水文地质条件分析包括哪些
⑴ 水文地质描述有哪些
区域地质条件:地层、构造,水文地质条件:可分三部分叙述,一是水源,而是通道,三是突水点。也就是说地下水的补给、径流及排泄条件等,描述时要有数据对你的观点进行支持等等,仅供参考。
⑵ 水文地质条件的分类
水文来学开始主要研究陆地表面的河自流、湖泊、沼泽、冰川等,以后逐渐扩展到地下水、土壤水、大气水和海洋水。
① 传统水文学按研究的水体来进行划分:河流水文学、湖泊水文学、沼泽水文学、冰川水文学、海洋水文学、地下水水文学(水文地质学)、土壤水文学、大气水文学等。
② 由水文学采用的实验方法,派生出三个分支学科:水文测验学、水文调查、水文实验。
③ 由水文研究内容分为:水文学原理、水文预报、水文分析与计算、水文地理学、河流动力学等。
④ 作为应用科学,水文学分为:工程水文学、农业水文学、土壤水文学、森林水文学、城市水文学等。
⑤ 随新科学、新技术的发展和引进,出现新分支:随机水文学、模糊水文学、灰色系统水文学、遥感水文学、同位素水文学等。
⑶ 工程地质条件和水文地质条件怎么分析
工程地质条件分析来:
工程地质条件自是指与工程建设有关的地质条件总和,它包括土和岩石的工程性质、地质构造、地貌、水文地质、地质作用、自然地质现象和天然建筑材料等几个方面。
主要通过以下几点对不同地区进行具体分析:
1、对工程场地稳定性与适宜性分析、评价。
2、对工程场地环境工程地质条件评价。在评价场地自然条件的同时,还应预测工程与场地的相互影响及可能引发的工程地质问题。
3、为设计提供地质参数。
4、根据场地地质条件,为设计提供工程措施意见。
水文地质条件分析:
水文地质指自然界中地下水的各种变化和运动的现象。水文地质学是研究地下水的科学。它主要是研究地下水的分布和形成规律,地下水的物理性质和化学成分,地下水资源及其合理利用,地下水对工程建设和矿山开采的不利影响及其防治等。
因此根据分析地点具体特征根据以上要素进行分析。
⑷ 水文地质特征
5.3.1 井田水文地质特征
井田位于车轴山向斜的东南翼,从区域水文地质条件分析,整个车轴山向斜位于开平煤田的西北部,自成一独立的隐伏向斜,向斜上部被松散的巨厚第四系冲积层覆盖,车54、车60钻孔以北为厚度小于180m的宽缓平台,向南逐渐增厚,到南部边缘厚度达到650m。第四系底部卵砾石层埋深105~155m,厚约10~25m。该含水层水量充沛,构成各煤系含水层的补给水源。石炭-二叠纪煤系含水层位于第四纪冲积层之下,地下水主要赋存于砂岩裂隙之中。下伏中奥陶统灰岩,裂隙、岩溶发育,含水丰富。
5.3.1.1 矿井含水层概述
表5.4为东欢坨井田含水层的主要分布。
表5.4 东欢坨矿区含水层特征表
据含水层的赋存特征,井田存在着三大含水系统:第四纪冲积层孔隙承压含水层、石炭-二叠纪砂岩裂隙承压含水层和中奥陶统灰岩岩溶裂隙承压含水层。其特征分述如下:
(1)第四纪冲积层孔隙承压含水层(VII)第四纪冲积层覆盖于含煤地层之上,全区分布,不整合于古生代地层之上,北薄南厚,较均匀地渐变。第四系全为松散沉积物,此孔隙含水层水量充沛,含水性强,但变化较大。
(2)石炭-二叠纪砂岩裂隙承压含水层(VI~II)石炭-二叠纪煤系含水层以倾伏向斜的形式伏于新生代松散层之下,地下水主要储存于泥质或硅质胶结的厚层中、粗砂岩的裂隙之中。
(3)中奥陶世灰岩岩溶裂隙承压含水层(I)奥陶纪灰岩含水层呈平行不整合于含煤地层之下,通常在第四系底部卵砾石层与之直接接触地区,岩溶比较发育,在顶部的裂隙和溶洞中多有砂、砾石和粘土质充填。其中12-2煤底板含水层组是以奥灰水和底卵水为水源的强富水性含水层,主要包括:12-2煤~14-1煤强含水层组(IVa)、14-1煤~K3强含水层组(III)和奥陶纪石灰岩含水层
(I),其中石炭-二叠纪砂岩裂隙承压含水层中12-2煤~14-1煤强含水层组为12-2煤底板直接充水含水层。
(1)12-2煤~14-1煤强含水层(IVa)
本段厚约40m,岩性以细砂岩为主,粉砂岩次之,夹中砂岩。顶部有一层4~10m厚粉砂岩或泥岩弱透水段,12下煤位于该段中部。含水细砂岩和粉砂岩位于12下煤层顶底10~15m范围内,其区域特点是透水性强。由于水源补给程度差异,在-500水平中央采区和西南采区浅部属强含水段,东南采区属中等含水段。强含水部位单位涌水量为1L/s·m,中等含水部位单位涌水量为0.57L/s·m。-230水平井底车场南北两端单位涌水量为0.7~0.9L/s·m,渗透系数为0.079~9.610m/d。水质类型为HCO3-CaNa型或HCO3-CaMg型,水温17℃。通过疏水钻孔的疏放分析,认为该含水层水可疏降。静水位标高:1958年为+20.89m(车42孔),目前本含水层水位标高为-21~-160m左右。
(2)14-1煤~K3强含水层(III)本段厚约50m,岩性以粉砂岩为主,与细砂岩、泥岩互层;K3灰岩为该段顶板,平均厚4m,质纯,未见岩溶。在地层浅部据老风井掘进与东观29、东观37孔钻探揭露,K3在其顶面形成空腔,有黄泥残积充填,应为溶蚀作用和煤系风化产物。东观38孔在-560m标高见此层,顶面并无黄泥,但K3底10m段落内为强含水部位。抽水试验揭露单位涌水量为1.1L/s·m,与老风井马头门探水与涌水条件相似。K3顶、底板是出水部位,而且本段与上段含水层水基本一致(即无隔水地层),本段其余地层弱透水。水质类型为HCO3-CaMg型,水温18.5~19.5℃。
(3)奥陶系灰岩含水层(I)此段不整合于含煤地层下。本区揭露此层的有12个钻孔,除车59、车43两钻孔揭露较厚(97.38m和73.26m)外,其他钻孔一般揭露厚度多小于10m,但其厚度被推测为大于400m。通常第四系底部卵砾石层与之直接接触的地区,岩溶比较发育,在顶部的裂隙和溶洞中多有粘土质和砂、砾石充填。渗透系数为3.405~10.385m/d,单位涌水量为0.799~1.794L/s·m,水温19.5℃,水质类型为HCO3-CaMg型。本层含水性较强,是一良好的供水层位,但对矿井深部的开采存在很大威胁。1958年的静水位标高为+22.26m(车43孔),目前本含水层水位标高为-16m左右。
5.3.1.2 矿井隔水层概述
本区弱或极弱透水性地层或密集为层系或独立成层。撇开构造因素,仅就岩性区分,自上而下有:
(1)A层及其附近铁铝质粘土岩
A层以上发育为3~4层,层间距为4~20m,层厚度为3~8m;A层以下80m段距内发育4~5层,层厚小于2m。A层以上段落及以下段落的粘土岩均为弱透水层。
(2)煤5~煤12-2层间沉凝灰岩,各类泥岩,高岭土质砂岩
沉凝灰岩和高岭土质砂岩分布在煤8、煤9近旁以及煤12-1~煤12-2之间,遇水膨胀、裂隙弥合,是极弱透水层。层厚由2~28m不等。各类泥岩层薄,主要赋存在煤8以上与煤12-2近旁,构成煤层直接顶底板。
上述类别岩石连同煤层本身构成了水源不足的层间承压水顶底板。这种含、隔水层密集相间的层系结构形成了垂向径流纤弱的整体阻水效应。因此,煤5以上和煤12-2以下可以水源为背景,分为缺乏垂向联系的两大含水层组。
(3)G层铝土质粘土岩
其厚度随着奥灰剥蚀面起伏变化,大都小于10m。位于煤层基底的G层铝土质粘土岩是稳定的区域隔水层。该层是阻止奥灰水侵入煤系的第一道屏障;复结构的14煤及其粉砂岩与泥岩互层则是第二道屏障。
根据对矿井水文地质条件的综合分析,12-2煤底板主要隔水层为G层铝土质粘土岩。
5.3.2 断层导水性
东欢坨矿区在建井期间共发现106条断层。此外,通过三维地震勘探发现8条断层,其中有4条断到奥陶系在岩。实践证明:矿区绝大多数断层导水性较差,甚至不导水。但在北一,通过对由三维地震勘探给出的断层F3'、F5'进行井下钻探,表明它们导水,水量充足,且与12-2煤底板含水层及5煤顶板含水层有十分密切的水力联系。由于工程限制,对由其他三维地震发现的断层并未做钻探,但并不排除这些断层的导水可能性。
5.3.3 矿井充水条件
5.3.3.1 矿井的充水水源
(1)大气降水、地表水
大气降水、地表水均是井田内地下水的主要补给来源,它们分别通过基岩裸露区及风化带渗入补给,并顺层径流。但在此地区受地形及基岩裂隙发育程度的控制,补给量有限。
大气降水:本区属大陆性季风气候,每年降水多集中在6~9月份,其他时间降水很少。大气降雨通过下渗补给第四系底卵石含水层,通过顺层和垂向补给其他含水层。根据冲积层水文地质剖面图及有关资料,冲积层内含有3个岩性以粘土、亚粘土为主的隔水层,这3层隔水层,沉积比较稳定,隔水性能较强,阻隔了大气降水的向下补给,下渗补给量较小。因此,大气降雨对下部含水层及矿井涌水量不会造成明显影响。
地表水:井田范围内无地表水系存在,仅有两条排水渠。一条向东排至猪笼河,另一条向西排至泥河。两条河流均远离矿区,故地表水系对矿井涌水量无影响。
另外,本区内第四系松散地层中第三隔水层厚达10~25m,即使有采空塌陷,也不致使粘土层断开,阻隔了大气降水和潜水的向下补给。
因此大气降水、地表水和潜水对矿井涌水量影响甚小。
(2)含水层水
井田内的三大含水系统———第四纪冲积层孔隙承压含水层,石炭、二叠纪砂岩裂隙承压含水层和中奥陶纪灰岩岩溶裂隙承压含水层。
(3)老空水
在建井、水平延伸、新区域施工及最上方煤层回采中,充水水源主要为含水层水。而在下方煤层回采中,老空水就成为了主要充水水源。
在本矿井生产过程中,由于工作面的布置、顶底板的岩性特征及涌水等因素,在采空区或废巷有可能存在不同形式的积水。一旦施工工程接近、揭露或冒落带达到这些积水,便可涌入井巷,发生老空区突水事故。老空区突水具有来势猛、破坏性大的特点,往往是瞬间大量积水溃入工作面,形成灾难性事故。
本矿井4个主要可采煤层,其间距为8~12m,属煤层群开采。下一煤层开采时,其导水裂隙带远远大于煤层间距,这样当上方采空区或老巷道存有积水、动水时,这些积水、动水会顺裂隙进入工作面,成为突水水源,若水中再夹杂煤渣、岩碴形成煤矸泥,对下方工作面威胁更大。
基于以上原因,同时受地质条件所限,仅在中央及北一两个采区内回采,所以生产阶段主要是存在老空水的威胁,防治水工作也主要是对老空水的探放。如:2192下风道在掘进及回采前对上方2182上采空区积水进行探放,共疏放积水1728m3;2118工作面在掘进及回采前对上方2196采空区及老巷道进行探放,前后共放出积水及动水4.3万m3;另外2192上、2094、2116等工作面在掘进及回采前均进行了探放,证明存在老空水。由于采取了超前的探放水工作,十几年来未因老空水隐患出现水害事故。
老空水是长期积存起来的,多为酸性水,有较强的腐蚀性,对矿山设备危害甚大。老空区突水时,水势猛,破坏性大,如与其他水源无联系,则突水可急剧减弱。通过确定充水水源,有利于更有效地为防治水提供资料。
5.3.3.2 矿井充水通道
通过近十年的生产实践,东欢坨井田范围内充水通道主要有以下3种方式:
(1)直接揭露含水层
根据开采煤层与含水层的关系,可分为直接充水水源和间接充水水源。从目前矿井的开采区域看,直接充水水源为A0~A、A~5煤顶、12煤~14煤含水层组。
在煤矿生产中,有些工程必须穿越含水层。当巷道直接揭露这些含水层后,含水层水将会进入矿井。如本矿-500水平轨道中石门及-690水平轨道中石门,按设计其由A0~A含水层,穿越A下80m含水层、5煤顶含水层直到12-1煤。这样当巷道揭露含水层时,均发生了涌水,其中5煤顶含水层最大出水点达到10.26m3/min。
(2)断裂带导水
本井田构造发育。通过建井及生产阶段来看,大部分断层未与含水层导通或不导水,但是有些断层则表现导水或揭露时未导水,但由于扰动影响成为导水断层。如2182上工作面在风道掘进时遇一条落差为2m的F138正断层,未出水,但回采至该断层时,又发生了突水,水量0.55m3/min;-230水平北二顶板绕道利用管棚技术顺利通过F2(落差35m)断层组,一年半后发生了迟到突水,最大涌水量3.0m3/min,并伴随有大量的黄泥、卵砾石等物,判断为导通冲积层水。
(3)采矿造成的裂隙通道
巷道掘进和工作面回采时,都会对原有围岩产生影响,当产生的裂隙导通含水层或其他水源时,这些水也会顺采动裂隙进入矿井。大部分回采工作面出水均属此种通道。
⑸ 水文地质条件的研究内容
前边讲过,水文地质学是研究地下水的科学,在人类从事开发利用地下水活动的漫长过程中,通过长期实践经验和认识的不断积累,逐渐形成和充实、发展了有关地下水的知识,按其内涵范畴涵盖水文学、土壤学、地质学与流体力学等学科。
随着水文地质科学的发展,它的研究内容越来越广泛,主要研究内容可归纳为六个方面:
⑴调查、钻探、地球物理勘探和遥感技术;
⑵各种观测和试验技术(水位、流量等的观测;抽水试验、示踪试验和弥散试验等);⑶各种地下水模拟技术(数值模拟用的较多);
⑷同位素技术等。
地下水资源勘查项目参照执行的技术标准
⑹ 水文地质条件一般是指什么
通常把与地下水来有关的问源题称为水文地质问题,把与地下水有关的地质条件称为水文地质条件。
水文地质指自然界中地下水的各种变化和运动的现象。水文地质学是研究地下水的科学。它主要是研究地下水的分布和形成规律,地下水的物理性质和化学成分,地下水资源及其合理利用,地下水对工程建设和矿山开采的不利影响及其防治等。随着科学的发展和生产建设的需要,水文地质学又分为区域水文地质学、地下水动力学、水文地球化学、供水水文地质学、矿床水文地质学、土壤改良水文地质学等分支学科。近年来,水文地质学与地热、地震、环境地质等方面的研究相互渗透,又形成了若干新领域。
⑺ 水文地质条件
1.含水层及其特征
在矿区,地下水含水层系统包括侏罗-三叠系阿加德兹群砂岩含水层系统和二叠系伊泽固安达组长石砂岩含水层系统。
图8-9 研究区花岗岩的分布与铀的来源示意图
第一含水层系统侏罗-三叠系阿加德兹群砂岩层在阿泽里克穹窿中部缺失,主要分布在以穹窿断裂构造带为界的外部地区。在穹窿西翼、北翼和东翼,阿加德兹群砂岩层均出露地表,呈狭长带状,与大气降水相连,在雨季有一定的降水补给。该含水层受穹窿和断裂构造作用的影响,地下水在部分地段富存。在穹窿东翼,阿加德兹群砂岩与其顶部阿萨乌阿组砂岩出露地表,区域断裂形成的次级断裂和裂隙发育,成为导水和阻水构造,在其附近形成泉群。阿泽里克村附近的泉群就是在次级断裂裂隙的导通下出露地表形成众多涌泉。在穹窿北翼,IR矿床区,该含水层埋深达200m以上。在穹窿西翼和西北翼G矿床和T矿床分布区,含水层系统部分出露地表,沿岩层倾向逐渐变深,主矿体含水层系统埋深分别为60m和70m以下。在穹窿南翼,由于地层整体下沉,该含水层系统深埋于地下。受区域性地下水补给作用,在断裂构造的阻隔作用下,南翼成为很好的含水层储水地带,地下水相对富集。
第二含水层系统为二叠系伊泽固安达组长石砂岩含水层。该含水层系统在穹窿核部为潜水含水层,在穹窿核部,因伊泽固安达组砂岩含水层隔水顶板被剥蚀,砂岩大面积出露地表,成为潜水含水层。Gueleli村东部和Teguida-In-Tessoum村附近出现的涌泉,即为该含水层地下水。而在矿区其他部位,该含水层系统均深埋于地下,为深层承压含水层。在穹窿南部,该层地下水含水层系统埋深在200m以下。
2.矿区水文地质特征
在矿区,分布有T矿、G矿和IR矿3个矿床。这3个矿床含铀矿层均为下白垩统阿萨乌阿组砂岩层,该岩层多为致密粉砂岩和细砂岩,其透水性较弱,含水量较少。而其底部则为矿区的第一含水层阿加德兹群砂岩含水层,为承压含水层,其承压水头高度较高,均接近地表,部分地段高出地表。
(1)T矿床水文地质
在T矿床,含水层岩性为细砂岩、(中)细粒砂岩、(中)粗粒砂岩,厚度在7.5~14.6m之间。在矿床范围内随着岩层走向其深度逐渐加深,厚度有所变化,岩性总体变化不大。从T矿床岩心取样资料来看,该岩层断裂裂隙不发育,而节理、层理发育,在垂直方向自上而下岩石组成颗粒逐渐变粗,且胶结固化度降低,孔隙度增大,表明含水层越往底部渗透性越好,储水能力越优良。
T矿床含水层顶板隔水层主要为白垩系泥岩、粉砂质泥岩,沿走向及倾向岩性变化不大。从整体上看(除穹隆顶部被剥蚀外)含水层隔水顶板厚度较大,胶结固化程度较高,隔水性较好。而含水层隔水底板也为泥岩和粉砂质泥岩,胶结较致密。
T矿床含矿层地下水为承压水。根据T矿床内水文孔SHW-T2资料,T矿床顶板地下埋深为68.93m,地下水承压水位为地面以下11.7m。
T矿床地下水为弱碱性微咸水,pH值为8.8,水温23.9℃,无色透明,总矿化度为2.27g/L,总硬度为78.4mg/L,属软水。按地下水离子成分含量,其水质类型为Cl-HCO3-Na型,即氯重碳酸钠型水;按成因类型分类,其地下水类型为NaHCO3型,为苏打化区地下水,表明为陆相成因。
(2)G矿床水文地质
G矿床位于背斜构造西翼,区域性阿泽里克断裂构造西端的尾部。由于受东西向区块的挤压,断裂构造末端变异、错断,断距达750m,次级构造发育且无序,呈网格状展布。由于矿床含水层地下水为区域性补给,这些构造无疑加大了地下水的水力联系,含水层厚度加厚为13.5~23.1m。
G矿床含矿层阿萨乌阿组砂岩含水层因受构造作用,从地表出露处沿岩层倾向逐步埋深于地下深部。其隔水顶板与区域地质条件相同,为白垩系伊腊泽尔组泥岩和粉砂质泥岩,是良好的隔水层顶板;其底部因与矿区第一含水层侏罗-三叠系阿加德兹群砂岩含水层连通,涌水量较大,受次级构造影响,水文地质条件较为复杂。
G矿床第一含水层地下水为承压水。根据SHW-G2水文孔资料,其顶板埋深为59.50m,承压水位高度溢出地表,为承压自流。地下水为弱碱性咸水,无色透明,pH值为8.6,水温28℃,矿化度为6.57g/L,总硬度为40.24mg/L,属极软水。按地下水离子成分含量,其水质类型为Cl-Na型,即氯化钠型水;按成因类型分类,其地下水类型为NaHCO3型,为苏打化区地下水,表明为陆相成因。
(3)IR矿床水文地质
在IR矿,含矿层分布于下白垩统下部阿萨乌阿组的砂岩中,其底部为侏罗-三叠系阿加德兹群砂岩第一含水层;顶部为白垩系伊腊泽尔组红褐色泥岩,沿岩层倾向逐渐加深,至主矿床顶板埋深在190多米,是良好的隔水顶板。在近地表的第四系松散堆积层中,孔隙度较大,但是其上部多为隔水较好的黏土层,含水量极少。
IR矿分为两个含水层:其一为第四系洪积含水层,其补给来源于大气降水,地下水位随季节的变化而变化。雨季地下涌水量增加,枯水期地下涌水量减少;其二为阿萨乌阿组砂岩弱含水层,从不同水文孔承压水头高度不同情况来看,其地下水补给来源主要来自底部侏罗-三叠系阿加德兹群砂岩组第一含水层越流补给和区域性地下水补给。
含水层岩性主要为细砂岩、(中)细粒砂岩和(中)粗粒砂岩。在矿床范围内只在深度和厚度上有所变化,岩性变化不大。从岩心地质编录资料来看,断裂构造不甚发育,节理、层理发育,充填物多为钙质,含水层厚8~16m,沿垂直方向自上而下岩石颗粒逐渐变粗,且自上而下胶结固化度降低,空隙度加大。
顶底板隔水层岩性主要为灰色泥岩、灰褐色粉砂质泥岩,硅质胶结,沿走向及倾向上岩性变化不大,从整体上看顶板厚3~5m,大于底板厚度,胶结固化程度高,底板次之。
IR矿床地下水为弱碱性咸水,无色透明,pH值为8.4,水温23.60℃,矿化度为9.06g/L,总硬度为78.4mg/L,属软水。按地下水离子成分含量,其水质类型为Cl-Na型,即氯化钠型水;按成因类型分类,其地下水类型为NaHCO3型,为苏打化区地下水。
⑻ 水文地质条件分析
依据水文地质的调查分析,主要分析是否有井泉露头,水位、补给的源头是内什么?含水层的厚容度和岩性?区域水文地质的特征如何?地质资料的分析注意地层岩性的特点和导水性、渗透性、保温性、热导率等指标,基本判断该区断裂的分布和走向,可能赋存地下水的地质条件和特征。
⑼ 水文地质条件一般是指()
B
答案解析:
水文地质条件一般是指地下水的存在形式,包含水层的厚度、矿化度、硬度、水温及水的流动状态等条件。
⑽ 水文地质条件一般是指:
A
答案解析:
[试题解抄析]
水文地质条件一般是指地下水的存在形式,含水层的厚度、光滑度、硬度、水温及水的流动状态等条件。地下水常常作为城市用水的水源,特别是在远离江河湖泊或地面水水量不足而水质有不符合卫生要求的城市,调查并探明地下水资源尤为重要。地下水的流向对城市布局有影响,而且地下水的开采对城市的防汛与排水,以及地面建筑及各项管网工程都有着重大影响。地面水体的情况,属于水文条件的评价内容,对城市的生态环境,土地利用,城市布局及建设投资有着密切关系。因此,在城市规划和建设之前,需要对水体的流量,流速、水位,水质等进行调查分析,随时掌握水情动态,研究规划对策。