地质有哪些含水层
Ⅰ .构成含水层的条件常能出现在什么样的地层和地质构造中
【含水层】地下水面以下饱水的透水层.
构成含水层的条件是:土层或岩层有贮存重回力水的答空隙;有下伏隔水层.
砂、砾石、碳酸盐类岩石是主要的含水层.所以一般来说有这几种岩石的地层容易出现含水层.
【含水构造】可分为基岩含水构造和松散沉积含水构造两大类.基岩含水构造有:向斜盆地含水构造;单斜层状含水构造;断裂含水构造;剩隙无压含水构造.松散沉积含水构造有:山前洪积含水构造;河谷冲积含水构造;湖相沉积含水构造等.
Ⅱ 地质构造会影响含水层的含水量么
【含水层】地下水面以下饱水的透水层.
构成含水层的条件是:土层或岩层有版贮存重力水的空隙;权有下伏隔水层.
砂、砾石、碳酸盐类岩石是主要的含水层.所以一般来说有这几种岩石的地层容易出现含水层.
【含水构造】可分为基岩含水构造和松散沉积含水构造两大类.基岩含水构造有:向斜盆地含水构造;单斜层状含水构造;断裂含水构造;剩隙无压含水构造.松散沉积含水构造有:山前洪积含水构造;河谷冲积含水构造;湖相沉积含水构造等.
Ⅲ 含水层和含水岩组
水文地质研究者在研究短尺度的第四系和第三系沉积体系水文地质问题时最基础、最基本的问题是划分沉积体系的含水层和隔水层,在相当长的时期内成为传统的研究方法之一。通常将粗颗粒的砂质岩类界定为含水层,而细颗粒的泥质岩类界定为隔水层,但在20世纪50年代末发现粘土岩和泥岩也是含水的,这就动摇了泥质岩类隔水层这个传统提法。
由沈照理主编,武汉地质学院、长春地质学院、成都地质学院、河北地质学院和南京大学共同编著于1985年地质出版社出版的《水文地质学》,第一篇第一章题名就是“含水层和含水岩组”。在该章第一节“含水介质的水理性质”之前就点明了含水层是指贮存有地下水(主要是重力水)并在天然条件或人为条件下,能流出水来的岩石,由于含水岩石大多是呈层状的,所以叫含水层。对一些复杂的含水层的组合称为含水岩组、含水岩系、含水综合体等。但有些含水的岩石并不是层状的,而呈带状,甚至脉状、块状等复杂的形状,有的研究者认为应分别称为含水带、含水体等。这段表述回避了隔水层这个术语,但在该章第二节“构成含水层的条件”中提到在无裂隙的粘土或泥岩中,其孔隙中可以含有大量的结合水,在常压下不能自由流出,所以一般视为隔水层而不能构成含水层,但含水层与隔水层是相对的,而不是绝对的。并介绍了区分透水层与隔水层公认的数量指标是,岩石的渗透系数k小于0.001m/d的岩石均为隔水层,大于或等于这个数值的为透水层。这里又引入了透水层术语,并以渗透系数的大小来区分透水层与隔水层。坚硬岩石具有发育孔、缝的可溶性碳酸盐岩定位含水层,而无裂缝的沉积岩和火成岩等定为隔水层。
用渗透系数指标来区分沉积物或坚硬岩石的透水能力是合理的,因为地壳内没有不含水的岩石,只是含水量多寡或水的存在形式不同而已。
Ⅳ 基坑开挖如何确定地质勘探报告里的含水层厚度
基坑开挖要根据地质勘探报告里的含水层厚度进行,如果开挖底面在含水层以上,就需要进行降水处理。基坑开挖确定地质勘探报告里的含水层厚度可以从开挖断面确定。
Ⅳ 什么样的含水层和土层地质条件有利于海绵城市的建设
非岩石类的都没问题
Ⅵ 含水的岩层就是含水层吗 工程地质判断题
含水层必须是透水性能好空隙性好的岩石,只含水不透水(束缚水)也不能成为含水层。
Ⅶ 水文地质钻探中怎样确定含水层厚度
含水层厚度的确定
一、松散含水层厚度
第四系含水层的含水性比较均匀,其厚度根据地下水位、钻孔所揭露的松散岩层的颗粒组成以及岩性结构等,直接按钻孔揭露情况的编录资料来确定。
二、基岩含水层厚度
含水不均匀的基岩裂隙和岩溶含水层,其厚度的确定,一般是根据钻孔揭露的岩层裂隙、岩溶发育情况。钻孔需易水文地质观测和物探资料,以及必要时依据水文地质分层试验等资科结合成因和分布规律等,经综合分析研究确定。
(1)用简易水文地质观测、电测井及岩心水文地质编录资料,进行综合整理。按勘探剖面编制简易水文地质、电测井成果综合对比图。图中要包括以下内容:
各钻孔揭露的地层、岩性及换层深度或标高;
岩心采取率、冲洗液消耗量、岩石质量指标(即SQD指标)及电测井成果曲线;
岩心的线裂隙率、级岩溶率和较大溶洞的起止深度或标高;
钻孔水位观测成果曲线和水位发生突变、涌水、漏水段的起止深度或标高等。
综合研究分析上述成果,编制裂隙或岩溶含水层的富水性分带图,在此基础上确定裂隙或岩溶含水层的强、弱含水带的厚度。
(2)按裂隙或溶洞发育程度确定,一般采用如下指标衡量:
直线裂隙率小于3%的闭合状裂隙带,或虽然裂隙率大于3%但裂隙已被其它矿物如方解石、石英脉等所充填的裂隙带,均可视为相对隔水层。裂隙率大于3%以上的张性裂隙带,则可视为裂隙含水层。
溶洞发育程度,可采用岩溶率或岩溶能见率两个指标来衡量:
可用作图法编制矿区范围内岩溶率随深度的变化曲线或用反映溶洞发育与各种因索关系的溶洞投影图。从图上确定出岩溶率高、能见率也高的岩段为强含水带,次高岩段为弱含水带。
(3)进行过钻孔简易分段注(压)水试验的矿区,可用下列指标划分含水带:
单位吸水率q>0.001L/s.m为含水带;q<0.001L/s.m时可认为是相对隔水层。
(4)根据上述资料,结合研究矿区的风化裂隙、构造裂隙或破碎带、岩溶发育的基本规律,可以划分出比较可靠的含水层厚度。对于各钻孔含水带厚度变化很大,又难于形成统一含水层的情况,可很据各钻孔强弱含水带所控制的面积,取其面积加权平均值,分别定出强、弱含水层的厚度。
Ⅷ 地质及水文地质概况
一、地质构造
研究区地处临清台陷(
图2-2 区域地质构造简图
(据中国地质调查工作项目“石家庄-西柏坡经济区地质环境调查”)
1—Ⅱ级构造单元界线及编号;2—Ⅲ级构造单元界线及编号;3—Ⅳ级构造单元界线及编号;4—工作区范围
晋县断凹的走向NNE,盖层包括第四系、新近系和古近系,最大厚度5500m,盖层下伏基岩为中生界。
根据断裂的规模,区内断裂分为三级:一级断裂为紫荆关深断裂带和太行山前深断裂带。紫荆关深断裂带在太行山段为紫荆关-灵山断裂。自北而南,太行山前深断裂带包括怀柔-涞水、定兴-石家庄、邢台-安阳等三条主干断裂。定兴-石家庄深断裂的南端和邢台-安阳深断裂的北端,位于本研究区内。二级断裂主要有正定东断裂、北席断裂、藁城西断裂、藁城东断裂、晋县断裂和高迁断裂等。三级断裂,主要有古运粮河-牛山-郑村、同阁-百尺杆、良都店-鹿泉-大河和吴家窑-黄峪断裂带等。
二、地层
研究区新生界以下基岩以石炭系、二叠系、侏罗系和白垩系为主,局部分布有古元古界变质岩系及寒武系、奥陶系。基岩之上为巨厚的新生界松散堆积物覆盖,堆积物厚度自西向东由薄变厚。
1.太古宇
太古宇厚度达万米以上。由一套麻粒岩相至角闪岩相的深变质岩组成,在太行山山前断裂以西山区及丘陵区出露地表,其他地段则主要掩埋于元古宇、古生界以下;太行山山前断裂以东则掩埋在平原区深部。
2.古元古界
古元古界地层厚度4000m以上,岩性为甘陶河群板岩、长石石英砂岩、白云岩、蚀变安山岩等,与上覆中元古界呈不整合接触。在太行山山前断裂以西主要出露于鹿泉市区以南-封龙山一带的山区,山前地带隐伏分布在200m以下,其他地段掩埋于中新元古界、古生界以下;太行山山前断裂以东则主要掩埋在平原区深部。
3.中新元古界
中元古界长城系厚度600m,上部为灰色白云岩、泥质白云岩,下部为灰绿色泥岩等;蓟县系厚度550m,岩性为浅灰色、灰色、灰褐色白云岩、硅质白云岩。在太行山山前断裂以西,仅见长城系,主要分布在鹿泉市九里山山前地带,隐伏于40m以下;太行山山前断裂以东,掩埋于平原区深部。
4.古生界
寒武系厚度介于420~700m之间,下部为灰黄色、灰色、红色泥岩、页岩夹白云岩、灰岩;中部为泥页岩、浅灰色鲕状灰岩、灰岩;上部为灰色、灰褐色竹叶状灰岩和白云岩。奥陶系厚度介于650~900m之间,下部为灰黄色、灰色白云岩、灰岩;上部为浅灰色、灰褐色灰岩、泥质灰岩,石膏层发育,是基岩主要储水层。石炭系厚度不大于320m,中石炭统底部为一明显剥蚀面,常见一层赤铁矿或为铁质页岩所代替,下部灰色、灰紫色鲕状铝土页岩,夹透镜体铝土矿;上部为浅灰、深灰色砂质页岩。上石炭统为砂质页岩及页岩,夹石英砂岩、薄层致密灰岩,有5层煤,稳定可采,底部为中粒石英砂岩。二叠系厚度介于150~850m之间,本区只有中二叠统,主要岩性为砂页岩,底部为褐色砂砾岩。
古生界在太行山山前断裂以西,北部缺失上古生界石炭系、二叠系,下古生界寒武系、奥陶系主要分布于鹿泉市九里山一带,九里山山前地带隐伏于150m以下。南部主要分布于封龙山山前地带,隐伏于300m以下。太行山山前断裂以东,主要掩埋在平原区深部,无极藁城低凸起内部分地段缺失石炭系和二叠系。
5.中生界
侏罗系厚度介于100~500m之间,岩性为棕灰、灰紫色火山岩夹砂岩、泥岩。白垩系厚度介于100~2650m之间,岩性上部为紫红、灰绿、灰黑色泥岩、泥灰岩与砂岩互层,下部为砂砾岩及少量紫红色泥岩。中生界在太行山山前断裂以西缺失。太行山山前断裂以东,隐伏新生界以下,凸起区薄,局部地段缺失,正定东部的凹陷中心厚度达3000m以上。
6.新生界
古近系孔店组为一套河流-湖泊相沉积,靠近山前地带,一般沙四段与孔店组分不开,不整合于中生界及其以前的地层之上,岩性以棕红色泥岩、砂砾岩为主。沙河街组的第四段,主要岩性为红色泥岩与砂岩互层,底部为含砾砂岩,厚度介于22~230m之间,沙三段本区缺失。沙二段厚度介于200~450m之间,是一套下粗上细、以红色碎屑岩为主的沉积。沙一段厚度在300~500m之间,浅湖-滨湖相泥岩为主,间夹数层生物灰岩、白云岩、泥灰岩等。东营组厚度介于86~394m之间,为一套河湖相沉积,岩性上部紫红色、灰绿色泥岩与灰白色泥岩互层,下部为泥岩与砂岩互层,中部以具含螺泥岩为特征。古近系在太行山山前断裂以西缺失,在太行山山前断裂以东广泛分布,厚度介于100~850m之间,凸起区薄,凹陷区厚,凹陷中心厚度达1800m以上。
新近系的馆陶组厚度介于100~280m之间,为一套河流相沉积,岩性为棕红色泥岩夹灰色、灰白色砂岩、砾岩互层。明化镇组厚度介于100~700m之间,为一套河流相沉积,岩性以灰绿色、棕黄色泥岩与棕黄色砂岩互层为主。
第四系堆积物成因类型、厚度与展布方向受基底构造、古地理、古气候的控制与影响。研究区沉积物的成因主要是河流的洪积、冲积作用形成。各冲洪积扇及本区东部局部地带,有零星湖积及浅水洼地沉积。沉积物由东向西逐渐变厚,颗粒上部和下部较细,中部较粗。
第四系由新至老,概况如下:
全新统:在研究区西部,厚度介于5~10m之间,东部厚度介于10~30m之间。岩性一般以灰黄、黄灰色为主,次为深灰色及灰黑色的亚砂土、粉细砂及部分砾石。西北部粒度较粗,为中、粗砂,南、中部粒度较细,为亚砂土、亚黏土,且夹有淤积层,砂层很薄,多为粉细砂透镜体。
上更新统:自西向东底板埋深20~160m,西部山前地带较浅,一般小于20m,东部最大埋深达205m,岩层厚度一般在50~100m之间,岩性以棕黄色黏土为主;次为浅黄色及灰黄色的亚砂土及不同粒度的中粗砂、砂卵砾石。
中更新统:属于冲积、洪积及湖积相。西部山前地带底板埋深介于40~200m之间,厚度160m,东部埋深介于280~440m之间。岩性为棕红、棕黄色夹锈黄色砂卵砾石、砂及黏土。
下更新统:位于京广铁路以西,底板埋深介于180~300m之间,厚度介于72~120m之间。辛集、深泽一带,埋深大于420m,厚度介于150~170m之间,岩性以棕红、棕褐色为主,下部夹紫色、灰绿色的中粗砂、中细砂及亚黏土、黏土,砂层风化严重,呈半固结状。
三、水文地质条件
研究区第四系含水介质是一个几何形态复杂、多种类型叠加的含水层组结构,它是由多层交叠、纵横交错的砂、砾层以及间以黏土层构成的孔隙含水组,一般在垂向上缺少较大面积分布的、具有一定空间厚度的细粒堆积物,富水性和透水性良好。前人根据Qh、Qp3、Qp2和Qp1地层,相应划分为第I、II、III和IV含水层。即全新统含水层、上更新统含水层、中更新统含水层和下更新统含水层。其中第III和IV含水层为承压水,但是,由于大量泥包砾,富水性差。在太行山山前平原,混合开采钻井取水,造成第I、II含水层组之间水力联系密切,统称为“浅层地下水系统”。浅层地下水是石家庄地区主开采层位。因此,本研究侧重石家庄地区浅层地下水系统(图2-3)。
图2-3 石家庄平原区水文地质图
全新统-上更新统含水层(I、II):底板埋深为80~120m,含水层厚度为25~40m,岩性以砾卵石为主。在滹沱河、磁河等冲洪积扇轴部,单井涌水量在70~180m3/(m·h)之间;在冲洪积扇的两翼及前缘,在10~30m3/(m·h)之间。目前,第I含水层已基本疏干,目前主要开采第Ⅱ含水层。
中更新统含水层(III):底界埋深为120~300m。含水层岩性山前地带以卵砾石及砂砾石为主,向东逐渐变为砂层。在山前及扇间地带,含水层厚度较薄,小于20m,其他大部分地区在20~60m之间。在冲洪积扇主体部位,含水层厚度较大,多大于60m,单井涌水量5~20m3/(m·h)。
下更新统含水层(IV):底板埋深为300~580m,含水层厚度在冲洪积扇轴部地带大于180m,山前带则小于20m,其他地区为60~80m。石家庄市区以北,京广铁路线以西含水层岩性以砂砾石层、砾卵石为主,其他区域以砂层为主。在无极城关和藁城果庄以北,新乐的西平乐-正定曲阳桥-石家庄市区以西,砂层风化较为严重,富水性差。
Ⅸ 水文地质中,含水层和隔水层有什么区别
含水层的含有层内可流动水的煤、岩层,有水的补给来源.这类岩层一般胶结松散、孔隙度大、裂隙发育.主要是砂岩、砾岩、石灰岩、拉伸性断层等.根据含水量大小分为强含水层、弱含水层.
隔水层是不导水的煤岩层.这类岩层一般胶结致密,孔隙度小、裂隙不发育.主要是煤(层理方向是导水层,垂直层理方向是隔水层)、泥岩、泥质胶结的页岩等.
和隔水层相对应的是导水层.
Ⅹ 水文地质图规含水层用什么颜色
看是什么含水层了,一般用黄色来代表松散岩类裂隙水、褐色表示碎屑岩类裂隙水,蓝色表示可溶岩类岩溶水,红色表示火成岩裂隙水。其中松散岩类中的冲洪积含水层在山前区域水文地质图中,也可以用绿色表示。