当前位置:首页 » 地质问题 » 水文地质图怎么看水流方向

水文地质图怎么看水流方向

发布时间: 2021-02-12 01:34:58

⑴ 请教~~~~~根据水文地质平面图,如何做水文地质剖面图

作图步骤:1、根据要求在平面图上确定剖面线的位置和方向。2、确定回剖面图的比例尺。3、收答集整理资料(全面收集剖面线上及其邻近钻孔柱状图、含水层、隔水层、抽水试验资料、地形地质图等有关资料)。4、设计图面和绘制高程网。5、投绘平面与剖面的对应线(先将平面图上的经纬线与剖面线的交点投绘到剖面中)6、绘地形剖面.7、投绘钻孔柱状。8、投绘构造点。9、根据各地层时代,连接各点,连接各含、隔水层,有抽水试验资料,将抽水层段数据标出即可。 最简单的办法就是找一张地质剖面图,在此基础上,将水文资料放上就可以了。

⑵ 根据这张图片中的地质形态判断水流方向

根据图中地质形态判断,水流的方向是由东北向西南流淌,地势东北高西南低。

⑶ 综合水文地质图

综合水文地质图,实际上是把区域水文地质调查中所获得的各种水文地质现象和资料,用特定的代表符号、色调和方式,按一定比例尺缩小表示到图纸上的一种具综合内容的水文地质图件。但它又不是野外现象的简单罗列,而是把野外获得资料在进一步整理、分析和系统化的基础上,更深刻地反映出区域地质—水文地质条件的规律性。

按原地质矿产部颁布的《区域水文地质普查规范补充规定》,综合水文地质图编图的基本原则是:编图时首先要划分出五种基本类型地下水,即松散岩类孔隙水、碎屑岩类裂隙孔隙水,碳酸盐岩类裂隙溶洞水(岩溶水)、基岩裂隙水和冻结层水。每种基本类型可根据不同情况划分为若干亚类。类和亚类应突出表示出富水等级、埋藏条件和水质。并规定类型用普染色表示,亚类采用接近的普染色表示,层次要分明,用色阶深浅表示富水性等级,埋深用等值线、线条、花纹符号等表示,水质用水点、等值线、符号等表示。

(1)松散岩类孔隙水:一般分为潜水和承压水两个亚类,每亚类又可按单井涌水量划分为若干个富水等级,并圈定其界线。同一含水岩组也要区别其富水程度。按单井涌水量一般分为:①水量极丰富的:单井涌水量大于5000m3/d;②水量丰富的:单井涌水量为1000~5000m3/d;③水量中等的:单井涌水量为100~1000m3/d;④水量贫乏的:单井涌水量为10~100m3/d;⑤水量极贫乏的:单井涌水量小于10m3/d。

多层结构含水层,一般可归并为潜水与承压水或浅层水与深层水两组,用双层结构法表示,即宽窄条相间,宽条代表上部(潜水或浅层水),窄条代表下部(承压水或深层水),富水性用不同色调表示(图7-1)。

图7-1 双层结构表示法表示松散岩类孔隙水示例

埋深资料较多时,应绘制等水位(压)线,并表示出潜水位或承压水顶板的埋深;资料较少时,可分区分级用图例或不同线条表示。

(2)碎屑岩类裂隙孔隙水:系指分布在中、新生代陆相沉积盆地内、比较稳定的裂隙孔隙水。不同含水层(组)或同一含水层(组)的不同地段应按单井涌水量划分出富水等级:即大于1000m3/d,100~1000m3/d,小于100m3/d三级。层状承压水的分布面积应于表示,其顶板埋深按<50m,50~100m,>100m表示。如有咸水还应反映出咸淡水分界面的埋深。如果上覆有松散岩类孔隙水,则采取双层结构方法表示。

(3)岩溶水(或裂隙岩溶水):图上应分别表示出由分布均匀、相互连通的网(脉)状溶蚀裂隙或蜂窝状溶孔构成的统一含水层(体)和溶蚀管道发育而成的暗河水系;还应表示出岩溶均匀发育带和汇流富集带。应按泉及暗河流量与地下水径流模数等综合因素,划分出富水等级。对大泉(域)和暗河(水系),按流量可分为100~1000 L/s,10~100 L/s,<10 L/s三个富水等级;按地下水径流模数,亦可分为三级:<3 L/(s·km2)、3~6 L/(s·km2)、>6 L/(s·km2)。岩溶水埋深一般分为:<50m,50~100m,>100m三级。对覆盖型或埋藏型岩溶水,可用双层结构的方法表示。各种形态的岩溶,也应表示在图中。

对岩性岩相变化复杂的裂隙岩溶水,应划分为四个亚类:①碳酸盐岩裂隙溶洞水,碳酸盐占90%以上;②碳酸盐岩夹碎屑岩裂隙溶洞水,碳酸盐岩占70%~90%;③碎屑岩、碳酸盐岩裂隙溶洞水,碳酸盐岩占30%~70%;④碎屑岩夹碳酸盐岩裂隙溶洞水,碳酸盐占10%~30%。然后,据其中岩溶水的富水性,划分其富水等级。

(4)基岩裂隙水:一般分为构造裂隙水(指层状、似层状裂隙水)、脉状裂隙水、风化网状裂隙水和孔洞裂隙水等亚类。其富水等级,按多数常见泉水流量分为:<0.1 L/s,0.1~1 L/s,>1 L/s三级,按地下水径流模数分为:<1 L/(s·km2),1~3 L/(s·km2),>3 L/(s·km2)三级,对接触带、岩脉等富水带和背、向斜等蓄水构造,亦应标出其富水部位。

(5)冻结层水:可分为松散岩类冻结层水和基岩类冻结层水两个亚类。亦可分为冻结层上水和冻结层下水。采用双层结构方法,分别表示两层水的富水等级,必要时,应反映出冻结层厚度和冻结层下水的顶板埋深,圈出岛状冻结区范围。冰丘等物理地质现象、现代冰川及沉积物和冰雪覆盖范围等,亦应表示在图上。

综合水文地质图上,地下水质主要按矿化度划分。一般按矿化度分为淡水(<1g/L),微咸水(1~3 g/L),半咸水(3~10 g/L),咸水(>10 g/L),盐卤水(>50 g/L)。污染的和天然有害离子或化合物的分布情况,也应充分反映。

在综合水文地质图上,除上述内容外,图中还应表示出:①控制性水点(井、孔、泉)及地表水系。水点要按规定的格式、色调进行标绘,如水点左侧通常注记统一编号,右侧注记水位埋深、水量、降深、矿化度等,井、泉用蓝色,钻孔用红色等;②地下水流向,地下水和地表水的补排关系,水源地的开采量,海水入侵界限,下降漏斗范围等;③热泉和人工揭露的热水。按水温,可分为:低温热水(20~40℃),中温热水(40~60℃),中高温热水(60~80℃),高温热水(80~100℃),超高温热水(>100℃)。在一般地区,可简化为:温泉(20~40℃),热泉(>40℃);④地层界线及地层符号与地质图基本相同,但地层系统可简化,各种构造及其水文地质性质,亦要标示出来;⑤第四系的成因类型、岩性结构及分布;⑥重点地貌现象,如阶地、溶洞、暗河等。

综合水文地质图一般必须附有1~2个区内主要方向的水文地质剖面图,以充分反映本地区各类含水层组及其水文地质结构和某个方向上或深部水文地质变化规律。剖面图的水平比例尺原则上与平面图相同,垂直比例尺可适当放大。剖面图中的各含水层组,应按平面图的富水性色谱着色(含水组中的隔水层及潜水位以上的包气带不上色)。剖面图中除反映含水岩组外,还必须把有关水文地质内容表示出来,如水位、水头、控制性钻孔及涌水量、泉水点、咸淡水界面、蓄水构造等。另外,还应适当反映地貌特征(如阶地、溶洞等)。

综合水文地质图一般还要附有柱状图。原则上可利用地质图上的柱状图改编,主要表示水文地质内容,但要突出主要方面,简化次要方面,要重视第四系的水文地质要求,选择其最主要最有代表性的地层层序,水文地质特征说明力求简明扼要,重点突出。

某些内容可编制成较小比例尺的镶图,用以表示水文地质条件或开采利用条件中突出的一种或两种要素,以补充平面主图的某些不足。如地下水开采利用规划图、地下水资源分区图、水化学图等。

根据实际情况和是否需要,还可附简要的分区说明表。

综合水文地质图的图例说明应简明扼要,以阐明富水性为主,富水性的等级按由强到弱的顺序排列,其他仅作简要的补充说明。

最后需要说明,在水文地质调查资料整理过程中,应尽量采用计算机辅助制图系统,如基于地理信息系统(GIS)的计算机辅助制图、AutoCAD、MapGIS、Coreldraw、Super⁃Map、Excel计算机制图系统等。计算机制图具有图形附带地质属性数据的特点,实现了传统水文地质图表达信息的彻底变革,同时还具有随时修改、高效、实现数据共享、易于保存和传输等优点。

⑷ 这种图怎么判断它是什么河流,给的经纬度怎么看

经纬度体现河流的水文特征:有无结冰期,河流补给类型,含沙量等等

⑸ 怎样根据水文地质平面图画水文地质剖面图

要切剖面图,必须在平面图上按照你需要的方位拉一条直线,配合等高线切剖面。

⑹ 水文地质期的划分和定位

1.分期的依据

划分水文地质期应把握两个要点。其一,应以研究目的层的沉积背景、沉积作用及其以后地史进程中的沉积、构造演化为依据论证期的划分。其二,针对主要含水系统进行分期。分期的依据是:

(1)中三叠世末发生的印支运动导致川盆中、东部露出水面,以中三叠世末不整合面绘制的古地质图显示,以泸州为中心朝向北西方向由老到新呈环状分布,直至乐山、仁寿一带中三叠统保存完整(图8-3),中三叠世浅海显著向西萎缩,在川盆西外侧龙门山前山带和盆内川中前隆之间形成了川西晚三叠世残留海盆。

晚三叠世龙门山后山带及其以西地区松潘-甘孜地区大规模的拉张裂陷,沉积了巨厚的海相层和大陆斜坡的浊流沉积。特提斯海通过康滇古陆与龙门山半岛、抑或与新生的乐山—龙女寺陆地之间的海峡与残留海盆连通,发展成为以川西为沉降中心西断东超的箕状川西拗陷,沉积了上三叠统须家河组须一段海湾泥岩相、须二段三角洲砂岩相、须三段泥岩沼泽相,其后由于龙门山前山带强烈活动和隆升,露出水面,导致残留海盆转化为须四段至须六段的陆相沉积,之后又连续沉积了侏罗系、白垩系(2000~5000m)陆相红层,晚三叠世箕状断陷盆地发展成为沉降的大型拗陷盆地。

白垩纪末发生了规模巨大的对四川盆地构造形态起决定性的正向构造运动———燕山运动(又名四川运动),结束了川盆中东部的沉积历史。川盆周围地层褶皱隆升为高山,川盆西缘伴随着岩浆喷发和形成花岗岩等深成岩类,盆内中生代地层发生首次断褶,川盆现代轮廓基本定型。第三纪沉积除在江河两岸零星分布外,主要沉积于川西拗陷。

图8-3 四川盆地西南地区中三叠世末地质图

晚第三纪喜马拉雅运动川盆进一步遭受挤压褶皱和断裂,盆内不同性质的三大块构造最终定型。川西拗陷内堆积了厚度甚薄的第四系沉积层。

(2)依据川西拗陷的沉积演化、构造演化的进程和笔者的分期理念,可将上三叠统须二、四、六段三个主要含水系统经历的水文地质期划分为沉积作用、沉压埋藏作用和构造热液作用三个型式的水文地质期。

必须指出,各含水系统“期”的起始时间、持续时间和作用的强度及效应均是不同的。

(3)川西拗陷是个中、新生代继承性拗陷,晚三叠世沉积后继而连续沉积了侏罗系、白垩系,上三叠统最大埋深在5000m之下,最浅的也有2000m,晚三叠世沉积结束后未裸露地表,即未经受过淋滤作用的改造。但根据钻井地层分层数据编制的各层厚度分布图上发现,须六段分布在拗陷的南部,约占拗陷总面积的一半多,北部大面积缺失;须四段在拗陷内大面积分布,但在拗陷北部西边界内侧的江油一带和北边界内侧的苍溪以北一带缺失,其上为须五段沉积层覆盖。出现缺失的原因可能是:其一,上三叠统由海相转化为陆相沉积时,由于龙门山前山带强烈活动和隆升,不仅切断了残留海盆与外海的联系转变为陆相沉积,而且引发拗陷北部的抬升,导致湖盆沉积范围有所变化,须六段沉积时湖盆萎缩到拗陷南部。其二,须四、须六的沉积结束后露出水面,经剥蚀作用形成的,但上三叠统是个连续沉积的过程,不存在沉积间断,且这些被剥蚀的沉积物搬运至拗陷外,还是在拗陷内搬运,按现掌握的资料难以佐证。按第一种状况而论,须六段未经历淋滤作用,而须四段裸露面甚小,时间又短,主要以内循环型压挤式沉积水交替为主要动力特征。

(4)难以取得川西拗陷在油气和卤水开发过程中的水动力、水化学动态测试资料,人类技术经济活动作用缺乏支撑讨论的条件。

2.期的定位

按照上述分期依据的分析,可将各含水系统深层水历经的水文地质期概括于表8-1。

表8-1 上三叠统各含水系统“期”的演化

注:I—沉积作用;II—沉压埋藏作用;Ⅲ—构造热液作用。

须二段含水系统深层水在地史进程中依次经历了沉积作用、沉压埋藏作用和构造热液作用三个水文地质期。沉积作用水文地质期自须二段沉积开始至沉积结束的持续时间;沉压埋藏作用水文地质期自须三段沉积开始至白垩纪沉积结束的持续时间;构造热液作用水文地质期自白垩纪末发生的燕山运动(四川运动)至第三纪末发生的喜马拉雅运动幕面之间的持续时间。

须四段含水系统深层水在地史进程中经历了与须二段期序相同的三个水文地质期。沉积作用水文地质期自须四段沉积开始至沉积结束的持续时间;沉压埋藏作用水文地质期自须五段沉积开始至白垩纪沉积结束的持续时间;构造热液作用水文地质期的持续时间与须二段的相同。

须六段含水系统深层水在地史进程中经历了与须二段期序相同的三个水文地质期。沉积作用水文地质期自须六段沉积开始至沉积结束的持续时间;沉压埋藏作用水文地质期自须六段沉积结束至白垩纪沉积结束的持续时间;构造热液作用水文地质期的持续时间与须二段的相同。

⑺ 怎么辨别太湖和相关河流的 水流方向

如果是水位图,根据等水位线,水流方向与等水位线凸出方向相反。
如果是地质图,河流的流向是高处流向低处,水流方向与山谷突出的方向相反。
如果是河流图,你观察是河水补给湖泊还是湖泊补给河水。

⑻ 在地质图上怎样判断河流的水流方向

根据等水位线,水流方向与等水位线凸出方向,相反

⑼ 怎么找某地方的水文地质图

开介绍信,到国土资源部门,资料室查阅。

⑽ 水文地质特征

水文地质特征对注浆材料的选择和注浆压力的确定尤其重要,因此,注浆施工前,必须要搞清楚所注地层是不含水层、弱含水层、富水层,还是高压动水地层?水量是多少,水压力是多大?地层渗透系数是多少?

现场水文地质特征通过超前地质探孔进行分析。超前地质探孔按图1-22布置。探孔共布置4个,分别位于左、右边墙和左、右拱腰。探孔纵向探测长度30m,终孔为开挖轮廓线外1.5 m,即外插角2.9°。每探测30m后,当确认前方可以开挖时,开挖施工25 m,余留5 m作为下一循环探测的余留岩墙。

图1-22 超前探孔横断面布置图

在现场探孔施工中,当有一个探孔出现流水时,其他探孔应减慢钻进,首先钻进出水孔,并不断测试出水孔的涌水量,直到出水孔钻到设计深度。按这一钻探原则进行探孔施工,期间,应对每一个探孔涌水量进行监测。在探孔施工结束后,如果没有一个孔是满孔流水,那么基本上可不再进行补探施工。否则,可通过分析各探水孔的水力联系进行补探设计和补探施工。

1.4.2.1 水流方向判定

通过分析各探水孔遇水时的钻孔深度,确定前方岩层的走向。综合各探水孔涌水量变化情况,分析探水孔之间的水力关系,确定水的来源方向。当需要进行补探时,主要在水源方向一侧进行补探设计和补探施工,以进一步确定水流方向和涌水量大小。

1.4.2.2 涌水量测试及稳定性分析

正确地分析出前方涌水量大小是确定是否可以进行开挖的最主要依据之一。涌水量的分析预测主要通过“预估→涌水量稳定性分析→补探确定”这一程序进行。

在超前探水孔钻探完成后,若探孔不是满孔流水,则可以直接通过采用容器提水的方法进行涌水量测试。这种情况下,涌水量Q≤40m3/h,测试的误差不大。若满孔流水,即涌水量Q>40m3/h时,采用容器提水的方法很难较准确地测试,这主要是在很短的时间内所选择的容器就被涌水充满,测试时引起的时间误差太大,造成测试数据不准确。

当涌水量Q>40m3/h 时,可采用射程计算法进行涌水量预估。如图1-23,将ϕ108mm孔口管变径转换为ϕ32mm的焊接水管,通过测试当涌水射出高程为1 m处的水平射程,从而估算出前方涌水量。计算方法如下:

地下工程注浆技术

地下工程注浆技术

地下工程注浆技术

地下工程注浆技术

式中:X为水平射程(m);Y为高程(m),取1 m;g为重力加速度(cm/s2,取9.8);t为流水时间(s);Q为单孔涌水量(m3/h);V为涌水速度(m/s);S为过水断面面积(m2);D为管径(m),取ϕ32mm,即0.032 m。

计算得:

地下工程注浆技术

图1-23 涌水量测试方案示意图

测试各探孔涌水量和总涌水量(总涌水量可通过矩形堰法或流速法测试),绘制涌水量变化曲线,以此分析前方涌水量的稳定性。若涌水量稳定,每个探水孔涌水量Q<40m3/h,且总涌水量Q<300m3/h时,基本上可以确定前方发生突涌水的可能性不大,可以进行开挖施工,否则应进行前方涌水量的准确判析。

1.4.2.3 涌水量的准确判析

通过在水源侧增补探孔的方式来准确评估前方发生突涌水的可能性。施工中一般按预设计的超前预注浆方案施作水源侧的注浆钻孔,通过钻孔数量的增加,以使总涌水量进行分配。若能达到实施几个钻孔后不再有满孔流水现象,这时,继续观测各孔流水量和总涌水量,分析其关系和规律性,通过对总涌水量进行稳定性分析,从而界定出前方发生突涌水的可能性。

1.4.2.4 确定裂隙发育的分布特征

裂隙发育的分布特征也是影响注浆方案制定的主要因素之一。对裂隙发育的分布特征可采用止浆塞卡位技术,通过水量观测法进行确定。如图1-24 ,将水力膨胀式止浆塞下入钻孔中,按1m、2m…29m的位置对止浆塞进行卡位,通过注水,使止浆塞膨胀。通过测试芯管中的出水量,以确定测试段是否有水,以及水量大小。绘制水量随钻孔深度的分布特征曲线,由分布特征曲线判定水量的主要水源位置,从而确定钻孔范围内的裂隙发育分布特征。

图1-24 裂隙发育分布特征测试方法示意图

1.4.2.5 水压力测试

水压力是指相对隧道标高而言,隧道所承受的水头压力。隧道水压力的测试采用关水试验。为确保水压力测试数据的可靠性,若掌子面前方岩盘厚度不足5m、裂隙发育时,应采用C20混凝土封闭掌子面,封闭厚度1.5~2 m。测试过程中,若出现局部部位有流水、涌水时,应停止监测,重新对涌水点进行增设钢架、补喷混凝土等措施,以达到密闭状态,之后,重新进行监测。水压力稳定时间不得低于48 h,即当压力在某值稳定时间超过48 h以上,可认为这个压力值为最终水压力值(原始水压力),该水压力为隧道所承受的最大水压力。

水压力测试方法有渗压计法和压力表法两种。

渗压计法是在钻孔中放置渗压计,通过测试渗压计频率,计算出水压力值。由于国内外没有水压力测试经验,无法评价水压力测试过程的危险性,因而,在圆梁山隧道高水压力测试过程中,水压力监测采用了渗压计法。渗压计法测试装配图如图1-25。

图1-25 渗压计法测试装配图

图1-26 压力表法测试装配图

压力表法是最简单,也是最直接的监测方法。通过圆梁山隧道水压力监测,表明在高水压力下,水不可能冲毁止浆墙和孔口管,因而,直接测试水压力是安全可靠的,因此,在以后其他隧道水压力监测时,采用了压力表法。压力表法测试装配图如图1-26。

1.4.2.6 渗透系数测试

(1)地表测试

地表帷幕注浆时,测试地层渗透系数常采用注水试验,采用下式计算。

地下工程注浆技术

式中:k为地层渗透系数(m/d);Q为稳定流量(m3/d);l为试验段长(m);s为水位差(指水头压力高度,m);r为钻孔半径(m)。

注水试验测试方法及原理图如图1-27。注水试验步骤:

图1-27 注水试验测试方法及原理图

1)采用地质钻机垂直于地面钻孔,不测试部位采用套管护壁,测试部位下入外包滤网的PVC管(周边钻孔)。

2)测定地层中的初始水位。

3)在地面采用稳定的流量向孔内进行注水。

4)通过调节水流量的大小使管内形成稳定水位并测试。

5)测试水位稳定时的注水流量。

6)通过公式计算地层渗透系数。

对于城市基坑工程,常采用供水管道进行注水试验。试验过程中,通过调整水头大小,以保证给水与渗透水的水力平衡,从而确定稳定流量与水头差。

(2)洞内测试

洞内帷幕注浆时,常采取注水试验(为减少注入地层中水量,也可采用水灰比为1∶1的水泥浆进行注浆试验测试,测试结果偏小)。测试注水(浆)压力和注水(浆)流量,采用以下公式计算

地下工程注浆技术

地下工程注浆技术

式中:ω为地层单位吸水量(L/(min·m·m));L为注水(浆)段长度(m);γ为注水(浆)孔半径(m);

为注水(浆)时稳定流量(L/min);

为注水(浆)压力(水头压力高度,m)。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864