当前位置:首页 » 地质问题 » 地质探测电阻大小什么意思

地质探测电阻大小什么意思

发布时间: 2021-02-10 13:44:48

Ⅰ 地勘探孔中,图中的r,c,等各代表什么意思

工程地质物探与勘探的任务,主要有以下各项: (一)详细研究建筑场地的岩性及地质结构。研究个地层的性质、厚度、纵向和横向变化,进行地层划分并确定其接触关系;基岩的风化深度及风化岩石性质,划分风化带研究岩层的产状、裂隙发育程度及随深度的变化;褶皱、断裂、破碎带以及其它地质结构现象的空间分布、变化的特点。提供岩石右钻性和岩体强度、结构面发育等定量指针。 (二)查明水文地质条件。了解含水层和隔水层的分布厚度、性质及其变化,地下水位(水头)等。 (三)研究地貌及物理地质现象。查明各种地貌形态,如河谷阶地、洪积扇、斜坡的位置和结构等。研究各种物理地质现象,如岩溶的规模及发育深度,滑坡的范围、滑动面位置、动态等。 (四)取样及提供野外试验条件。从勘探工程中采取岩土样及水样,供室内试验及分析鉴定用。在勘探工程中可作各种野外试验,如岩土力学性质试验、地应力量测、水文地质试验等。 (五)其它项目。如利用勘探工程布置地下水及各种工程动力地质现象的长期观测,进行井下摄影及井下电视、灌浆等工程处理。 物探可以说是一种间接的勘探工作,它可以简便而迅速地探测地下地质情况,与测绘工作相配合尤为适宜,又可为勘探工作的布置指出方向。物探成果亦须由勘探工作来证实。勘探工作包括钻探和坑探两种,能较可靠地了解地下地质情况,万其是坑探工程,勘探人呐可以直接在其中观察测量;但是它耗费人力和资金较多,周期也长,因此使用时应具经济观点。布置钻探和坑探工程,要以测绘和物探工作为基础。考虑到物探和勘探各自的优缺点,在布置工作时应综合运用,互为补充。 一个工程在不同的勘察阶段,物探 和勘探往往是配合测绘工作的,而应较多地采用物探手段,钻探和坑探主要用来验证物探成果和取得基准剖面。随着勘察程度的提高,为了深入研究各种工程地质问题,以进行确切的分析、评价,钻探和坑探工程将愈来愈被广泛地采用,成为主要的勘察手段,而物探工作则作为勘探工程的辅助手段。本章重点论述物探和勘察在工程地质勘察中的适用条件,所要解决的主要问题,统计局萧要求。心肝及勘探工作的布置、设计及施工顺序等问题。 工程地质物探 物探的全称为地球物理勘探,它是以专门仪器来探测地表层各种地质体的物理场,从而进行地层划分,判定地质构造、水文地质条件及各种物理地质现象的一种勘探方法。 由于地质体具有不同的物理性质(导电性、弹性、磁性、密度、放射性等)和物理状态(含水率、裂隙性、固结程度等),就为利用物探方法研究各种不同的地质体和地质现象提供了物理前提。所探测的地质体各部分之间以及该地质体与周围地质体之间的物理性质和物理前提。所探测的地质体各部分之间以及该地质体与周围地质体之间的物理性质和物理状态差异愈大,使用这种方法就愈能获得比较满意的结果。 需要指出的是,物探方法虽能简便而迅速地探测地下地质情况,但由于它经常受到非探测对象的影响和干扰,心肝及仪器测量精度的不够,其所得判断和解释的结果往往较为粗略,且有多解性。所以,在物探工作之后,还常须用钻探或坑探来验证,以获得确切的地质成果。物探工作的方法有电法勘探、地震勘探、重力勘探、磁法勘探、核子勘探以及地球物理测井等,在工程地质勘察中运用最普遍的是电法和地震勘探。 一、电法勘探在工程地质勘察中的应用 将各个电测 点所得地质资料边成剖面,即为物探地质剖面,它如同利用钻孔资料所墨守成规的剖面(图3—3) 环形电测深法是利用对称四极装置改变其方向,测量同一点的视电阻率。它可用来确定各向异性很明显的地质介质,职陡立岩层的走向、断层破碎带与含水裂隙带的延伸和岩溶发育的主导方向,以及它随深度的变化情况等。图3—4是利用环形电测深法所测得的裂隙主导走向为N10°W(椭圆长轴所指方向)。这个方向在不同极呓(即不同深度上)都是稳定的。 但是,钻探方法也有它一定的缺点,主要是:一般难于进行直接观察;一些有重大工程地质意义的软弱层(破碎泥化夹层、风化夹层等)和构造破碎带,往往不易取得岩心,以致达不到地质要求。为了克服上述缺点,近十余年来发民兵了钻孔摄影技术和钻孔电视以及便于地质人员能直接下井观测的大口径钻孔,使用效果良好。 二、工程地质钻探的特殊要求 工程地制裁钻探是为工程建筑物的设计、施工服务的,它多具综合目的,因而在钻进方法、钻孔结构、钻进进程中的观测编录等方面均有特殊要求。 工程地质钻探 对岩心采取率要求校高,一般岩层不能低于80%;对工程建筑物至关生要的软弱夹层和断层破碎带也不能低于60%,但往往不易取得岩心。为保证获较高的岩心采取率,针对不同的勘探对象应采用相尖的钻进方法。如在软弱地层或断层破碎带中钻进时,要昼养活冲洗液或用干钻,降低钻速,缩短钻程,最好采用双层岩心管。近年来,黄河水利委员会在水浪底水利枢纽勘察中,革新钻具,采用套钻和化学树脂胶合的措施,几乎可以100%地采取泥化夹层和断层破碎带的岩心。在土层中钻进时,以采取干钻为宜,并应适当缩短钻程。 为了保证准确地测定地下水位和水文地质试验工作的正常运行,必须按含水层的位置和试验工作的要求,确定孔身结构及外电进方法。对不同的含水层要换径并分层止水,加以隔离。含水层愈多,换径和分层止水的次数就愈多。一般的工程地质钻孔终孔直径为91MM,根据换 径次数及位置,即可确定孔身结构。。若在基岩面以一的砂卵石层中作抽水试验干钻,不允许使用泥浆加回孔壁的办法。一般钻孔要直,不能发生弯曲;孔壁要求光滑规则,同一孔径段应大小一对敌。这些要求在钻探操作工艺上给予满足。 钻孔水文地质观测,是工程地质钻探的一项重要工作,藉以了解岩层透水性的变化,发现含水层和得知其近似水位并掌握各含水层之间的水力联系等。在外钻进过程中应按水文地质钻探的要求,做好孔中水位测量,测定冲洗液消耗量及外电孔涌水量、测量水温等工作。在工程地质钻探中,为了研究岩土的物理力学性质,经常要采取岩土槔。坚硬岩石的取样可利用岩心,但其中的软弱夹层和断层破碎带取样时,必须采取特殊措施。为了取得质量可靠的原状土样,则必须配备专门的取土器,燕应注意取样方法和操作工序,以尽量使土倦不受或少受扰动。为达到上述的特殊要求,钻探人员应严格按规定操作,不能盲目追求进尺。 三、工程地质钻探常用的钻探方法和设备 自然地质条件是复杂的,各种钻探方法和设备都有一定的使用条件,选择钻探方法和设备时,应视钻探的目的和地质条件而定。目前,工程地质勘探中常用的钻探方法、钻具及其使用条件和优缺点列于表3—2中。 由表列可知:钻探方法可分为冲击钻探、回转钻探、冲击回转钻探和振动钻探等四种。在工程地质勘探中主要采用冲击钻探和回转钻探:按动力来源又可将它们分为人力的和机械的两种。机械回转钻探钻进效率高,孔深大,又能采取岩心,所以在工程地质勘探中使用最为广泛。目前,国内外正在大力革新钻探技术,逐步朝着全液压驱动、仪表控制、勘探与测试相结合的方向发展。近年来,法国生产的FORACO-V。P。R。H钻机可称得上是钻探技术革新的代表,它兼具振动、冲击、回转钻进,又可作静力和动力触探试验,操作全由仪表控制,由机械手拧卸钻具,钻进效率高,适用于工程地质勘探。 为了研究工程土体的物理力学性质在工程地质勘察中,应结合勘探工作采取原状土样。但是在钻孔中采取原状土样时受到很多因素影响,其中主要的是取土器的结构和取土实用。下面介绍几种常用的取土器。 1、限制球阀式取土器在取土过程中,进入取土器内的液体、气体将球顶起排出;当取土停止时,由于球上部弹簧的作用将球压回原阀座位置,以起封闭作用,。这种球阀装置密封可靠,但要选择适当的弹簧强度,调节到适当的压力。球的直径与排水孔的直径要互相适应,以便于水、气、泥排出。 2、上提橡皮垫活阀式取土器土样进入取土筒时,取土器内的水、气、泥由活阀上部排排出,。上提钻杆时,橡皮垫封闭活门,即可取上土样。 3、回转压入式取土器有两层管,外管回转(带有合金钻头或螺旋),内管压入。内管一般球阀式取土器类似,上部是球阀封闭。这种取土器适用于深层取土。 4、水压活塞式取土器活塞式取土器的下口一下处于封闭状态,在贯入土时,取土筒下压使土样进入,活塞静止,土样上部不随任何压力,也不受钻孔内冲洗液的影响。这种取土器是借助于水泵的压力推动活塞使取土筒进入土层。在取土器下入孔底时,一个活塞将取土器下口封闭;压土时,上部活塞带动取土筒下压而采得原状土样,如图3—13所示。 以上四种取土器适用于采取粘性土的原状土样。采取砂类土和饱水软粘土是很困难的,要使用特制的取土器。近年来,我国水电勘察部门研制了厚壁管靴长筒上提 活阀式取土器,反旋活阀分节取土器和真空活塞取砂器等,采取地下水位惟下的原状砂类土和软粘土样,效果较好。原状土样的采取方法主要有三种: (1)击入法:适用于较硬的土层中取样,又可分为孔外及孔内的轻锤多击法和重锤少击法。实践证明,孔内的重锤少击法取样效果好,效率高而土样扰动小。 (2)压入法:适用于较软的土层中取样,又可分为连续压入和断续压入法。连续压入法是借助活塞油压筒或钢绳滑轮组合装置,将取土器一次快速均匀地压入土中,土样的扰动较小,当采用连续压入法无法将取土器压入土层时,则可采用断续压入法。 (3)振动法:当振动钻进进,可利用振动器的振动作用将取土器压入土中。 这种方法对土样的边缘部分扰动较大。易受振动液化的土层不适用。为了保证土样的质量,除了对取土器和取土方法进行选择外,还应注意钻探方法、钻、孔结构、清除孔内残土、操作方法、和土样封存及运输等各顶问题。 四、工程地质勘探钻孔类型及其适用条件 钻孔的类型指的是钻孔的角度及其方向。钻孔的角度即是钻机的立轴钻杆与地平线的夹角,也叫做钻孔倾角。按照钻孔倾角及其变化情况,可将钻孔分为铅直孔、斜孔、水平孔和定各孔四种。在进行工程地质勘探时,窨采用何种角度及方向的钻孔,需视钻孔的具体任务及地形地质条件而定。为了能取得尽可能多的地质资料,又节省钻探工作量钻进方向最好与不同岩性接触面或断层面垂直,但是在实际上往往不易达到,一般要求基夹角不中于20°。 (一) 直孔 倾角90°。在工程地质钻探中此类孔最常用,适于查明岩浆岩的岩性岩相、岩石风化壳、基岩面以第四纪覆盖层厚度及性质、缓倾角的沉积及断裂等。作压水试验的钻孔一般都采用铅直孔。 (二) 斜孔 倾角小于90°,且应定出倾斜的方向。当沉积岩层倾角较大(﹥60°),或陡倾的断层破碎带,常以与岩层或断层倾向相反的方向斜向钻进。在水利水电工程地质勘探中,常用斜孔探查河床下的地质结构。尤其是在河床不很宽而水流湍急的峡谷中 ,可在两岸以斜孔向河底交叉钻进,既可较好地控制河床下的地质结构,又可以养活或避免河中布孔进行水上钻探的困难。但是斜孔钻进技术要求较高,常易发生孔身偏斜,而使地质解释工作产生误差,在软硬相间的岩层中钻进,此现象尤为严重。 (三) 水平孔 倾角多为0° 。一般在坑探工程中布置,可作为平硐、石门的延续,用以查明河底地质结构、进行岩体应力量测、超前探水和排水。在河谷斜坡地段用以探查岸坡地制裁结构及卸葆裂隙,效果也较好。 (四) 定向孔 采用一些技术措施,可使钻孔随着深度的变化有规律地弯曲,进行定向钻进,如岩层上缓下陡进,或在一个孔中控制多个定向分枝孔,共同钻探同一目的层,或在一个孔中控制多个定向分枝孔,共同钻探同一目的层。定向钻进的技术措施比较复杂。近年来,国内外广泛采用在一个孔位上钻多个不同方向的定向斜孔的布置方案,效果极佳。 五、大口径钻进和小口径(金刚石钻头)钻进在工程地质勘探中的应用 (一)大口径钻进 工程地制裁勘探钻孔的孔径,大多数是168MM开孔,91MM终孔,这样的孔身结构能够满足一般的勘探、试验要求。但是在特殊情况下,譬如为了探查坝基软弱夹层和强透水带的位置及展布方向、断层破碎带和缓倾角裂隙的产大辩论和特征,以及为了检查基础的灌浆质量和混凝土的浇筑情况,就需按照工程地质的要求,打一些大口每项钻孔,以工程技术人员进入孔中直接观察和测量。。 大口径钻孔主要在水电工程地质勘探中采用。我国于1963年在丹江口坝直址打成了第一口大口每径钻孔;之后,葛洲坝、小浪底、偏窗子、三峡等水利枢纽工程中相继采用,均取得 很好的勘探效果。面且承担了大坝基础处理等任务。 由于大口径钻孔能够让勘探人员直接进入其中观测和取样,准确地搜集到第一性地质资料,因而避免了用一般勘探耗费大量进尺而未能搞清某些地质现象和问题的弊病。它也代替了施工复杂的竖井工程,而且由于无爆破震动,可以保持岩层的天然状态。 大口径钻探方法有冲击钻进和回转钻进,在工程地质勘探中主要使用后者,其孔径分别1150、1050、950和750MM,孔深 30—60M,可以取得财心。钻具是在现有设备基础上改装的,主要包括钻头、岩心管、取粉管、钻杆等。除钻具外,还应配备吊笼、绞国及潜水泵等必要的设备。 大口径钻进的工作情况如图3—18所示。 (二) 小口径(金刚石钻头)钻进 近年来,我国在工程地制裁勘探中逐渐推广小口径的金刚石钻进。这种钻进有很多优点:能钻进极硬的岩石,使用寿命长,钻进效率高,岩心采取率高,且岩心完整度好;孔径均匀,孔壁光滑,钻弯曲度小;钻进时平稳,设备的磨损小,能量消耗少;重量轻,搬运方便等。金刚石钻具主要包括金刚石钻头、金刚石扩也器、岩心卡簧及金刚石钻进用岩心管。金刚石钻头目前生产有直径76、66、46、36MM等几种规格,较一般的钻头要小得多,故称之为“小口径”。这种钻头是将金刚石颗粒镶嵌在钻头唇部,利用金刚石的硬度磨削岩石钻入地层。金刚石钻进一般均使用双层岩心管。从小泵送来的冲洗液,经内、外管之间的间隙而到达孔底,可减少对岩心的冲刷影响。 采用小口径(金刚石钻头)钻进,在操作上必须注意的是:在任何情况下都不允许无水钻进否则发生高热会烧毁金刚石,用过钢粒钻进的孔,不能再下入金刚石钻头,因孔底遗留钢粒,在冲击振动时会使金刚石损坏;若镶嵌的金刚石颗粒掉落孔底,应即打捞,否则会使整个金刚石钻头遭到损坏;钻进中若迂软弱夹层及裂隙发育的地层,应特别注意降低压力及转速。由于在砾石层、砾岩及硬脆破碎地层中钻进时,冲击振动很大,对金刚石的包镶金属磨耗很快,故一般不采用金刚石钻进。 金刚石钻进虽有很多优点,可是它的孔径过小,有能作现场水文地质试验。 六、声波测井在工程地质钻探中的应用墀测井是一种地球物理勘探技术,它的物理基础是研究与岩石性质密切相关的声振动沿钻井的传播特征。它具有快速,轻便的优点。近十余年来在国内外逐渐推广应用,我取得了较好的效果。 声波测井可充分利用已有的钻孔,结合地质调查,了解基岩风化壳的厚度、物征,进行分带,查明深部地层的岩性特征,进行地层划分,确定软弱夹层的层位、深度和厚度;寻找岩溶洞穴和断层破碎带;研究岩石的某些物理力学性质,进行工程岩体分类等。与其它测井方法密切配合,还可怜全部或部分代替岩心钻探,开展无岩心钻进。总之,声波测井在工程地质钻探中的应用是多方面的。 目前所应用的声波测井方法主要有以下三种:一是根据墀传播速度研究地质体性质的墀速度测井;二是根据墀振幅的衰减反映岩层性质的墀幅度测井;三是利用墀在井壁上的反向我了解井壁结构情况的专长波电视测井。其中应用最多的是声速测井。 声速测井的装置如图3—19所示,为单发射双接收型的。两个接收器R1、R2的距离为L。沿井壁的滑行波到达两个接收器的时间差为△t,具有 L △t = —— V2 △t表示声波通过厚度为L的一段岩层所需的时间,习惯上把它换算为通过一米岩层所需的时间(叫做旅行时间),单位为μs/m。由时差△t即可求出声波在岩层中的传播速度V(m/s): V=-106/△t 三峡水利枢纽坝基为前震旦纪的石英闪长岩和闪云斜长花岗岩,经大量声波测并工作后获得的各风化带纵波速度值列于中。 由于没风化带内,岩石组织结构、矿物万分和风化程度不同的岩石所占比例及分布,状况不同,因而不但波速不同,而且声速曲线的形态也不相同。剧风化带的波速值跳跃范围不大,曲线形态以不规则的方形锯齿为主。强内化带中,当坚硬和半坚硬岩石碎块与疏松相互掺杂时,波速值跳跃范围大而密,曲线形态为紧密排弄的长尖刺状锯齿。微风化带的声速曲线摆动幅度较小。四川某坝基48号孔的综合柱状;图,可以用来说明应用声波测勘查断层破碎带的效果。从声波曲线的整个背景值来看,代表二叠纪斑状玄武岩的V为3700-4400m/s,V为2300m/s. 但在标高390m附近,却出现了一个明显的低值异常,V、Vs分加紧为2150和1350m/s,几乎相当于政党值的一半。进行幅度观测时,声波能量吸收衰减强烈,振幅大大下降。经分析,该处是断慨角砾岩,岩体十分破碎。 七、钻孔设计书的编制、钻孔观测编录及资料整理 (一)、钻探工作耗费资金较大,应尽可能使每一个钻孔都发挥综合效益,取得较多的资料。为此,工程地质人员除了编制整个工程地质勘探设计外,还应逐个编制钻孔设计书,以保证钻探工作达到预期的目的。 钻孔设计书的内容要点应包括: 1、钻孔附近的地形、地质概况及钻孔的目的。钻孔的目的一定要充分说明,使施钻人员和观测、编录人员明确该孔的意义及钻进中应注意的问题,这对于保证钻进、观测和编录工作的质量,都是至关重要的。 2、钻孔的类型、深度及孔身结构。应根据已掌握的资料,绘制钻孔设计柱状剖面图,说明将要迂到的地层岩性、地质构造及水文地质情况等,据以确定钻进方法、钻孔类型、孔深、孔和终孔直径,以及换径深度、钻进速度及固壁方法等。 3、工程地质要求。包括岩心采取率、取样、试验、观测、止水及编录等各方面的要求。编录的项目及应取得的成果资料有:钻孔柱状剖面、岩心素描(或照相)、钻进观测、试验记忆录图表及水文地质日志等。 4、说明钻探结束后对钻孔的外理意见,留作长期观测抑或封孔。 (二) 孔的观测与编录 为了全面、准确地反映钻探工程第一性地质资料,在钻进过程中必须认真、细致地做好观测与编录工作。 1、岩心观察、描述和编录 应对岩主进行鉴定,描述其颜色、矿物万分和颗粒成分、结构和构造,正确地定名,必要进取样进行岩矿鉴定。对疏松砂砾土秋粘性土,应观察其致密程度和稠度状态。确定节理裂隙的类型、延续性、蚀变充填情况、倾角 、间距等,进行裂隙统计。对风化岩石,应将岩心按风化程度进行分带和描述。必要时编制岩心素描及岩心拄状图。 通过对岩心的各种统计,可获得岩心采取率、岩心获得率和岩石质量指针等定量指针。岩心采取率是指所取岩心的总长度与本回次进尺的百分比。总矩度包括比较完整的岩心和破碎的碎块、碎屑及碎粉物质。 岩石质量指针(RQD)由D·U·迪你提出的,它是指在取出的岩心中,只计算长度大于10cm的柱状岩心长度,与本回次进飞的百分比。其计算和等级划分如图3—22所示。上述三项定量指针可反映岩石的坚硬和完整程度。岩石愈坚硬、完整,数值愈高;而愈软弱、破碎的岩石,则数值愈低。它们也与钻进的工艺和技术水平有关。 每回次取出的岩心应顺序排列,并按有关规定进行编号、装箱和保管。并应注明所取原状土样、岩样的数量及深度。 2、孔水文地质观测 注意并记录钻进过程中冲洗液消耗量的变化。发现地下水后,应测定其初见水位及稳定水位,确定含水层顶底板标高及厚度,测量水温,定深取水样以进行水质分析。 3、孔内情况 钻过过程中注意换层的深度、回水颜色变化、钻具陷落、孔壁坍塌、卡钻埋钻和涌砂现象等,结合岩心以判断孔内情况。如果孔壁坍塌及卡钻,岩心厂矿且采取率又低,就表明岩石裂孙发育觐上于构造破碎带中。 当钻进过程中,迂到严重风华蔌裂隙十分发育的岩层、断层破碎带、岩溶洞穴时,岩主采取率往往很低,甚至取不到岩心,给判断孔内情况带来困难。钻孔摄影和钻孔电视弥了这一缺陷,通过对孔壁的观察,可以对岩层的裂隙发育程度及方向、风化程度、断层破碎带、财溶洞穴和软弱泥化夹层等,取得较为清晰的照片或图像,给人以孔内直观的感觉。目前我国水电部门使用的SK——150型钻孔摄影仪和JZS—1型钻孔电视机,为提高工程地质勘探的质量和钻孔利用率,显示了独特的优越性。 二、坑探工程设计书的编制、观测与编录 (一)坑探工程设计书的编制及观测 坑探工程的设计是在工程地质勘探总体布置的基础上进行的。其主要内容包括:坑探工程附近的地形地质情况、坑探的目的、类型、掘进深度及其谁、施工条件、观测与编录内容、取样位置和成果要求等。 坑探工程的观察、描述内容,依其类型和目的不同,侧重点有所不同,侧重点有所不同,一般应有:第四系和基岩地层的时代、岩性、成分、结构构造、厚度、产状及接触关系;岩石的风化特点及风化壳分带;软弱夹层的岩性、厚度、产状破碎泥化情况;断裂、裂隙的组数、产状、性质、密度、宽度以及延展、空切情况;地下水渗水点位置、特点、涌水量大小;以及不育地制裁现象的描述等。 (二)坑探工程的编录 坑探工程的编录工作主要是绘制展视图。所谓展视图,就是沿坑探工程的壁、底面所编制的地质断面图,按一定的制图方法将三度空间的图形展开。用它表示的地质成果一目了然,故在生产上广为应用。 不同类型坑探工程展视图的编制方法和表示内容有所不同,它们的比例尺一般为1:25—— 1:100。现介绍如下: 1、试坑、浅井、竖井等铅直坑探工程展视图,一般采用四壁辐射展开法或四壁平等展开法。前者适用于试坑,后者适用于浅井和竖井。 2、探槽展视图一般只画底和一壁,有时也将两侧壁画出。如果槽长且方向、坡度有转析时,可分段画出,使壁与氏保持平行。 3、平硐展视图一般将五个面全部画出,其中硐顶分开单画,其余几个面相联展开。硐底坡度有变化时,要用高差曲线表示。第五节 工程地质勘探的布置 布置勘探工作的总要求是:以最少的勘探工作量取得尽可能多的地质资料。为此,要求工程地质人员必须明确勘探的目的和任务,做好勘探设计,将每个勘探工程都布置在关键部位。以发挥综合效益。

Ⅱ 一般接地电阻要求多少啊

接地电阻当然是越小越好,根据设备的不同要求,标准为4--10欧姆,最高不能大于10欧姆,4欧姆以下更好,可是一般很难做到.

标准接地电阻规范要求:

1、独立的防雷保护接地电阻应小于等于10欧;

2、独立的安全保护接地电阻应小于等于4欧;

3、独立的交流工作接地电阻应小于等于4欧;

4、独立的直流工作接地电阻应小于等于4欧;

5、共用接地体(联合接地)应不大于接地电阻1欧。

(2)地质探测电阻大小什么意思扩展阅读:

影响接地电阻的因素很多:接地极的大小(长度、粗细)、形状、数量、埋设深度、周围地理环境(如平地、沟渠、坡地是不同的)、土壤湿度、质地等等。为了保证设备的良好接地,利用仪表对接地电阻进行测量是必不可少的。

接地电阻的测量方法可分为:电压电流表法、比率计法和电桥法。按具体测量仪器及布极数可分为:手摇式地阻表法、钳形地阻表法、电压电流表法、三极法和四极法。

在测接地电阻时,有些因素造成接地电阻不准确:

(1)地网周边土壤构成不一致,地质不一,紧密、干湿程度不一样,具有分散性,地表面杂散电流、特别是架空地线、地下水管、电缆外皮等等,对测试影响特别大。解决的方法:取不同的点进行测量,取平均值。

(2)测试线方向不对,距离不够长。解决的方法:找准测试方向和距离。

(3)辅助接地极电阻过大。解决的方法:在地桩处泼水或使用降阻剂降低电流极的接地电阻。

(4)测试夹与接地测量点接触电阻过大。解决的方法:将接触点用锉刀或砂纸磨光,用测试线夹子充分夹好磨光触点。

(5)干扰影响。解决的方法:调整放线方向,尽量避开干扰大的方向,使仪表读数减少跳动。

(6)仪表使用问题。电池电量不足,解决的方法:更换电池。

(7)仪表精确度下降。解决的方法:重新校准为零。

接地电阻的测试值的准确性,是判断接地是否良好的重要因素之一。测试值一旦不准确,要不浪费人力物力(测值偏大),要不就会给接地设备带来安全隐患(测值偏小)。

测量仪器

(1)接地电阻的测量工作有时在野外进行,因此,测量仪表应坚固可靠,机内自带电源,重量轻、体积小,并对恶劣环境有较强的适应能力。

(2)大于20dB以上的抗干扰能力,能防止土壤中的杂散电流或电磁感应的干扰。

(3)仪表应具有大于500kW的输入阻抗,以便减少因辅助极棒探针和土壤间接触电阻引起的测量误差。

(4)仪表内测量信号的频率应在25Hz~1kHz之间,测量信号频率太低和太高易产生极化影响,或测试极棒引线间感应作用的增加,使引线间电感或电容的作用,造成较大的测量误差,即布极误差。

(5)在耗电量允许的情况下,应尽量提高测试电流,较大的测试电流有利于提高仪表的抗干扰性能。

(6)仪表应操作简单,读数最好是数字显示,以减少读数误差。

Ⅲ 地基勘察的电阻率方法

电阻率法是以岩土介质的导电性差异为基础。岩土介质的电阻率与以下因素有关:自身矿物组分、结构、构造、孔隙度和含水性等。矿物骨架的电阻率是很高的,但岩石在长期的地质作用过程中,受内外地质作用而出现断裂和裂隙,使得断裂、裂隙和矿物骨架之间充填有水分,从而使岩石整体的电阻率要低于矿物骨架的电阻率,尤其是含有矿化度高的水或者是富含各种元素及其离子的废液,电阻率会更低。岩石愈致密,孔隙度愈小,相应地含水分少,电阻率高,反之电阻率就低,这是电阻率法能在化分岩性、确定岩石破碎带位置、埋深和划分污染范围时能取得良好效果的原因。

电阻率法分为两类:电阻率剖面法和电阻率测深法。

电剖面法在填埋场建设中可提供如下资料:表层地质情况、岩层顶面的地形、确定含水层厚度、查清地质构造、探测基岩埋深、风化壳厚度、探测地下洞穴、暗河位置及分布、构造破碎带及滑坡带位置。

高密度电阻率法可在一条剖面上获得不同装置和不同电极距的大量数据,将这些数据处理后可获得视参数的等级断面图和等值线断面图,或进行层析分析。为了提高数据的处理能力和显示效果,在数据反演和三维可视化方面是今后的发展方向之一。根据曲线的形状和变化特征,确定含水层的厚度、地层变化和断裂、裂隙、溶洞等的位置等。

8.1.1.1 粘土层勘察

为评估废弃物堆放场的地址是否合适,应当首先对地下水的含水层和隔水层的分布、厚度有一个准确的认识。地下粘土层是理想的隔水层,但沉积年代较新的粘土普遍存在强度小、压缩性大的缺点。由于粘土层对地震波和电磁波有较强的吸收,所以地震、探地雷达的使用受到限制,比较适合于开展电法勘探。传统的方法有垂直电阻率测量(VES)和电剖面法测量(EP)。VES可获得垂向(深度)上的视电阻率变化,一般采用四电极排列,测量极距由中心逐渐向两边增大,以加大探测深度。EP法是以固定的极距沿某一测线逐点向前移动,以获得一定深度范围内横向上电阻率的变化。这两种方法应用非常普遍。VES首先是假定所研究的地下目的体是层状介质,但应当注意这在很多情况下并非如此。EP所获取的是某一深度的视电阻率数据,若要使反演结果的精度更高,需采集大量的数据。下面是在韩国釜山勘察地下粘土层的分布和厚度的例子。2002年举办过亚运会和世界杯足球赛。当时为修建比赛场馆和机场等设施的需要,在河流入海口的三角洲平原地区围海造地。调查发现,该区第四系地层中含有厚度不一的粘土层,称之为釜山粘土。地层顺序由上而下依次为:粉砂质土、釜山粘土、沙土层、白垩纪基岩(花岗岩、流纹岩、安山岩)。釜山粘土层一般厚度在20~40 m之间,在河流入海口的地方厚达70 m。对粘土层地基的加固处理包括袋装砂井、加入填充物质然后碾压挤出水分等防液化措施。但有一个共同的前提是要搞清楚粘土层的厚度和分布。这直接决定了后续工程量和所需的施工时间。为此开展了电阻率测量,电阻率成像测量对四个填海区进行了详细研究,这四个地区将分别建设工业区和生活区、国际机场、新的生活区和一个赛马场。我们仅以工业区和生活区的地球物理调查为例加以说明。根据已有的钻孔资料,有关土壤的一部分参数如表8.1.1。

表8.1.1 部分粘土参数

测线布置和测量方式见下图8.1.1和图8.1.2。

图8.1.2中,电阻率测量极距为10m,比较了滚动式偶极-偶极测量与传统的偶极-偶极测量的效果,滚动式偶极-偶极测量就是固定一个排列后,改变极距因子n从1到7,这样就相当于完成一次70 m长的探测距离,然后再向前移动10 m,再使极距因子n从1到7,再完成一次70 m的探测距离,依此类推,直到整条测线全部测完。210 m长的测线需向前滚动18次,随着n的加大探测深度也在逐渐加深。在整个过程中极距始终保持10 m不变。传统的偶极-偶极是以改变极距的方式来加大探测深度的(图8.1.2(b)),很显然这种测量方法仅需7个排列就可完成210 m的测线。且探测深度比滚动式测量大,所以选择偶极-偶极法测量。图8.1.3是根据5个钻孔资料获得的粘土分布剖面。地表以下11 m范围内是沙土层,11~19 m是粉沙土层,19~42 m是粘土层。P-10附近的梯形框指的是电阻率的测量方式和探测深度。

图8.1.1 测区位置及测线布置示意图

图8.1.2 电阻率测量示意图

图8.1.3 钻孔控制的调查剖面

图8.1.4是电阻率测量结果(彩色图置于章后,下同),有效探测深度为27 m。粘土层的界线十分清楚,视电阻率在1~3 Ω·m,粉沙土5~20 Ω·m,沙土40~50 Ω·m。

为了便于对比,验证测量结果的准确性,在现场实际测量的基础上还设计了一套室内测量黏土电阻率的装置(图8.1.5,图8.1.6,图8.1.7)。因为岩土工程师常常向地球物理工程师提出这样的问题,那就是电阻率参数能否像其他土力学参数那样来作为一个表征粘土性质的参数,现在看来答案是肯定的,但电阻率参数与其他土力学参数不同,电阻率不仅与粘土本身有关,更主要的是受粘土的含水量和孔隙中的离子浓度的影响,因此它的变化范围因地而异。下面是一个室内测量粘土电阻率的例子。这样做的优点是验证了野外的测量结果,更能直观地感受到电阻率测量结果的可靠性。

图8.1.5 测量粘土电阻率的装置

为了证明样品的电阻率与测量的形状无关,而设计了一套测量装置(图8.1.7),圆桶的直径75 mm,高度110 mm,实际上就是截取一段取样用的PVC管。供电电极A、B是5 mm厚、直径75 mm的铜片。分别固定在样品的顶部和底部。测量电极M、N是一对直径1 mm、30 mm长的铜钉。间距分别为4 cm和8 cm。电源是一个1.5 V、1 A的电池。起初考虑到测量电极对不同深度可能有反应,因此选择了不同的深度分别做了试验,结果发现测量电极对深度的反应不明显。取1/2和1/4的样品进行试验,结果发现也不受样品形状变化的影响。将实测的电阻率结果与含盐量、含水量、有机质含量、深度、相对密度、塑性参数进行相关分析后发现,除与含盐量呈负相关外,与其他参数无相关性(图8.1.8)。

图8.1.6 不同深度的电阻率测量装置和测量结果

图8.1.7 不同形状样品的电阻率测量装置及测量结果

8.1.1.2 卵石层勘察

下面是在美国衣阿华城中部用高密度电法勘察地下河卵石分布的一个实例,砾石层的渗透性大,对污染物的净化能力弱,还容易引发不均匀沉降造成地基失稳,对建设垃圾填埋场极为不利。衣阿华城历史上是冰川洪积物堆积区,地下分布有冲刷良好的砾石层,是当地极好的路基垫层和建筑材料。砾石层主要沿着冰雪融化后的水流分布,形成一个连一个的阶地。采用24根电极的高密度电阻率测量系统,温纳-斯伦贝格排列,分别比较了电极距4 m和2 m的效果(图8.1.9、图8.1.10,彩图),发现探测的有效深度在15 m左右。比较发现2 m极距比4 m极距的垂向分辨率有一定的提高。数据处理采用非线性最小二次方优化反演技术,反演数据均方根误差(RMS)<5%,一般1%~2%。从图8.1.9上看出,砾石层埋深在3 m左右,呈透镜状,视电阻率300~1500 Ω·m,厚约10 m,表层低阻层是人工回填土,最底层的低阻层是粒度很细的沙土层。反演结果与实际测量结果非常一致,说明该反演方法是有效的(图8.1.11,彩图)。

图8.1.8 电阻率和其他参数的相关关系

观测中发现,地下电阻率的季节变化,也是一个要考虑的问题,不同季节,降雨量的差异,使得地下各层介质中的含水量、地下潜水面的深度发生显著的变化。图8.1.12(彩图)是2000年11月在同一剖面上观测到的电阻率结果,11月是非常干燥的季节,砾石层的电阻率与潮湿季节(4月份)相比,4月份砾石层的测量结果为300 Ω·m,而11月份则达到1500 Ω·m。说明电阻率除受岩石类型和岩石粒度的控制外,水的饱和程度是非常重要的影响因素,需要说明的是介质含水量的增加使视电阻率在一定程度上降低。

8.1.1.3 基础结构的勘察

希腊雅典附近的马拉松混凝土水坝,位于雅典北部偏东30 km。库容18×108 m3,始建于1926年,在1999年遭受里氏5.9级地震,加之水库运行年代较长,现在怀疑坝体有不均匀沉降和渗漏,需要检查坝体的渗漏情况及混凝土的质量。垃圾场的结构虽然与钢筋混凝土大坝有很大的差别,但在探测渗漏等问题上,在方法的选择上有互相借鉴的作用。大坝调查的目的包括以下几个方面:坝体混凝土的机械强度与沉降观测;地震P、S波速;电阻率特征及泊松比;可能的渗漏裂隙及裂缝;坝体风化的范围和深度。采用的调查方法包括:用地震勘探检测坝体混凝土的动力特性。根据视电阻率与湿度密切相关,作为探测坝体有无渗漏的首选方法。用探地雷达检测坝体可能存在的裂缝。

坝体混凝土的视电阻率随湿度变化,一般在10~105 Ω·m范围内。为了使电极与坝体的混凝土良好接触,使用的是硫酸铜溶液电极,作偶极-偶极排列,2 m极距,测量结果见图8.1.13(彩图),在测线中央发现有一片深色的低阻区,并且向下延伸,视电阻率在40 Ω·m以下,推测为被渗水浸润过的混凝土位置,当电阻率在20 Ω·m以下时,推测有渗水沿渗漏通道流过。随着测线向下游方向布置,湿度越来越小,测线中心的异常也逐渐变小。

8.1.1.4 活动断层的勘查

调查区位于新西兰奥克兰市东南40 km,区内有一条大的断层,自晚中新世到上中新世以来,一直处于活跃状态。最近调查发现,这些活动断层的存在使奥克兰成为新西兰的地震危险区。为配合地震预报研究,需要找出断层的准确位置。地表被第四纪沉积物覆盖,表面仅可观测到微陡坎地貌,推测是断层活动的标记。采用的地球物理方法有:重力测量、垂直电阻率测量(VES)、电阻率剖面测量、高精度地震反射/折射测量、探地雷达(GPR)。测量位置及测线布置见图8.1.14(彩图)。重力测量:断层上下盘密度差异是形成重力异常的主要原因,上升盘沉积的第四系覆盖层薄,密度较大的基岩距地表浅,微重力结果表现为高值异常;下降盘则被第四系覆盖的厚度大,基岩较上盘深,微重力结果为低值异常。因此重力测量可得到第四系覆盖层的厚度和断层位置、倾向等资料。沿A、B剖面共布置了63个重力观测点(图8.1.15,彩图),间隔100~200 m,在发现水平重力梯度变化大的地方测点间隔加密到25~40 m。仪器为LaCoste 和 Romberg G型重力仪。测点高程用GPS测量,精度±5 cm。数据经计算和岩石密度修正、地形(半径22 km)改正后的误差小于1×10-8m·s-2。从图中看到,第四纪沉积物覆盖厚的河床上有明显的重力低异常,黑色的点为观测点对应的重力结果,虚线表示的是三次多相式拟合的区域布格异常,一般来讲,重力异常陡变的地方对应于断层的位置。

VES测量:VES测量主要是了解基岩的电性,为二维电阻率成像提供可靠性资料。同时与重力测量结果进行比对(图8.1.16,彩图)。VES测量的结果表明地表2 m左右的电阻率为100~330 Ω·m,代表了含水较少的地表土;其下是电阻率为18~40 Ω·m,厚度达28~205 m的第四纪沉积物;再下即是基岩(硬砂岩),电阻率为180~520 Ω·m。

2D电阻率成像测量:剖面A1总长500 m,中间300 m段电极距为5 m,两侧各有100 m极距为10 m,测线布置的原则是垂直断层的可能走向。剖面A2与A1部分重叠,长度仅有100 m,电极距试验了1 m和2 m的效果,目的是为提高测量精度,对剖面A1中横向电阻率变化较大的位置进行加密测量。图8.1.17(彩图)的电阻率结果清楚地显示出在地表沉积物形成的陡坎的下部,电阻率发生明显的变化,图的左边视电阻率小于32 Ω·m,到了图的右边陡增至110 Ω· m以上,数据采用2D向前差分模型反演后,结果更加清楚。高、低电阻率的结合部位埋深约15 m,断层面的倾角约70°W。

高精度地震反射/折射和GPR测量:地震勘探的目的是获得更精确和直观的断层图像。地震数据采集和处理如下:剖面长117 m,为了便于对比,与A1、A2部分重叠。首先同时获取了三个点上的折射数据(偏移距1 m),以便得到表层速度,进行静校正。采集参数见表8.1.2。反射波的主频在150~200 Hz之间,有效的频率在300 Hz左右,折射波在30~50 ms的位置有较高的振幅,这也是数据处理中的主要噪音。在正断层的下盘,即在地震剖面双程走时的60 ms和80 ms处,反射信号很清晰。滤掉表层的干扰,提取出局部含硬砂岩的第四纪地层的初至波的速度为1.1~1.4 km·s-1(图8.1.18)。

表8.1.2 反射地震采集和处理参数

图8.1.18 剖面A2上四个连续炮点的地震反射记录

采集数据时,在每一炮点上,先使初至波的静噪保持最小,然后带通滤波去掉面波的干扰(约100 Hz)。有时发现面波的频率与反射波频率有重叠,此时必须仔细甄别。在本文引用的实例中,数据处理中f-k滤波和叠加技术在本地区的应用效果不好,反而又增加了表面反射的信号。因此数据处理中不使用f-k滤波和叠加。

最后的处理结果见图8.1.19。尽管在70 ms处仍然看到较强的二次反射(237~258道),但由表面所产生的多次反射的影响已大大得到压制。在258道附近,反射信号突然变得不明显,此点正好位于地表陡坎的下方40 m深处,延长线与地表陡坎的位置(向下箭头指示的位置)呈60°W的交角。这基本上反映了断层的倾向。未观测到再深处的反射信号,结合地质资料,推测在历史上这里曾是沼泽湿地,古河道临近断层的上盘,并且很可能是在一个不断下降的地堑上后来形成的次生活动正断层。

图8.1.19 剖面A2的地震叠加记录

探地雷达测量:风化层的存在以及可能的粘土层对探地雷达测量不利,但砾石层、粗砂砾或许又能增加雷达信号的穿透深度,因此用EKKO雷达,配备110 MHz和225 MHz的天线,0.5 m的点距,但未观测到任何有用的反射信号,说明探地雷达在本地探测隐伏断层上可能由于粘土层的影响,效果不佳。

Ⅳ 地质测量仪在一个点进行测量,它可以测量的深度和范围是多大

您说的“地质测来量仪”源应该指明是哪个地方生产的,是什么型号。具体的问题才能有具体的回答。
我猜想你想问的是地质雷达等仪器的探测深度和范围。其深度通常是15到0.5米,型号不同能力则不同。单次测量的范围可以达到几平方米到几平方分米。

备注:地质测量仪这个词似乎也不是那么准确。因为地质和测量是两个专业,地质是研究地球表面以下物质的组成、动力分布、变迁等问题的学科,而测量主要关注的是地球形状、地球表面局部尺寸、点位确定等问题的专业。地质和测量是有交叉的。

Ⅳ 地质探测仪

一般都是面议阿

Ⅵ 为什么在测接地电阻时,要求测量线分别为 20m

接地电阻是电流由接地装置流入大地再经大地流向另一接地体或向远处扩散所遇到的电阻。接地电阻值体现电气装置与“地”接触的良好程度和反映接地网的规模。
测量方法:
影响接地电阻的因素很多:接地极的大小(长度、粗细)、形状、数量、埋设深度、周围地理环境(如平地、沟渠、坡地是不同的)、土壤湿度、质地等等。为了保证设备的良好接地,利用仪表对接地电阻进行测量是必不可少的。
接地电阻的测量方法可分为:电压电流表法、比率计法和电桥法。按具体测量仪器及布极数可分为:手摇式地阻表法、钳形地阻表法、电压电流表法、三极法和四极法。
在测接地电阻时,有些因素造成接地电阻不准确:
(1)地网周边土壤构成不一致,地质不一,紧密、干湿程度不一样,具有分散性,地表面杂散电流、特别是架空地线、地下水管、电缆外皮等等,对测试影响特别大。解决的方法:取不同的点进行测量,取平均值。
(2)测试线方向不对,距离不够长。解决的方法:找准测试方向和距离。
(3)辅助接地极电阻过大。解决的方法:在地桩处泼水或使用降阻剂降低电流极的接地电阻。
(4)测试夹与接地测量点接触电阻过大。解决的方法:将接触点用锉刀或砂纸磨光,用测试线夹子充分夹好磨光触点。
(5)干扰影响。解决的方法:调整放线方向,尽量避开干扰大的方向,使仪表读数减少跳动。
(6)仪表使用问题。电池电量不足,解决的方法:更换电池。
(7)仪表精确度下降。解决的方法:重新校准为零。
接地电阻的测试值的准确性,是判断接地是否良好的重要因素之一。测试值一旦不准确,要不浪费人力物力(测值偏大),要不就会给接地设备带来安全隐患(测值偏小)。
测量仪器:
(1)接地电阻的测量工作有时在野外进行,因此,测量仪表应坚固可靠,机内自带电源,重量轻、体积小,并对恶劣环境有较强的适应能力。
(2)大于20dB以上的抗干扰能力,能防止土壤中的杂散电流或电磁感应的干扰。
(3)仪表应具有大于500kW的输入阻抗,以便减少因辅助极棒探针和土壤间接触电阻引起的测量误差。
(4)仪表内测量信号的频率应在25Hz~1kHz之间,测量信号频率太低和太高易产生极化影响,或测试极棒引线间感应作用的增加,使引线间电感或电容的作用,造成较大的测量误差,即布极误差。
(5)在耗电量允许的情况下,应尽量提高测试电流,较大的测试电流有利于提高仪表的抗干扰性能。
(6)仪表应操作简单,读数最好是数字显示,以减少读数误差。

Ⅶ 感应电阻率测井中探测深度和分辨率的区别,单位为什么

这是两个基本复概念,探测深度,是指纵制向最远的探测距离,长度一般是inch,HDIL有120in曲线,比较远了。一般跟发射信号的频率有关,频率越低,衰减越小,探测得也更远。分辨率一般说的是垂直分辨率,长度单位ft,这个是指仪器所能够识别的最小长度,大概意思是,如果比这个长度还小的地层,仪器是不会响应的,只要大于这个长度的地层的任何电阻率变化都能够响应,一般分辨越高(也就是能识别更薄的地层),就越能接近真实的地层信息。

Ⅷ 地质勘测的问题

可能是测电阻/电流用的,不同土层的数据有变化,所以……
这是大面积勘察,可能连初勘都不是,什么时候有打钻了,间距不过30米,那就是要建什么了

Ⅸ 地质勘探规范标准的地质测绘

5.1高标观测仪器应架设平稳,各类拉绳及附属安全设施应拴结到位,操作员应站于安全、可靠处作业。
5.2地下管线测量,应了解管线的基本情况,进行有毒、有害气体检测。管井下测量,应设专人指挥。
5.3 公路沿线测量,应设立明显标志,派专人指挥。
5.4 铁路沿线测量,应与铁道有关部门取得联系,设立了望哨岗。
5.5 登高观测作业,应检查攀登工具、安全带和观测工具,并保持完好。
5.6 建筑物测量,应了解建筑物结构坚固程度及周围情况,尽量避免在建筑物顶边缘作业。
5.7 露天矿区、坑道、高山陡坡和险峻地区测量作业,司尺人员应先勘明安全情况,后进行测量作业。
5.8 电网密集地区测量作业,应避开变压器、高压输电线等危险区,并禁止使用金属标尺。
5.9 雷雨临近或五级以上大风时,应停止测量作业。
6 地球物理勘探、地球化学探矿、地质遥感
6.1 电法勘探、磁法勘探
6.1.1 发送机应有有效的漏电保护电路。仪器外壳、面板旋钮、插孔等的绝缘电阻,应大于100MΩ/500V。工作电流、电压不得超过仪器额定值,进行电压换档时应关闭高压。
6.1.2 电路与设备外壳间绝缘电阻,应大于5MΩ/500V。电路配有可调平衡负载,严禁空载和超载运行电路。
6.1.3 导线绝缘电阻每公里应大于2MΩ/500V。
6.1.4 电法勘探、磁法勘探作业人员,应熟练掌握安全用电和触电急救知识。
6.1.5 供电电极附近应设有明显的警示标志。
6.1.6 观测前,操作员和电机员应检查仪器和通讯工具工作性能

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864