6m以下为稳定带,其土壤水分势能变幅小于100×133Pa,其中埋深在4.5~5.0m以下的稳定特性更为明显,其土壤水分势能的变幅一般不超过50×133Pa,其土壤水分全年为下渗状态。表明埋深在5.0m以下为稳定入渗补给,反映在降水入渗补给系数上随埋深增加,α年将趋于稳定,故当埋深大于5.0m时,α年值可取定值,不再随埋深而变化。原因是地下水埋深已到达或超过地下水极限埋深,损失趋于定值,水分不向上运动,必然向下运动,故形成了降水入渗补给系数随地下水埋深变化的稳定值。
(二)渗透系数变化
孔隙含水介质的渗透能力不仅取决于粒径大小、颗粒级配、胶结程度,还与其埋深有关。同一岩性的孔隙含水介质,随着深度的增加,介质被压密,渗透系数会减小。
根据河北平原山前冲洪积扇扇顶区数百个钻孔资料的统计,各种含水介质的渗透系数随埋深增加呈指数衰减,部分深层不同岩性渗透系数随埋深的变化规律参考下述经验公式:
岩性为卵砾石时,渗透系数与埋深关系式:
K=K0e-0.0131h R=0.877
岩性为砂砾石时,渗透系数与埋深关系式:
K=K0e-0.0116h R=0.869
岩性为中粗砂时,渗透系数与埋深关系式:
K=K0e-0.0057h R=0.896
K为埋深处的渗透系数;K0为地表浅层的渗透系数;h为埋深;R为相关系数。
因此,对于同一种岩性,其渗透系数大小与深度有关(图3-20)。
❽ 水文地质参数的选择
基坑降水设计方案来是否可行,能否将地自下水降下去,水文地质参数的选择至关重要。
采用稳定流计算基坑涌水量,常用的水文地质参数有渗透系数K、影响半径R;对于非稳定流,还需用到导水系数T、贮水系数S和压力传导系数α。常用的水文地质参数的选取方法在前几章已有论述,设计时可参考选用。对于一些地质条件复杂、降水要求较高的工程,应通过现场水文地质试验确定上述水文地质参数。
降水影响半径R宜通过现场抽水试验或根据当地经验确定。当基坑侧壁安全等级为二、三级时,可按经验公式计算,对于潜水含水层一般采用公式(3-38)进行计算。对于承压含水层,一般采用公式(3-39)进行计算。如采用经验值,可利用表3-4、表3-5选取。
❾ 水文地质参数
20世纪60年代以来,原甘肃省水文二队对流域水文地质参数研究及试验方面做了大量工作,主要有1964~1969年玉门镇、安西南桥子地渗仪观测资料及不同年代的大量抽水试验资料,本次工作以收集分析整理前人资料为主。流域内各盆地含水层渗透系数及给水度分布如图3-4,图3-5。
图3-4 疏勒河流域平原区含水层渗透系数分区图
图3-5 疏勒河流域平原区含水层给水度分区图
一、玉门-踏实盆地
玉门-踏实盆地属南盆地,其南部为大厚度砂砾卵石层,其间赋存潜水,渗透系数56.16~127.70m/d(表3-4),给水度0.25~0.30。北部细土平原为潜水-承压水,含水层岩性为砂及砂砾石,渗透系数9.27~76.64m/d(表3-5),给水度0.10~0.20。
表3-4 玉门-踏实盆地潜水带渗透系数统计表
表3-5 玉门-踏实盆地潜水-承压水带渗透系数统计表
二、安西-敦煌盆地
安西-敦煌盆地属北盆地,北截山前缘地带及党河洪积扇为单一潜水区,岩性以砂砾石为主,渗透系数53.6~61.36m/d(表3-6),给水度0.1~0.25;小宛至疏勒河下游的广大细土平原为潜水-承压水区,渗透系数0.39~21.58m/d(表3-7),给水度0.05~0.2。
表3-6 安西-敦煌盆地潜水带渗透系数统计表
表3-7 安西-敦煌盆地潜水-承压水带渗透系数统计表
三、花海盆地
花海盆地属北盆地,南部含水层岩性为砂砾石,为单一潜水区,渗透系数10~20m/d,给水度0.15~0.25,中部递变为含砾中粗砂、砂,北部为中细砂和细粉砂,为潜水-承压水区,渗透系数0.084~5.87m/d(表3-8),给水度0.10~0.15。
表3-8 花海盆地潜水-承压水带渗透系数统计表
由于前人所做的抽水试验均为稳定流抽水试验,且钻孔多为小口径,滤水管为木质滤水管,因此所得的渗透系数值均偏小。