地质环境遥感程序是什么
A. 环境遥感技术的应用
1957年前,地面遥感和航空遥感应用广泛。
1957年苏联发射第一颗人造地球卫星,1959年第一次获取月球照片,人类开始卫星遥感。
从1962年到2005年,仅前苏联和俄罗斯就共发射卫星将近3000颗,飞船100多艘。美国也取得极大成就。
目前,已具有卫星、飞船、空间站等多种方式/多精度的成象能力,可以覆盖98%的地表,全球导航更是空前发展。(美、俄、日、欧、加、中、巴西、印度等)。
在全球变化(海冰减退、海平面上升、沙漠化、臭氧层破坏)、全球资源环境(植被指数图、海温图、积雪)、行星探测、民用测绘、军事应用等方面取得了一系列重大成果。
在全球各国及一些世界性组织制定的大量的全球环境、资源观测计划的框架下,如EOS地球观测系统计划(美)、IGBP国际地球圈生物圈计划(ICSU国际科学协会委员会)、GCRP全球变化研究计划(美),遥感在农、林、海洋、大气、地矿、城市环境、冰雪、灾害等领域取得了一系列的成就。
农业:
农业地表目标识别和属性分类
农作物种植面积
种植种类判别
作物估产
土壤分类
病虫害调查
土壤和农作物水分状况调查
农业环境研究 (污染、灾害、气候等)
(实际上三方面是相互联系的)
资源生态:
森林资源分布、森林资源蓄积量
林地的生产力、生产环境
森林采伐及森林火灾
森林在全球变化中的作用机理(碳、水)
草场面积、载畜能力、鼠害、火灾
沙漠化、沙尘暴
水污染(富营养化、热污染)
海洋:
海温、海风、水流、波浪、水质
表面水温(渔业、热污染、厄尔尼诺, 0.5度以下)
海流(主要测量海面高度分布来求“地转流”, 3-4cm)
波浪(航海、军事)
水质(叶绿素、悬浊物质和有机溶解物、赤潮)
大气:
气象领域(气温、降水、沙尘暴)
全球变化(地球辐射收支)
微量气体的量测(CO2、水蒸气、O3、NO2等)
气溶胶(厚度、浓度、成分、属性)
城市环境:
城市土地利用现状调查、规划(植被、建设)
城市环境污染调查、监测、规划(热、水、气)
城市气候研究(热岛环境研究)
城市结构(边缘发展、扩张等)
城市人口及相关研究(人口、用水、用电等)
其他:
冰雪遥感
全球冰雪的分布与体积、及其变化(冰川、冰盖、海冰等)
灾害遥感
气象灾害(暴雨、台风、急冻)
洪涝灾害(受灾面积、受灾程度)
土沙灾害(滑坡、崩塌、泥石流)
地震与火山爆发(预报、灾情评估)
地质矿产遥感
岩相、地质构造(地表水热状况)
遥感找矿(油、气、矿)
我不是学环境遥感的,所以不知道。但是听说因为遥感的技术还是用的上的,就算不能搞科研,也可以通过自己的技术为科研机构服务,据说还是有的赚的。
B. 遥感地质的简介
遥感是“遥感技术”的简称。它来自英语Remote Sensing, 即“遥远的感知”。用各种探测仪器,从远距离探查、测量或侦察地球上、大气中及其它星球上的各种事物和变化情况,这种与目标不直接接触而获取有关目标的、信息的技术方法称遥感。1960年,地理学家普鲁特首先提出这一术语。遥感技术是六十年代以来在航空摄影、航空地球物理测量等方法基础上,综合应用空间科学、光学、电子学及计算机技术等最新成果而迅速发展起来的。现阶段的遥感技术仍以地球(包括大气圈)为主要研究对象,主要是利用各种物体反射或发射电磁波的性能,由飞机、火箭、人造卫星、宇宙飞船等运载工具上的各种传感仪器,从远距离接收或探测目标物的电磁波信息,从而获得多方面的情况和动态资料。由于这种方法具有覆盖面积大、获取情报速度快、受地面障碍限制小,并能在短时期内连续、反复进行观测等优点,因而在探测自然资源、监视环境动态变化、气象观测、军事侦察等方面都有重要的应用价值和广阔的发展前景。遥感技术系统,一般由遥感仪器(传感器)、运载工具(遥平台)、地面管理和数据处理系统以及资料判译和应用机构等四个部分组成。按运载工具的类型,遥感技术可分为地面遥感、航空(机载)遥感和航天(星载)遥感等。
遥感地质工作的基本内容是:地面及航空遥感试验,发挥适用于地质找矿、地质环境的遥感系统,进行图像、数字数据的处理和地质判释。遥感地质需要应用电子计算机技术、电磁辐射理论、现代光学和电子学技术以及数学地质的理论与方法,是促进地质工作现代化的一个重要技术领域。
C. 工程地质与水文地质遥感
遥感地质在工程地质应用上,最重要也是最基本的是对重要的水坝、隧道、电站、运河、桥梁、码头以及军事工程设施所在地段的工程地质环境条件的遥感调查。其中地表及隐伏活动断裂等构造是主要对象。通过遥感分析来帮助对工区的工程稳定性的评价。图12-2是规划中的南水北调中线调水的路线解译图。工程中另一个应用是铁路、运河等重大工程沿线的地质灾害调查与分析。图12-3是三峡水库建设的地质灾害调查资料。此外有象岩溶地区和矿山采空地区的地面塌陷调查及与工程地质有关的地下水害调查等。可见,工程地质遥感工作,实际上就是新构造、灾害地质等遥感解译分析资料的应用。
图12-3 三峡工程库区巴东县环境地质遥感解译图
图12-4 根据陆地卫星资料作出的地下水流向示意图
地下水的存在会引起土壤表面及植被的温度或辐射强度两种变化。土壤中水份增加,热传导增加,热容量变化,水份的蒸发造成地面降温,故白天在热红外图像上呈现冷异常(色调变暗)。浅层地下水的缺失会引起上部植被的生态变化。遥感技术在水文地质方面的应用有:①对岩性、构造和各种地貌形态的含水特点、含水性好坏分析。如对古河道的遥感解译,在我国华北、天津市等地都有成功经验。岩溶水文地质研究,崔承禹等人(1985)对广西漓江桂林、阳朔地段利用夜航成像的热红外图像,查明地下水流出地面再流入漓江,对地下河的排泄地段,对河流的补给,泉水的出露等。②直接或间接探测泉水及浅层地下水。我国李承尊(1985)对大连地区岸边的泉水遥感解译,美国在夏威夷群岛海岸边对地下淡水流入海中位置的确定。③对一些水文地质特征的研究。如A.G.Bobba等人(1992)用冬夏两个时相陆地卫星数字处理图像来检测补给区及溢出区的地下潜流及潜水的流向图(图12-4)。利用遥感资料来分析矿区水文地质条件,孙仲安等人(1990)用SAR图像来分析京西煤田地区水文地质,分别对平原地区及基岩地区的遥感地质应用进行评价。《遥感原理和工程地质解译》一书(卓宝熙等,1982),对各种类型地下水(如孔隙、裂隙水等)的解译标志有较详细介绍。
D. 环境遥感与地学建模 具体是干什么的
环境遥感一般是通过遥感数据监测环境变化。地学建模则是利用一些遥感数据的特性,建立一种具有普适性的公式、模型等。往简单里说就像是NDVI、PROSPECT指数一样的东西,当然,也可能比较复杂。
E. 遥感地质的技术应用
遥感技术应用于地质灾害调查,可追溯到上世纪70年代末期。在国外,开展得较好的有日本、美国、欧共体等。日本利用遥感图像编制了全国1/5万地质灾害分布图;欧共体各国在大量滑坡、泥石流遥感调查基础上,对遥感技术方法进行了系统总结,指出了识别不同规模、不同亮度或对比度的滑坡和泥石流所需的遥感图像的空间分辨率,遥感技术结合地面调查的分类方法,可以用GPS测量及雷达数据,监测滑坡活动可能达到的程度。中国利用遥感技术开展地质灾害调查起步较晚,但进展较快。中国地质灾害遥感调查是在为山区大型工程建设或为大江大河洪涝灾害防治服务中逐渐发展起来的。80年代初,湖南省率先利用遥感技术在洞庭湖地区开展了水利工程的地质环境及地质灾害调查工作。有关单位先后在雅砻江二滩电站、红水河龙滩电站、长江三峡工程、黄河龙羊峡电站、金沙江下游落渡、白鹤滩及乌东清电站库区开展了大规模的区域性滑坡、泥石流遥感调查;从80年代中期起,又分别在宝成、宝天、成昆铁路等沿线进行了大规模的航空摄影,为调查地质灾害分布及其危害提供了信息源。90年代起,在主干公路及铁路选线,如京九铁路沿线等也使用了地质灾害遥感调查技术。90年代末期在全国范围内开展的“省级国土资源遥感综合调查”工作中,各省(区)都设立了专门的中小比例尺“地质灾害遥感综合调查”课题,主要是识别地质灾害微地貌类型及活动性,评价地质灾害对大型工程施工及运行的影响等。特别是近年在重大工程论证中,都开展了工程地质遥感调查工作,如杭州湾跨海大桥、向山港跨海大桥等。
经过实践,摸索了一套较为合理有效的滑坡、泥石流等地质灾害遥感调查方法,即利用遥感信息源,以目视解译为主,计算机图像处理为辅,将重点区遥感解译成果与现场验证相结合,并利用其它非遥感资料,综合分析,多方验证。
传统的遥感地质以大的岩性构造、隐伏体为识别目标,
由于早期的遥感影像空间分辨率和波谱分辨率都比较低,而一次成像覆盖面积较大(如LandSat TM一景覆盖范围为185 km×185 km),对于地表宏观构造特征可以很好的表现。早期的遥感地质主要任务是识别大的岩性构造、隐伏体(影像中的线性体、环形体),进行区域性构造解释及隐伏断裂构造识别。主要包括三个方面的研究内容:地貌构造目视解译、地质动力解译分析以及地质指示模拟。其中遥感地貌构造目视解译发展最成熟、应用范围也最广。而地质动力解译分析和地质指标模拟工作基础相对薄弱,正处在探索与发展之中。
而随着高光谱遥感技术的发展,高光谱遥感数据具有成百个波段,光谱分辨率达10nm,使得其在岩矿识别和地质矿物识别填图等领域有着广泛的应用前景。
F. 中国地质大学(武汉)资源与环境遥感考研复试用什么遥感影像处理软件ERDAS还是ENVI或者其他的
你真逗!4月十三号两点至五点考的,你五点问的。用什么软件复试细则里写的有啊!
G. 遥感地质调查的一般程序
在较大范围内进行,通过空中或地面探测获取遥感图像后(或航、卫片),一般按下列程序进行。
1.资料的收集、处理和概略解译
这一阶段的工作主要包括:
1)收集、编录、复制的各类遥感图像和遥感资料并进行相片镶嵌。对部分地区(或全区)还可进行数字图像处理,以增强和突现某些信息。
2)收集制图资料和已有的地质、航空物探及地面物化探资料,以及相关的水文、气象、地貌、土壤、植被、环境等资料。
3)遥感图像的概略解译,需要编制概略地质解译图或若干专题概略解译图。概略解译图可以直接勾绘在相片略图上或聚酯薄膜上,或者转绘在地形图上。编制概略解译图时应详细,界线标绘应精确,以避免重复工作。
4)根据概略地质解译的成果,确定踏勘路线,选择实测地层剖面的位置,编制遥感地质调查设计书。
2.野外踏勘及建立地质解译标志
在野外踏勘和实测地层剖面的过程中,都应随时对照实地各种标志与相片上的影像特征,研究地层和地质现象的地质解译标志;确定分层单位(填图单位)及其界线的标志。
(1)解译标志
在地质解译过程中,主要是观察和利用解译标志来进行。遥感图像的地质解译标志是指那些能够用来辨认、区分地质体或地质现象的存在、属性和相关关系的影像特征。其中包括影像中反映出的形态、大小、色调、阴影、水系、地貌、水文、影纹结构、植被、人类活动等标志。
1)形态和大小:任何地物都有一定的几何形状和大小。许多地物根据其形状和大小就可直接辨认其属性。地物的几何形状和大小与图像的比例尺和分辨率有关。一般比例尺越大,分辨率越高,地物细节显示越清楚。相反,则很模糊,甚至显示不出来。在相同比例尺的图像上,由于图像的分辨率不同,地物的形状和大小可表现出不同的清晰度,如有些较小的地物,在高分辨率的航空相片上可表现得非常清晰,而在低分辨率的卫星图像上则显得模糊,甚至没有显示。
2)色调:色调是地物波谱信息构成的影像特征,不同的地物有不同的色调。因此,它是地质解译中经常使用的重要解译标志。通过肉眼可把图像色调从黑—灰—白分为10级。色调的深浅是相对的,它受地质体的颜色、含水多少、风化程度、表面土壤及植被覆盖程度、光照条件等多种因素的影响。在同一幅图像上,物性相同的地物应有相近的色调,但实际上,由于诸多因素的影响却不完全相同或差异很大。因此,应用色调标志时须作具体分析。
3)阴影:阴影具有形状、大小和方向,色调一般为黑色。在航片上可借助阴影的方向和成像时间来判断航片的方位,测量地物的高度。阴影有本影和落影之分。本影是指物体未被阳光照射的阴影部分,即本身的阴影,如山的阴坡、房屋的背阳面等都是它们的本影。本影有助于获得立体感。山体的阳坡明亮,阴坡较暗,其明暗分界线即为山脊线或山谷线。落影是指地物投在地面的影子,即投落阴影。利用落影可以计算地物的高度(h=T tanϕ,其中,h为地物的高度;T为落影长度;ϕ为太阳高度角)。
4)水系标志:水系是非常重要的解译标志,对地形、地貌、岩性、构造解译都非常有用。水系形态、密度、均匀性、对称性、方向性往往是构造和岩性特征的反映。例如,泥岩、页岩、粘土岩、粉砂岩发育地区,易形成高密度树枝状水系,反映岩石透水性不良;砂岩、石英砂岩或岩石裂隙发育区,常形成低密度树枝状水系,反映岩石透水性强。水系的均匀性,表示岩石抗风化能力和裂隙发育程度比较相近;水系的对称性,反映区域地形或大片成层岩层向一侧倾斜;水系的方向性,主要反映区域山系、岩层及构造走向。
5)地貌形态标志:地貌形态不仅决定于一定的岩性和构造,而且也决定于一定的气候、水文等自然地理条件。不同地貌形态是不同岩性、构造在不同内外动力作用下的结果。由于地层岩性的物理化学性质不同,而具有不同的抗风化侵蚀能力。岩石的抗蚀能力通常由地貌形态反映出来。抗蚀性强的岩石形成陡坡和陡崖;抗蚀能力弱的岩石形成缓坡和低地。地貌形态除与岩性有关外,还与构造、产状、自然环境等因素有关。利用地貌形态解译地质体,可以从山体的组合形态与规模大小,山顶、山坡形态与地形相对高差等方面来进行。
6)植被:植被的分布与气候的地带性和地形引起的垂直分带性及小气候环境有关。在不同的地貌部位上,由于基岩和松散沉积物的岩性、粒度、含水性等的影响,可引起植物群落外貌、种属、层级、密度、长势、单株与群落的生态畸变和宏观生态特征上的改变。植被分布对地质解译既有利,也有弊。不利之处在于植被掩盖了岩层露头和构造,造成解译上的困难;有利的是,在某些特定条件下它能作为地质解译的间接标志。例如,地质、水文条件和土壤性质的变化可引起植物生态异常。解译时应注意总结这类规律,以发现更多的间接地质解译标志。
7)水文标志:主要指陆地水水文特征,包括泉、小溪、河川、湖泊和基岩、松散堆积物的含水性、渗透性等。它们的空间分布特征都与一定的地质、地貌条件有关,因此,水文标志是地质解译的一个有用标志。
8)人类活动遗迹:人类活动遗留下来的与地质体有关的痕迹、探槽、钻探平机台、道路、建筑、农垦区、历史考古遗迹等都可作为地质解译的间接标志。
9)影纹结构:影纹结构是地物的形状、大小、色调、阴影、水系、地貌、植被、人类活动遗迹等在图像上的综合表现。不同的地质体一般具有不同的影纹结构。在解译过程中,对影纹结构的类型可用点状、格状、栅状、链状、环状、蠕虫状、姜状等来描述,还可进一步区分为宽窄、疏密、粗细、大小、长短等。
(2)解译方法
地质解译就是利用遥感图像的各种影像特征解译地质体。如何利用各种解译标志和解译方法去辨认地质体或地质现象的存在和属性,主要由解译任务、图像特点、地质构造复杂程度、解译条件与难易程度等综合因素所决定。遥感图像的解译方法主要有:
1)直译法:对于具有清晰影像和典型特征的地质体,通常可采用直接解译的方法,即观察和利用地质体的各种综合标志,尤其是反映该地质体属性的典型影像特征,直接去辨认、分析、圈定地质体。如灰岩的岩溶地貌和侵入体的综合影像特征、影像地层单位的对称重复和两翼产状的变化、断层的线性影像特征等均可作为直接判断所属地质体的典型影像特征。
2)延伸法:在进行区域图像地质解译时,对有一定特征影像的地质体,常遵循由已知到未知的解译原则来延伸圈定地质体。一般对褶皱岩层、各种断层、破裂面以及岩体、地块的界线常用此方法,即沿着各种地质要素连续地进行观察分析,以确定延伸位置。对于影像特征不清者,常用此法,一般能收到较好的解译效果。
3)对比法:当地质体没有典型的解译标志,不能用直接判断的方法解译时,可将未知地质体与已知地质体的影像特征进行对比,分析两者的异同点,从而达到鉴别未知地质体的目的。
3.详细解译
根据已确定的分层单位和解译标志,按相应比例尺的精度要求,在立体镜下详细而准确地勾绘出详细的地质解译图。这是进行遥感地质解译的结果,也是绘制地质图的基础。
在详细解译的基础上,布置野外调绘的路线。
4.野外调绘
野外调绘的任务是详细查证解译的成果;查明解译中发现的重要地质现象或者难以解译的现象(必要时需配合山地工程);系统采集标本样品,完成野外资料收集的工作。
野外调绘的基本方法仍然是通过路线地质调查。路线的间距可以比常规地质调查的路线间距大几倍。对重点地段应加密调绘路线,投入较多的野外工作。所谓重点地段主要是指:
1)区域地质和找矿调查中的成矿有利地段和物化探异常区;工程地质调查中的重要工程地质、动力地质区;水文地质调查中的井、泉和岩溶区等。
2)构造复杂或植被茂密,解译效果较差的地段。
3)某些对查明地质构造或地貌规律比较关键的地段。
野外调绘中观测点应用针刺的方法标定在相片上。针刺点位应尽可能精确,针孔不能太大;其误差最大不能超过0.2mm;点号标在相片背面针孔的位置。地质界线应在野外用特种铅笔勾绘在相片(或聚酯薄膜)上。准确记录野外地质现象,对较复杂的构造,勾绘平面示意图,以便与相片上的影像进行对照。
野外调绘中每天都应进行资料整理。除了野外记录和标本的整理外,应在立体镜下检查野外刺点和连线的正确性,并上墨,标绘野外实测的产状(注意相片方位)。当天的调绘成果均应勾绘在实际材料图上。
5.成图及编写报告
这个阶段的工作与常规调查基本相同。所不同的是在图面整饰中,发现图面结构不合理的地段可进行更深入的解译,以求得确切的结果;在资料综合分析中,要研究多种资料的拟合,若有光谱测试资料时,应有地物光谱和解译标志的分析;图件清绘、转绘和成图时,尽可能用现代技术设备,以提高精度和工效。
当进行小区域的调查时,如某矿区地质调查、某地下水水源地的综合水文地质调查或某工程建筑场地及外围工程地质调查等等,野外建立解译标志、详细解译和野外调绘等工作不一定按工作阶段截然分开。在大比例尺地质测绘中,需要与地形控制测量密切配合。
H. 农业地质环境遥感调查
浙江省农业来地质环境遥感调查属源基础性调查项目,主要是利用遥感的宏观、动态、综合、快速、多尺度、多时相的技术优势,辅以其他技术方法,对与浙江省农业发展相关的地质背景、地理环境、土壤分布、农作物种植布局等进行多层次的综合调查研究,为农业地质环境调查提供新的基础资料和相关专题图件。开展土壤与农业地貌类型遥感调查、海涂资源遥感调查、浙江省农业地质遥感调查数据库建设3方面工作。该项目提交了如下数据内容。
1)海岸带元素分布图、海岸带地貌单元图、海岸带类型图、海岸带变迁图、海岸线类型图。
2)浙江省土壤含水指数分布图(栅格数据格式)。
3)浙江省土壤类型卫星遥感解译图(栅格数据格式)。
4)土壤侵蚀卫星遥感解译图(栅格数据格式)。
5)浙江省地势现状卫星遥感解译图(1:25万)。
6)文档多媒体资料。
I. 遥感地质调查
1∶10万基础地质和环复境地质遥感调查与制监测,完成15.2万平方千米,发现松辽平原经济区近10年间湿地面积减少5080.2平方千米,黑土面积减少3680.6平方千米。
首次应用遥感技术对晋陕蒙、川西南等8个矿产资源集中地区约40万平方千米矿区进行了环境实时遥感监测,并对其中6个关键区的矿产开发状况及其地质灾害隐患开展了1∶1万遥感监测。
J. 遥感和地理信息系统有什么区别吗 它们分别有什么作用
一、特点不同
1、遥感
获取信息的速度快,周期短。由于卫星围绕地球运转,从而能及时获取所经地区的各种自然现象的最新资料,以便更新原有资料,或根据新旧资料变化进行动态监测,这是人工实地测量和航空摄影测量无法比拟的。例如,陆地卫星4、5,每16天可覆盖地球一遍,NOAA气象卫星每天能收到两次图像。Meteosat每30分钟获得同一地区的图像。
2、地理信息系统
1)公共的地理定位基础。
2)具有采集、管理、分析和输出多种地理空间信息的能力。
3)系统以分析模型驱动,具有极强的空间综合分析和动态预测能力,并能产生高层次的地理信息。
二、分类不同
1、遥感
根据工作平台层面区分:地面遥感、航空遥感(气球、飞机)、航天遥感(人造卫星、飞船、空间站、火箭)。
根据记录方式层面区分:成像遥感、非成像遥感。
根据应用领域区分:环境遥感、大气遥感、资源遥感、海洋遥感、地质遥感、农业遥感、林业遥感等。
2、地理信息系统
按功能分类:专题地理信息系统(Thematic GIS)、区域地理信息系统(Regional GIS)、地理信息系统工具(GIS Tools)
按内容分类:城市信息系统、自然资源查询信息系统、规划与评估信息系统、土地管理信息系统等、GIS中使用的技术
三、应用不同
1、遥感
遥感技术已广泛应用于农业、林业、地质、海洋、气象、水文、军事、环保等领域。在未来的十年中,预计遥感技术将步入一个能快速,及时提供多种对地观测数据的新阶段。
遥感图像的空间分辨率,光谱分辨率和时间分辨率都会有极大的提高。其应用领域随着空间技术发展,尤其是地理信息系统和全球定位系统技术的发展及相互渗透,将会越来越广泛。
2、地理信息系统
在科学、政府、企业和产业等方面更广泛的应用,应用包括房地产、公共卫生、犯罪地图、国防、可持续发展、自然资源、景观建筑、考古学、社区规划、运输和物流。地理信息系统也分化出定位服务(LBS)。