当前位置:首页 » 地质问题 » 泉的水文地质意义有哪些

泉的水文地质意义有哪些

发布时间: 2021-02-04 18:19:14

① 地下水环境同位素的水文地质意义

为了研究塔里木盆地地表水与地下水的形成、转化与演变规律,在塔里木盆地采集地表水、地下水水样共计94组,其中δD-δ18 O为94个,由中国地质科学院矿产资源研究所测试;3 H为89个,由中国核工业地质研究所测试;14C为17个,由北京大学14 C试验室测试。测试结果见表2-1。并收集前人不同时期在塔里木盆地所做的地下水和地表水同位素测试成果。

表2-1 塔里木盆地环境同位素测试结果一览表

续表

续表

在对每个流域地表水和地下水环境同位素值进行分析的基础上,对不同流域同位素值域特征进行对比研究,塔里木盆地环境同位素区域水文地质意义主要有以下几点。

一、现代水与古水的δD、δ18O特征及意义

1969年,丹斯加尔德对格陵兰北部世纪营一根长1390m的冰心进行了氧同位素研究,得到如下结论:8000a以来δ18 O值变化不大,说明8000a以来气候相差不多;距今10000~60000a的最后一次冰期内,δ18 O值平均比现在低10%左右。

盆地中的大中型河流,如和田河、叶尔羌河、喀什噶尔河、阿克苏河、开都河、迪那河、克里雅河等流域,古地下水的同位素值与现代水相差无几。说明盆地在不同气候条件下降水而形成的水体的环境同位素δD与δ18 O变化不明显,反映了水资源形成区在冰期和冰后期气温相差不大,推测是新构造运动使山体隆升,山区冰后期的高程高于冰期的高程,同一位置因高程变化产生的气温变化弥合了气候的变化,使山区冰后期的气温与冰期气温相近,现代山区气温与距今10000a年大致相同,山区降水的同位素值变化不明显。这是盆地环境同位素共同的特征之一,难以运用δD与δ18 O的关系区别古水(冰期)与现代水(冰后期)。

二、环境同位素的流域特点

盆地地表水与地下水样点在环境同位素δD与δ18 O的关系图上(图2-6、图2-7、图2-8),沿全球降水线,从右上方到左下方依次划分为A域、B域、C域。A域以和田河流域为代表,包括皮山河到且末河一带诸多河流域,发源于中昆仑山;B域以阿克苏河和开都河为代表,包括发源于天山北麓的渭干河和迪那河流域;C域以叶尔羌河和喀什噶尔河流域为代表,包括发源于盆地西南部的河流域。根据新疆上空的水分来源,主要来自西风气流,其次为北风气流,说明区域环境同位素值分布特征不是大气环流作用形成的,而是降水形成区山脉高程效应的反映。位于中国与克什米尔地区之间的喀喇昆仑山为第四纪以来强烈上升运动形成的,上升量超过3000m,位于中巴之间的乔戈里峰海拔8611m,为世界第二高峰,其北坡的冰雪融水正是叶尔羌河的重要补给来源,与叶尔羌河流域样点位于δD-δ18 O关系图的左下方的C域是吻合的;昆仑山地势西高东低,皮山以西为西昆仑山,有7000m以上的高峰3处,6000~7000m的山峰7处;皮山至且末间为中昆仑山,主脉向南略呈弧形突出,有6000m以上的高峰8处,主要河流有和田河、克里雅河、尼雅河、牙通古孜河等,样点位于A域;而位于温宿县境的天山山脉最高峰---托木尔峰海拔7435.28m,是阿克苏河的发源区,其样点位于B域;河流发源山区的地势特征正好说明了不同流域环境同位素值的分布特征,它为区域地下水补给来源的分析奠定了基础。图2-7沙漠腹地地下水水域位于昆仑山中段发育的河流域样点的蒸发线上,说明沙漠腹地地下水主要来源于南部山区河流的补给。

图2-6 和田河流域δD-δ18 O的关系

图2-7 叶尔羌河流域δD-δ18 O的关系

图2-8 喀什噶尔河流域δD-δ18 O的关系

三、阿克苏河流域

潜水和承压自流水环境同位素具有圈套特征(图2-9),而且承压自流水碳-14年龄约6230a左右,同属于和现代气候相同的气候形成的。正好反映了阿克苏河流域在水文地质上是河槽洼地,不完全具备山前倾斜平原水文地质特征,其径流量大,地下水循环交替迅速,即使承压自流水循环速度也远大于其他河流域承压自流水循环速率,这是阿克苏河流域特定的水文、地质条件决定的,在西北内流盆地中是一个特例。阿克苏河流域承压地下水具有较好的开发潜力,但也需要进一步论证,要珍惜开发,并加以保护。

图2-9 阿克苏河流域δD-δ18 O的关系

四、喀什噶尔河流域

喀什市区和疏勒县第一至第三承压水14C年龄在3000~4000a之间,其下游的伽师承压水14 C年龄为16000~19000a。在δD与δ18 O的关系图(图2-8)上,喀什承压水域位于伽师承压水域的左下方,现在的河水样点位于二者之间,伽师县西克尔水库样点位于现代河水的蒸发线上。值得注意的是,TDS与δ18 O的关系图上,西克尔水库水样点也正好位于出山河水的蒸发线上,其斜率为0.33~0.40(图2-17),不仅说明正处于6月的库水不仅遭受过蒸发,而且TDS增长完全是由蒸发作用而形成的(沿途和水库中的蒸发)。另外我们推测伽师承压水域是在略早于现代气候条件下形成的,是比喀什承压水更古老的古水。

五、开都-孔雀河流域

孔雀河流域地下水和地表水虽然都位于焉耆盆地地表水与地下水的蒸发线上(图2-10),但地下水的蒸发远小于地表水的蒸发,而且位于雨水线附近,说明孔雀河部分地下水,尤其是饮用水源来自当地河流的入渗,蒸发程度较轻;来自孔雀河地表水灌溉形成的地下水经受蒸发的程度较高。

图2-10 开都河-孔雀河流域δD-δ18 O的关系

六、塔里木河

河水样点主要位于源流河水的蒸发线上,随着沿途路径增加而不断蒸发,样点沿蒸发线由左下方向右上方移动(图2-18)。

七、塔里木盆地地下水的氚值特征

和田河以西和西部、北部的河流溢出带以上潜水和泉集河水均含氚,说明地下水是1952年以来补给的,补给条件好,地下水循环交替快;溢出带以下,浅层水也含氚,主要接受现代河水和灌溉水的补给;深层承压水和自流水一般不含氚,由于混层采井使部分深层水样含少量的氚(也有部分误测的可能),14C年龄说明承压水各地循环交替速度不同,是4000~24000年间补给形成的。

图2-11 迪那河流域δD-δ18 O的关系

图2-12 克里雅河流域δD-δ18 O的关系

八、南部山区诸小河流域环境同位素具有两个特征

非洪水期,昆仑山北麓小型河流下游的泉(集河)水含氚量均很少(表2-2),表明是1952年以前补给的。一般来说,山前冲洪积扇的戈壁砾石带渗透性好、地下水径流速度快,而泉集河水不含氚则预示着该地带处在山前凹陷内,含水层厚度巨大,调节能力强,地下水储存量丰富,是十分理想的地下水库。洪水期,出山口河水才能径流至溢出带下游,补给下游地下水。但由于洪水径流通过溢出带的时间短暂,很容易被不含氚的泉集河水置换,所以泉集河水一般不含氚;每个小型河流溢出带以下一定范围内地下水样点位于各自河水的蒸发线上,说明在一定范围内其地下水平行向北运动,互不交汇。

图2-13 塔里木盆地环境同位素δD-δ18 O的关系

图2-14 塔里木盆地各种水体δD-δ18 O的关系

图2-15 塔里木盆地周边冲积平原地下水δD-δ18 O的关系

图2-16 渭干河流域δD-δ18 O的关系

九、深层基岩水与第四纪含水层的关系

前人对盆地腹地深度大于3000m的各层系(寒武系至古近系)的407个油田水样进行了分析测试,结果表明,其TDS在22~320g/L之间,平均达152g/L,远高于海水的盐度35g/L,为卤水级。其中塔中石炭系油田水的TDS最低,在22~120g/L之间,平均84g/L;古近系最高,多为190~200mg/L(图2-20)。

图2-17 皮山河流域TDS和δ18 O的关系

图2-18 塔里木盆地地表水δD-δ18 O的关系

表2-2 昆仑山北麓部分小型河流溢出带泉(集河)水氚含量

图2-19 塔克拉玛干沙漠腹地地下水δD-δ18 O的关系

图2-20 塔里木盆地基岩水与焉耆盆地第四纪孔隙水δD-δ18 O的关系

图2-19反映了沙漠区浅层地下水(1000m深度之内)与盆地深部油田水的δD-δ18 O关系。塔中地区石炭系(E水域)和盆地边缘古近-新近系油田水(F水域)分别位于C域与D域之间,表明它们曾受过强烈的蒸发或与围岩的同位素交换。KT2、GS2孔和表层地下水样品均位于大气降水线附近,没有表现出明显的蒸发迹象。特别是KT2孔的取样深度达800m,表明深部油田水并没有对它产生影响。

根据上述结果,我们认为深层油田水处于高度封闭的滞留状态,与上部松散沉积层地下水之间基本没有联系,但局部地区是否存在沿断裂构造向上部运移的现象,目前尚无勘探资料证实。

十、塔克拉玛干沙漠表层地下水的氚值特征

塔中沙漠腹地浅层地下水氚值变化很大,主要取决于降水与取样的时间。本区因核试验影响,大气降水含氚量很高。由于降水仅可能对洼地表层地下水产生补给,且在强烈蒸发作用下很快返回大气圈,所以沙漠腹地表层地下水一般不含氚。我们在沙漠区的野外工作时间一般在雨季,同位素样品采集位置除石油勘探临时供水井外,多为探坑,而探坑只能在地下水位埋藏较浅的洼地内开挖,因而雨后一段时间内采集的个别样品氚值较高,但不能由此说明大气降水对沙漠地下水的补给量很大。

② 泉域环境水文地质问题浅析

张国建

(河南省水文地质工程地质勘察院,新乡,453002)

摘要本文是在分析大量前人相关资料的基础上,通过1∶5万综合水文地质调查、地下水动力场调查、物探、抽水试验、水质化验等工作,基本查清了泉域的水文地质条件,确定了泉域边界及性质,查明了泉水的补径排条件,着重分析了影响小南海泉泉水流量减小的自然和人为因素。

关键词小南海泉域泉流量降水红旗渠地下水开采

安阳市地处河南省北部的洹河冲积扇中上部,是豫北重要工业城市,目前已形成以冶金、电力、电子、轻工、纺织、医药等门类齐全的工业体系,随着经济的发展,对水资源的需求日益增强。小南海泉作为安阳市的主要供水水源之一,经彰武水库调蓄后,供安钢、电厂、化肥厂等企业以及万金灌区灌溉用水,同时也是市区生活用水的主要规划水源地,由于泉域内打井、挖煤、开矿等现象严重,水文地质条件发生很大变化,植被受到破坏,生态环境日趋恶化,泉出水量逐年减少,20世纪70年代8.03m3/s,80年代5.62m3/s,90年代4.48m3/s,2000年7月份以前,天气持续干旱,南海泉流量仅1.95m3/s,使安阳市出现严重水荒,对安阳市的工农业生产构成严重威胁。

1区域水文地质条件概述

小南海泉于太行山隆起带与华北平原沉降带之间的过渡地带,西起林州西山大断裂,东至汤西大断裂,中间所夹持的地块,是一个自西向东成阶梯式逐级降落的构造断块。由西向东大致可分为三个相对独立的水文地质单元;以林州西山大断裂为界,断裂西为太古界变质岩、震旦系石英岩状砂岩组成的基岩区水文地质单元;基岩区水文地质单元东侧为寒武系、奥陶系碳酸盐岩组成的岩溶水文地质单元,此单元局部出露有侵入的闪长岩并在林州盆地及洼地带覆盖有新生界沉积物,以近南北向延伸的奥陶系与石炭、二叠系地层接触为界,有划分出以石炭、二叠系及第三系地层中砾岩、砂岩、灰岩及相对隔水的泥岩、页岩组成的碎屑沉积岩水文地质单元。

区域性深大断裂不仅控制了水文地质单元的分布,而且也控制了岩溶地下水泉域系统的边界,并把岩溶地下水系统,分割为若干个系统。如林州西山大断裂,是东盘寒武系、奥陶系与西盘太古界对接,构成岩溶水的隔水边界,并把本岩溶水系统与山西长治辛安泉域岩溶水系统分割开。在本工作区东部的断层束,是西盘奥陶系与东盘石炭、二叠系对接,构成岩溶水的东部阻水边界,来自西部的岩溶水受沙泥岩的阻挡,在河谷中低洼地带集中排泄出地层形成岩溶大泉。工作区从南至北依次可分为四个岩溶水子系统,即:石门寺泉域、许家沟泉域、珍珠泉域,各泉之间多以地下水分水岭边界、地表水分水岭边界以及地层阻水边界分割开来。

调查确定小南海泉域面积为934.6km2,其北部以侵入岩隔水边界为主,东部以地层阻水边界为主,南部以地下水岭边界为主,西部以地表分水岭(断层隔水)边界为主。

2泉流量的分析与确定

小南海泉泉水全部汇入彰武水库,供安阳钢厂、电厂工业生产及农业灌溉利用,根据对已有资料的分析整理,泉流量有明显减小的趋势这些资料根据南海水库出库流量、彰武水库入库、出库流量是依据库水位——泄量关系曲线查得,进库流量是依据水量平衡原理进行还原计算而得,由于难以准确计算库区渗漏、库区淤积以及闸门控制误差,因而计算精度受到一定限制。在分析整理原始数据时还发现,当彰武水库出库流量较大时,入库流量的计算偏差更大,考虑以上因素,在利用数据方面首先采用“最小二乘法”舍去异常值,并逐日对两水库的出库流量以及降水量进行对比,选择两水库出库流量相对稳定或未放水又无降雨的时段的彰武水库进库流量或与南海水库出库流量的差值做为泉水该日流量,取平均彰武水库入库值做为月流量,并根据月流量取平均值做为当年平均流量。由于影响流量数值因素较多,故本次所计算的泉流量值与实际值难免存在差异,但总的变化趋势与实际情况相符。

3影响泉流量大小的因素分析

经过本次调查和前人资料的综合分析,影响泉流量大小的主要控制因素有以下几点。

3.1自然因素

3.1.1降水

降水对泉流量影响主要表现在两个方面,一是通过渗入补给泉域地下水,再以地下径流方式汇集到小南海泉群溢出;二是通过地表产流汇集到洹河,通过流量大小渗漏补给泉域地下水。

因降水年际与内变化不同,对泉流量大小的影响也各异,年际降水量的大小变化,因泉域地下水自身的调蓄作用,主要影响小南海泉的年均值变化,而年内降水的变化,又导致泉流量在年内的差异。

3.1.2洹河

洹河流经本区长度约50km,在水磨石至卸甲平段河水漏失严重,洹河漏失水量是南海泉地下水的主要补给源。洹河水来源有二:一是降水产流;二是接收红旗渠退水,持续补给泉域地下水。根据前人和本次调查实测资料推测,洹河漏失量也是南海泉流量大小的主要因素。

3.2人为因素

3.2.1地下水开采

随着泉域内社会经济的发展,人工开采地下水量逐年增加,尤其是90年代以后,人工开采地下水量激增,势必袭夺部分泉流量。南海泉流量呈现三个台阶,与此对应,人工开采地下水也表现出三个台阶,具体数据见表1。

表1泉流量与人工开采地下水量对应表

因此,现状地下水开采量是泉流量大小的主要控制因素,从发展趋势看,地下水开采对泉流量的影响将越来越严重。

3.2.2红旗渠引水量

红旗渠引浊彰河水入林州,一方面通过渠道渗漏和渠灌回渗直接补给泉域地下水,另一方面退水到洹河,间接以河道渗漏方式补给地下水,从表2也可以看出,在泉流量的三个平台中,红旗渠引水量的变化趋势也比较明显。

3.2.3泉群溢出区一带开山采石对泉的溢出也会造成一定影响

4影响泉流量因子权重分析

4.1影响泉流量因子选择

从以上分析不难看出影响泉流量大小的因子主要有四个:降水量、地下水开采量、红旗渠引水量及洹河漏失量。其中洹河漏失量主要通过降水产流(洪)和红旗渠退水作为漏水源,又与二者关系密切。相对二者而言,洹河漏失量仅是一种间接影响因素,因此,可以将降水量、地下水开采量与红旗渠引水量作为影响泉流量大小的控制因子。

4.2泉流量时段选择

从表1可以明显看出,泉流量大小呈现三个台阶,分别对应三个时段,即1976年以前、1977~1989年、1990年以后,为便于下文计算,选取资料时段为1971~1976年、1977~1989年、1990~2003年。各时段泉流量、降水量、地下水人工开采量与红旗渠引水量数据见表2。

表2各时段数据一览表

4.3泉流量影响因子权重分析

泉流量影响因子权重分析采用灰色系统理论进行多变量相关分析,多变量相关分析是水文地质分析中常遇到的问题,其目的是从多个因素中找出它们与因素相关程度的优劣。在研究事物之间的关联性时,灰色系统理论把事物(因素)的过去和现在的行为效果以时间序列作为分析的基础,从中发掘出规律性来,为对主因素的判断,提出了“关联度”这一变化值来确定不同时间、不同因子对泉流量大小影响的权重。

4.3.1关联度分析的方法原理

设有m个与母因素(X0)有一定关联作用的子因素(X1,X2,…,Xm),它们都至少有n个同期动态观测值,其值简称序列。

母序列:{X0(i)}i=1,2,…,n

子序列:{Xk(i)}k=1,2,…,m

i=1,2,…,n

为了进行比较,将它们进行标准化处理,令:

标准化X0(i),Xk(i),于是在t0X坐标系上有折线,{X0(i)},{Xl(i)},…,{Xk(i)}…,它们在l轴上都有一定的长度。若是这些折线有公共交点(称参考点),则第k条子线l时刻与母线在同一时刻的距离Δ0k(l)={|X0(l)-Xk(l)|},是衡量它们在该时刻关联性的基本依据。显然,Δ0k(l)愈小,子线与母线在l时刻的关联性愈好。序列在时刻t=l到t=n的关联性用关联系数表示:

地质环境经济论文集.第2辑

ξ0k(i)——第k条子线与母线X。在i时刻的关联系数,其值满足0≤ξ0k≤1,ξ0k愈近于1,它们的关联性愈好。

Δmin,Δmax——第m子线在区间[1,n]的距离Δ0k(i)的最小值和最大值。

显然若参考点选在某时刻(1),则有Δmin=0,其中令Δ0k(min)=min{|X0(i)—Xk(i)|)

Δ0k(max)=max{|X0(i)—Xk(i)|)

Δmin=min{Δ0k(min)}

Δmax=max{Δ0k(max)}

ξ——正实数,取经验数,其值大小影响各时刻[1,n]关联系数的序。本文取ξ=0.5,于是第k条子线与母线在[l,n]关联度记为G0k

∈[0,1]

4.3.2应用数据

根据现有资料考虑,有三个因子的影响:第一个因子是红旗渠引水量,第二个因子是泉域内地下水开采量,第三个因子是泉域内降雨量。

现设定矩阵[xij]i=1,2,3,4

j=1,2,…,13

[xij]——母因素,历年泉流量;

[xki]——子因素,k=2是红旗渠历年引水量

k=3是泉域内地下水历年开采量

k=4是泉域内年降雨量。

4.3.3计算结果

计算积结果见表3。

表3各时段关联系数表

注:X2——红旗渠引水量,X3——地下水开采量,X4——降水量。

5泉流量减小原因综合分析

从上述泉流量影响因子权重分析结果可以看出,在第一、二时段,泉流量的大小与其正相关因子降水量和红旗渠引水量的大小关系密切,负相关因子人工开采量仅占次要位置,结合表2,第二时段泉流量变化的原因主要是人工开采量的增加和引水量的减少。

第三时段(1990~2003年)与第二时段相比,降水量差异不大,但是人工开采量增大,红旗渠引水量显著变小,而是两者在该时段有上升为泉流量的主要影响因子,因此,泉流量减小也就是必然后果了。而在开采量中,矿坑排水对泉涌水量减小影响更为明显。

6结论

综合上述分析结果:在现阶段,泉流量减小的主要原因是人工开采地下水的增大和红旗渠引水量的减少。近阶段随着人工开采地下水量增加,已经成为影响泉流量大小的主要因素。

③ 水文地质基本知识

(一)地下水的形成和分类

1.地下水的形成

自然界中的水以气态,液态和固态的形式存在于大气圈、水圈和岩石圈中。大气水、地表水和地下水并不是彼此孤立存在的,它们之间实际处于不断运动,相互转化的过程之中,这一过程称为自然界中的水循环(图1-12)。按其循环范围和途径的不同,分为大循环和小循环。

地下水的形成就是水的循环过程中水通过渗透和水汽的凝结作用而形成的。由大气降水和地表水渗入地下形成的地下水称为渗入水。其方式是大气降水通过岩石的空隙向下渗入形成地下水,地表水是通过岩土空隙在地表水柱压力和毛细力作用下渗入地下形成地下水。此外,在大气中含有的水汽和岩石空隙中的水汽在温度降低达到饱和时,就开始凝结成水滴,当水滴汇聚起来就成为地下水。我们把水汽凝结而形成的地下水称为凝结水。而且我们还得出这样的结论:地下水的来源主要来自大气降水的渗入,地下水是水资源的重要组成部分,虽然能不断得到补给,但它并非取之不尽用之不竭,如果不合理使用,水资源储量将会减少乃至出现枯竭。

图1-12 自然界中水的循环示意图

①含水层;②隔水层;③大循环;④小循环

2.地下水的分类

地下水按含水层性质分为孔隙水、裂隙水和岩溶水三类。

(1)孔隙水

埋藏在孔隙岩层中的地下水称为孔隙水。孔隙水广泛分布于第四系松散沉积物中,如洪积、冲积、坡积、风积和海相沉积等岩层中。在坚硬和半坚硬的岩石中也有少量分布。孔隙水由于存在于岩土的孔隙中,因此孔隙的分布、大小、形状、排列等,直接影响着孔隙水,这也就取决于松散沉积物的岩性、分布等特点。孔隙水具有如下特点:

1)孔隙水存在于岩土孔隙中,因此各种类型的具有孔隙的松散沉积物,都可以赋存孔隙潜水或孔隙承压水。因此掌握沉积物的沉积规律、特征,是寻找该含水层和初步评价含水层以及选择供水施工工艺和供水结构设计的重要依据。

2)松散岩土孔隙发育,分布密集且均匀,相互连通,呈层状分布,具有统一的水动力联系,所以孔隙水一般呈层流运动。很少见到透水性突变等特征。

3)由于松散沉积物具有不同的成因类型,它们所分布的地貌也不同,因此可形成不同类型的孔隙水,它们的均匀性也各有差异。

4)孔隙水的补给来源主要是大气降水,在特定条件下,地表水也可成为重要的补给来源之一,在条件适宜的地方,深部裂隙水或岩溶水也可补给孔隙水。

5)孔隙水一般常存在于地壳表层,多以潜水形式出现,这对水源地勘察和供水井施工带来便利,同时对采矿带来一定的影响。

(2)裂隙水

埋藏和运动于基岩裂隙中的地下水称为裂隙水。基岩的裂隙是地下水的储藏和运动的场所,裂隙的发育程度和联通性直接影响着裂隙水的分布和富集。因此,研究基岩的裂隙具有重要而实际的意义。基岩裂隙按其成因可分为成岩裂隙、构造裂隙和风化裂隙三种类型。裂隙水的埋藏和分布很不均匀,主要受地质构造、岩性及地貌等因素的控制。按埋藏条件和含水层产状,可将裂隙水分为三种类型;面状裂隙水、层状裂隙水和脉状裂隙水。

1)面状裂隙水:赋存于各种基岩表部的风化裂隙中,某些巨大的交叉断裂带也属这一类。这种裂隙水上部一般没有连续分布的隔水层,具有潜水的特征。风化裂隙广泛分布,均匀密集,彼此连通构成面状分布的网状裂隙体系,因而构成统一水动力系统,具有统一的水面,属面状裂隙水或似层状裂隙水。

2)层状裂隙水:是指聚集于成岩裂隙及区域构造裂隙中的水。其埋藏和分布常有一定的呈层性,这种水称为层状裂隙水。由于各种裂隙交织相通,构成了具有统一地下水水面的网状系统,因此,其埋藏和分布常具成层性。

3)脉状裂隙水(带状裂隙水):是指埋藏和运动于构造断裂带或岩浆侵入接触带的水,常呈带状或脉状分布。这种水由于受断裂影响,往往补给源较远,循环深度大,水量、水位较稳定。一般具有统一的地下水力联系,有些地段可具承压性。是良好的供水水源。脉状裂隙水对矿床的开采、钻探及地下洞穴工程,常常造成巨大的困难和威胁,有时可突然造成涌水事故。

(3)岩溶水

贮存和运动于岩溶中的地下水称为岩溶水。岩溶水的分布较孔隙水和裂隙水有更大的不均匀性。它主要发育在石灰岩地区。由于水流对可溶性岩石(石灰岩、白云岩、石膏、钾盐、石盐等)以化学溶蚀为主,机械破碎为辅的一种特殊的地质作用,产生了特殊的地质现象(如石芽、溶沟、溶洞、石林、峰林、地下暗河等),将这种作用称为岩溶作用,将这种现象称为岩溶现象或岩溶形态,将这种地表岩溶现象,称为地表岩溶。由此可见,地下岩溶是岩溶水贮存和运动的场所。因而它与孔隙水、裂隙水相比,具有独特的埋藏、分布和运动条件。岩溶含水层水量往往比较丰富,常可作大型供水水源。

在岩溶地区采矿和勘探时,要仔细研究岩溶的发育规律,以防造成损失。

地下水也可按埋藏条件,分为上层滞水、潜水和承压水三类。

1)上层滞水。存在于包气带中局部隔水层上面的重力水叫作上层滞水(图1-13)。一般分布不广,是降水或地表水下渗时,被局部隔水层或弱透水层所阻而存积起来的地下水。这种水与季节和气候有直接联系。湿润季节或雨后出现,干旱季节或雨后不久即消失。补给区与分布区相一致。上层滞水一般只能作小型或暂时性供水水源。由于它距地表近,易被污染,如作饮用时要加以注意。防范水质污染。

图1-13 上层滞水和潜水示意图

aa'—地面;bb'—潜水面;cc'—隔水层面;OO'—基准面;h1—潜水埋藏深度;h—含水层高度;H—潜水位

2)潜水。埋藏在地表以下第一个稳定的隔水层以上,具有自由水面的重力水。潜水的自由水现称为潜水面如图1-13所示;潜水面至地表的距离称为潜水的埋藏深度(h1);潜水面上任一点的标高(H)称为潜水位;潜水面至隔水板顶面的距离称为含水厚度(h)。潜水的基本特点是:潜水面上部,一般无稳定隔水层存在,因此潜水具有自由的水面,不承受静水压力属无压水。在重力作用下,潜水由较高处向低处流动;通常大气降水、地表水经过包气带直接渗入而补给潜水,所以大多数情况下,潜水的分布区就是补给区,二者完全一致;潜水动态(水位、水质、水量等)受气候影响随季节性变化。如雨季,降水充沛,潜水获得补给量较多,致使潜水面上升,埋藏深度变小。因而呈现季节性变化;由于潜水埋藏较浅,易污染,易于取用。常为民用水源及工农业供水水源。

3)承压水。充满于两个隔水层之间的地下水叫作承压水(图1-14)。当这种含水层未被水充满时,其性质与潜水相似,称为无压层间水。由于承压水具有隔水顶板,因而它具有与潜水不同的特点,承压水的特点是:承压水具有承压性能,当钻孔揭穿到含水层后,在静水压力作用下,初见水位与稳定水位不一致,稳定水位高于初见水位。当水能溢出地表时,可形成自流,这种水头称正水头。如果承压水头不能流出地表,这种水头称负水头;承压水分布区与补给区不一致,且往往补给区小于承压区,因承压水具有隔水顶板,使承压含水层不能自隔水顶板上部的地表直接接受补给。补给区往往处于承压区一侧,位于地形较高的含水层出露的位置。排泄区位于地形较补给区低的位置;承压水自补给区流入承压区再向低处排泄,故承压水的水量、水质、水温等受气候影响较小,随季节变化不大,且显得稳定;承压水受地表污染少,它是最具战略价值的水源地。

图1-14 承压盆地构造图

a—补给区;b—承压区;c—排泄区1—隔水层;2—含水层;3—喷水钻孔;4—不自喷钻孔;5—地下水流向;6—静止水位;7—泉;H—承压水头厚度(m);M—含水层厚度(m)

(二)含水层及水文地质单元

1.含水层

地壳中的岩层有的含水,有的不含水,有的虽然含水(结合水、毛细水)但不能透水。我们把不透水且不含水的岩土层称为隔水层。透水的而又饱含重力水的岩土层称为含水层。

作为含水层必须是具备下列基本条件。

(1)岩层要有储存地下水的空间

岩土层要能含水,首先是在岩土层中必须要有储存地下水的空间(空隙),外部的水才能进入岩土层把水储存起来,并能在其中运动,才有可能成为含水层。由此可知,岩层具有空隙是含水层形成的先决条件,也是确定含水层存在的重要标志。

(2)要有储存地下水的地质条件

岩层有了空隙,虽然是含水层形成的首要条件,但它不是唯一的条件。同时,必须是具备一定的有利于地下水聚集和储存的地质条件,才能构成含水层。

(3)要有一定的补给水量

有了容水的空隙岩土层和有利蓄水的地质条件,并不一定有丰富的地下水,还必须具备充足的补给水量,才能使具有一定地质条件的空隙岩土层有水而构成含水层。有一定的补给水量不仅是形成含水层的一个重要条件,更重要的是关系到含水层水量的多少及其保证程度的一个主要因素。

2.水文地质单元

由水文地质要素(补给区、排泄区、含水层、隔水层等)组一个统一而完整的水文地质结构(单位),称为水文地质单元。一个水文地质单元可包括若干个蓄水构造,或者只有一个蓄水构造。研究水文地质单元才能揭示地下水的产生和发展变化规律,才能确切地认识、保护和合理地开发利用地下水资源。

补给区是指地下水接受水源补给的地区。它一般位于地形的相对高处或相对于排泄区的高处。

排泄区是指排泄地下水的地段,它一般处于地形的相对低处。河流、泉、某些断层都可以成为地下水的排泄通道。

④ 水文地质调查的目的、任务、重要性及类型

水文地质调查工作的目的就是运用各种技术方法和手段揭示一个地区的水文地质条件,掌握地下水的形成、赋存、运动特征、水质、水量变化规律。水文地质调查的任务是为国民经济建设、发展规划或工程项目设计提供水文地质资料。

水文地质调查是一项复杂而重要的工作。其复杂性是因为地下水具流动性,水质、水量随时空变化,而且所使用的勘查方法种类较多。其重要性主要是:①认识来源于实践。人们对一个地区水文地质条件的认识,对各项生产建设中所提出水文地质问题的解答,都要通过各种水文地质调查来完成,即水文地质资料来源于调查。一切水文地质生产和科学研究成果质量的高低和结论的正确与否,主要决定于占有资料的多少及其是否正确可靠。②水文地质调查与勘探(勘查)是一项费用高、工期长的工作,如果勘探工程布置不当,或不按规范(程)的技术要求进行,其后果将是既浪费勘查费用,又不能提供工程设计所需的水文地质资料;如果据其得出错误的结论,将会给工程建设、国家财产、生产环境等诸多方面造成巨大的损失。

水文地质调查工作,按其目的、任务和调查方法的特点,可分为三类:

(1)区域性水文地质调查。是指中小比例尺的综合性水文地质调查,亦称综合水文地质调查。其调查目的主要是为国民经济建设和某项国民经济的远景规划提供水文地质依据。有时,这种调查也可能是为某项专门性的水文地质调查任务(如城市供水、矿山排水、环境水文地质调查等),提供区域性的水文地质背景资料。如一些大型供水项目,为提出几个可能的水源地比较方案,或为查明水源地的补给范围、补给来源、补给边界位置和性质,皆需进行区域性的水文地质调查工作。区域性水文地质调查的主要任务是,概略查明区域性宏观的水文地质条件,特别是区域内地下水的基本类型及各类地下水的埋藏分布条件,地下水的水量及水质的形成条件,以及地下水资源的概略数量。区域性水文地质调查的范围一般较大,可以是数百、数千平方千米。具体范围视任务需要而定,可以是某个自然单元,一个或数个较大的水文地质单元,也可以是某个行政区域,多是按国际地形图幅进行的,调查图件的比例尺,一般小于1:10万。

(2)专门性水文地质调查。专门水文地质调查是为专门目的或某项生产建设而进行的调查工作。其调查的目的是为其提供所需的资料,有时,为了进行地下水某方面的科学研究(如城市供水、矿山排水、环境水文地质等),也要开展专门性水文地质调查。专门性水文地质调查的任务是:较详细地查明调查区的水文地质条件,解决所提出的生产问题,为工程建设项目或其他专门目的提供水文地质资料和依据。

专门性水文地质调查的范围,视工程项目的规模或科研的需要而定。例如,供水水文地质调查的范围,要根据需水量的大小来确定,一般应包括水源地在开采条件下可能的补给范围;矿床水文地质调查的范围,应根据矿井在最大疏干深度条件下可能补给矿坑(井)的补给范围来确定;环境水文地质调查的范围,至少应把地下水污染区和污染源包括在内。专门水文地质调查的比例尺,一般要求大于1:5万。

(3)地下水动态和均衡监测。任何类型的水文地质调查和研究工作,在定性或定量评价水文地质条件时,都需要地下水动态和均衡方面的资料,因此,都应进行地下水动态和均衡的监测。地下水动态和均衡要素监测工作的持续时间,有长有短。如为区域或专门性水文地质调查提供地下水动态、均衡资料的监测工作,则可仅在某一段时间内进行,一般只要求1~2年;如果为国民经济建设长远规划和综合目的(包括地下水资源管理及保护)而进行的监测工作,则是长期性的。

随着地下水资源的大规模开发利用,与地下水有关的环境地质问题越来越多。因此,地下水动态与均衡的监测其意义日显重要。监测项目主要包括:地下水位、水量、水质、水温、环境地质项目等。

⑤ 地下水功能中属性及意义

地下水功能的属性是指从地下水资源及其环境系统的整体角度出发,反映地下水所发挥作用或效能的特性。地下水功能可持续评价包含3类10个属性,其中资源功能类属性4个,分别为资源占有性、资源再生性、资源调节性和资源可用性;生态功能类属性4个,分别为景观环境维持性、水环境关联性、植被环境维持性和土地环境关联性;地质环境功能类属性2个,分别为地质环境稳定性和地下水系统衰变性。

1.地下水的资源占有性

资源占有性是指评价分区或单元的各种地下水资源量在相应系统中占有的状况。在资源占有性中,具体指标包括区外补给资源占有率、区内补给资源占有率、储存资源占有率和可利用资源占有率等。

2.地下水的资源再生性

资源再生性是指地下水资源补给与更新能力的状况。在资源再生性中,具体指标包括补给与储存资源、可利用资源、开采量和降水的关系指数。

3.地下水的资源调节性

资源调节性是指地下水位对降水、补给和开采的响应状况。在资源调节性中,具体指标包括地下水位变差与补给、开采和降水的关系指数。

4.地下水的资源可用性

资源可用性是指地下水资源可被合理利用能力的状况。在资源可用性中,具体指标包括地下水可利用资源模数、地下水可用储存资源模数、地下水质量指数和地下水资源开采程度。

5.地下水的景观环境维持性

景观环境维持性是指水文景观环境维持性的简称,它是指地下水对地表湿地、湖泊环境、独特水文地质景观(如月牙泉等)维持的作用状况。在景观环境维持性中,具体要素指标包括湖沼环境与地下水关联度、景变指数与地下水关联度。

6.地下水的水环境关联性

水环境关联性是指自然地表水体环境质量与地下水系统关联性的简称,它是指地下水对地表湿地或湖泊环境质量的作用状况。在水环境维持性中,具体指标包括水环境矿化与地下水关联度、地表水体环境氮磷指变与地下水关联度。

7.地下水的植被环境维持性

植被环境维持性是指地下水系统对陆表植被生态系统生存和发展的作用状况。在植被环境维持性中,具体指标包括草场变化与地下水关联度、天然植被变化和人工绿洲变化与地下水关联度。

8.地下水的土地环境关联性

土地环境关联性是指地下水系统对土地质量变化的作用状况。在土地环境关联性中,具体指标包括土地沙化、土地盐渍化和土地质量变化与地下水的关联度。

9.地下水的地质环境稳定性

地质环境稳定性是指地下水变化对地质环境稳定性的作用状况。在地质环境稳定性中,具体要素指标包括地面沉降与地下水关联度、累计开采量与弹性释水系数、水位埋深与弹性释水系数和累计沉降量与同期水位降幅比等。

10.地下水的地下水系统衰变性

地下水系统衰变性是指地下水变化对其系统补给、更新或质量等的作用状况。在地下水系统衰变性中,具体指标包括地下水质量与水位关联度、泉变化与地下水关联度、海咸侵与地下水关联度和地下水补给变率与水位变差比等。

⑥ 学习水文地质学有什么意义

研究各种元素在地下水中的迁移和富集规律,利用这些规律探讨地下水的形专成和起源、属地下水污染形成的机制和污染物在地下水中的迁移和变化、地下水与矿产形成和分布的关系,寻找金属矿床、放射性矿床、石油和天然气,研究矿水的形成和分布等。合理开发利用并保护地下水资源,按含水系统进行科学管理。为农田提供灌溉水源进行水文地质研究,为沼泽地和盐碱地的土壤改良,防治次生土壤盐碱化等问题进行水文地质论证。

⑦ 水文地质概念

下面这个看看.
根据和XX学之间的一般情况,把"是研究......的科学"这几个字去掉,应该就可以用了~~~

水文地质学是研究地下水的数量和质量随空间和时间变化的规律,以及合理利用地下水或防治其危害的学科。

在不同环境中地下水的埋藏、分布、运动和组成成分均不相同。查明上述各方面状况,可为科学地利用或防治地下水提供根据。水文地质学对地下水的研究,着重自然历史和地质环境的影响,同主要用水文循环和水量平衡原理研究地下水的地下水水文学关系密切,只是研究的侧重点稍有不同。

水文地质学发展简史

人们早在远古时代就已打井取水。中国已知最古老的水井是距今约5700年的浙江余姚河姆渡古文化遗址水井。古波斯时期在德黑兰附近修建了坎儿井,最长达26公里,最深达150米。约公元前250年,在中国四川,为采地下卤水开凿了深达百米以上的自流井。中国汉代凿龙首渠,是一种井、渠结合的取水建筑物。在利用井泉的过程中,人们也探索了地下水的来源。法国帕利西、中国徐光启和法国马略特,先后指出了井泉水来源于大气降水或河水入渗。马略特还提出了含水层与隔水层的概念。

1855年,法国水力工程师达西,进行了水通过砂的渗透试验,得出线性渗透定律,即著名的达西定律,奠定了水文地质学的基础。1863年,法国裘布依以达西定律为基础,提出计算潜水流的假设和地下水流向井的稳定流公式。1885年,英国的张伯伦确定了自流井出现的地质条件。奥地利福希海默在1885年制出了流网图并开始应用映射法。

19世纪末20世纪初,对地下水起源又提出了一些新的学说。奥地利修斯于1902年提出了初生说。美国莱恩、戈登和俄国安德鲁索夫在1908年分别提出在自然界中存在与沉积岩同时生成的沉积水。1912年德国凯尔哈克提出地下水和泉的分类,总结了地下水的埋藏特征和排泄条件。美国迈因策尔于 1928年提出了承压含水层的压缩性和弹性。他们为水文地质学的形成作出了重要贡献。

泰斯于1935年利用地下水非稳定流与热传导的相似性,得出了地下水流向水井的非稳定流公式即泰斯公式,把地下水定量计算推进到了一个新阶段。20世纪中叶,苏联奥弗琴尼科夫和美国的怀特在水文地球化学方面作出了许多贡献。到第二次世界大战结束时,在地下水的赋存、运动、补给、排泄、起源以至化学成分变化、水量评价等方面,均有了较为系统的理论和研究方法。水文地质学已经发展成为一门成熟的学科了。

20世纪中叶以来,合理开发、科学管理与保护地下水资源的迫切性和有关的环境问题,越来越引起人们的重视。同时,人们对某些地下水运动过程有了新的认识。1946年起,雅可布和汉图什等论述了孔隙承压含水层的越流现象。英国博尔顿和美国的纽曼分别导出了潜水完整井非稳定流方程。

由于预测地下水运动过程的需要,促进了水文地质模拟技术的发展。20世纪30年代开展了实验室物理模拟。40年代末发展起来的电网络模拟,到50~60年代在解决水文地质问题中得到应用。

由于电子计算机技术的发展,70~80年代,地下水数学模拟成为处理复杂的水文地质问题的主要手段。同时,同位素方法在确定地下水平均贮留时间,追踪地下水流动等研究中得到应用。遥感技术及数学地质方法也被引进,用以解决水文地质问题。对于地下水中污染物的运移和开采地下水引起的环境变化,引起广泛的重视。20世纪60年代以来,加拿大的托特提出了地下水流动系统理论,为水文地质学的发展开拓了新的发展前景。

水文地质学基本内容

水文地质学是从寻找和利用地下水源开始发展的,围绕实际应用,逐渐开展了理论研究。目前已形成了一系列分支。

地下水动力学是研究地下水的运动规律,探讨地下水量、水质和温度传输的计算方法,进行水文地质定量模拟。这是水文地质学的重要基础。

水文地球化学是水文地质学的另一个重要基础。研究各种元素在地下水中的迁移和富集规律,利用这些规律探讨地下水的形成和起源、地下水污染形成的机制和污染物在地下水中的迁移和变化、地下水与矿产形成和分布的关系,寻找金属矿床、放射性矿床、石油和天然气,研究矿水的形成和分布等。

供水水文地质学是为了确定供水水源而寻找地下水,通过勘察,查明含水层的分布规律、埋藏条件,进行水质与水量评价。合理开发利用并保护地下水资源,按含水系统进行科学管理。

矿床水文地质学是研究采矿时地下水涌入矿坑的条件,预测矿坑涌水量以及其他与采矿有关的水文地质问题。

农业水文地质学的内容主要包括两方面,一方面为农田提供灌溉水源进行水文地质研究;另一方面为沼泽地和盐碱地的土壤改良,防治次生土壤盐碱化等问题进行水文地质论证。

地热是一种新的能源,如何利用由地下热水或热蒸汽携至地表的地热能,用来取暖、温室栽培或地热发电等,以及地下热水的形成、分布规律,以及勘察与开发方法等,是水文地热学的研究内容。

区域水文地质学是研究地下水区域性分布和形成规律,以指导进一步水文地质勘察研究,为各种目的的经济区划提供水文地质依据。

古水文地质学是研究地质历史时期地下水的形成、埋藏分布、循环和化学成分的变化等。据此,可以分析古代地下水的起源与形成机制,阐明与地下水有关的各种矿产的形成、保存与破坏条件。

地下水的形成和分布与地质环境有密切联系。水文地质学以地质学为基础,同时又与岩石学、构造地质学、地史学、地貌学、第四纪地质学、地球化学等学科关系密切。工程地质学是与水文地质学是同时相应发展起来的,因此两者有不少内容相互交叉。

地下水积极参与水文循环,一个地区水循环的强度与频率,往往决定着地下水的补给状况。因此,水文地质学与水文学、气象学、气候学有密切关系,水文学的许多方法也可应用于水文地质学。地下水运动的研究,是以水力学、流体力学理论为基础的,并应用各种数学方法和计算技术。

水文地质学的发展趋势是:由主要研究天然状态下的地下水,转向更重视研究人类活动影响下的地下水;由局限于饱水带的含水层,扩展到包气带及“隔水层”;由只研究地壳表层地下水,扩展到地球深层的水。

预计今后的水文地质研究,在下列方面将有突破:裂隙水与岩溶水运动机制和计算方法;地下水中污染物和温度运移机制和计算方法;粘性土的渗透机制;包气带水盐运移机制;水文地球化学和同位素水文地质学,地下水数学模型;地球深层水文地质。

⑧ 水文地质测绘的意义

水文地质图是水来文地自质测绘的重要成果之一,包括:实际材料图、地质图、综合水文地质图(见彩图)、地下水化学图、地貌图、第四纪地质图、地下水等水位线及埋藏深度图、地下水开发利用规划图等。其中前四项是基本的。其他图件的编制可根据工作目的和工作实际需要进行取舍。

⑨ 在水文地质中什么叫接触泉

首先,接触泉是下降泉的一种。下降泉是指由潜水或上层滞水补给的泉。接触泉是指地形切割,切割达到含水层隔水“底”板时,地下水被迫从两层接触处出露形成泉。

⑩ 煤矿水文地质模拟的重要意义

据有关数据表明,自2002年起到2008年,一次性能源消费连续增长,其增幅超过2.4%。而国际石油价格也在一路攀升,许多国家不得不调整能源使用结构,逐渐降低石油消费比例,转而提高煤炭比重。

煤炭行业是我国国民经济的支柱产业,是关系国计民生的基础性行业,在国民经济中具有重要的战略地位。煤炭作为中国工业化进程的主要能源基础,对整个国家的经济发展起着举足轻重的作用。进入“十一五”规划期,中国的“富煤贫油少气”的能源储备特征和进入“重化工业主导型”经济发展阶段的特点,决定了在较长时期内,煤炭是我国一次能源消费结构中占主导地位的格局将长期保持不变。结合中国经济发展的实际情况和国际形势,国家发改委在《能源发展“十一五”规划》中进一步决定和明确了“坚持节约优先、立足国内、煤为基础、多元发展”的能源方针,提出“2010年中国煤炭消费量占一次能源消费总量的66%”。

据国家统计局的数据,2008年煤炭一次消费增长5.8%,占全球增长的2/3以上。为此我国不断加大投入,增加煤炭产量,到2008年原煤产量达到了27.93亿吨,同比增长10.6%。

图1 我国煤炭生产与消费情况

如此巨大的需求,就需要不断加大煤炭资源勘探和开发。我国各省、市、自治区,除上海和香港、澳门特别行政区外,都有煤炭产出,但分布不均。特点是西多东少、北富南贫,相对集中。煤炭资源总量中,分布在大兴安岭太行山雪峰山一线以西的12个省(市、自治区)占有总资源的89%,保有储量的87%;而该线以东的20个省(市,自治区),仅占总资源量的11%,总保有储量的13%。按各省(市,自治区)统计,资源量最多的前十名依次是新疆(16210亿t)、内蒙古(12053亿t)、山西(6830亿t)、陕西(2922亿t)、宁夏(1991亿t)、甘肃(1905亿t)、贵州(1866亿t),共计47108亿t,占总资源量的93.11%。依保有探明储量排序,前十名依次为山西(2578亿t)、内蒙古(2247亿t)、陕西(1619亿t)、新疆(952亿t)、贵州(524亿t)、宁夏(309亿t)、安徽(245亿t)、云南(242亿t)、河南(227亿t)和山东(227亿t),共计9558亿t,占保有储量的95.34%。

我国煤的种类齐全,从褐煤到无烟煤,各个煤化阶段的煤都有赋存,能为各工业部门提供冶金、化工、气化和动力等各种用途的煤源。其中炼焦用煤占25.4%,无烟煤和贫煤占17.2%,褐煤占13%。低变质的烟煤(长焰煤,不黏煤,弱黏煤等)占42.5%,低变质烟煤不仅数量大,且煤质好,是煤炭资源中的一大优势煤类。其中大同的弱黏煤,神府和东胜的不黏煤,灰分、硫分很小,被誉为天然精煤。

在开采实践中,我国煤矿生产中事故频发,百万吨死亡率是美国的近200倍,是南非的30倍,是印度的12倍。煤矿突水是矿井五大灾害之一,严重影响生产安全并造成重大的经济损失。例如1984年6月2日,范各庄矿2171综采工作面,揭露隐伏导水陷落柱,奥陶系岩溶强含水层的高压水经陷落柱溃入矿井,高峰期突水量达2053m3/min,造成范各庄、吕家坨二矿淹没,林西停产,唐家庄、赵各庄矿减产,直接经济损失数亿元。据国家煤矿安全监察局的资料统计显示,受当时煤炭市场低迷影响,1995~2000年全国煤矿水害事故总体上呈逐年下降的趋势;而2000~2005年,水害事故总体上呈现逐年上升的趋势(如表1)。突水仅次于瓦斯事故,已成为名副其实的煤矿第二杀手。并且,突水造成的直接经济损失一直列在各类煤矿灾害之首;过去20年间,有250多对矿井被水淹没,直接经济损失高达350多亿元。

表1 2000~2006年间煤矿重特大突水事故统计

注:引自“973计划”:煤矿突水机理与防治基础理论研究。

严重的水害和复杂的水文地质条件还使大量的煤炭储量无法开采。据统计,北方石炭系—二叠系是我国主要含煤岩系之一,其预测储量占全国预测储量的26%,保有储量4097亿t,占全国保有储量53.8%。但北方一些主要煤矿区,受岩溶水威胁的煤炭资源达160亿t以上,仅河北、河南、山东、江苏、安徽及渭北等地区,矿井保有储量384.5亿t中受水威胁的煤炭储量达149.71亿t,占37%(武强等,1995)。受水威胁的矿井中煤炭大多煤质好,在国民经济建设中具有重要的战略地位。因此对矿井水文地质规律、矿井地下水运动模拟的研究,对于解放我国东部受水威胁的煤炭资源,提高资源回收率具有重要的指导意义。

随着煤矿生产技术的发展,资源开采强度增强、矿井深度不断延伸,多数矿井面临更为复杂的水文地质条件,煤矿水害威胁日趋严重,产生了一系列的水环境问题,具体如下:

1.采矿对区域地下水位及流场的影响

对我国来讲,煤炭生产以深部开采占大多数。为了维持采矿的正常进行,采煤工作面的横向和纵向的发展以及工业城市生活用水的迅猛增加,必须大量开采地下水或将工作面周围的水、潜在的水排出,这导致矿井排水量逐年加大,排水费用也逐年增多,地下水位急剧下降。相应地,所形成的地下水降落漏斗范围和幅度越来越大,地下水的流场也发生了明显的变化。作为我国特殊现象的汲水井也因为地下水位的大幅度下降而基本消失。自1975~1995年间,河北省煤矿开采区的地下水位急剧下降,其中浅层地下水位由平均5.88m降至11.88m,而深层地下水位则由平均7.37m下降到30.25m,形成了十余个大小不等的降落漏斗。

在我国典型的大水矿区如焦作、峰峰和开滦等,这种情况尤其严重。例如在焦作矿区,1952年排水量仅1.501m3/s,地下水位为105m;1965年矿坑排水量为4.96m3/s,地下水位为93m,地下水位比1952年下降了12m;1978年矿坑排水量增加到5.55m3/s,地下水水位大约在85m左右;1982年矿坑排水量为8.463m3/s,地下水位为83m,并在电厂岗庄水源地大规模集中开采区形成多边形枕状漏斗;1993年矿坑排水量增加,使得地下水位急剧下降,平均地下水位为71m,最低水位位于岗庄水源地,为62.08m。在短短的40年时间里,地下水位下降幅度达43m左右,大大增加了取水的费用,也加速了生态环境的恶化。由于矿坑排水改变了孔隙水的补、径、排方式,目前孔隙水主要接受大气降水、城市排污及矿坑排水渗漏补给,而矿坑排水近山前地段孔隙水基本疏干,其埋深在60m以下,形成了空前的疏干区。作为焦作矿区的大矿之一,九里山矿附近形成了孔隙水降落漏斗,焦作市城区造纸厂、化工一厂及平原光学仪器厂等单位单井涌水量减少,化工一厂有多口井报废,其造纸厂用水量急剧下降,生产用水紧张。

2.采矿对周围河川径流的影响

由于煤层浅埋藏区煤矿采空范围扩大,采空区星罗棋布,其引发的裂缝(董兆祥,1997),甚至地面塌陷范围也逐渐扩大,造成了周边河川径流量大量减小,在个别区域甚至出现河流断流的情况,农业灌溉和部分城市的生活用水受到严重影响。西山矿区的西山冶峪沟董茹站以上的流域,面积达18.9km2,在不同时段流域平均降水量与实测河川径流量的关系见图2所示。

图2 西山矿区流域不同时段流域平均降水量与实测河川径流量的关系

3.煤矿排渣对水源的污染

采矿的排渣主要是各种矸石。对煤矿来说,煤矸石是煤矿采掘和洗选加工过程中排出的废渣。它的排放量与煤的埋藏条件、开采方式等因素有关。煤矸石是由灰分高、发热量低的炭质煤岩和少量煤块组成,其主要成分为碳、氢、氧、硫、铁、铝、硅、钙等常量元素和镉、铬、砷、铅、汞、铜、锰、氟等痕量有毒元素(刘国昌,1998;张忆晋,1990;国家环保局监督理司,1992;程胜高,1999;中国环境科学学会,1984)。目前,由于利益的驱使,小煤窑这个顽疾屡禁不止,矿山千疮百孔,乌烟缭绕。在采掘和洗煤过程中排出的煤矸石都未经过处理,直接排放在水沟、山坡和平川。煤矸石长期露天堆放,经日晒雨淋、风化侵蚀,天长日久便发生自燃,释放出大量的有害气体,严重地影响了矿区及周围的大气质量,进而污染了大气降水。一部分有害元素经雨水或地表水的淋滤作用,给地下水造成严重污染。在我国大型露天煤田———神木的石圪台矿区,这种情况更为严重。在对该矿的环境调查过程中,发现在该矿周围分布着许多大小不一的小煤窑。这些煤窑只追求效益,对煤层不全采(留有大量不好采的煤),大大浪费了煤炭资源,同时其分选更是浪费惊人,将其认为赚不了钱的许多可利用的煤块丢在道路两旁和河道里。经过长期的风吹日晒,淋滤的水直接排到河道和渗到地下含水层中,使地表水和地下水受到严重的污染。据群众反映,以前河里的水非常清澈,可以直接饮用,而现在却变成了黑乎乎的污水。

煤矸石自燃是一种普遍现象,这在神木的石圪台矿区也非常典型。青烟缕缕随处可见,对环境的污染相当严重,主要是硫、碳、氮、氧化物和烟尘对大气的污染。被污染的大气通过降水,间接地污染靠大气降水补给的地表水和地下水。

4.采矿对矿区外围水源的影响

随着煤矿开采深度的不断增大,排水量也在不断增加。疏干区形成相对低压带,破坏了原来的地下水系统循环和存储条件,在一定的水文地质条件下,地下水有可能穿透原有的相对隔水层而发生突水灾害。

资料表明,太原西山地区岩溶水在构造裂隙的综合作用下,形成统一的水动力系统,具有一致的补给径流和排泄条件。一旦发生突水,势必要影响整个系统的补、径、排条件,从而使原有的排泄点流量减少,矿区外水源受到严重威胁。根据晋祠水源保护办公室调查的结果,风峪沟内乡镇小煤窑采煤排水很大程度地影响着晋泉出水量。

在我国有着悠久采矿历史的唐山,其问题就更加明显。据有关资料,唐山市的大部分矿坑排水、生活污水以及工业废水没有经过处理或处理不达标就直接排放,对周围水质造成较为严重的污染。比较突出的是陡河市区段,其酚含量超过国家标准的173倍,氰化物含量超标6倍,而且还出现了镉和氟的污染区。

随着西部大开发政策的实施,在西部国民经济中占重要地位的神府煤田的煤炭生产对生态环境的影响也被逐渐重视起来。特别是在缺水的西部,如何保护好水源已成为最迫切的问题。经测定在沿乌兰木伦河上游和下游分布的补连、大柳塔和敏盖兔3个矿点中CODMn,NO3-N等成分的含量呈递增趋势。另外从各河、沟、川大量的水分析结果看,无论是枯水期和平水期,其水质几乎都超出地表水二级标准。经分析认为,产生以上后果的原因主要归结为乌兰木伦河两岸及沟岔分布有比较密集的煤矿点,矿坑排水、工业设施附属厂及生活排污对乌兰木伦河造成重复污染。尽管有些有害元素和离子未超标,却已经有超标的发展趋势。

多年来矿业工作者一直致力于地下水方面的研究工作,但由于我国煤矿地质条件(尤其是构造条件)非常复杂,开采方式各异,再加上生产技术、探测技术、监测技术水平的限制,矿井突水事故时有发生。因此,煤矿地下水模拟技术的研究是我国乃至世界的重大难题,对其研究将对我国受水威胁的煤矿安全开采和水环境的保护有着重要的意义。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864