隧道地质雷达检测是怎么操作的
Ⅰ 地质雷达探测法的原理
[地质雷达] Ground Penetrating Radar(GPR)是探测地下物体的地质雷达的简称。 地质雷达利用超高频电内磁波探测地下介质分布,它的基本容原理是:发射机通过发射天线发射中心频率为12.5M至1200M、脉冲宽度为0.1 ns的脉冲电磁波讯号。当这一讯号在岩层中遇到探测目标时,会产生一个反射讯号。直达讯号和反射讯号通过接收天线输入到接收机,放大后由示波器显示出来。根据示波器有无反射汛号,可以判断有无被测目标;根据反射讯号到达滞后时间及目标物体平均反射波速,可以大致计算出探测目标的距离。 由于地质雷达的探测是利用超高频电磁波,使得其探测能力优于例如管线探测仪等使用普通电磁波的探测类仪器,所以地质雷达通常广泛用于考古、基础深度确定、冰川、地下水污染、矿产勘探、潜水面、溶洞、地下管缆探测、分层、地下埋设物探察、公路地基和铺层、钢筋结构、水泥结构、无损探伤等检测。
Ⅱ 隧道超前地质预报的各种方法、原理及使用条件
包括:HSP、TSP、TGP、TRT、TST、负视速度等各种方法。
1、TSP隧道
其工作原理是利用在隧道围岩以排列方式激发弹性波,弹性波在向三维空间传播的过程中,遇到声阻抗界面,即地质岩性变化的界面、构造破碎带、岩溶和岩溶发育带等,会产生弹性波的反射现象,
这种反射波被布置在隧道围岩内的检波装置接收下来,输入到仪器中进行信号的放大、数字采集和处理, 实现 拾取掌子面前方岩体中的反射波信息,达到预报的目的。其中TSP、TGP、TRT应用的是反射理论,尚需在小孔径偏移成像病态问题方面进行努力。
2、TST隧道
该方法充分认识三维波场的复杂性,能进行方向滤波,仅保留掌子面前方的回波,避免现行超前预报方法中虚报、误报率高的技术缺陷。能准确确定掌子面前方围岩波速分布,为岩体工程类别判定提供依据,同时避免现行方法预报位置不准确的缺陷。
TST地质超前预报技术具有如下优点:
TST隧道超前预报技术是国内外唯一的实现了地下三维波场识别与分离的超前预报技术,有效消除侧向波和面波干扰,保证成像的真实性;
TST是唯一的实现了围岩波速精确分析的超前预报技术,保证构造定位的精确性;
TST是建立在逆散射成像原理基础上的超前预报技术,与传统的反射地震技术相比具有更高的分辨率。同时运用了地震波的运动学和动力学信息,不但可精确确定地质构造的位置,同时获得围岩力学性状的空间变化;
TST采用独特专业设计的观测方式,保证观测数据同时满足围岩波速分析、三维波场分离和方向滤波的需要。
3、HSP隧道
该方法和地震波探测原理基本相同,其原理是建立在弹性波理论的基础上,传播过程遵循惠更斯-菲涅尔原理和费马原理。本方法探测的物理前提是岩体间或不同地质体间明显的声学特性差异。测试时,在隧道施工掌子面或边墙一点发射低频声波信号,在另一点接收反射波信号。
采用时域、频域分析探测反射波信号,进一步根据隧道施工掌子面地质调查、地面地质调查及利用一隧道超前施工段地质情况推测另一平行隧道施工掌子面前方地质条件的预报方法,
便可了解前方岩体的变化情况,探测掌子面前方可能存在的岩性分界、断层、岩体破碎带、软弱夹层、以及岩溶等不良地质体的规模、性质及延伸情况等。
(2)隧道地质雷达检测是怎么操作的扩展阅读
目的
开挖前对地质情况的了解,对于隧洞建设有着十分重要的作用。
通过超前预报,及时发现异常情况,预报掌子面前方不良地质体的位置、产状及其围岩结构的完整性与含水的可能性,为正确选择开挖断面、支护设计参数和优化施工方案提供依据,并为预防隧洞涌水、突泥、突气等可能形成的灾害性事故及时提供信息,使工程单位提前做好施工准备,
保证施工安全,同时还可节约大量资金。所以隧洞超前预报对于安全科学施工、提高施工效率、缩短施工周期、避免事故损失、节约投资等具有重大的社会效益和经济效益。超前地质预报应达到下列目的:
1、进一步查清隧道开挖工作面前方的工程地质和水文地质条件,指导工程施工的顺利进行。
2、降低地质灾害发生的几率和危害程度。
3、为优化工程设计提供地质依据。
4、为编制竣工文件提供地质资料。
Ⅲ 地质雷达法检测隧道衬砌厚度和缺陷时,测线布置应符合什么要求
布线长度。隧道施工过程中质量检测以纵向布线为主,横向布线为辅。纵向布线位置专应在拱顶、左右拱腰属、左右边墙和隧底各布1条;横向布线一般线距为8-12m;采用点测时每断面不少于6个点,检测中发现不合格地段应加密测线或测点。隧道竣工验收时质量检测应纵向布线,必要时可横向布线。纵向布线的位置应在拱顶、左右拱腰、左右边墙各布1条;横向布线线距8-12m;采用点测时每断面不少于5个点。需确定回填空洞规模和范围时,应加密测线或测点。三车道应在拱顶部位增加2条测线。D测线每5~10m应有里程标记。
Ⅳ 隧道喷射混凝土空洞怎么检测出来
地质雷达。
除了地质雷达还有什么可以检测隧道背后空洞的技术
物探监测 物探磁法电法可以探测地质构造中的溶洞等现象
一般的核工业地质队有这样的设备
Ⅳ 公路隧道施工单位要地质雷达扫描自检吗
一般都是找第三方检测机构的,中交路桥科技有限公司就是专业从事隧道工程检测的第三方检测机构,有很多地质雷达检测的经验及成功案例。
Ⅵ 隧道地质雷达检测 现场需要什么配合
地质雷达在隧道检测中的应用有很多,其中一个应用就是能用来检测二衬的质量,详细的步骤,及其他需要配合的地方参见视频:https://v.qq.com/x/page/k0379b2g6hd.html
Ⅶ 隧道地质雷达检测是按照布线长度还是按照隧道长度
布线长度。
隧道施工过程中质量检测以纵向布线为主,横向布线为辅。纵向布线位回置应在拱顶、左答右拱腰、左右边墙和隧底各布1条;横向布线一般线距为8-12m;采用点测时每断面不少于6个点,检测中发现不合格地段应加密测线或测点。
隧道竣工验收时质量检测应纵向布线,必要时可横向布线。纵向布线的位置应在拱顶、左右拱腰、左右边墙各布1条;横向布线线距8-12m;采用点测时每断面不少于5个点。需确定回填空洞规模和范围时,应加密测线或测点。
三车道应在拱顶部位增加2条测线。D测线每5~10m应有里程标记。
Ⅷ 地质雷达方法在公路质量检测中的应用
公路质量检测的原始方法是采用钻探取心法,该方法不仅效率低、代表性差,而且对公路有破坏,为了快速、准确和科学地评价公路质量,必须采用无损检测方法。目前,常用于公路检测的物探方法有地质雷达、瞬态面波法、高密度电阻率法和人工地震等方法。在这些物探方法中,由于地质雷达方法具有快速、连续、无损检测的特点。因此,在公路质量检测中得到更加广泛的应用。
高速公路是由土基础、二灰土、二灰碎石、面层等构成,由于空气、沥青面层、二灰碎石、土壤等介质的介电常数不同,电磁波将在其介质发生变化的界面产生反射波。图5-11为电磁波在公路剖面中各界面的传播、反射途径示意图。图5-12为电磁波在公路剖面中各界面的扫描示意图。
图5-11 电磁波在公路剖面中的传播、反射途径示意图
环境与工程地球物理勘探
图5-12 电磁波在公路剖面中各界面的扫描示意图|t0—电磁波在空气中的双程走时;t1—电磁波在沥青面层中的双程走时;t2—电磁波在二灰碎石中的双程走时。A0—反射波R0的振幅;A1—反射波R1的振幅;A2—反射波R2的振幅长春至四平高速公路采用沥青路面,路面下为碎石垫层。路面分三次铺设完成,设计路面厚度为25cm。在工程竣工前采用地质雷达进行了路面厚度检测。
工作中使用的地质雷达为SIR—2型,工作天线频率为900MHz。图5-13为长春至四平高速公路上某段路面的地质雷达检测剖面图,图中5.8ns附近的强反射为沥青面层与碎石垫层界面的反射,根据反射界面的双程走时和电磁波在沥青路面中的传播速度计算出路面厚度。沥青路面的电磁波速度采用实验标定并进行统计后得到,检测结果表明,由于二灰石垫层凹凸不平,导致沥青路面厚度有较大变化,最薄为26cm,最厚为43cm。达到了设计的要求。路面厚度评价按国家公路路面结构层厚度评价标准进行;在经数据处理后的地质雷达剖面中读取电磁波在面层中的反射波双程走时,计算出面层厚度并作出厚度评价结果。
图5-13 长春至四平高速公路某段路面的地质雷达检测剖面图
地质雷达方法在公路质量检测中除可进行路面厚度检测外,还可进行路基隐患(脱空、裂缝等)的检测以及桥涵的质量检测。有些学者开展了地质雷达对公路压实度、强度及含水量的检测研究。