地质中层面是什么
⑴ 地质学中的“节理面”是什么呢
节理是断裂构造的一类,指岩石裂开而裂面两侧无明显相对位移者(与有明显位移的断层相对内)容。
节理其实是很常见的一种构造地质现象,通俗地说,就是我们在岩石露头上所见的裂缝。这是由于岩石受力而出现的裂隙,但裂开面的两侧没有发生明显的(眼睛能看清楚的)位移,地质学上将这类裂缝称为节理,在岩石露头上,到处都能见到节理。
这些断裂面当然就是节理面了。
⑵ 岩层、层面、层理及其识别
1.岩层
由两个平行或近于平行的界面所限制的、岩性基本一致的层状岩体叫岩层,由沉积作用形成的岩层叫沉积岩层。沉积岩层一般都具有成层性,所谓沉积岩层的“层或单层”是指,在基本稳定的介质条件下沉积的一个单元,表示最小的岩石地层单位,它由成分上基本一致的沉积物组成。层与层之间由层面分隔,层面代表了短暂的无沉积或沉积作用突然变化的间断面,层的厚度变化很大,可由数毫米至数米。按层的厚度可分为:块状层(厚度>2m),厚层(2~0.5m),中层(0.5~0.1m),薄层(0.1~0.01m),微层(<0.01m)。
2.层面
岩层的上、下界面叫层面,上层面又称顶面,下层面又称底面。两个岩层的接触面,既是上覆岩层的底面,又是下伏岩层的顶面。两层面间的垂直距离就是岩层的厚度。由于沉积环境和条件的不同,有的岩层在较大范围内厚度基本一致,形成厚度稳定的板状;有的岩层厚度不稳定发生一定的变化,有的向一侧变薄以致尖灭,形成楔形,有的向两侧同时变薄和尖灭,形成透镜状(图2-2)。
图2-2 岩层的厚度和形态
A—顶面;B—底面;H—岩层厚度;Ⅰ—板状岩层;Ⅱ—岩层变厚变薄;Ⅲ—岩层尖灭,呈楔形;Ⅳ—岩层呈透镜状
3.层理
层理是沉积岩最常见的一种原生构造。它是沉积物沉积时由于介质(如水、空气)的流动在层内形成的成层构造。层理面产状可以与层面产状一致,也可以与层面产状不一致。层理由沉积物的成分、结构、颜色及层的厚度、形状等在剖面上的变化而显示出来。
组成层理的要素有细层、层系、层系组。
细层 通常又称纹层,是组成层理的最小单位,其厚度极小,常以毫米计。细层与层面平行或斜交,也可以是平直的、波状的或弯曲的。
图2-3层理的基本术语
(据姜在兴,2003)
层系 是由成分、结构和产状上相同的许多细层组成。水平细层组成的层系由于层系间缺乏明显的划分标志,一般难以划分层系;而由倾斜细层组成的层系则易于识别,层系间由明显的层系界面分隔。层系的上、下界面之间的垂直距离称层系厚度。按层系界面的形态可分为板状层系、楔状层系和槽状层系。板状层系即层系界面为平面,且层系界面相互平行呈板状延伸(图2-3A);如果层系界面相互不平行则为楔状层系(图2-3B);槽状层系的底界面为槽状(图2-3C)。
层系组 是由两个或两个以上的相似层系组成的,是在同一环境的相似水动力条件下形成的。例如由厚度不等的板状层系所组成的层系组。
层理的形成及其特征与组成岩石的成分,形成岩石的地质、地理环境以及介质运动特征有关。层理按其形态的不同可分为三种基本类型;即平行层理、波状层理和斜层理(图2-4)。
图2-4层理的基本类型
Ⅰ—平行层理;Ⅱ—波状层理;Ⅲ—斜层理;a—细层;b—层系
4.层面的识别
在层状岩石地区研究地质构造时,首先就要正确地识别岩层的顶、底面和新、老层序。大多数沉积岩的层面较为明显,易于认识。但是,某些岩层,如巨厚岩层或砾岩层,它们的层面常常很不清楚;有的岩层则由于节理、劈理强烈发育而掩蔽了层面或与层面混淆不清。特别是在某些变质岩地区,由于次生面理特别发育,甚至层面被置换,以致原生层面极难辨认。因此,在野外工作中要仔细观察,尽力发现鉴别层面的各种标志及岩层的其他原生构造去识别层面。
通常根据岩石的成分、结构和颜色的变化以及层间分界面等几个方面来识别层面。
(1)岩石成分的变化:在成分比较单一的巨厚层岩石中,要注意寻找成分特殊的夹层。如:块状砂岩中的砂砾层、粗砂岩夹层或透镜体,巨厚层石灰岩或白云岩中的薄层泥灰岩、页岩夹层或硅质条带等。查明这些夹层的层面,有助于识别包含这些夹层的巨厚岩层的层面,所以这些夹层是识别巨厚岩层层面的比较可靠的标志。
(2)岩石结构的变化:根据沉积原理,不同粒度或不同形状的颗粒总是分层堆积的,从而显示出沉积岩层的成层性。如:砾岩中大小不同的砾石分层堆积呈带状,砂岩中云母呈面状分布,各种原生结核或扁平状砾石在沉积岩中呈面状排列等,都可作为确定层面的标志。
(3)岩石颜色的变化:在成分单一、颗粒较细、层面隐蔽的岩石中,如有颜色不同的夹层或条带,也可指示层面。但要注意区别由某些次生变化造成的岩石颜色差异。例如:氢氧化铁胶体溶液,常沿节理或岩石孔隙扩散并沉淀,从而在岩石中形成不同色调的褐红色条带或晕圈,当其规模很大时,在个别露头上观察,就容易误认为层面。此外,在有些深色泥岩或白云岩中,常因风化而引起退色作用,也会沿节理或裂缝发生颜色变化,若不注意也会误当作岩层的层面。
(4)岩层的原生层面构造:这些构造包括波痕、泥裂、雨痕、生物遗迹及其印模等,也可以作为确定层面的标志。
在野外观察中,如果在一个露头上层面不易分清,或者分不清是层面还是其他次生面状构造(如节理、劈理)时,应多观察一些附近的露头,加以比较分析,如层面一般都具有延展较远,连续性较好等特点。当沉积岩中发育有大型斜层理时,应注意把斜层理的细层、层系及层面区别开来。
⑶ 在地质上岩石的结构面是个什么概念
岩体内存在的原生的层理、层面及以后在地质作用中形成的断层、节理、劈理、层内间错动面等各种类型的地容质界面统称结构面.由结构面切割成的大小、形状不同的岩石块称结构体.结构面和结构体的组合称岩体结构.岩体结构的突出特点是不连续性.这种不连续性使岩体在力学性质上的各向异性更加增强.在受到力的作用时,岩体结构控制着岩体的变形和破坏.
岩体结构是岩体工程地质力学的基本概念.所谓岩体结构,即岩体中的结构面以及被这些结构面相互切割而成的结构体共同组合的型式,二者具有内在的联系,它们是地壳长期活动的结果,随地球运动而不断的变化和发展,同时在地应力和工程作用影响下也会变化和发展.因之,岩体结构的两大要素即是:结构面和结构体.岩体工程地质力学把岩体看做是由结构面与结构体组合而成的有结构的地质体.结构面是指岩体中存在的各类断层面、节理面、裂隙面、层面、不整合面、接触面等的地质界面.结构体是指由这些地质界面切割的形状不一、大小不等的各种各样的地质块体.
所以,岩石的结构面是岩体内存在的原生的层理、层面及以后在地质作用中形成的断层、节理、劈理、层间错动面等各种类型的地质界面.
⑷ 地质中冲积层是什么意思/
冲积层:河床、洪水淹没的平原或三角洲中的流水淤积所产生的沉积层。
冲积平原:河流挟版带的泥沙权进入低地堆积而成的平原。主要特征是地势低平,起伏和缓,海拔大部分在200米以下,相对高度一般不超过50米,有的仅10~20米;坡度一般在5°以下,有的不到1°或0.5°。
冲积扇:当山地河流至山麓出口进入开阔平坦地区,由于河床坡度变缓,流速减小,水流呈放射状向外流动,搬运能力减弱,携带碎屑物质堆积下来时,形成上窄下宽的扇形冲积堆,外形似扇,叫冲积扇。
⑸ 地质中的页岩层是指什么
页岩是一种沉积岩,成分复杂,但都具有薄页状或薄片层状的节理,主要内是由黏土沉积经压力和温容度经过压实作用脱水作用和重新结晶作用后形成的岩石,但其中混杂有石英、长石的碎屑以及其他化学物质。根据其混入物的成分,可分为:
钙质页岩、铁质页岩、硅质页岩、炭质页岩、黑色页岩、油母页岩等,含不同有机化学元成分。其中铁质页岩可能成为铁矿石,油母页岩可以提炼石油,黑色页岩可以作为石油的指示地层(即矿苗)。
页岩形成于静水的环境中,泥沙经过长时间的沉积,所以经常存在于湖泊、河流三角洲地带,在海洋大陆架中也有页岩的形成,页岩中也经常包含有古代动植物的化石。有时也有动物的足迹化石,甚至古代雨滴的痕迹都可能在页岩中保存下来。
页岩不透水,在地下水分布中往往成为隔水层。
⑹ 地质实习 节理与层面的区别
1、定义不同
节理是岩体受力断裂后两侧岩块没有显著位移的小型断裂构造。节理是很常见的一种构造地质现象,就是我们在岩石露头上所见的裂缝,或称岩石的裂缝。
层面为岩石受力后断开并沿断裂面无显著位移的断裂构造。它包括岩石节理在内,常将其与节理看成同义词。按其成因分为原生和次生裂隙两类。前者是在成岩过程中形成,后者则是岩石成岩后遭受外力所成。
2、性质不同
节理是地壳上部岩石中最广泛发育的一种断裂构造。。通常,受风化作用后易于识别,在石灰岩地区,节理和水溶作用形成喀斯特。岩石中的裂隙,是没有明显位移的断裂。
层面是地壳运动过程中岩石在构造应力作用下产生的,是所有裂隙成因类型中最常见、分布范围最广、与各种水文工程地质问题关系最为密切的类型,为裂隙水研究的主要对象。构造裂隙水具有强烈的非均匀性、各向异性、随机性等。
3、特点不同
节理延伸稳定,不发生倾伏的(水平褶皱),则走向节理相当于纵节理,倾向节理相当于横节理,斜向节理相当于斜节理。在认识节理的形态及其名称以后,也可以适当地作些力学分析研究,如节理与褶皱的关系,节理的形态与受力的关系等。
层面在温度变化和水、空气、生物等风化营力作用下形成风化裂隙,常在成岩、构造裂隙的基础上进一步发育,形成密集均匀、无明显方向性、连通良好的裂隙网络。风化营力决定着风化裂隙呈壳状包裹于地表,一般厚度为几米到几十米,未风化的母岩构成隔水底板,一般为潜水含水系统,局部可为承压水。
⑺ 地质中的巨原层,中原层是什么意思怎样划分的谢谢啦~~~
巨厚层 中厚层 亲 不是原层,描述岩层厚度。 25-50cm 中厚层;100以上,巨厚层。
⑻ 请问在地质上岩石的结构面是个什么概念软弱结构面又是什么概念呢断层的走向又是怎么来判断的呢
岩体内存在的原生的层理、层面及以后在地质作用中形成的断层、节理、劈理、层间错动面等各种类型的地质界面统称结构面。由结构面切割成的大小、形状不同的岩石块称结构体。结构面和结构体的组合称岩体结构。岩体结构的突出特点是不连续性。这种不连续性使岩体在力学性质上的各向异性更加增强。在受到力的作用时,岩体结构控制着岩体的变形和破坏。
岩体结构是岩体工程地质力学的基本概念。所谓岩体结构,即岩体中的结构面以及被这些结构面相互切割而成的结构体共同组合的型式,二者具有内在的联系,它们是地壳长期活动的结果,随地球运动而不断的变化和发展,同时在地应力和工程作用影响下也会变化和发展。因之,岩体结构的两大要素即是:结构面和结构体。岩体工程地质力学把岩体看做是由结构面与结构体组合而成的有结构的地质体。结构面是指岩体中存在的各类断层面、节理面、裂隙面、层面、不整合面、接触面等的地质界面。结构体是指由这些地质界面切割的形状不一、大小不等的各种各样的地质块体。
所以,岩石的结构面是岩体内存在的原生的层理、层面及以后在地质作用中形成的断层、节理、劈理、层间错动面等各种类型的地质界面.
而软弱结构面是对于威胁县城、重要集镇、重要公共基础设施的不稳定斜坡,通过工程地质测绘仍不能查明斜坡结构和软弱结构面的应进行不稳定斜坡结构和软弱结构面勘查。
不稳定斜坡稳定性验算应根据可能的滑动面类型和物质成分,选择有代表性的分析断面和合理的计算公式计算,计算方法可参照《滑坡防治工程设计与施工技术规范》DZ0240—2004中的第4.3条执行。
不稳定斜坡稳定性综合评价,应根据不稳定斜坡在斜坡体构造格局中所处的位置、规模、主导因素、滑坡前兆、不稳定斜坡区的工程地质和水文地质条件,以及稳定性验算结果等综合判定,并应分析不稳定斜坡的发展趋势和危害程度,提出防治措施建议。
不稳定斜坡勘查成果应包括:不稳定斜坡的地质背景和形成条件,不稳定斜坡的形态、性质和演化,不稳定斜坡的平面图、剖面图和岩土工程特性指标,不稳定斜坡稳定性分析,不稳定斜坡防治方案建议。
而断层的走向则指地壳岩层因受力达到一定强度而发生破裂,并沿破裂面有明显相对移动的构造。
地壳中的一个裂口或破裂带,而且沿着它相邻的岩体发生了运动。断层长度变化很大,从几厘米至几百公里不等,两盘之间的位移量也可有这样大的变化。
断层是构造运动中广泛发育的构造形态。它大小不一、规模不等,小的不足一米,大到数百、上千千米。但都破坏了岩层的连续性和完整性。在断层带上往往岩石破碎,易被风化侵蚀。沿断层线常常发育为沟谷,有时出现泉或湖泊。
是什么力量倒置岩层断裂错位呢?原来是地壳运动中产生强大的压力和张力,超过岩层本身的强度对岩石产生破坏作用而形成的。岩层断裂错开的面称断层面。两条断层中间的岩块相对上升,两边岩块相对下降时,相对上升的岩块叫地垒;常常形成块状山地,如我国的庐山、泰山等。而两条断层中间的岩块相对下降、两侧岩块相对上升时,形成地堑,即狭长的凹陷地带。著名的东非大裂谷和我国的汾河平原和渭河谷地都是地堑。
断层对地球科学家来说特别重要,因为地壳断块沿断层的突然运动是地震发生的主要原因。科学家们相信:他们对断层机制研究越深入,就能越准确地预报地震,甚至控制地震。
断层的种类:
根据断层线上原来相邻接的两点在断层运动中的相对运动状况可以将断层分类。
如果它们的运动只在水平方向上,并且平行于断层面,那么这断层叫走向滑动断层。走向滑动断层又进一步分为右滑和左滑断层。
如果一个观察者站在断层的一侧,面向断层,另一边的岩块向他左方滑动,那它就叫左滑断层。之所以如此称呼,因为要追索被移动了的地表特征时,该人需沿断层线转向左边,才能在那一边找到与这边相对应的特征。这种走向滑动断层也叫右旋或左旋、右行或左行断层,或统称走向断层。加利福尼亚圣安德列斯断层是一条右旋断层或滑动断层。
沿断层面作上升下降的相对运动,则是倾向滑动断层。上盘相对下盘向下运动的倾向滑动断层是正断层。
当断层面倾角小于或等于45°,上盘相对下盘作向上运动时,叫冲断层,而若断层面倾角大于45°,则称逆断层。
两盘相对运动方向界于走向滑动断层和倾向滑动断层之间的,叫斜向滑动断层。
断层两盘之间的相对位移常被叫作断层落差和平错。落差反映垂直位移,而平错反映水平位移。以上所说的断层都有一个共同的运动特点,即在运动中两盘的构造保持着平行。
但也可以有这样的断层,相邻两盘块体之间发生了扭动、转动,这样的断层被称为旋转断层或剪状断层.
上面这张照片里山岳右边的线形结构,就是美国加州著名的圣安地列斯断层,它也是地球表面最长和最活跃的断层之一。
圣安地列斯断层的深度有15公里,存在的时间已经超过2000万年。照片是从奋进号航天飞机拍摄的雷达影像和测地卫星的真色影像所组合出来的。巨大的太平洋板块沿着圣安地列斯断层,相对于北美板块向北漂移,平均每年移动数厘米,按这种移动速率,经过数百万年后,地球表面的陆块分布和现在比起来,将会有很大的不同。
⑼ 地质环境的层次性
地质环境既然是系统,必然具有系统层次性的基本特点,即随着空间尺度的改变,系统的结构、特征和功能也发生变化,从而表现出不同的等级关系,如从属或并列关系。例如局域地质环境与全球地质环境就是后者包容前者的关系。某一局域地质环境出现的问题未必会扩展到全球,但全球地质环境又是由许多局域地质环境组合而成的,若相当多的局部地质环境出现同种问题,则有可能成为全球的问题。
有关系统层次性的理论研究,一直被学术界所关注。最近几年出现的“层级理论(hierarchy theory)”对地质环境系统和地质环境问题的研究具有重要的指导意义。层级理论认为,系统不存在绝对的部分(子系统)和绝对的整体,它是依据研究者对研究对象、研究内容的理性认识来划分的。通常可以按不同的时空尺度或功能分解为相对离散的多个部分(子系统)或等级层次。虽然划分过程是由研究者完成的,但划分的结果却涌现出一些普适的特性。小尺度上表现的非稳定性、时空的异质性(不均匀性)可以转化为大尺度上的相对稳定性和均质性;低层级行为过程的多样性和随机性在高层级上被平均化,呈现出一定的统计规律以及行为过程的单一性;层级的转化也使控制条件和主导限制因素有所不同,并可能形成不同的时间结构,等级越高,地质环境系统的行为与大区域的影响要素及其长时间的变化关系越密切;低等级的地质环境系统如局域地质环境系统,则对局域要素及其短期动态变化更敏感。从时空统一的观点出发,可以将那些大区域、长时间的外在作用对地质环境系统整体行为的制约结果称为长程效应,对那些层级较低的子系统或更小的分支子系统来说,局域的或更小地域上的外来作用所产生的响应可称为中程或短程效应。事实上,地质环境中的任何一点都有长程、中程和短程的影响,将它们分离出来,既有助于梳理宏观与微观、整体与局部的关系,又可使我们在研究某一特定地质环境系统演化时,选择关键主导的要素和适当的时间尺度。所以,地质环境的研究要特别注意核心尺度的把握,同时也要重视邻近层级的分析,以便将低层级上获得的信息或规律在高层级上予以整合,得出有关系统整体性的认识,而高层级的规律对低层级有控制作用,又为我们探索低层级系统演化的方向提供了重要的线索。
⑽ 层面和流面的定义分别是什么啊 地质学问题
层面是原始的面状构造,沉积岩的典型构造.它的形成是不同时期沉积的岩层的性专质不同而反映出来的属.流面为流动的构造,一般出现在岩浆岩中,是由于岩浆的流动形成的,表现在岩浆岩中为岩石中片状矿物的定向排列,一般流面平行于片状矿物的最大扁平面.此外岩浆岩中仍然可以保留流线,通过包体的方向和线状矿物的定向可以确定,两个不同的流线方向可以确定一个流面的方向.