当前位置:首页 » 地质问题 » 什么是水文地质条件复杂的矿井

什么是水文地质条件复杂的矿井

发布时间: 2021-02-22 08:12:32

⑴ 矿井存在的主要问题及其水文地质条件综合评价

白坪矿区主要有以下水文地质问题:

(1)滑动构造和地表水联合作用不明

位于98~109勘探线之间,箕F27为主滑面,滑体中发育新F13、新F11、新F10等多条滑面,箕F27有40孔控制,断层内带不发育,均不漏水,10106孔水被抽干,说明断层导水性差。在断层影响带有3孔漏水,占揭露钻孔的7.7%,漏失量1.20~2.40m3/h。新F13和新F11断层交会处有2孔涌(漏)水,漏失量1.63~3m3/h(其中副9902孔由于平顶山砂岩出露地形高,地下水补给新F13,断层带涌水,水量0.45L/S)。重力滑动构造影响带较发育,局部具有导水性。箕F27主滑面下距二1煤层顶界铅垂距离20(10210)~60m范围的面积约1km2,在第一水平近0.50km2。受其影响二1煤顶板砂岩一般裂隙较发育,富水性相对较好,工程地质条件变差。

(2)断层交会部位、断层错动部位(对口部位)的富水和充水规律不清

箕F7为初期采区主要断层,箕F4为井田南部边界断层。箕F7断层位于新峰背斜轴附近,具有一定的导水性,如副10309孔恢复曲线后期斜率变小。断层南盘上寒武统岩溶发育,在断层对口部位与太原组上段灰岩含水层接触,构成第一水平浅部的补给边界。箕F4断层内带导水性差(9孔揭露均不漏水),南盘二叠系泥、砂岩与井田太原组上段灰岩接触,形成南部的阻水边界。箕F7与箕F4断层之间的影响带(箕F59断层也分布于该地段)岩溶裂隙较发育(如副10309孔长山组地层孔深214.22~248.49m,见岩溶发育带,单位涌水量达1.863L/s·m),并与西部的岩溶发育地段(据电法资料东白坪至南地之间垂深100~250m推断为上寒武统岩溶发育带)构成近东西向较强的地下水径流带。其上的太原组灰岩含水层有脱水现象。

(3)断层和老窑水的影响范围需进一步圈定

井田采煤历史悠久,煤层浅部老窑遍布,给水普遍,浅部采煤易发生老窑突水,老窑水一般为储存量,突水来势猛、衰减快、易疏干。

(4)底板岩溶水的富水规律需要进一步查清

岩溶地下水在断层带可直接充水或突水,是矿井突水的主要水源。其次,第四系含水层在白江河谷分布地段,对岩溶含水层和山西组砂岩含水层有补给关系,为矿井充水间接补给水源之一。但是,第四系含水层面积小补给量不大。

(5)顶板砂岩水需进一步治理。

顶板砂岩含水层在开采初期一般以渗水形式充水,回采后形成冒落带和导水裂隙带,则以裂隙渗水和局部淋水的方式向矿井充水,但水量不大。回采时导水裂隙带形成后涌水量最大,但含水层富水性弱,水量小易被疏干。开采初期矿井涌水量一般与巷道掘进长度和开采面积成正比关系,由于含水层补给条件的局限,矿井涌水量随开采时间的延长呈逐渐减小的变化规律。

总之,大的滑动构造、券门水库水体下开采、高水压的底板岩溶含水层、断层较为复杂等特点决定了白坪煤田的水文地质条件属于较复杂类型。

⑵ 水文地质条件复杂或极复杂的矿井还应当建立什么制度

煤矿安全规程,第252条规定:矿井应当建立水文地质观测系统,加强水文地质动态观测和水害分析工作。没有明确的说是水文地质条件复杂或极复杂矿井。

⑶ 矿井水文地质划分报告包括什么内容

我国煤矿水文地质条件复杂,对煤矿安全生产影响很大,历史上曾多次发生水害事故,造成了严重经济损失和人员伤亡。为了煤矿安全生产,有针对性地做好矿井防治水工作,《煤矿防治水规定》第12条规定所有煤矿都必须编制矿井水文地质类型划分报告,确定矿井水文地质类型。煤矿企业、矿井根据确定的水文地质类型制订防治水规划、措施并认真组织实施。矿井水文地质类型划分报告和类型确定,由煤矿企业总工程师负责组织审定。
矿井水文地质类型划分报告应在系统整理、综合分析矿床勘探、矿井建设生产各阶段所获得的水文地质资料的基础上进行编写。至少应当包括本规定的七项内容。
一、矿井及井田概况
(一)矿井及井田基本情况。概述煤矿开发情况,包括矿井投产年限、设计年生产能力、现今实际产量;矿井开拓方式、生产水平及主要开采煤层。
(二)位置、交通。概述井田位置、行政隶属关系,地理坐标、长、宽、面积、边界及四邻关系。通过矿区或临近城镇的铁路、公路、水路等交通干线,以及距矿区最近的车站、码头和机场的距离。附矿区交通位置图。
(三)地形地貌。概述井田地形地貌主要特征、类型、绝对高度和相对高度、总体地形和有代表性地点,如井口、工业场地内主要建筑物等标高。主要河流的最低侵蚀基准面。
(四)气象、水文。概述矿区及其临近地区地表水体发育状况,包括江、河、湖、水库、沟渠、坑塘池沼等。河流应指出其所属水系,并根据水文站资料分别说明其平均、最大、最小流量及历史最高洪水位等。湖泊、水库等则应指出其分布范围和面积。
说明矿区所属气候区。根据区内和相邻地区气象站资料,给出区内降水分布,包括年平均降水量、最大和最小降水量以及降水集中的月份。还应指出年平均、年最大蒸发量;最高、最低气温;平均相对湿度;最大冻土深度;年平均气压等。资料齐全时应附气象资料汇总表或月平均降水量、蒸气量、相对湿度、温度曲线图(插表和插图)。
(五)地震。概述历史上地震发生的次数、最大震级及地震烈度等。
(六)矿井排水设施能力现状。概述井下各水平排水设施,包括水仓容积,排水泵型号、台数;排水管路直径、趟数;井下最大排水能力;是否具有抗灾能力;是否满足疏水降压的要求等。
二、以往地质和水文地质工作评述
按普查、详查、勘探、建井和矿井生产或改扩建几个不同阶段分门别类总结已完成的地质、水文地质工作成果,指出各类报告的名称及完成时间。
(一)预查、普查、详查、勘探阶段地质和水文地质工作成果评述。按时间顺序(由老到新)总结“报告”或重要图纸,包括完成年限、完成单位和报告主要内容及结论。
(二)矿区地震勘探及其他物探工作评述。其主要内容包括完成单位、勘探时间、勘探范围、测线长度和物理点的密度。概述物探的主要地质和水文地质成果,特别是地震勘探对各种构造的控制情况。
(三)矿井建设、开拓、采掘、延伸、改扩建时期的水文地质补充勘探、试验、研究资料或专门报告评述。总结水文地质工作成果(报告)的完成时间、完成单位和主要内容。详细说明矿区存在的主要水文地质问题,对以往的水文地质和防治水工作进行综合评述。
三、地质概况
(一)地层。按井田所在水文地质单元(或地下水系统)和井田内发育的地层由老到新的顺序描述。某些“系”的地层可再按“统”、“组”细划。描述内容主要包括:厚度、岩性、分布与埋藏条件;煤系、可采煤层及储量描述包括煤系地层和主要可采煤层。
(二)构造。按照《中国大地构造纲要》的划分,给出地质构造隶属关系。对褶曲构造逐一进行描述,内容包括背斜、向斜、单斜、地堑和地垒等。对背、向斜应给出轴向、产状等。对区内的断裂构造进行详细描述,其中包括断层的数量、编号、展布方向、倾向、倾角、性质、落差和延伸长度等。附断层发育一览表和构造纲要图等。
(三)岩浆岩。描述井田内岩浆岩的时代、岩性、产状和分布规律及其与煤层和主要含水层的关系。
四、区域水文地质
主要描述矿区所处水文地质单元或地下水系统名称、范围、边界;地下水的补给、径流、排泄条件;强径流带展布规律及岩溶泉群流量等。特别应指出矿区所处地下水系统的具体位置。附矿区所处水文地质单元或地下水系统示意图。
五、矿井水文地质
(一)井田边界及其水力性质。描述矿井四周边界的构成,一般是指断层、隐伏露头、火成岩体和人为边界等。分析边界可能造成的含水层之间的水力联系和矿区以外含水层的水力联系。
(二)含水层。按由新到老的顺序对含水层逐一进行描述。其内容主要包括:含水层的名称、产状、分布、厚度(最大、最小和平均厚度)、岩性及其在纵横向上的变化规律;地下水位标高、单位涌水量、渗透系数;水化学类型、矿化度、总硬度等。
指出含水层地下水补给来源及其与其他含水层的水力联系。岩溶裂隙含水层还应指出岩溶发育情况和钻孔涌水量、泥浆消耗量、单位吸水量等。特别应指出岩溶陷落柱存在与发育状况。附主要充水含水层等水位线图等。
(三)隔水层。按由新到老的顺序逐一描述,重点是构成煤层顶、底板的隔水层。其内容主要包括:岩性、分布、厚度(最大、最小、平均厚度)及其变化规律、物理力学指标和阻隔大气降水、地表水和含水层之间水力联系的有关信息。
(四)矿井充水条件。矿井充水条件主要是指充水水源、充水通道和充水强度。充水水源是指矿井水来源;充水通道是指水源进入矿井的通道。对各种可能的充水水源,如大气降水、地表水、老窑水和地下水等,可能的充水通道,如断层和裂隙密集带、陷落柱、煤层顶底板破坏形成的通道、未封堵和封堵不良的钻孔及岩溶塌陷等,进行详细描述并列表加以说明。
(五)井田及周边地区老窑水分布状况。详细描述井田及其周边地区老窑水分布状况,包括位置、积水范围和体积、水头压力,以及与其他水源的联系等。必要时进行专顼调研。
(六)矿井充水状况。对井下涌(突)水点进行调查,描述涌(突)水点位置、水量和水质变化规,以及涌(突)水点处理情况。统计分析矿井最大涌水量和正常涌水量。涌水量包括井筒残留水量、巷道涌水量、工作面涌水量和老空区来水量等。
六、对矿井开采受水害影响程度和防治水工作难易程度的评价
(一)对矿井开采受水害影响程度的评价。根据《煤矿防治水规定》表2 -1所列内容,评价水害对矿井生产影响的大小并进行等级划分。
(二)对矿井防治水工作难易程度的评价。技术和经济两方面评价矿井防治水工作难易程度。
七、矿井水文地质类型的划分及对防治水工作的建议
(一)矿井水文地质类型的划分。根据《煤矿防治水规定》表2 -1的规定,对不同煤层的开采,按照受采掘破坏或影响的含水层性质及补给条件、富水性、矿井及周边老窑水分布状况,矿井涌水量、突水量,受水害影响程度和防治水工作难易程度进行矿井水文地质类型划分。同一矿区不同煤层开采的矿井水文地质类型可以不同。
(二)对防治水工作的建议。说明矿井存在的主要水害问题和应采取的防治水措施。

⑷ 矿井水文地质类型划分的种类及依据有哪些

分为简单、中等来、复杂、极复源杂四种。

矿井水文地质类型根据矿井水文地质条件、涌水量、水害情况和防治水难易程度区分的类型,分为简单、中等、复杂、极复杂四种。

主要是研究地下水的分布和形成规律,地下水的物理性质和化学成分,地下水资源及其合理利用,地下水对工程建设和矿山开采的不利影响及其防治等。

(4)什么是水文地质条件复杂的矿井扩展阅读:

矿井水文地质的相关研究:

1、阐述地下水起源与形成的基本知识(包括地下水的赋存条件),并探讨大气水、地表水、土壤水与地下水相互转化、交替的基本规律。

2、主要研究地下水流的基本微分方程,包括地下水向井、渠的流动,以揭示地下水位和水量的时空变化规律。同时探讨包气带水与地下水溶质运移的基本方程。

3、讨论在不同的天然因素和人为因素影响下的地下水动态变化规律,以及不同条件下的地下水水均衡方程。

⑸ 矿井水文地质类型的划分为哪些种类

中等煤矿水文地质类型划分4类:
一、水文地质简单(1、露头区被粘土类土层覆盖;2、被断层切割封闭;3、地表泄水条件良好;
4、属于深部井田;5、在当地侵蚀基准面以上开采;6、属高原山地背斜正地形,煤层底部灰岩无出露;7、煤层距顶底板上下富含水层距离很大)
二、水文地质中等(受采掘破坏或影响的孔隙裂隙,溶隙含水层补给条件一般,有一定的补给水源)
三、水文地质复杂(1受采掘破坏或影响的主要是灰岩溶隙-溶洞含水层,厚层砂砾石含水层(煤层直接顶底板为含水砂层),其补给条件好,补给水源充沛。2未开展水文地质普查,存在老窑积水,资料不齐的整合和技改矿井。)
四、水文地质极复杂(受采掘破坏或影响的为岩溶含水层,其补给条件很好,补给水源极其充沛;1、矿井经常的直接或间接受煤层顶底部灰岩溶洞-溶隙高压富水含水层突水的威胁;2、灰岩露头分布范围广,河溪发育,山塘水库多;3、在高原山地向斜正地形矿区灰岩岩溶特别发育常形成暗河系统或汇水封闭洼地)

⑹ 矿井地质简述

一、含煤地层

焦作煤田为石炭系—二叠系含煤地层,含可采煤层三层(图4-2)。

石炭系本溪组厚5.46~16.67m,一般厚10m左右,由泥岩、粘土岩和砂岩组成,底部含山西式铁矿,以假整合与奥灰接触。

太原组厚67.1~80.93m,一般厚75m,由粉砂岩、砂岩、灰岩和煤层组成。含灰岩6~10层,以L8、L2厚度大,分布稳定。含可采煤层二层(一2和一5煤)。

太原组地层岩性在走向方向上相变比较明显,以一二采区为中心,石灰岩层数增多,三、四、五、六、七层灰岩均较发育,厚度大,向西侧灰岩层数减小,厚度相对变薄。在南北倾斜方向上,北部因九里山断层的影响,煤系地层遭受剥蚀,奥灰大面积出露。在煤层露头以外,奥陶系和石炭系被第四系冲积层覆盖。这是演马庄—九里山井田与焦作矿区其他矿井在沉积上的最大不同之点,这也是造成水文地质条件复杂不同于其他矿井的一个显著特点。

二叠系山西组厚75m左右,由粉砂岩、砂岩、泥岩和煤层组成。二1煤层斌存于其底部,厚5~6m,分布稳定,为主要可采煤层。

1煤顶板岩性由泥岩、粉砂岩和砂岩组成。局部地区伪顶〔炭质泥岩〕厚3m以上,主要分布在矿井西冀。直接顶大面积范围内为粉砂岩,砂岩顶板仅分布在一三采区西翼。老顶为厚层状砂岩,厚度变化较大,西部厚东部薄。距二1煤5~20m,西部小东部大。二1煤底板为炭质泥岩、粉砂岩,松软易破碎。

图4-2 可采煤层柱状图

二、地质构造

该井田总体为一单斜构造,煤(岩)层走向30°,倾向南东,倾角10°~18°(图4-3)。

褶皱构造在井田内虽然表现比较微弱,但发育普遍。按其轴向分为两组(类):一组是沿煤层走向方向上的波状起伏,其轴向300°~330°,即北西向褶皱构造。较明显的,西部以一二采区为背斜,东部一一采区为向斜,次一级的微型背向斜间替出现,特别是一二采区东翼背斜构造明显,幅度(k>h/L)较大(k>0.2);另一组是在大断层两盘因牵引作用形成的背向斜,表现比较明显的是马坊泉断层上盘的向斜构造和方庄断层下盘的背斜构造。

断裂构造比较发育,井田内以小型断裂构造为主。

九里山断层,走向40°~70°,倾向北西,倾角70°左右,落差350~550m。南盘强烈上升,使奥灰大面积出露形成残丘,煤系地层遭受剥蚀,形成山前洪积-冲积扇。

方庄—北碑村断层为矿井东部边界。为一组走向平行、倾向相反的断层构成地堑构造。走向330°,方庄断层倾向北东,落差150m左右。北碑村断层,倾向南东,落差50~150m。该组断层构成井田东部隔水边界。

西仓上断层,为井田南部边界。走向55°,倾向北西,落差50~100m,因勘探程度低,对其控制不严。

马坊泉断层位于井田中部,为一水平与二水平分界。走向45°~70°,倾向北西,落差50~160m,在矿井西翼分岔2~3条断层组成。在井田西部,沿断层上盘(南盘),L8与对盘L2奥灰对接,形成高水位。

F1断层,位于一二采区西大巷,由3~5条小断层组成,走向60°,倾向南东,落差17m。

图4-3 九里山矿地质构造示意图

除上述几条较大断层外,生产中揭露的断裂构造落差均在5m以下。按其走向可分为近东西、北东向和北西向三组。

近东西向断层井下揭露的最大落差为3.5m,多数在1m左右。一一采区最发育,条数多、落差大,一二和一三采区各2~3条。

北东向断层井下揭露的最大落差为2m,多数在1m以下,在一二和一一采区上部极为发育。

北西向断裂构造,未发现落差大于1m的断层,以裂隙为主。

矿井自投产以来,采掘面积已达5.2km2,揭露落差大于5m的断层1条,落差大于1m的断层15条。这说明九里山矿地质构造是比较简单的。

三、煤炭储量

截止1992年表内保有工业储量13455万吨,可采储量7042.3万吨,其中一水平保有工业储量7129.3万吨,可采储量3405.9万吨(表4-2)。

表4-2 矿井储量一览表

⑺ 矿井水文地质类型划分的国内外研究现状分别是什么

根据矿井及其周边是否存在老空积水、矿井受采掘破坏或影响的含水层性质和富版水性及补给条件、矿权井涌水和突水分布规律及水量大小、煤矿开采受水害威胁程度以及防治水工作难易程度等,把矿井水文地质划分为简单、中等、复杂、极复杂四种类型(见表)。 注:1.单位涌水量以井田主要充水含水层中有代表性的为准。 2.在单位涌水量q,矿井涌水量Q1、Q2和矿井突水量Q3中,以最大值作为分类依据。 3.同一井田煤层较多,且水文地质条件变化较大时,应分煤层进行矿井水文地质类型划分。

⑻ 发耳煤矿水文地质条件属于什么类型

中等煤矿水文地质类型划分4类:
一、水文地质简单
(1、露头区被粘土类土层覆盖;
2、被断层切割封闭;
3、地表泄水条件良好;
4、属于深部井田;5、在当地侵蚀基准面以上开采;6、属高原山地背斜正地形,煤层底部灰岩无出露;7、煤层距顶底板上下富含水层距离很大)
二、水文地质中等(受采掘破坏或影响的孔隙裂隙,溶隙含水层补给条件一般,有一定的补给水源)
三、水文地质复杂(1受采掘破坏或影响的主要是灰岩溶隙-溶洞含水层,厚层砂砾石含水层(煤层直接顶底板为含水砂层),其补给条件好,补给水源充沛。2未开展水文地质普查,存在老窑积水,资料不齐的整合和技改矿井。)
四、水文地质极复杂(受采掘破坏或影响的为岩溶含水层,其补给条件很好,补给水源极其充沛;
1、矿井经常的直接或间接受煤层顶底部灰岩溶洞-溶隙高压富水含水层突水的威胁;
2、灰岩露头分布范围广,河溪发育,山塘水库多;
3、在高原山地向斜正地形矿区灰岩岩溶特别发育常形成暗河系统或汇水封闭洼地)

⑼ 水文地质条件复杂矿山的标准是什么

第一型 水文地质条件简单的矿床
l、主要矿体位于当地侵蚀基准面以上,地形条件版有利于自然排水权,矿床充水主要含水层或构造破碎带富水性弱。②
2.主要矿体位于当地侵蚀面以下,附近无地表水体,矿床充水主要含水层或构造破碎带富水性弱,补给条件差。
第二型 水文地质条件中等的矿床
1.主要矿体位于当地侵蚀基准面以上,地下水位以下,矿床充水主要含水居富水性中等,区域补给条件好,但地形条件有利于自然排水。
2.主要矿体位于当地侵蚀基准面以下,附近无地表水体或虽有地表水体但对矿床充水影响不大,矿床亢水主要含水层的富水性中等,构造破碎带不沟通地表水体及富水性强的含水层。
第三型 水文地质条件复杂的矿床
l、主要矿体位于当地侵蚀基准面以下,附近有地表水体并对矿床充水具有威胁,矿床充水主要含水层和构造破碎带富水性强。
2、主要矿体位于当地侵蚀基准面以下,矿床充水主要含水层富水性强,补给条件好或构造破碎带沟通区域富水性强的含水层。

⑽ 矿井水文地质条件

一、矿区水文地质特征

焦作矿区突水频繁,涌水量大,淹井次数多,从客观上讲,主要受矿区水文地质条件制约。具体表现是区域地下水补给量大;含水层层数多,厚度大,隔水层薄;断裂构造发育,使各含水层之间水力联系密切(图4-4)。

1.区城地下水补给充沛

焦作矿区北为太行山区,海拔标高+200~+1700m,为构造剥蚀的中低山地貌,广泛出露奥陶—寒武系巨厚(800~1000m)的碳酸盐岩,地形陡峭,深山峡谷,喀斯特裂隙发育。大气降水后由地表短暂径流转入地下径流,汇水面积2000km2左右。地下水自北和西北方向向矿区内径流,在矿区南部受到武陟隆起(前震旦系地层)和断距千米以上断层(董村、朱村、耿黄等)的阻挡,使地下水在矿区内排泄。20世纪60年代前以天然泉水的形式排泄地下水,如九里山前泉群总流量达1.6m3/s,20世纪60年代后以矿井排水和工农业用水的形式排泄地下水(Q=9.9m3/s)。

2.断裂构造控水作用强

矿区内断裂构造皆为正断层,EW,NE和NW向3组断裂构造纵横交错,互相切割,形成许多条条块块,但没有破坏奥灰的连续性,使各块段〔或井田〕奥灰水力联系密切,形成统一水位。在焦作矿区59次10m3/min以上突水事故中,断层突水占58%;100m3/min以上突水7次,其中断层突水占85.71%。在14次突水淹井事故中,因断层突水淹井占85.71%。这充分说明断裂构造对地下水的富集、径流(运移)到突水起重要控制作用。

图4-4 焦作区域水文地质图

二、矿井主要含水层及其关系

与矿井充水有直接关系的含水层,自上而下分别是第四系砂砾石含水层、二叠系砂岩含水层、石炭系太原组石灰岩含水层和奥陶寒武系石灰岩含水层。

图4-5 冲积层柱状图

第四系冲积层厚29.39~200.31m,北薄南厚。北部煤层露头带附近冲积层厚75~120m,一般85m左右。由黄土、流砂砾石层、粘土和砾岩组成。上部为黄土、流砂砾石和粘土,中下部为砾岩和粘土,含砾岩5~11层,一般6~8层,且主要集中在中下部〔5~7层〕(图4-5)。砾岩总厚14.66~40.86m,占冲积层地层总厚22.21%~37.24%分布不稳定。上部和底部砾岩含水层具双层水位,均具承压水性质。底部砾岩直接覆盖在奥灰、L2和L8隐伏露头上。水位变化与奥灰呈同步关系,一般是奥灰水补给冲积层。所以在L8露头附近冲积层水和奥灰水联合对L8补给,是演马庄—九里山井田涌水量大,与其他矿井区别的重要条件之一。

二叠系砂岩含水层分上下两层,即基岩风化带裂隙孔隙含水层和二1煤顶板砂岩含水层。基岩风化带含水层与冲积层水沟通时,富水性极强。浅部回采时,当导水裂隙带与风化带沟通时,涌水量很大。如13011工作面回采后顶板水达14.4m3/min。二1煤顶板砂岩含水层富水性较弱,对回采影响不大。

石炭系太原组厚67.1~60.93m,距奥灰5.46~16.67m,一般10m左右,由砂岩、粉砂岩、石灰岩和煤层组成,含石灰岩6~10层(图4-6)。

石灰岩总厚27.4~41.99m,占33.62%~55.71%,以L2和L8厚度大分布稳定。

L8厚4.97~13.79m,一般厚8m左右,上距二1煤底板20.65~35.73m,西薄东厚。喀斯特以裂隙发育为主,根据勘探资料,见溶洞为20%左右。全矿现有L8涌水量96.33m3/min,L8水位下降极不均衡,12采区以东水位下降明显(±0m以下),西翼水位仍保持在+40~+60m。

L2厚10.73~13.77m,一般厚12m左右,上距二1煤底板70.8~82.14m,一般75m左右,下距奥灰10m左右。喀斯特裂隙发育,水位与奥灰呈同步变化。其他矿井L2水位比奥灰低1~3m,而九里山矿二者水位相差不明显。

本区西部,五灰、六灰、七灰较发育,总厚6~7m,相对削弱了L2与L8之间隔水性质,为垂直导水形成了有利的岩性条件。

奥灰为强喀斯特含水层(图4-7),厚度大,富水性强,上距二1煤底板91.68~102.17m,一般95m左右。在浅部露头附近,奥灰与L2、L8、冲积层水力联系密切;在深部通过断裂构造补给上覆含水层。

图4-6 太原统地层柱状图

图4-7 焦作矿区中奥陶系灰岩分层柱状图

奥灰水位变化与降水关系密切,丰水期水位保持在+85~+90m,枯水期+70~+75m。1988年7、8两个月集中降雨450mm后,奥灰水位大幅度上升,最大升幅16.47m,其他含水层与奥灰同步上升,但升幅均小于奥灰。L8水位升幅最大的地段在断层带附近。1988年雨季后,全局涌水量增加102.34m3/min,其中九里山矿增加21.67m3/min,(仅12021工作面增加9.88~15m3/min)。

三、突水简述

1.突水概述

从建井至今发生1m3/min以上突水22次(表4-3)。其中5m3/min以上11次,10m3/min以上6次,30m3/min以上两次(表4-4),由表4-4可知矿井西部突水次数多,突水量大,因突水频繁,涌水量大,给矿井安全生产带来巨大的威胁;特别是矿井两翼涌水量达85m3/min以上,造成停产状态。

表4-3 九里山矿井下突水点基本情况一览表

续表

表4-4 矿井东西部突水情况统计表

2.突水原因分析

(1)突水与采掘关系:按采掘对22次1m3/min以上突水统计出掘进、回采与突水的关系(表4-5)。

表4-5 突水按采掘统计表

由表4-5可知,突水主要发生在工作面回采中,占80.95%,掘进突水全是发生在底板岩巷中,工作面突水都发生在大顶来压过程中。突水时,虽有底鼓,但大多数底鼓幅度不大,且持续时间很短就发生突水。

(2)突水与构造的关系:在22次1m3/min以上突水中,因断裂构造造成直接突水3次,在小背斜上6次。

(3)突水与含水层的关系:在11次5m3/min以上突水中,除顶板水1次外,全为L8直接突水。突水后各含水层水位都有不同程度的变化(表4-6)。

表4-6 主要突水点水位升降统计表

由表4-6可知,L8突水后各含水层水位都有不同程度的下降,值得注意的是突水也引起L2、奥灰、冲积层水位下降,这可能是L8接受浅部混合水补给的依据。

3.12031突水简况

12031工作面位于12采区东翼。工作面东西走向长435m,南北倾斜宽92.5~130m,回采标高-78~-112.4m(图4-8)。

煤层走向N5°~50°E,倾向SE,倾角7°~19°。二1煤层厚4.9~7.1m,平均厚6.4m。

1煤伪顶为炭质泥岩,厚0.2~1.5m,直接顶板为粉砂岩厚7.1m,老顶为砂岩厚12.3m,直接顶板为炭质泥岩和粉砂岩,厚12.3m。

(1)突水简述:该工作面自1983年6月回采至今已发生4次突水,每次突水都造成工作面停产。

图4-8 12031工作面平面图

第一次是1983年7月6日突水。12031工作面1983年4月30日开采,由于伪顶较厚和生产系统不健全,推进速度比较慢。7月6日当工作面推进 26m 时,采空面积达2444m2,工作面在放顶期间,在上安全口处发生底板突水,最大水量27m3/min,稳定水量15~18m3/min。工作面停采后,一方面开掘泄水岩巷,建防水闸门一座,另一方面修复下运输巷和进行改造工作。

1982年8月13日12皮带巷突水前,在12采区L8、L2和奥灰三者水位基本一致(+80m左右),突水后L8与L2奥灰水位明显“拉开”,12031工作面突水前,L8水位+78.05m(底板承受水压1.9MPa)L2+85.28m,奥灰+85.54m,水位差7m左右。突水后L8、L2、奥灰水位差更大,L8水位下降了8.36m,L2水位下降了0.88m,奥灰水位下降了0.94m(图4-9)。

图4-9 12031突水点动态曲线(一)

第二次是1987年9月25日突水。第一次突水后由原开切眼向外80m处另开切眼,于1987年8月完成工作面改造工作恢复生产。1987年9月25日工作面推进23m,采空面积2645m2时,在工作面下风道附近突水,最大水量6.77m3/min,稳定水量5.3m3/min,该工作面总水量由11.9m3/min增至17.23m3/min,12采区总水量已达65.1m3/min。

突水后L8水位下降6.46m,L2下降0.46m,奥灰下降0.41m(图4-10)。

图4-10 12031突水点动态曲线(二)

第三次是1988年10月28日突水。第二次突水后因下风道流不出来水,重新掘进一条下风道距第二停采线18m,掘进开切眼使工作面斜长由130m缩小为90m。

1988年9月开采,10月28日当工作面推进25m,采空面积2250m2时,在上安全口和下风道附近两处发生突水,最大涌水量9.76m3/min,稳定水量7.00m3/min,该工作面总水量由10m3/min增至16.9m3/min。

此次突水正逢雨季,L8水位下降了6.77m,L2下降了0.64m,奥灰下降了0.8m(图4-11)。

图4-11 12031突水点动态曲线(三)

第四次是1993年3月30日突水。第三次突水后一二采区处于停产状态,但防治水工作仍在积极进行,1991年3月开始对12021和12041集中巷突水点进行地面注浆堵水工作,到1992年5月12021突水点已封堵结束。为扭转长期停产局面,采取综合治水与生产相结合,吸取外地经验,缩小工作面,减少矿压对底板破坏深度。1992年5月开始对12031工作面进行改造,重新掘进一条上风道,距第三停采线24m处掘进切眼,使工作面斜长由90m缩小为30m。

1993年3月10日回采前打开12皮带突水点放水降低水压。3月25日工作面推进21.5m,采空面积731m2时,老塘出水0.05m3/min,3月29日8:00推进29m,采空面积1015m2时,水量增加至0.54m3/min,工作面停产两班。3月30日又开始回采,当推进31m,采空面积1085m2时,大顶突然来压,16:20水量增加,水色发黄,17:30水量达20.88m3/min,19:58上风道槽尾外3m处上帮出水7.02m3/min,总水量达27.9m3/min。3月31日1:30水量增至32.21m3/min,4月2日3:00水量增至39.05m3/min,4月3日4:50涌水量增至44.74m3/min,最大时47.51m3/min。突水点水量明显发生四次跳跃式上升。该工作面总水量稳定在41.72~47.35m3/min。

突水后各含水层都有不同程度的下降,冲积层水位下降了644m,L8下降了20.68m,五灰下降了8.1m,L2下降了1.8m,奥灰下降了1.9m(图4-12)。

图4-12 12031突水点动态曲线(四)

12031突水后,12021集中巷和12041集中巷两突水点水量明显减少,分别减少2m3/min和1.2m3/min。其他突水点水量变化不明显。

(2)突水原因分析:与水源和水压的关系密切。突水后在出水点附近施工两个L8孔,水位+23.75~+26.87m。在标高-100m以上涌水已达55m3/min以上,L8水位仍保持如此的高水位,单位水压涌水量达3.24m3/min,单位涌水量(m3/min)降深小于1m。说明L8受L2、奥灰和冲积层水补给量大,才会发生如此大的突水。

一二采区位于L8强喀斯特裂隙富水带上,特别是12031工作面处于一个背斜构造上,北西向和北东向裂隙十分发育,底板岩石破碎,L8喀斯特裂隙更加发育,加上采动矿压影响极易引起突水。因此造成低水压突水量大。

一二采区各突水点之间水量消长不明显,但突水后L2和奥灰水位都有不同程度的下降,说明补给通道各异,补给量大。

(3)治理意见:从突水后水位水量变化可知,12031突水水源与L2、奥灰有明显关系,并且L8水位上升一次井下涌水量上升一个台阶,为防止水量增大,应切断L2和奥灰补给通道,减少矿井涌水量。因此应对突水点进行注浆堵水。一方面达到减少矿井涌水量,保证矿井安全生产,另一方面可切断补给通道为根治水害奠定基础。

四、水化学资料的几点结论

1990年西安地勘分院应用水化学及环境同位素研究方法,对焦作矿区不同层位地下水源进行采样、室内分析和测试工作。共采水样81个,其中冲积层15个,顶板砂岩11个,大原组石灰岩水样38个,奥灰17个。主要进行水质、微量元素和环境同位素(T.D)3项测定分析其结论如下:

(1)焦作矿区各含水层(Q、C3灰岩、P砂岩、O2)都是由大气降水补给形成的,不存在古生水源问题。各含水层水中均有一定氚(T)含量被测出,说明本地区地下水30年以前的水体存在很少,以第四系冲积层水和砂岩水贮留时间较长。

(2)L8水受冲积层下渗水影响形成混合水,矿区东部较西部有较大的混合比率。如九里山矿12皮带突水点冲积层水混入占31.50%,2放水孔(L8水)占53.8%;演马庄矿东四半突水点,占84%。

(3)第四系冲积层水矿区东西部水质化学特征有较大差异。从东向西,从北向南矿化度及硬度增大,说明与奥灰水补给有关。

(4)奥灰水中冲积层水混入率,矿区东部九里山工人村至演马庄矿一带占23%~86%;西部除焦西三水厂、耐火二厂一带大于30%外,其他地区均小于20%。

(5)九里山矿13011工作面顶板出水14.4m3/min,按其Na+降低、Ca2+,Mg2+增高,ph下降rNa/rCl比值等接近冲积层水质类型,说明冲积层水混入量较大。

五、补给与通道

九里山矿L8水主要接受奥灰L2和冲积层水补给,其补给途径主要是来自北部(浅部)和井田内隐伏构造。

北部在煤层露头附近,奥灰、L2、L8含水层被第四系冲积层覆盖,通过基岩风化裂隙或构造破裂带使其互相沟通共同对L8补给。

1.补给

浅部补给,依据连通试验和突水后各含水层水位变化即可说明来自北部的补给是存在的。

多元示踪剂连通试验资料(表4-7),即可说明浅部补给明显(图4-13)。①浅部冲积层水有明显补给,最大流速为155m/h。②浅部L8水与井下突水点联系密切,最大流速533m/h,而南部联系不明显。③浅部补给范围集中在13~15勘探线间。

图4-13 九里山矿多元水力连通试验图

表4-7 多元示踪连通试验成果表

注:分子为时间(小时),分母为直线流速(m/h)。空格为未取样,“-”为未见到示踪剂。

浅部含水层(O2~L2)补给问题,未做连通试验,但根据突水后各含水层水位变化(表4-6)和升压试验资料(见下述)均表明浅部12~15勘探线间,为一强径流带,补给明显。另外有下列地段值得注意:

(1)12皮带巷突水点以西L8水位存在一个很陡的“陡坎”水力坡度733.3‰;

(2)12031突水点(-93m)附近L8水位仍高达+27m(注1孔);

(3)马坊泉断层南北两侧L8观侧孔水位差达20多m,突水后,断层两盘水位都有不同程度的下降(S>5m)。

上述地段即可怀疑深部含水层补给的可能性。

2.导水通道探讨

通过突水资料分析奥灰、L2和冲积层水进入L8的途径有以下几种情况。

(1)浅部冲积层水通过L8露头直接补给;L2、奥灰水一方面补给冲积层,另一方面通过基岩风化带或构造破裂带垂直向上补给L8

(2)马坊泉断层南北两盘L8水位差明显(达20m),北盘高、南盘低,而且突水后两盘L8水位下降都十分明显,说明L2奥灰补给L8明显。

(3)根据一二采区1m3/min以上突水点平面分布和连通试验资料结合矿井地质构造特征,认为一二采区L8存在明显的两个径流带(或称喀斯特裂隙破碎带),大致呈近东西向自浅部向深部延展,预计深部富水性较差。

(4)在井田内施工的L2奥灰孔,因封孔质量问题,造成人为的补给通道。如13-2孔,在施工中L2水曾喷出地面10多米,后因套管拔断而至今未处理。全井田内怀疑有12个L2和奥灰孔封孔质量有问题,其中奥灰3个孔,徐灰29个孔。若按平均每孔导水3~5m3/min,其补给量也是十分可观的。

另外,根据现有突水点分析,L8水进入巷道只是构造裂隙和矿压作用产生的破坏裂隙互相沟通而引起突水的。

六、涌水量预计

(1)全矿涌水量:依据突水资料用比拟法和有限单元法计算标高-225m以上涌水量为184.64~187.5m3/min;标高-450m以上涌水量244.8m3/min。

(2)浅部补给量:根据连通试验流速资料和有限单元法计算补给量33.86~54.7m3/min。

(3)东部涌水量:西部关闭后成为直线补给边界时,东部涌水量将会大幅度增加,标高-225m以上将达到48.4~58.4m3/min;标高-450m时为94.4~104.4m3/min。

如果西部一二采区补给水源及通道封堵后,东部涌水量将会大大减少,维持现状。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864