石油一般集中在哪些古地质环境中
⑴ 石油来源它是由于远古动物化石变化的,还是由于地球本身产生的物质
一.石油的成因——有机说与无机说之辩
世界上第一个试图探索石油成因的是俄国科学家罗蒙诺索夫。他在1763年就提出一个假设:“地下肥沃的物质,如油页岩、碳、沥青、石油和琥珀……都起源于植物。因为油页岩不是什么别的东西,而是古代从结果实的地方和从树林里被雨水冲刷下来的烂草和烂叶形成的黑土,它像淤泥般地深埋在湖底……,树脂和石油以它们的(重量)轻和树脂的可燃性表明它们也是同样成因的。”
后来又有人继承和发展了罗蒙诺索夫的观点,形成了石油有机说理论体系,这一假说可具体可概括为:石油是由埋藏在地下的动植物遗体变来的。石油一般生成在古代的沉积盆地或浅海和湖泊中,在漫长的地质年代里,这里堆积了几百米至几千米厚的沉积物,其中埋有许多动植物的遗体;这些生物有机物质经过几百万年的地质变化及一系列的物理化学变化,逐渐转变为无数细小的油珠;油珠再汇成油流,油流则集中迁移到地壳中具有封闭构造的地层中储藏起来,最终形成规模较大的油田。
石油有机成因说自提出以后,地质研究工作者找到了大量的证据,用以说明石油的有机形成过程。
尽管世界上找不到成分完全相同的两种石油,但绝大多数石油都含有不同数量的碳氢化合物,这类化合物很容易氧化,在200℃以上便会分解,因而它们只能来自生物,而不可能来自地球内部和岩浆。另外,化学分析显示,石油中碳12富集,碳13较贫。这种碳同位素比例与依赖光合作用的生物相似。
1980年底,一些美国科学家潜入加利福尼亚湾瓜伊马斯海盆,考察那里的海底热泉,无意中目睹了在高达600℃的热泉作用下,堆积在这里承受着海水和地层巨大压力的有机沉积物,就像处在石油厂的裂变设备中一样,正在分解裂变成石油。
瓜伊马斯海盆的这一发现为石油有机成因说提供了现实证据,同时也修正了有机成因说的一些推论,它说明石油的形成不一定要经历上百万年的时间,也不一定要埋藏到上千米深的地下才能形成。
尽管有机成因说日臻完善,但随着石油地质工作研究的深入,一些不利于有机成因说的证据渐渐显现出来。人们注意到,在世界上已发现的3万多个油田中,有8个特大油田占了全部储量的一半左右。如果说石油是由动植物演变而成的,那么就不会出现这种情况;因为生物在地球上的分布虽然不均衡,有的地方多,有的地方少,但绝不会造成如此巨大的差别。
人们还注意到,有些油田在垂直方向上分布很深,而且越往深处成油条件越好,油气的产量高、压力大,似乎在它的深部有源源不断的油气供给。
颇有意味的是,当初在勘探中国南海地区的油气藏时,一些西方的石油公司从有机成因观点出发,在分析了当地地层中一系列有机指标后,断言这里不可能生成供大规模开采的石油矿藏。而实际情况却完全相反,南海地区打出了一个又一个高产油气井。
因此,在过了一个世纪之后,石油成因的无机说在学术界应运而生,它最早是由元素周期律的发现者门捷列夫于1876年提出来的。他在实验室看到水与金属碳化物(碳化铁、碳化铝)能在高温高压下起化学反应,生成类似石油的碳氢化合物。受此启发,他提出一种假设认为,地球上有丰富的铁和碳,在地球形成初期可以化合成大量的碳化铁,以后又与过热的地下水作用,遂生成碳氢化合物;这些碳氢化合物沿地壳裂缝上升到适当部位储存冷凝,即形成石油矿藏。
“碳化说”在十九世纪末和二十世纪初曾流行一时,然而,地球内部是否存在碳化铁,却是一个未知数;再者,即使存在碳化铁,地球内部的高温却又使水无法到达,这样就不会产生水和碳化铁的化学反应;更何况石油的化学成分非常复杂,水和碳化铁的简单反应不能形成如此多样的成分。由于存在着如此多的疑点,所以门捷列夫的假说流行了一个时期后就被人们抛弃了。
继“碳化说”之后,1889年俄国的索柯洛夫提出了石油成因的“宇宙说”。他认为,地球在诞生伊始尚处于熔融的火球状态时,吸收了原始大气中的碳氢化合物,随着原始地球不断冷却,被吸收的碳氢化合物逐渐冷凝埋藏在地壳中,于是形成了石油。
进入二十世纪六十年代以后,天文学家利用光谱分析,在宇宙中发现了大量的有机物质,有力地支持了宇宙说。碳氢化合物不仅见于一些行星的大气里和彗星的彗核中,有的甚至可以构成巨大的分子云。在陨石中,人们还找到了更复杂的有机物。它们显然与生物作用无关。这些事实说明,许多有机物完全可以通过非生物途径获得。
在以上发现支持下,现代主张石油无机成因说的研究者认为,在地球形成早期,后来生成石油的有机物便以甲烷及其他碳氢化合物形式参与了地球的组成,后来在地球内部热力和压力的促使下,它们从深部释放出来,在某种有利的环境下进一步合成变成了石油。至于石油中含有的有机质,无机成因说的主张者们认为,那是原生石油在运移过程中受到了有机物的污染,从而造成了石油成分的复杂化。同时,他们也不否认一部分石油可能来自生物,但大量的石油则来自地球的内部。
但是,还是有反对者指出,索柯洛夫的观点有一个先天不足,他们认为地球形成时的大气与现在差不多,不可能存在大量碳氢化合物,即使有的话,遇到高温熔融状的地球也早就分解了。
美国康奈尔大学的天文学家高尔德,站在无机说的角度批驳有机说时说,世界上油矿的规模比其他任何沉积矿体大得多,已查明的油气储量也比原先根据生物生成说估计的高出数百倍之多;最难以解释的是许多油气田中含有大量的氦,但生物对氦的浓集不起任何作用;再有,生物作用无法说明世界油田分布高度集中现象(指中东)。
围绕着石油成因,有机说与无机说的争论已持续了一个世纪之久,各自都有自己的理论依据和证据,谁也说服不了谁,因此上说,关于石油的形成问题,至今难以定论。
二、石油——来自5.8亿年前的太阳系灾变
本文站在太阳系演化的角度,提出一种新的假说认为,5.8亿年前太阳系发生了一场灾变,地球俘获了大量的星云气体,继而通过无机过程形成了石油矿藏。
5.8亿年前,宇宙中有一星云状物质团撞入太阳系,引发了一颗类地大行星发生了爆炸。这一星云体裹杂着爆炸碎块进入了地球运行轨道,其中一少部分物质,在地球万有引力的吸引下,环绕在地球周围,形成了地球上最原始的大气。刚刚形成的地球大气极其浑浊,外层温度较低,主要以星云体的化学成分为主;而内层温度较高,主要以行星爆炸后的尘土颗粒和金属元素为主。经过几百万年,大气层在散失热量后逐渐冷却。大气中的高熔点物质和比重较大的物质陆续向地面降落,尘土颗粒形成了地表沉积岩石层,金属元素则形成了各种金属矿藏,而外大气层中的星云气体降落于地表后,形成的就是石油矿藏。
由于彗星也是由星云气体演化而来,因此石油应与彗星的化学成分相近或相同。天文学家通过光谱分析确定彗星的化学成分有:氢(H)、碳(C)、氧(O)、硫(S)、碳氢基(CH)、氨基(NH)、羟基(OH)C2、氰基(CN)、一氧化碳(CO)、氨基(NH2)、水(H2O)、氰化氢(HCN)、甲基氰(CH3CN)等。地球原始大气中也同样含有这些物质,它们就是形成石油的原始材料。当这些物质沉降于地面后,在刚刚形成不久的沉积岩石层中液化、流动、汇集,并经过一系列物理和化学反应,最终形成了石油矿藏。
从石油的储藏地方来看,世界上已发现的油气田有99%以上产生在沉积岩中。无论在古老的沉积岩中,还是后期形成的沉积岩中,都普遍含有类似石油成分的分散碳氢化合物。更为有趣的是,许多油气藏与金属和非金属矿床相伴,在勘探金属矿时,有时会钻出石油,钻石油时,却发现了金属矿床,这一现象对有机说来说是无法解释的。
本文提出的石油成因说与索柯洛夫的观点很接近,同属于石油成因的宇宙说,只不过本文的观点更名副其实些。两者区别之处在于,石油的形成时间不同,产生机制各异。索柯洛夫认为石油形成于地球诞生时的46亿年前,而本文则认为石油形成于5.8亿年前。索柯洛夫宇宙说认为石油是熔融状态的地表岩层吸收了原始大气中的碳氢化合物而形成;而本文则认为石油是由5.8亿年前原始大气层中的碳氢化合物降落地面冷凝而成,因此它不存在索柯洛夫学说所面临的理论困难。
油气田中氦元素的发现,可以说是宇宙成因说的一个最有利佐证。氦是宇宙中丰度仅次于氢的一种元素,在星云体中存在比例很高。但是,地球上氦元素的存在比例却是极低的,人们最早发现氦元素,不是在地球上,而是在太阳的大气中,可见氦在地球上是极其稀有的。然而,人们在许多油气田中却发现了大量的氦,这是以往有机说和无机说都无法解释的。这一发现证明,组成石油的物质只能来源于宇宙。
⑵ 石油一般集中在哪些古地质环境中 a,大型稳定地块 b,陆地边缘上的陆坡 c,山前
B b
⑶ 石油一般集中在哪些古地质环境中
地壳上层部分地区有石油储存。
⑷ 石油是从哪里来的
石油又称原油,是从地下深处开采的棕黑色可燃粘稠液体。主要是各种烷烃、环烷烃、芳香烃的混合物。它是古代海洋或湖泊中的生物经过漫长的演化形成的混合物,与煤一样属于化石燃料。石油主要被用来作为燃油和汽油,燃料油和汽油组成目前世界上最重要的一次能源之一。石油也是许多化学工业产品如溶液、化肥、杀虫剂和塑料等的原料。
石油生成
研究表明,石油的生成至少需要200万年的时间,在现今已发现的油藏中,时间最老的可达到5亿年之久。在地球不断演化的漫长历史过程中,有一些“特殊”时期,如古生代和中生代,大量的植物和动物死亡后,构成其身体的有机物质不断分解,与泥沙或碳酸质 石油
沉淀物等物质混合组成沉积层。由于沉积物不断地堆积加厚,导致温度和压力上升,随着这种过程的不断进行,沉积层变为沉积岩,进而形成沉积盆地,这就为石油的生成提供了基本的地质环境。
生物成油理论
大多数地质学家认为石油像煤和天然气一样,是古代有机物通过漫长的压缩和加热后逐渐形成的。按照这个理论石油是由史前的海洋动物和藻类尸体变化形成的。(陆上的植物则一般形成煤。)经过漫长的地质年代这些有机物与淤泥混合,被埋在厚厚的沉积岩下。在地下的高温和高压下它们逐渐转化,首先形成腊状的油页岩,后来退化成液态和气态的碳氢化合物。由于这些碳氢化合物比附近的岩石轻,它们向上渗透到附近的岩层中,直到渗透到上面紧密无法渗透的、本身则多空的岩层中。这样聚集到一起的石油形成油田。通过钻井和泵取人们可以从油田中获得石油。地质学家将石油形成的温度范围称为“油窗”。温度太低石油无法形成,温度太高则会形成天然气。虽然石油形成的深度在世界各地不同,但是“典型”的深度为四至六千米。由于石油形成后还会渗透到其它岩层中去,因此实际的油田可能要浅得多。因此形成油田需要三个条件:丰富的源岩,渗透通道和一个可以聚集石油的岩层构造。
⑸ 石油地质特征
一、生油条件
江汉盆地构造发育的两个断陷阶段的中、晚期和两个坳陷阶段的早、中期,分别发育了各具特点的生油层系,即上白垩统渔洋组、古新统沙市组上段、下始新统新沟嘴组下段及上始新统至渐新统下部潜江组等生油层系。现仅就新沟嘴组下段和潜江组两生油层作简要介绍。
下始新统新沟嘴组下段为构造拗陷阶段的沉积,生油层分布面积广,为8649km2,但厚度薄,一般150~300m,最厚350m。平面上,生油层厚度具有北薄南厚,东薄西厚的特点,缺乏明显的生油深洼陷,相对以江陵凹陷的梅愧桥-虎渡河-资福寺向斜带,潜江凹陷的周矶-总口向斜带及沔阳凹陷的峰口地区,生油层较厚。
上始新统至渐新统下部潜江组生油层属第二个断陷-坳陷构造旋回沉积,由于差异沉降,发育了咸淡水介质两种环境沉积的生油层。据统计,潜江组暗色泥岩分布面积8590km2,总体积为4415Gm3。由于盆地后期回返抬升作用不均衡,平面上形成7个孤立的成熟生油岩分布区,总面积1459km2,体积为610Gm3。
以潜江凹陷为例,潜江组和新沟嘴组生油层地球化学特征仍有一定的差别,比较而言,潜江组有机质丰度高,达到较好-好生油岩级别,母质类型主要为腐泥-腐殖型和腐殖-腐泥型;新沟嘴组有机质丰度虽不及潜江组,多达到较好-较差生油岩级别,母质类型以腐殖型和腐泥-腐殖型为主。
由于剖面岩性不一,潜江凹陷不同层系生油岩的有机质热演化特征有别。新沟嘴组主要为砂、泥岩剖面,地温梯度较高,平均每100m为3.1~3.5℃;潜江组盐韵律发育,地温梯度较低,平均每100m为2.7℃。
江汉盐湖环境,水介质含盐度高,易于形成强还原条件,十分有利于有机质的保存,而且盐系沉积速率大(达0.32mm/a),使生油层迅速掩埋,烃类转化率很高。因此,仍能生成较丰富的石油。
二、储油条件
江汉盆地储集层以砂岩为主,还有泥灰岩、白云质泥岩、玄武岩及致密砂岩等次要储集层。
新沟嘴组储集层:砂岩分布面积11000km2,主要分布于江陵、潜江、沔阳3个凹陷。平面上,砂岩具有北厚南薄、西厚东薄的特点。纵向上,砂岩中分布于新沟嘴组下段,可划分为Ⅰ、Ⅱ、Ⅲ三个油组。总的看来,沉积相带控制了砂岩的发育,并对物性好坏有一定影响。江陵凹陷北部砖桥、后港一带,为三角洲平原相区,分流河道砂岩发育,是好的储集岩分布区;沙市—李埠一线以北地区,属三角洲前缘相,发育水下分流河道砂、河口坝、天然堤及远岸沙坝等,属较好储集岩分布区。潜江凹陷的泽口、渔薪地区,属滨湖滩砂相,是较差储集岩分布区;老新、拖谢一带及新沟地区属远岸湖滩砂相区,为差储集岩分布区。
潜江组储集层:砂岩主要分布在潜江、江陵、小板3个凹陷,面积约6078km2,砂岩一般厚度50~400m,其中具渗透性的砂岩30~300m,以近物源的大路口、钟市两地区砂岩较发育,厚度达500m 以上。主要岩性以粉、细砂岩为主,仅近物源区有少量中粒砂岩。
潜江组纵向上,自上而下从潜一段至潜四段,砂岩分布面积越来越大。且物性逐渐变差。潜江组纵向上可划分为24个油组,39个砂组,由于沉积时水动力条件的差异,各砂组发育程度不一,分布面积有大有小,其中以潜12砂组分布面积最大,为1206km2,从平面上看,以近物源的凹陷北部的钟市、潭口、渔薪等地砂岩较发育,自北而南各砂组、砂层依次减薄、尖灭。
三、圈闭条件
1.构造圈闭少
区域拉张应力环境,断裂活动控制了盆地构造的形成、发育,局部构造多与断层有关;此外,由于盐系地层发育,因其塑性上拱,也形成了部分构造。总的看来,盆地局部构造不发育,构造圈闭数量少。已发现的构造圈闭有背斜、断鼻、断块三种类型,又以后两种类型为主,如潜江组全盆地共发现60个构造圈闭,其中断鼻占72%;新沟嘴组全盆地共发现113个构造圈闭,其中断鼻占65%,断块占28%。平面上,背斜构造多分布于各凹陷的中部,且多与盐系地层上拱有关;断鼻多见于盆地边缘,呈花边状分布。
盆地构造圈闭虽然数量少,但聚油能力较高,如潜江凹陷已探明的70%石油地质储量位于构造圈闭内,其原因是:构造圈闭内往往是多油组多层含油,含油井段长,油层厚度大,且常具多种油藏类型等优越的聚油条件。
2.非构造圈闭众多
江汉盐湖沉积岩性岩相变化大。砂层总的变化规律是厚砂层比薄砂层变化快,而砂层越厚变化越快,一般以厚度1~2m砂岩分布较稳定。纵向上同一砂组往往是下部砂层变化快,上部砂层较稳定。
潜江凹陷潜江组39个砂组,上百个砂层的平面分布不一,形态多种多样,有舌状、指状、树枝状、席状、带状、透镜状等,造成砂岩分区内各砂组、砂层的尖灭线错综复杂,在构造条件的配合下,形成了广泛分布的岩性圈闭,成群成带分布,如凹陷北部靠近物源的钟市、潭口地区,发育盐湖陡坡三角洲、沿岸坝等砂体形成的地层、岩性圈闭;凹陷中部的王、广、浩断裂构造带,发育砂岩舌状体、透镜体与构造、断层配合形成的构造-岩性圈闭和与盐丘有关的地层圈闭及裂隙圈闭;凹陷东南斜坡的张港、潜江、熊口一带是区域性砂岩尖灭带,在斜坡上形成众多的岩性圈闭。
四、保存条件
潜江凹陷潜江组盐湖沉积,膏盐发育,油气保存条件好,表现在:①盐岩分布区内普遍具数米厚的油浸泥岩,非渗透性强。②盐岩分隔作用,造成潜江组纵向上含油层位多(已发现22个油组含油),井段长(油层埋深最浅为738.6m,最深为3518.4m),油气较分散。③已发现的上百条大大小小正断层,不论落差大小,只要形成圈闭,对油气都具较好的封堵、遮挡作用,仅个别大断层(如潜北)由于断层的后期活动,出现少量的油气调整。
新沟嘴组属砂泥岩剖面,保存条件亦好,油气受到破坏、散失的现象少见。
五、油藏形成条件及分布规律
江汉盐湖盆地油藏除具备一般盆地油藏形成的地质条件外,还有其自身的特点,主要表现在油源条件上,盐湖沉积的生油层和储集层,纵向上被多个盐岩层所分隔,平面上又被断层分割成若干区块,造成油气运移聚集纵向受盐层所阻,横向受断层所限,油气是以分层系分区进行运移聚集的。砂岩体与生油岩体的配置关系、砂岩体的输导能力及圈闭的聚油能力决定了油藏的规模和含油丰度。一般以以下两种情况叠置较好:①砂体主体部位叠置于生油岩体之上,砂体分布区内具构造圈闭或侧翼上倾尖灭形成岩性圈闭,形成较丰富油藏。②生油深洼陷内的浊积体-透镜体,具良好供油条件。
在油气分布规律上,江汉盐湖盆地与一般淡水盆地基本一致,表现在:①生油深洼陷(有利区)控制油气分布。如蚌湖向斜是江汉盆地潜江组生油深洼陷,其生成石油量占全盆地潜江组生油量的90%以上。②有利相带内继承性发育的二级构造带具有多种多样的油藏类型,常常整体含油,是油气聚集的最有利地带。如位于蚌湖生油洼陷南缘的王、广、浩断裂构造带,已发现10 多种油藏类型,纵向多油组(13个),平面上叠合连片(>30km2),含油丰度较大(平均37万t/km2)。
总之,江汉盐湖盆地的石油地质条件可归纳为如下特点:生多(总生油量多)排少(排烃量少);构造圈闭不发育,岩性及其他非构造圈闭众多;油气保存条件好,以生油深洼陷周缘油气最丰富;油气分布具“广、多、薄、散、杂、碎”的特点(即“广”,在成熟生油岩分布区内均有油气显示;“多”,含油油组多,油藏类型多;“薄”,油层薄,一般1~3m;“散”,纵向上分散,井段长;“杂”,油田内层系复杂;“碎”,构造上断层多,以致块小,油藏规模亦小)。
⑹ 石油资源分布有那些特点
我国石油资源最终可采储量约为130亿―150亿吨,仅占世界总量的3%左右。到2000年底,我国石油剩余可采储量为24.6亿吨,仅占世界总量的1.8%。我国石油可采资源量的丰度值(单位国土面积资源量)约为世界平均值的57%,剩余可采储量丰度值仅为世界平均值的37%。
我国石油资源集中分布在渤海湾、松辽、塔里木、鄂尔多斯、准噶尔、珠江口、柴达木和东海陆架八大盆地,其可采资源量172亿吨,占全国的81.13%;天然气资源集中分布在塔里木、四川、鄂尔多斯、东海陆架、柴达木、松辽、莺歌海、琼东南和渤海湾九大盆地,其可采资源量18.4万亿立方米,占全国的83.64%。
从资源深度分布看,我国石油可采资源有80%集中分布在浅层(<2000米)和中深层(2000米~35 00米),而深层(3500米~4500米)和超深层(<4500米)分布较少;天然气资源在浅层、中深层、深层和超深层分布却相对比较均匀。
从地理环境分布看,我国石油可采资源有76%分布在平原、浅海、戈壁和沙漠,天然气可采资源有74%分布在浅海、沙漠、山地、平原和戈壁。
从资源品位看,我国石油可采资源中优质资源占63%,低渗透资源占28%,重油占9%;天然气可采资源中优质资源占76%,低渗透资源占24%。
截至2004年底,我国石油探明可采储量67.91亿吨,待探明可采资源量近144亿吨,石油可采资源探明程度32.03%,处在勘探中期阶段,近中期储量发现处在稳步增长阶段;天然气探明可采储量2.76万亿立方米,待探明可采资源量19.24万亿立方米,天然气可采资源探明程度仅为12.55%,处在勘探早期阶段,近中期储量发现有望快速增长。
自上世纪50年代初期以来,我国先后在82个主要的大中型沉积盆地开展了油气勘探,发现油田500多个。以下是我国主要的陆上石油产地。
大庆油田:
位于黑龙江省西部,松嫩平原中部,地处哈尔滨、齐齐哈尔市这间。油田南北长140公里,东西最宽处70公里,总面积5470平方公里。1960年3月党中央批准开展石油会战,1963年形成了600万吨的生产能力,当年生产原油439万吨,对实现中国石油自给自足起到了决定性作用。1976年原油产量突破5000万吨成为我国第一大油田。目前,大庆油田采用新工艺、新技术使原油产量仍然保持在5000万吨以上。
胜利油田:
地处山东北部渤海之滨的黄河三角洲地带,主要分布在东营、滨洲、德洲、济南、潍坊、淄博、聊城、烟台等8个城市的28个县(区)境内,主要开采范围约4.4平方公里,是我要第二大油田。
辽河油田:
主要分布在辽河中上游平原以及内蒙古东部和辽东湾滩海地区。已开发建设26个油田,建成兴隆台、曙光、欢喜岭、锦州、高升、沈阳、茨榆坨、冷家、科尔沁等9个主要生产基地,地跨辽宁省和内蒙古自治区的13市(地)32县(旗),总面积10万平方公里,产量居全国第三位。
克拉玛依油田:
地处新疆克拉玛依市。40年来在准噶尔盆地和塔里木盆地找到了19个油气田,以克拉玛依为主,开发了15个油气田,建成了792万吨原油配套生产能力(稀油603.1万吨,稠油188.9万吨),从1900年起,陆上原油产量居全国第四位。
四川油田:
地处四川盆地,已有60年的历史,发现油田12个。在盆地内建成南部、西南部、西北部、东部4个气区。目前生产天然气产量占全国总量近一半,是我国第一大气田。
华北油田:
位于河北省中部冀中平原的任丘市,包括京、冀、晋、蒙区域内油气生产区。1975年,冀中平原上的一口探井任4喷出日产千吨高产工业油流,发现了我国最大的碳酸盐岩潜山大油田任丘油田。1978年原油产量达到1723万吨,为当年全国原油产量突破1亿吨做出了重要贡献。直到1986年,保持年产量原油1千万吨达10年之久。目前原油产量约400多万吨。
大港油田:
位于天津市大港区,其勘探地域辽阔,包括大港探区及新疆尤尔都斯盆地,总勘探面积34629平方公里,其中大港探区18628平方公里。现已在大港探区建成投产15个油气田24个开发区,形成年产原油430万吨和天然气3.8亿立方米生产能力。目前,发现了千米桥等上亿吨含油气构造,为老油田的增储上产开辟了新的油气区。
中原油田:
地处河南省濮阳地区,于1975年发现,经过20年的勘探开发建设,已累计探明石油地质储量4.55亿吨,探明天然气地质储量395.7亿立方米,累计生产原油7723万吨、天然气133.8亿立方米。现已是我国东部地区重要的石油天然气生产基地之一。
吉林油田:
地处吉林省扶余地区,油气勘探开发在吉林省境内的两大盆地展开,先后发现并探明了18个油田,其中扶余、新民两个油田是储量超亿吨的大型油田,油田生产已达到年产原油350万吨以上,形万了原油加工能力70万吨特大型企业的生产规模。
河南油田:
地处豫西南的南阳盆地,矿区横跨南阳、驻马店、平顶山三地市,分布在新野、唐河等8县境内。已累计找到14个油田,探明石油地质储量1.7亿吨及含油面积117.9平方公里。
长庆油田:
勘探区域主要在陕甘宁盆地,勘探总面积约37万平方公里。油气勘探开发建设始于1970年,先后找到了油气田22个,其中油田19个,累计探明油气地质储量54188.8万吨(含天然气探明储量2330.08亿立方米),目前已成为我国主要的天然气产区,并成为北京天然气的主要输送基地。
江汉油田:
是我国中南地区重要的综合型石油基地。油田主要分布在湖北省境内的潜江、荆沙等7个市县和山东寿光市、广饶县以及湖南省境内衡阳市。先后发现24个油气田,探明含油面积139.6平方公里、含气面积71.04平方公里,累计生产原油2118.73万吨、天然气9.54亿立方米。
江苏油田:
油区主要分布在江苏的扬州、盐城、淮阴、镇江4个地区8个县市,已投入开发的油气田22个。目前勘探的主要对象在苏北盆地东台坳陷。
青海油田:
位于青海省西北部柴达木盆地。盆地面积约25万平方公里,沉积面积12万平方公里,具有油气远景的中新生界沉积面积约9.6万平方公里。目前,已探明油田16个,气田6个。
塔里木油田:
位于新疆南部的塔里木盆地。东西长1400公里,南北最宽外520公里,总面积56万平方公里,是我国最大和内陆盆地。中部是号称“死亡之海”的塔克拉玛干大沙漠。1988年轮南2井喷出高产油气流后,经过7年的勘探,已探明9个大中型油气田、26个含油气构造,累计探明油气地质储量3.78亿吨,具备年产500万吨原油;100万吨凝折、25亿立方米天然气的资源保证。
吐哈油田:
位于新疆吐鲁番、哈密盆地境内,负责吐鲁番、哈密盆地的石油勘探。盆地东西长600公、南北宽130公里,面积约5。3万平方公里。于1991年2月全面展开吐哈石油勘探开发会战。截止1995年底,共发现鄯善、温吉桑等14个油气油田和6个含油气构造探明含油气面积178.1平方公里,累计探明石油地质储量2.08亿吨、天然气储量731亿立方米。
玉门油田:
位于甘肃玉门市境内,总面积114.37平方公里。油田于1939年投入开发,1959生产原油曾达到140.29万吨,占当年全国原油产量的50.9。创造了70年代60万吨稳产10年和80年代50万吨稳产10的优异成绩。誉为中国石油工业的摇篮。
除陆地石油资源外,我国的海洋油气资源也十分丰富。中国近海海域发育了一系列沉积盆地,总面积达近百万平方公里,具有丰富的含油气远景。这些沉积盆地自北向南包括:渤海盆地、北黄海盆地、南黄海盆地、东海盆地、冲绳海槽盆地、台西盆地、台西南盆地、台西南盆地、台东盆地、珠江口盆地、北部湾盆地、莺歌海——琼东南盆地、南海南部诸盆地等。中国海上油气勘探主要集中于渤海、黄海、东海及南海北部大陆架。
1966年联合国亚洲及远东经济委员会经过对包括钓鱼岛列岛在内的我国东部海底资源的勘察,得出的结论是,东海大陆架可能是世界上最丰富的油田之一,钓鱼岛附近水域可以成为“第二个中东”。据我国科学家1982年估计,钓鱼岛周围海域的石油储量约为30亿~70亿吨。还有资料反映,该海域海底石油储量约为800亿桶,超过100亿吨。
南海海域更是石油宝库。中国对南海勘探的海域面积仅有16万平方千米,发现的石油储量达52.2亿吨,南海油气资源可开发价值超过20亿万元人民币,在未来20年内只要开发30,每年可以为中国GDP增长贡献1~2个百分点。而有资料显示,仅在南海的曾母盆地、沙巴盆地、万安盆地的石油总储量就将近200亿吨,是世界上尚待开发的大型油藏,其中有一半以上的储量分布在应划归中国管辖的海域。经初步估计,整个南海的石油地质储量大致在230亿至300亿吨之间,约占中国总资源量的三分之一,属于世界四大海洋油气聚集中心之一,有“第二个波斯湾”之称。据中海油2003年年报显示,该公司在南海西部及南海东部的产区,截至2003年底的石油净探明储量为6.01亿桶,占中海油已探明储量的42.53。
到目前为止,渤海湾地区已发现7个亿吨级油田,其中渤海中部的蓬莱19-3油田是迄今为止中国最大的海上油田,又是中国目前第二大整装油田,探明储量达6亿吨,仅次于大庆油田。至2010年,渤海海上油田的产量将达到5550万吨油当量,成为中国油气增长的主体。
⑺ 石油是古代什么在地层中几亿年的变化而形成
是古代的动物和植物的遗体经过亿万年的化学变化而来的。
⑻ 有天然气和石油的地质环境下是怎么样的
1、并不像你说的地下存在储存石油的“油海”,大家知道,岩石中存在许多孔隙和裂缝,而石油和天然气就是赋存在这些微小的孔隙和裂缝空间里的,而不是像地下油库一样直接抽取。石油的开采先是利用地层原始的地层压力让石油从井口喷出,即“自喷”,随着地层压力的下降再采用向地层中注入水的方法,将油气驱替出来。
2、天然气是经常和石油伴生的,也有不和石油伴生的。天然气的产状主要有气藏气,气顶气,溶解气和凝析气。你说的和石油混在一起的主要是指气顶气和溶解气。首先,气顶气是和石油并存的游离气,由于密度小因此位于油层的上方。而溶解气则是溶解在石油或地层水中的天然气,经开采到地面后,经油气分离即可。不管是哪种形式的气,只要地层封盖的条件好,钻井时保护好的话是不会存在漏气的情况的。
3、液化气的确是炼油的产品,但是成分和一般的天然气略有差别,液化气是在石油炼制过程中由多种低沸点气体组成的混合物,没有固定的组成。主要成分是丁烯、丙烯、丁烷和丙烷。而天然气的主要组分是甲烷。天然气并不是不可以像液化气一样罐装,若罐装的话首先要将天然气液化,这样既增加了成本,又不便于大量的运输。而采用管道运输的话就要方便的多了。
这些只是比较粗略的回答,谢谢对石油与天然气工业的关心。若想进一步了解的话,可以看一些这方面专业的书籍。
希望能帮到你!
⑼ 石油一般储藏在什么地质构造中
向斜是良好的储水构造。石油、天然气、地下水三者比较,天然气的密度回最小,石油次之,水的答密度最大,且向斜的岩层向下弯曲,适合密度大的水储存于地层中。
相反,背斜是良好的储油构造,由于水的密度重于石油和天然气,使得两者积聚于上层,而背斜向上弯曲,形成一个不易使石油和天然气散逸至空气中的“储油储气罐”。
⑽ 石油形成需要什么样的“大环境”
经过近百年的科学探索与大量的生产实践,在已经发现的石油中,含有极其丰富的有机质和组成生命的分子,如卟啉等“生物标志化合物”;大量的碳、氧、氢等元素与动植物的生物元素组成很接近。这些都有力地支持了“石油是远古时期的生物形成的”这一“有机成因学说”。与之相对的还有“无机成因学说”。这种观点认为,石油是远古时期地球形成时从宇宙中俘获的大量碳在地球的演化过程中,不断地从地壳深处运移到地球的浅层聚集,形成了大的油气田。但是迄今为止,石油地质界还没有根据这种理论找到过大型油田。所以,“有机成因学说”在当今的石油地质界占主导地位,科学家们根据这一理论发现了一个又一个的大型油气田。
石油和天然气是生物有机体在沉积过程中,在缺氧的还原环境和一定的压力及温度条件下生成的。那么,这些有机质是怎样转化成石油的呢?
地壳表层长期与大气和水接触,遭受各种地质作用的破坏,将岩石破碎或溶蚀,搬运到低洼的地方沉积下来,形成沉积层,其体积约占地球岩石圈总体积的1/5。它们形成了各种各样的盆地,如我国的松辽盆地、塔里木盆地、渤海湾盆地等。
盆地中的沉积物取决于盆地的位置,如果盆地位于陆地内,则会有湖泊、河流等带来的沉积物堆积;如果位于海洋中,就是海洋沉积;如果接近海洋,就会有海、陆两类沉积物的混合堆积。一个沉积盆地从发育到最后萎缩,通常要经历几百万年到几千万年甚至上亿年,在如此漫长的地质历史中,沉积物的性质和特征都在发生着不断的变化。盆地中的沉积层记录了这些演变,研究这些地层,就可以了解盆地的变迁史。这对于石油、天然气的研究是十分重要的。
在地球的历史中,曾经生活过无数的生物,尤其是那些低等生物的繁殖力是非常惊人的。有人曾经计算过,一个肉眼几乎看不见的硅藻在不受任何限制的理想条件下,8天之内就可繁殖出像地球那样大的体积(图5)。当然,很大一部分生物有机体由于没有适宜的环境被氧化腐烂而不能转化变成石油,但保存下来的即使只有很少一部分也是很可观的。
图5生成油气的生物来源蓝藻:①微囊藻;②胶刺藻;③念珠藻甲藻:④三角角藻;⑤金褐球鳞藻;⑥夜光藻绿藻:⑦刺松藻;⑧浒苔;⑨海白菜硅藻:⑩纺锤状硅藻;?角刺藻;?三角硅藻