当前位置:首页 » 地质问题 » 农业地质需要哪些资质

农业地质需要哪些资质

发布时间: 2021-01-27 10:43:10

❶ 什么是农业地质调查

采用地质学、第四纪地质学、地貌学、水文地质学、地球化学、土壤学、生态学回、环境学答及其他有关地球科学的方法和理论,调查区域农业的生态系统与地质体及地质作用这一整体系统及其内在依存关系。调查的主要对象是农业生物所必需的养分及其循环的控制性地质因素,包括岩石、土壤、水、地貌以及相关的现代地质作用等。以关键带的地质环境演化和对农业的影响划定调查的时段和重点,综合性调查成果应反映调查区域的农业生态和地质条件。这是一项基础性、公益性、战略性和综合性的地质调查。

❷ 农业地质研究进展

(一)国外农业地质研究进展

“农业地质”(agro-geology)一词最早是由德国学者法鲁(F.A.Fellow)和李希霍芬(F.V.Richthofen)于19世纪中叶提出的,没有明确的定义,只是用于解释岩石风化与土壤的形成关系。20世纪初国际地质学界广泛注意了农业地质研究,曾在欧洲召开过多次国际性会议。1907年匈牙利皇家科学院地质研究所建立了世界上第一个从事农业地质研究的机构——农业地质部,该机构把土壤地质调查、填图和土壤成因与分类作为主攻方向。

20世纪的前50年时间里,先后有英美的地质学家著书讲授农业地质学,如1916年英国剑桥大学 R.H.Rastll 出版的《农业地质》、1946年美国路易斯安那州立大学F.V.Emeison出版的《农业地质学》。这两本书的初衷都是给从事农业研究的人员介绍地质学的知识,如岩石、矿物、构造等。这些都说明当时的农业地质主要是地质学的知识和认识渗透于土壤研究或直接服务于农业。

20世纪30年代,K.Troll首次提出了“地质生态学”这一术语,现在一般把这一概念理解为研究作为环境系统构成部分和生物圈的物质基础的地质圈及其内在自然和人类活动成因因素影响下所发生变化的科学。区域生态地质调查工作以俄罗斯(前苏联)做得比较系统,已经完成了俄罗斯全境内14张1:500万生态地质图。20世纪50年代后,随着世界人口、资源、环境矛盾的日益突出,环境地质学(Betzf,1962)逐渐兴起,相当多的农业地质问题被列入环境地质的范畴。

直到1972年,美国地质调查所为了统一学科概念,将农业地质解释为应用于农业需要的地质学,勘查土壤的成因和成分、肥料矿产、地下水分布及特征等,属于应用地质学范畴。目前,在国外,农业地质通常被解释为“服务于农业的地质学”,研究影响土壤形成与分布的地质过程,以及地质材料作为保持和提高土壤生产力的手段在农业和林业系统中的应用。主要工作涉及岩石和矿物的农用研究与开发、盐碱地土壤调查与改良、农作物和畜牧生产与地球化学元素关系的研究等,后者更是进一步推进了农业地质研究工作的深入。

1.农用矿物肥料的开发利用

岩石和矿物在农业上的应用至今已有几个世纪了,但是 Missous(1853,1854)、Hensel(1890,1894)等开创了基于“面包来源于岩石”这一思想的农业研究。Keller(1948)、Keller等(1963)则开创了岩石农用理论研究和实践工作的新时期,随后的研究者还有Fyfe及其同事(Fyfe,1981,1987,1989,2000;Chesworth等,1983,1985;Van Straaten和Chesworth,1985;Van Straaten和Pride,1993)。20世纪80年代早期,国际发展研究中心资助了第一个农业地质计划——坦桑尼亚-加拿大农业地质计划(Chesworth等,1985,1989)。

前苏联地质部门在解决矿物肥料方面开展了大量工作。比如为了在西西伯利亚建立起农业化学工业可靠的矿物原料基地,1983年2月在托木斯克召开了有俄罗斯联邦地质部以及其他部门的代表参加的关于在托木斯克地区发展泥炭工业的会议,主要目的之一是研究泥炭作为农肥用于农业生产上的前景以及地质部门在本地区勘探这种资源的可能远景。后来前苏联地质勘探工会新西伯利亚地区委员会等单位于1984年在新西伯利亚联合召开了“西伯利亚农业化学原料的地质和地理以及第十一和十二个五年计划期间其应用的可能途径”的专题讨论会,研究农业化学工业矿物原料基地的状况,对最近几年矿物原料基地的发展提出了具体建议。阿塞拜疆一铝厂利用明矾石年产氢氧化铝16×104t、钾肥17×104t、硫酸35×104t。

2.盐碱地土壤调查与改良

前苏联为解决全国粮食问题,开展了大量的盐碱地改良研究与试验工作。1960年,前苏联学者B.A.柯夫达的著作《中国之土壤与自然条件概论》在中国问世,总论了中国的土壤形成条件及特征,还对我国各地的主要土类、特别是盐渍土作了较详细的论述,并以主要的农场为例,提出了利用方面存在的问题和解决的办法。20世纪60年代,前苏联罗杰(А.А.Pοде)和柯夫达(В.A.Ковда)等人的土壤盐碱地调查与改良研究认为:灌区和非灌区盐渍土壤是在以经由植物或从地表蒸发的毛管上升液流为主的条件下形成的;草原和荒漠区的盐渍土和碱化土的形成,则是由于土壤地下水平衡过程中以蒸发为主的缘故;森林植被下冲洗型土壤水分状况能使一些物质从土壤剖面中淋溶,从土层和风化壳深层完全淋失;在森林草原条件下,土壤水分状况是一个过渡类型。B.A.柯夫达等出版的《盐碱土地普查与改良》,曾对我国的盐碱地改良工作产生过很大的影响。

3.农业地球化学研究

西欧、北美等国主要开展了农、林作物与地球化学元素关系的研究,编制了农业地球化学系列图件。J.S.Webb最早将勘查地球化学方法应用于环境地球化学,研究化学元素分散、富集、迁移与分布在解决农业、畜牧业、地方病等方面的应用。J.S.Webb等对爱尔兰共和国农业研究所报道的土壤和牧草中硒、钼含量高达中毒水平的利默里克郡(Limerick)250km2范围内进行每平方公里一个样的水系沉积物取样,发现水系沉积物中硒、钼的高异常区与富含金属元素的冰碛物和页岩风化的残积物有关,且与牧草中硒、钼的高含量密切相关。喂食的干牧草中硒含量大于5mg/kg,牛、马就会逐渐地患慢性硒中毒症。据此,Webb根据水系沉积物中硒、钼的高异常,又指出了可能致使家畜发病的其他地区。

1980年,法国魏格纳等人发表了《地质与酒类》的文章,阐述了波尔多、香槟和布尔贡三个葡萄酒产区的各种葡萄的品质与气候、地质、土性及地貌的关系。他们认为波美罗尔葡萄园出产的红葡萄酒具有一种淳厚的香味,是由于土地中含有富铁氧化物的砾石;而有名的白葡萄酒则产出在上渐新统泥灰岩上的砾石层中。

苏联学者研究了微量元素在不同土壤中的分布型式和存在形式、微量元素在植物和农作物中的分布以及对植物和农作物的影响,提出了植物微量元素临界浓度的概念,指出高于和低于这个临界值就会破坏植物体内的新陈代谢,并在外观上出现不同类型的改变。如谷类作物(小麦、黑麦、燕麦)对铜、钼和锰的不足特别敏感。美国学者H.D.Chapman的研究认为,栽培植物在铜含量为1.1~41mg/kg、锌含量3.9~229mg/kg(干物质)的情况下仍能正常生长;明显不足的下限浓度为,铜0.7~10mg/kg,锌0.4~96mg/kg;上限分别为1.4~336.3mg/kg和70.8~7500mg/kg。

美国科学家D.C.Adriano1986年出版了《Trace Elements in the Terrestrial Environment》一书,系统地介绍了陆地环境中与人类密切相关的22 种微量元素——砷、硼、镉、铬、铜、铅、锰、汞、钼、镍、硒、锌以及锑、钡、铍、钴、氟、银、铊、锡、钛、钒等。每章集中论述一种或几种微量元素的经济价值、天然赋存状态、土壤-植物系统中元素的循环及其行为、植物需要量及耐毒性、饮用水和食物中元素的健康界限以及在环境中的来源等内容。近年来,来自土壤化学、环境化学等方面的学者,开展了大量有关营养元素有效性和生态效应方面的研究(详见后文)。

(二)国内农业地质研究工作进展

我国古代劳动人民认识和利用自然环境种植农作物、果树的历史可以追溯到几千年前。《周礼》(公元前5世纪至前3世纪)就记述了五地(五种地形),即山林、川泽、丘陵、坟衍、原隰(低湿的地方),各有其适宜栽培的果树,如山林中宜“柞栗之属”,丘陵上宜“李梅之属”等。可见中国人民在2500年前,就认识到果树与土壤的生态关系。王象晋的《群芳谱》(1621)也有“地不厌高,土肥为上,锄不厌数,土松为良”的记载,说明作物生长与土壤的关系。但是,将作物与环境的关系作为一门学科来研究,历史不过百年,这就是后来的农业地质学。

1.我国农业地质工作发展阶段

新中国成立以前,地质为农业服务主要侧重于在地质学指导下的土壤矿物、土壤成因研究,以及少量农用矿产的调查工作。近50年来,我国农业地质工作取得了长足的发展,主要可划分为三个阶段。

第一阶段:20世纪50~70年,农用资源服务阶段。新中国成立之初,粮食问题一直是困扰国家安全和生存的大问题。在“有收无收在于水,收多收少在于肥”的思想指导下,地质部门开展了钾矿、磷矿的调查与勘探工作,在北方半干旱、干旱地区开展了农田供水勘查、土壤侵蚀和盐碱化改良研究等工作。60~70年代完成1:5万~1:10万农田供水水文地质勘查累计约130×104km2

第二阶段:20世纪80年代,农业地质背景服务阶段。20世纪80年代,地质矿产部成都地质矿产研究所与四川省的棉花种植专家合作,根据地质体的宜棉性调整了全省棉花布局,棉花种植面积减少40%,但产量却三年翻一番。在此期间地质矿产部多次部署开展以研究农业地质背景与名优特产为主的农业地质工作,以及新型矿物肥料和矿物饲料的勘查与开发研究。1988年,地质矿产部向国务院报告了关于开展地质为农业服务的工作,掀起了农业地质的第一次高潮。

第三阶段:20世纪90年代以来,农业生态地质阶段。进入90年代,“农业地质”已经演化成“农业生态地质”。“农业生态地质学”已经不是早期的“农业地质学”的概念了,已经形成了一个边缘学科的雏形。就是在这个时期(1992年),中国地质学会成立了农业地质专业委员会。农业地质专业委员会向国际第30届地质大会介绍了我国农业生态地质研究的最新成果,受到国际同行的关注;并于1997年、1998年、2000年、2002年、2003年、2004年分别在山东临淄、浙江杭州、北京、湖南长沙、广西桂林、四川成都召开了全国性学术研讨会,出版了《中国农业地学研究新进展》(1999,2001,2003)。当前开展的省部合作农业地质环境调查工作,掀起了农业地质工作的新高潮。

2.我国农业地质工作的主要进展

近年来,我国农业地质研究进展概括起来主要表现在以下五个方面。

第一,名特优农林作物的农业地质调查、评价与开发。20世纪80年代以来,名优特农林作物的农业生态地质调查与评价工作开展得有声有色,涉及百余种名优特产,主要有四川柑橘,涪陵榨菜,广西沙田柚,浙江玉环文旦(柚子),山东肥城桃,新疆吐鲁番葡萄,河北沧州金丝小枣,广西荔枝,云南、贵州、河南和山东的烟草,滇西和浙东的茶叶,广西柳江的甘蔗,南宁的香蕉以及山东泰山(东北麓)、河北迁安、北京昌平的板栗等等,取得了丰富的成果,积累了大量数据资料,总结了不少理论认识,利用这些数据资料及其规律,寻找或发现了许多新的农林优势区,扩大了种植,也极大地促进了地方经济的发展。

第二,中低产田及牧区草场的改造。主要涉及盐碱地改良和平衡施肥两方面的工作。对中低产田及牧区草场的盐碱地改良涉及范围包括黄淮海平原、关中平原、内蒙古河套平原、银川平原、东北松辽平原、天山北麓、河西走廊等,为提高粮食产量做出了重要贡献,也积累了很多经验和理论成果。例如,黄淮海平原总土地面积约35×104km2,其中耕地约2.74×108亩,占全国总耕地面积的19%。经过30余年的持续努力,黄淮海平原治理盐碱土4000多万亩,水浇地发展到1.6×108亩,占耕地的60%左右。这项工作在河北平原、银川平原、河套平原及西北干旱地区等仍在进行,并深化为水资源调蓄和管理工作,涉及水-岩作用机理探索。20世纪80年代以后,我国1:20万区域化探扫面资料开始应用于环境地球化学领域,研究了Zn、Cu、Co、Mo、B等在不同地区的含量与作物产量的对应关系,寻找产生生物生长缺陷和低产的原因,总结提出当地某些元素与相应作物生长的正常、过量或缺乏的阈值。类似的研究为微肥配制与田间投放提供了技术依据,有力地促进了当地中低产田及草场的改造。

第三,农业地质环境及灾害的调查与评价。由于农业地质灾害或人为活动影响,全国各地还有一些荒山、荒坡、荒地、废旧矿坑和塌陷区、平原区的砖坑地以及干涸坑塘等,近年来引起山东、河北、湖南等地农业地质研究部门的重视。许多单位对有关区域的水土流失、土地沙化(荒漠化)、沼泽化、盐碱化、冷浸田、岩土崩塌、泥石流与洪泛淤积,以及工业三废与生活污水及化肥和农药投放过量对土地的污染等等,进行了大量的调查和评价。如针对洞庭湖区洪涝灾害的防治问题研究认为,地质构造沉降、泥沙淤积与筑堤围堰是造成渍涝严重、洪灾频繁、生态环境全面恶化的主导因素,建议实行“淤陆扩湖”的方法顺应自然,采取相关工程措施营造新的协调发展的“人工-自然复合地质环境系统”,为有关方面提供了必要的决策依据。

第四,农业地质区划与农业生态地质调查。近年来,先后有四川、广西、湖北、山东、河北、河南、江西、广东、安徽、江苏、吉林、浙江、云南、贵州、辽宁等省进行了不同级别的农业地质区划。主要以行政区划为基础,以涉及气候、地形地貌及岩土结构(个别地区为地球化学和水资源环境)等影响开发利用农林牧土地资源(特别是有关农业生物生产的适宜性)的因素作为区划依据,如四川盆地棉花种植的调整和河北献县枣林种植的区划,都曾产生了极大经济效益。“九五”期间,地质矿产部在传统区域地质调查工作中增加了1:5万生态地质调查试点和1:5万农业生态地质调查试点工作,如山东临淄幅、青州幅1:5万区域地质与农业生态地质调查试点项目,河北流常幅、龙华镇幅1:5万农业生态地质调查试点项目等,都是地质部门为给农业区划提供有效服务的工作。

第五,岩矿的农业利用。由于农业经济的发展,农用岩矿资源的开发利用已达到了前所未有的水平,如温州化工总厂建设了综合利用明矾石的试车间,四川地质勘查局对四川及西南台地大量分布的“绿豆岩”进行了开发研究,山东省地质勘查局完成了从海水中提钾的研究任务,湖南省地质勘查局用钾长石代替部分粘土作配料回收水泥窑灰钾肥的实验已获成功。目前,国内常用的农用岩矿有沸石、蒙脱石、伊利石、高岭石、凹凸棒石粘土、海泡石、海绿石、蛭石、石灰石、白云岩、石膏、麦饭石、磷灰石、硅藻土、菱镁矿、蛇纹石、褐煤、草炭、绿豆岩、珍珠岩、凝灰岩、火山渣、浮石、火山熔岩等20多种。分别选作矿物肥料、饲料、农药及其载体,或用于改良土壤。如专用岩矿微肥、海泡石复混肥、矿物种衣剂等的成功研制,以及石灰岩、泥炭、沸石、膨润土等非常规农用矿产,都具有很好的应用前景。我国稀土资源异常丰富,对多种作物具有显著的增产提质作用。我国农用稀土产品已打入国际市场,为许多国家所选用。

3.我国农业地质研究的内容和方法

农业发展的迫切需要和地质工作领域的拓展,有效地推动了地学与农学的交叉渗透和农业地学理论的形成发展,已经陆续出版了一些专著,如《新疆塔里木盆地西部平原生态环境地质综合研究》、《生物的地质环境学》、《果林农业生态地质研究》、《区域地球化学与农业和健康》、《生态环境地球化学图集》、《岩土-植物大系统研究》、《元素生态地球化学及其应用》、《湖南农业地质概论》等等,主要理论进展主要体现在概念演化、研究内容、技术方法三个方面。

(1)农业地质概念及其演化

1986年李正积教授首先提出了农业地质背景的概念,认为农业生态地质背景系指同大农业(农林牧副渔)相关的地质体或岩石体和地质营力作用(内、外营力)的特殊综合;1996年他又运用现代生态学观点、系统工程学原理和其他前沿学科理论,进一步研究了岩-土-水-植物大生态系统效应。2001年曾群望等提出了生物地质环境学的概念,认为生物地质环境学是用地质学的理论和方法研究生物及其赖以生存的地质环境之间的关系,着重研究地质环境对生物影响的学科,它是生物学、地质物和环境科学等相互渗透、融合而成的边缘学科。1999年,陈梦熊院士从环境地质学的观点出发,认为生态环境地质学是把地质环境作为一个独立的非生物系统,研究在自然生态环境与社会生态环境双重影响下地质环境与人类生存环境之间的关系。

张宗祜院士认为,“农业生态地质学”已经形成了一个边缘学科的雏形,农业生态地质学是农业科学、地质学、环境科学等多学科交叉的边缘学科,可以作为地学的一个新的分支学科。农业生态地质学是研究人-农业生产-地质环境整个系统的结构、功能及其相互作用的学科,换句话说,就是研究在人为调控下,生态农业系统与地质环境间相互作用的关系,也就是研究作为生态系统组成部分的农业活动和它所处的地质环境相互作用的过程、机理,并且使它在人为调控下达到可持续发展的目的。

(2)农业生态地质学的研究内容

农业生态地质学的研究内容,主要涉及生态地质结构、生态地球化学、生态水文地质和生态经济地质四个方面,普遍关注地质背景和地质结构、岩石-土壤-植物的元素系统、大气降水-土壤水的包气带土壤溶液等的研究。近年来,技术与经济的结合研究也开始受到关注。

第一,生态地质结构研究,包括地表结构、地下岩土结构及物质、能量转换的界面,是控制农林作物最佳生长的养分“供给、输送”的格架。

1)地表结构,即地-气界面。

2)地下岩土结构,包括岩土的岩性、粒度组构、孔隙、岩石节理、破碎带、风化壳、断层或其他地质构造,以及一定深度内岩土产状或呈层序列特征及沉积相等。对于土壤,还包括其物理性质和土体构型等。

3)物质、能量转换的界面,包括:①岩-土界面,即风化壳中的岩石与风化带界面,基岩与残坡积层的接触面,土壤发生层的A、B、C层与D层(母质)的界面,用以研究营养元素的质、量、比的变化;②土-植(物)界面,即根系与周围的接触面;③水-土界面,即地下水或包气带水与气带岩土的界面。

第二,生态地球化学研究,主要是研究营养元素“供给、输送”和平衡的过程以及与生态的关系。

1)元素(或元素组合)及其含量的背景值与植物适宜含量阈值,包括:①背景值与植物适宜含量阈值;②地球化学晕,包括原生地球化学晕、次生地球化学晕和生物地球化学晕等。

2)区域“地质环境-元素平衡-生物生产”系统最佳运行的机制分析,包括:①元素平衡研究;②微量元素与生物生产研究,以改造不良土壤或培养肥力,提高产量、改进农林作物品质,增强作物的抗逆性。

3)生态地球化学区划指标和定量评价公式和系数,包括:①标志和指标;②公式和系数,如吸收系数、配比系数、供养强度、输养强度等。

4)污染与地方病。

第三,生态水文地质研究。水质、水量及潜水埋藏条件,自然降水时段与作物需水程度的协调性,以及区域水资源与区域农业用水量的平衡程度等,都是“农业-水、土资源-地质环境”系统中必须统一研究的。尤其要注意浅层地下水及其上的包气带水的运移和开发利用的研究,以至于调控技术的研究。

第四,生态经济地质研究。主要从地质学角度研究生物生产中的生态经济学问题,内容包括:①土地利用规划及区域规划研究;②农业地质灾害的防治研究;③污染对生物生产影响和对人畜疾病(包括地方病等)的防治研究;④农用岩石矿物的开发利用;⑤生态旅游地质资源的开发利用和保护。

(3)新技术、新方法的应用

在遥感技术土地利用现状调查、土壤侵蚀调查与规律研究、农业地质背景调查中,利用计算机技术进行农业地质地球化学元素数据处理,建立相应的农业地质环境数据库,都收到了良好的效果。例如,GIS技术用于确定需要退耕还林还草的耕地数量及空间分布,研究盐碱地改良分区等,利用“三S”技术还可编制土壤肥力退化、土壤酸化、土壤污染及土壤石质化与沙化时空变化图。此外,利用中子水分仪观测包气带水分动态,利用稳定同位素15N技术观测肥料吸收效果等,都取得了可喜的成果,还建立了野外农业地质试验基地(场)。

❸ 农业地质调查内容

农业地质调查,能够全面反映农业生态要素中的地质因子及地质因子的影响作用,从而可以进行农业生态地质类型的划分,并确定其区域主导因子及参数,以指导农业生产。目前中国农业地质调查工作仍处于实验阶段,因而无统一的规范和标准。

农业地质调查一般是以农业地球化学调查为基础,联系区域地壳表层地质背景及演化,基岩和成土母质的组成、结构和物质循环,分析地下水及土壤水分的分配和分布,调查土壤吸力状况,尤其是植物营养元素的背景含量及分布状况,划分农业土地生态环境类型,分析土地利用现状及潜力,农业污染及农业灾害的类型及对策,综合评价区域社会经济环境对农业生产环境的影响,提出农业生态环境保护和合理利用的对策。

1.生态地质背景调查

区域地壳表层物质组成与结构调查 包括岩石类型、特殊地质体的分布(如超基性岩、花岗岩、剪切带、破碎带等)、区内传统矿产与非传统矿产的类型及分布。这些都是基础地质调查的主要内容,但需要从农业地质背景角度进行分析和总结。

区域地球物理场和地球化学场调查 包括重力场、磁场、放射性场、地球化学场、地热场及应力场等,注重分析其本底,异常形态特征、组合、分带性,判别其主导因素。

区域地壳演化史调查 对区域内的造陆、造山作用,时间、类型、演化阶段的调查,尤其是对第四纪以来地壳运动的调查,为研究该区环境演化规律提供基础资料。另一个重点是现代地壳运动及其环境效应,调查区域地壳升降趋势及速率,区域气候和自然环境等迁移和趋势。

区域地质灾害调查 调查区内地壳稳定性、地震、地裂、滑坡、泥石流等地质灾害,并对水土流失、沙漠化、盐渍化等环境灾害形成的地质因素进行调查和评价。

2.基岩与成土母质调查

基岩的矿物和化学组成调查 调查不同类型基岩的主要矿物、次要矿物、副矿物、常量元素、微量元素(有益元素和有害元素)等。这些内容在区域地质地球化学调查中已有许多资料可参考,但在微量元素分析项目上,要突出农业化学元素,注意收集和补充。

成土母质的调查 成土母质是基岩表层的疏松物质,它们可能是水下沉积物(砂、砾、泥),也可能是地表沉积的(洪积、波积、残积、风积),甚至是一些成熟度很低的沉积岩,如黄土、红土等。成土母质调查既是区域表生地质和地质化学调查的主要内容,又是农业地质调查的主要内容,二者在元素选择和研究重点上有所不同。农业地质侧重于这些物质的形成和运移,风化和搬运作用在不同地段的发育程度和速率,在元素的研究上,更侧重于与农业有关的有机物和微量元素。

农业水文地质调查 调查基岩裂隙带的分布与密度,表层松散物的孔隙度、渗透性,地下水供给状况(潜水面深度,地下水运动方向及速率,地表水渗透速率及滞留时间,给水和排水区的分布等)、深层水的水储量和水质,土壤保水能力(土壤水的分配、有效水分、季节分配、土壤水的动态)等。

3.土壤地球化学调查

土壤地球化学本底调查 又称为土壤地球化学背景调查,其中心任务是调查区内土壤中的营养元素和有害元素(包括污染元素)的背景值、衬度及异常情况,包括不同层位和不同粒级中的元素背景值;不同类型元素的背景值;元素地球化学赋存状态及迁移性。

土壤微量营养元素的空间分布规律调查 主要指Zn、Cu、Fe、I、Se、Cr、Co、Mn、Mo、Ni、V、B等在植物生长中的作用。调查区域空间及不同类型土壤中存在的营养元素的种类、含量、元素组合、分布规律及存在形式及来源,讨论其有效性及利用率,分析这些元素的生物地球化学循环及平衡过程,提出最佳浓度标准及保证措施。

土壤中有毒有害元素地球化学调查 调查土壤中有毒有害元素的含量(如Pb、Sb、Hg、Cd等)以及某些限量元素(如V、F、Mo、Se等)的含量,调查它们在各种植物及农业品中的含量,分析其分布状况,讨论其积累速率和排出条件,重点了解这些元素在食物链中的传递和积累过程,确定其损害类型和强度。

土壤中微量元素的生态环境效应调查 主要包括区域土特名优农林副产品的地球化学因子,及其生长环境的土壤地球化学和地方病与微量元素缺乏症或高含量。

土壤发生学调查 主要调查成土控制因素及其重要性,土壤发育程度及其分布规律,土壤对成土母质与基岩的继承性及变化性,影响土壤演化的主导因素,土壤发育的趋势及保存条件,土壤灾害及土壤问题等。

土壤—生物链间元素迁移和循环规律研究 在上述调查基础上,通过对土壤与农作物间营养元素、有益微量元素、有毒有害元素的含量对比,农作物、饲料、动物体之间元素含量对比,讨论土壤—生物链的微量元素循环,如有可能最终编制土壤—生物地球化学图。

❹ 农业地质学是地学和农学相结合的桥梁

地学和农学从学科及服务领域都是不同的,但它们都以地球表层为研究对象。按科学发展趋势,要求多学科交叉,因为学科交叉本身就是一种科技创新,但是它们必须有可以交叉的空间,能够相互切入,融合一体构造新的学科,又能促进各自的深化和拓宽服务领域。农业地质学就是以土壤研究为主要切入点的农学与地学的交叉,是地学和农学相结合的桥梁。下面将从三个方面论述之。

(一)土壤质地

1.概念

土壤质地是根据其机械组成划分的土壤类型,有人主张“土壤机械组成就是土壤质地”。土壤质地的类别和特点,主要继承了成土母岩母质的类别和特点,又受自然的及人为的耕作、施肥、排灌、土地平整等成土作用的影响。故土壤质地是土壤的一种稳定的自然属性,反映了母质来源和成土过程的某些特征。因而常被作为土壤分类系统中基层分类依据之一,在制定土壤利用规划、土壤改良和管理时,必须考虑土壤质地特点。

2.不同质地土壤的肥力特点

按土壤的质地土壤一般分为砂土、壤地、粘土三种类型,它们的肥力等基本性质不同,因而在作物种植、管理和工程施工上就有很大差别。

(1)砂质土

以砂土为代表,也包括缺少粘粒的其他轻质土壤(粗骨土、砂壤),它们都有一个松散的土壤固相骨架,砂粒很多而粘粒很少,粒间孔隙大,降水和灌溉水容易输入,内部排水快,但蓄水量少而蒸发失水强烈,水汽由大孔隙扩散至土表而丢失。砂质土的毛细管较粗,毛细管水上升高度小,如地下水位较低,则不能依靠地下水通过毛细管上升作用来回润表土,所以抗旱力弱。只有在河滩地上,地下水位接近土表,砂质土才不致受旱。因此,砂质土在利用管理上要注意选择种植耐旱品种,保证水源供应,及时进行小定额灌溉,要防止漏水漏肥,采用土表覆盖以减少土表水分蒸发。

砂质土的养分少,又因缺少粘粒和有机质而保肥性弱,人畜粪尿和硫酸铵等速效肥料易随雨水和灌溉水流失。砂质土上施用速效肥料往往肥效猛而不稳长,前劲大而后劲不足,农民称为“少施肥、一把草,多施肥、立即倒”。所以,砂质土上要强调增施有机肥,适时施追肥,并掌握勤浇薄施的原则。

砂质土含水少,热容量比粘质土小,白天接受太阳辐射而增温快,夜间散热而降温也快,因而昼夜温差大,对块茎、块根作用的生长有利。早春时砂质土的温度上升较快,称为“暖土”,在晚秋和冬季,一遇寒潮则砂质土的温度就迅速下降。

由于砂质土的通气好,好气微生物活动强烈,有机质迅速分散并释放出养分,使农作物早发,但有机质累积难而其含量常较低。

砂质土体虽松散,但有的(如细砂壤和粗粉质砂壤)在泡水耕耙后易结板闭结,农民称为“闭砂”。因为这些土壤中细砂粒和粗粉粒含量特别高,粘粒和有机质很少,不能粘结成微团聚体和大团聚体,大小均匀而较粗的单粒在水中迅速沉降并排列整齐紧密,呈现汀浆板结性。这种质地的水田在插秧时要边耘边插,混水插秧,但因土粒沉实,稻苗发棵难、分蘖少。

(2)粘质土

包括粘土和粘壤(重壤)等质地粘重的土壤,而其中以重粘土和钠质粘土(碱化粘土、碱土)的粘韧性表现最为明显。此类土壤的细粒(尤其是粘粒)含量最高而粗粒(砂粒、粗粉粒)含量极少,常呈紧实粘结的固相骨架。粒间孔隙数目比砂质土多但甚为狭小,有大量非活性孔(被束缚水占据的)阻止毛管水移动,雨水和灌溉水难以下渗而排水困难,易在犁底层或粘粒积聚层形成上层滞水,影响植物根系下伸。所以,采用深沟、密沟、高畦,或通过深耕和开深线沟破坏紧实的心土层以及采用暗管和暗沟排水管,以避免或减轻涝害。

粘质土含矿质养分(尤其是钾、钙等盐基离子)丰富,而且有机质含量较高。它们对带正电荷的离子态养分(如

)有强大的吸附能力,使其不致被雨水和灌溉水淋洗损失。农民群众说“大粪不过丘,清水淌肥田”,正是说明粘质土的这一特性。

粘质土的孔细而往往为水占据,通气不畅,好气性微生物活动受到抑制,有机质分解缓慢,腐殖质与粘粒结合紧密而难以分解,因而容易积累。所以,粘质土的保肥能力强,氮素等养分含量比砂质土中要多得多,但“死水”(植物不能利用的束缚水)容积和难效养分也多。

粘质土蓄水多,热容量大,昼夜温度变幅较小。在早春,水分饱和的粘质土(尤其是有机质含量高的粘质土),土温上升慢,农民称之为“冷土”。反之,在受短期寒潮侵袭时,粘质土降温也较慢,作物受冻害较轻。

缺少有机质的粘土,往往粘结成大土块,俗称大泥土,其中有机质特别缺乏者,称死泥土。这种土壤的耕性特别差,干时硬结,湿时泥泞,对肥料的反应呆滞,即所谓“少施不应,多施勿灵”。粘质土的犁耕阻力大,所以也叫“重土”,它干后龟裂,易损伤植物根系。对于这类土壤,要增施有机肥,注意排水,选择在适宜含水量条件下精耕细作,以改善结构性和耕性。

此外,由于粘土的湿胀干缩剧烈,常造成土地裂缝和建筑物倒塌。

(3)壤质土

它兼有砂质土和粘质土之优点,是较为理想的土壤,其耕性优良,适种的作物种类多。不过,以粗粉粒占优势(60%~80%以上)而又缺乏有机质的壤质土,即粗粉壤,汀板性强,不利于幼苗扎根和发育。

3.控制不同质地土壤的主要因素

(1)组成土壤土粒的粗细决定土壤质地

如前所述,土壤的机械组成就是土壤质地,这里的“机械”是指构成土壤固相骨架的基本颗粒即土粒。据此可以认为土壤质地就是粗细不一的土粒组构。因此农学对土壤的土粒很重视,按其粗细对土粒的粒径进行了分级,建立了土壤的粒级制(表2-2)。

表2-2 常见的土壤粒级制

此表引自:黄昌勇,2001,土壤学,中国农业出版社。

土壤质地就是按粒级划分出砂土、壤土、粘土三个类型(表2-3)。

(2)土粒粗细(粒级)由组成的矿物控制

组成土粒的矿物分原生和次生两类。原生矿物质直接来源于母岩,其中岩浆岩类是其主要来源,其次为变质岩类;次生矿物是在岩石风化过程和成土过程中由原生矿物分解转化而成的。如铝硅酸盐类岩石的原生矿物风化转变为次生矿物如图2-2所示。

由于两类矿物来源的差异,在土壤土粒中颗粒大小也就有差异,一般是原生矿物主要存在粗粒级土粒中,次生矿物主要存在于细粒级土粒中。1986年殷细宽对华南的成土母岩为花岗岩的红壤的矿物组成的研究表明,粗粒级者多为原生矿物,细粒级者则多为次生矿物(表2-4)。

表2-3 中国土壤质地分类

此表来源同表2-2。

图2-2 粘粒矿物一般的风化顺序

(3)土壤(粒)矿物与母质母岩矿物有继承性

原生矿物的主要种类有石英、长石类、云母类、铁镁矿物类、碳酸盐类和硫化物类,它们风化后在土壤中的表现:

石英:只有物理风化使其破碎,故是土壤中砾石和砂粒的主要组成矿物。

长石类:各类长石均易化学风化,受二氧化碳及水的作用后正长石就会形成以高岭石为主的粘土矿物,斜长石除形成高岭石粘土矿物外,还可形成蒙脱石和埃洛石等粘土矿物;在某些条件下如干旱区,长石类受物理风化、崩解,在土壤中,特别在幼年期土壤中也可成为砂粒成分。

表2-4 我国华南几种主要土壤中各粒组之矿物组成

云母类:黑云母易于风化,在化学风化过程中常被分解,在土壤中形成铁的氧化物及粘土矿物;白云母较黑云母稳定,常裂成薄碎片出现在土壤中,只是当其处于强风化时才变为水云母、高岭石和其他简单物质存在于土壤中。

铁镁矿物:易于化学风化,风化后铁、镁游离成为氧化物在土壤中留下红棕色的氧化铁痕迹,其他部分则在土壤中形成蛋白石与埃洛石等。

碳酸盐类:是造岩矿物中最易溶解的矿物,尤其在生物活动繁盛、水中含CO2较多的地方,可形成易溶的重碳酸盐随水移走,故在土壤中常被全部淋失;但是当环境改变时,CO2析出,重碳酸盐又变为碳酸盐沉淀在土壤中而形成“假菌丝体”的新生体和碳酸盐结核。

硫化物:较易化学风化,一般是通过氧化作物形成硫酸盐和硫盐,同时强烈降低土壤的pH值。

上述矿物通过化学风化可在土壤中形成粘土矿物,常见的粘土矿物类如表2-5所列。

表2-5 我国土壤中常见的次生粘粒矿物[13]

在各类岩石中的原生矿物(也可称造岩矿物)的种类、含量是不同的,当其成为成土母岩受到风化作用和成土作用形成土壤后,土壤(粒)的矿物对母质母岩的矿物有继承性。主要表现:一是土壤(粒)的砂粒矿物,如石英、长石、白云母等自然来自母质母岩;二是土壤(粒)的粘粒矿物为原生矿物次生变化而来,其种类和含量与母质母岩的原生矿物种类和含量有关。因此土壤的粘粒矿物和母质母岩的原生矿物也具有继承性,只不过不像砂粒矿物那样直接。

(二)土壤养分

土壤养分是土壤化学组成中对作物生长发育形成产量所必需的那些元素,它是构成土壤肥力的基本成分。土壤养分与其成土母质母岩有直接和间接的继承性。

土壤的原生矿物含有丰富的常量和微量元素(表2-6),它们是作物养分的重要来源,如原生矿物中含有丰富的Ca,Mg,K,Na,P,S等元素是供给作物和土壤中的微生物所需养分。前已述及,原生矿物来自成土母岩,成土母岩类型不同,所含原生矿物也就不同,因而土壤的养分就不同。这一点,土壤工作者的有关研究有充分的说明,例如《湖南土壤》[4]一书在论述母岩对土壤化学组成时认为“母岩的矿物组成不同,其风化物发育而成的土壤在化学成分和矿质养分的含量上有显著差异”,指出湖南省主要的七大类成土母岩类型所形成的土壤在SiO2,Al2O3,Fe2O3,TiO2,MnO,CaO,MgO,Na2O,K2O,P2O5等有显著差异。并由此得出结论:花岗岩发育的土壤Al,K含量较高,Si,Mg,Mn较低;浅变质板页岩类发育的土壤P,K较丰富;砂岩类发育的土壤Si含量丰富,紫红色碎屑岩类发育的土壤矿质养分含量一般;石灰岩类发育的土壤P,K一般而富Mg,等等。

表2-6 土壤中主要的原生矿物组成

(三)微量元素科学的发育促进了地学与农学的结合

微量元素科学20世纪后期至21世纪初有了长足发展,涉及了许多领域,其中关于岩石-土壤-生物的相关性即地学与农学相结合的农业地质研究内容主要有以下几个方面。

1.微量元素与生物的关系

1)为生物所需要的一切元素都包含在地球表面上的(岩石圈)92个天然元素中,即位于周期表前面的元素。就人体而言,周期表中前面的12个元素占其总重的99.954%[6],0.006%为微量元素,则是位于周期表靠后面的元素。微量元素对于生物的作用,如以它的营养性和毒性来衡量,则在同一周期内(同一族内),自左至右(自上而下)其毒性随着原子序数的增大而增大,营养作用则随其增大而减少。因此,元素对于生物的作用服从元素周期律[7],而地壳中的元素分配与分布也服从元素周期律。

2)微量元素在生物体中所占比重虽然非常微小,但它在新陈代谢过程中对某些酶,蛋白质和激素的构成起着十分重要的作用,如锌至少有80种酶的活性与它有关[8]

3)微量元素的营养学意义,就其重要性来说,并不亚于蛋白质、脂肪、淀粉、维生素,特别是它不能像维生素等那样能够在体内合成,因此它更是不能缺少的[8]。

4)作物所必需的营养元素在作物体内不论数量多少,都是同等重要的,任何一种营养微量元素的特殊功能都不能被其他元素所代替,这就是土壤学中的营养元素的同等重要律和不可代替律。

5)微量元素对于生物的作用服从伯特兰德最适营养浓度定律。这条定律是由法国生物学家G.伯特兰德(Bcrtrand)创立的,其内容是“植物缺少某种必须的元素时就不能成活,当元素适量时就能茁壮成长,但过量时又是有毒的”。

20世纪70年代初,英国地球化学家埃利克·汉密尔顿(Eric.Hamilton)领导的一个小组分析了几乎所有东西的最常见的60个元素,分析精度达10-9~10-12g,结果发现“地壳的元素丰度与任何一种人体组织中的元素丰度是相似的,在对数坐标中比较了岩石与人体血液中各元素的丰度,除了原生质中的主要成分碳、氢、氧、氮和岩石中主要成分硅外,两种样品中元素丰度的相关性是惊人的”(图2-3)。

汉密尔顿的发现表明:第一,人体组织的元素组成与岩石的元素组成息息相关,前者受制于后者。第二,人体组织获得元素是通过食物链,食物是大农业生产品及其加工而成,其元素的获得过程有如李正积所总结的营养元素动态平衡模式所示,即“岩石是元素的天然供应库→衍生成土壤对母质元素的继承性→植物选择性吸取元素生长发育”。这个模式最重要之点是指出岩石是各类作物所需元素的天然供应库。这一点与前苏联学者B.B.得伯罗乌利斯基所指出的“对于地面植物来说,分散元素的主要储备基地是成土母岩”是一致的[10]。第三,根据元素动态平衡模式,植物的元素是由岩石供给的,而岩石中的元素种类及其含量有差异,而此是决定于环境的地球化学条件的,在不同的地球化学环境中,元素及其组合是不同的,因而它供给的元素在其他条件相同的情况下,按伯特兰德最适营养浓度定律一般存在三种情况。第一种情况,在一些地区,能够适量供给某些作物使其茁壮成长而形成该地区的优势作物;第二种情况是在另一些地区,元素的供应不适量,使作物不能正常生长而形成该区的劣势作物;第三种情况则是在一些具有某些特殊元素或特殊的元素组合的地区,它能够满足某种作物的特殊需要而使作物具有独特的风味,即形成所谓名优特产。第四,由于微量元素对于生物有如此重要的作用,因此近年来从医学,营养学(包括对动物,植物)的角度出发,研制和生产了品种繁多的微量元素制剂,主要有微量元素药剂、微量元素营养剂、微量元素饲料添加剂、微量元素肥料等。其中微量元素肥料已成为农业生产必不可少。我国使用的微肥种类主要是铜、钼、锌、硼和稀土,它们的增产效应都很显著,如稀土微肥在国内许多地区施用其增产幅度和经济效益非常可观。

图2-3 人体血液和地壳中元素含量的相关性[9]

按上述各点,微量元素科学已经涉及许多领域,特别在生命科学中,微量元素已成为人体的必需。这些微量元素,经过了由岩石到土壤到植物及食物链构成的循环,因而微量元素科学的发展会促进它们之间的结合,首先是岩石与土壤的结合。

2.影响土壤微量元素的第一位因子是母质母岩

湖南省环境监测中心湖南土壤背景研项目在全省21.8万km2面积上采集土壤样、岩石样,共获有效数据21300个,以其分析土壤微量元素影响因子的重要性时,大多数微量元素是母岩母质为第一位(表2-7)。

表2-7 湖南土壤微量元素影响因子重要性顺序表

(四)农业化学和地球化学[5]

1.基本概念

(1)农业化学

农业化学诞生于19世纪40年代,是研究植物营养、土壤养分、肥料性质及其合理施用的理论和技术的科学。

“植物营养”是指植物在生长发育和形成产量的过程中,必须从环境中吸取的矿质元素。矿质元素分为常量元素(C,H,O,N,P,K,Ca,Mg,S)和微量元素(Fe,B,Mn,Zn,Mo,Cu,Cl等),它们对植物的营养作用主要在三个方面:一是在代谢过程中转化为植物体内结构并构成其重要化合物的组分;二是参与生化反应和能量代谢;三是在生化过程中起缓冲和调节作用。以上对植物营养的观点称之为“植物矿质营养说”。这之前一种广为流传的观点是腐殖质为植物唯一营养给源;另一种观点认为水是植物唯一的营养要素;还有一种观点则认为盐分是一切作物生活和生长的基础。这些观点是在当时化学分析方法很不完善,测试技术精度很不高的情况下得出的,是片面的甚至是荒谬的。“植物矿质营养说”的创立者是德国化学家、农业化学家、当代农业化学奠基人李比希(Justus Von Liebig,1803~1873),他通过大量的化学分析,指出能为植物吸收的养分是矿物质,在当时即称为“植物矿物质营养学说”;进一步的研究得出不断栽培作物,土壤中矿物质养分势必被消耗,如不把作物从土壤中摄取的那些养分归还给土壤,则土壤会变得贫瘠,这一论点被称之为“养分归还说”;李比希继矿物质营养说和养分归还说之后还创立了“最小养分律”。他指出,在作物生长所需各种矿质养分中,如有一个矿质养分含量最少,即使其他矿质养分虽然很丰富,也难以提高作物的产量,亦即作物产量受最小养分的限制。

“土壤养分”是指土壤中所含的植物所需的矿质元素。矿质元素在土壤中的含量称全量,全量只反映土壤对植物养分的供应潜力,而不是实际的供应水平。实际供应水平决定于矿质元素的形态,其形态可分四类:第一类为自由态,是可以溶解在土壤水溶液中的离子,称水溶态养分;第二类是弱结合态,是吸附于土壤颗粒表面,通过解吸可与自由态养分处于平衡状态,称可交换态养分;第三类为易活化的结合态,称易活化态养分;第四类为难活化的结合态养分。以上四类养分,第一类和第二类为有效养分,第三类为中等有效性养分,第四类为土壤储备养分。

“肥料”是用以调节植物与土壤间养分供需矛盾,为植物生长提供良好营养环境的物料。肥料一般分为直接肥料和间接肥料,直接肥料是含有植物所需的营养元素,对植物具有直接营养作用的一类肥料;间接肥料系用以调节土壤酸碱度、改良土壤结构、改善土壤理化性质为主要功效的肥料。

“肥料合理施用”是指能够适度提高土壤矿质营养元素以保障作物所需养分,是建立在作物营养诊断基础之上的。作物营养诊断是通过研究作物的形态、生理、生化等的变化,用以判断作物的营养状态。作物的营养状态可以分为缺乏、适宜和毒害三个范围。缺乏范围是指营养元素含量达到临界浓度之前,作物产量随元素补给而上升的范围;适宜范围是指作物产量不随营养元素含量提高而上升;毒害范围是营养元素过剩,使作物生长受阻,产量下降,甚至死亡。因此,根据作物诊断结果对缺乏范围应适宜施以直接肥料,对毒害范围应施以间接肥料降低元素的毒害作用。

综上所述,农业化学研究内容主要是植物营养、土壤养分、肥料和作物营养诊断。在现阶段还提出了对植物营养遗传学的研究,即是将植物营养生理、生物技术与统计学紧密结合在一起,使植物营养遗传学水平,由不同基因型营养特性差异的比较提高到分子生物学水平,为耐营养胁迫和耐逆境土壤的植物种类的栽培,即充分利用土壤的宜种性提供依据。

(2)地球化学

地球化学是研究地壳的化学成分和元素在其中的分布、分配、集中、分散、共生组合、迁移规律和演化历史的科学,特别强调元素的迁移集散。以农业(植物为主体)为目的的地球化学主要是表生作用地球化学,即风化带和土壤的地球化学,也就是元素在风化带和土壤中的迁移集散。风化带是指地壳岩石在风化过程中,活动组分被淋溶迁出后残留在原处的且被逐渐富集起来的稳定组分。土壤是风化带经过成土作用逐渐发育起来的产物。一般将风化带称成土母质,而紧靠其下未风化的基岩称成土母岩,但如果风化物经迁移在异地沉积或淤积,则其沉积物或淤积物也可经成土作用形成土壤,那么沉积物或淤积物就是成土母质,其下的基岩就不是成土母岩。例如第四纪更新统红土是第四纪红壤的成土母质;第四纪全新统河、湖冲积物是第四纪潮土的成土母质。

按以上叙述,表生带是由土壤、风化带和基岩(有或无)组成的,自上而下分为:

湖南农业地质及其应用

风化带——C层(土壤母质层)土壤物质的来源层。

基层——D层(土壤母岩层)土壤物质的原始来源层。

在风化和成土过程中,按地球化学原理,元素的迁移集散主要影响因素是岩石矿物本身的耐风化性、气候及地形条件,再就是生命活动。对以农业为目的的地球化学研究,必须强调生命活动对元素迁移集散的作用,它主要表现在三个方面:一是生命体(植物)对元素的吸收,早在20世纪初,B.N.维尔纳茨基就发现50~60种元素被植物吸收存在于生命物质中,到现在,通过研究,组成生命物质的元素已达70余种;二是植物吸取元素有强烈的选择性;三是植物的生命活动产生CO2、O2、NH3、H2O和腐殖质影响土壤环境的物理化学条件,进而影响元素的迁移集散。例如腐殖质的胡敏酸和富里酸可以形成pH 值为3~4,甚至更低的水溶液,致使许多金属元素在这种酸性介质中活化进人土壤水溶液中。又如腐殖质在地表常呈胶体状态且一般带负电荷,因而吸附金属阳离子;同时所有金属离子都能与腐殖质形成螯合物。胶体的吸附和螯合物能使金属离子固定在土壤中,从而降低了金属离子的活性。

2.农业化学的实质是一个地球化学过程

农业化学作为一门学科的诞生就是植物矿质营养说的提出,植物的矿质营养就是指植物所需要的元素。农业化学对所需元素的研究,包括对它的来源、含量、分布和可给性等方面的研究。指出其来源主要是成土母岩和成土母质,并由此决定了在土壤中的初始含量。经过风化和成土作用,对初始含量、结合特性、在剖面中的分布会有所改变,这一改变实质上就是元素迁移、集散的地球化学过程。

农业化学按土壤矿质营养元素含量对植物的缺乏、适宜和过剩以研究其肥料施用品种及其合理施用量,是一种人为作用土壤矿质营养元素的迁移集散,实质上也是一个地球化学过程。

农业化学目前强调对植物营养遗传学的研究并作为该学科研究发展方向,就是通过植物对营养元素的选择性吸收来了解其“吸取养分的显著基因型差异”和“抗逆境条件的生理反应存在极大基因型差异”,以合理开发土壤资源,按作物的土宜性(宜种性)提高农田生态系统的生产力,其研究重点或突破点仍然是以土壤矿质营养元素为主,故其实质也仍然是一个地球化学过程。

综上所述,在农业化学中的矿质营养元素的变化过程,实质就是一个表生地球化学过程。因此,应当吸取地球化学学科的经验,结合地球化学特别是表生作用地球化学进行研究,从而使农业化学研究更加深入,上升到一个新的高度。

3.以农业为目的地球化学研究的理论基础是农业化学

农业化学的经典理论“矿质营养说”、“养分归还说”、“最少养分律”、“植物营养遗传”等是用以阐明矿质营养元素在成土母质(母岩)—土壤—作物的转换过程中,对作物生长发育和形成产量和质量的意义,它的最终目的是落实在作物的产量和质量上。前已述及矿质营养元素在成土母质(母岩)—土壤—作物的转变过程实质上是元素迁移集散的表生地球化学过程,因而农业化学应引进地球化学,主要又是表生地球化学。如此,按农业化学进行的地球化学研究与以往的地球化学研究有什么不同呢?以往的地球化学,包括表生地球化学主要对各类地质体的元素分配分布的研究,是以矿产为目的的,如果涉及了对植物的研究,那么也只强调它作为一种生命活动对元素分布分配的影响,而不考虑对植(作)物产量和质量的影响。现在将其应用于农业,也要以植(作)物产量和质量为目的,那么就要与农业化学相结合,要以其经典理论为基础来论述表生地球化学过程,只有这样服务于农业才能有的放矢、具有实用价值,并能为农业部门所认同。

综上所述,土壤质地决定了土壤的肥力特点;土壤质地又决定于由其构成的不同粒径的土粒;土粒则是大小不一的矿物颗粒组成,其中原生矿物一般较粗成为土壤中的主要砂粒,由原生矿物衍变成的次生矿物成为土壤中的粘粒;原生矿物来源于岩石即成母岩,故成土母岩类型不同,原生矿物种类及含量就不同,以致使土壤质地不同;土壤养分也受岩石即成土母岩的影响,特别是土壤微量元素的影响因子第一位的是母岩母质,故成土母岩不同,土壤养分也就有差异。因此土壤的质地和养分都受岩石即成土母岩的影响,它们之间有直接和间接的继承关系。

岩石的矿物和化学组成是地学的岩矿学、地球化学的主要研究内容,由岩石风化到形成土壤是表生地球化学研究内容。作为地学原有领域讲其目的是为找矿服务,从而积累了非常丰富的系统的且时常更新的资料,特别是近年来开展的多目标国土资源大调查,针对农业环境有目的地做了大量工作。

土壤的矿物和化学组成即养分和质地是农学的土壤学、农业化学的重要研究内容,虽然对母岩也进行研究,但只是一般性的了解,有关这方面的内容多是引述地学的基础资料。

从现代农业出发,引进地学理论和应用丰富的地质资料,土壤学是首当其冲的重要内容,实际上只有这样,土壤学才能注入活力得以发展;同时地学也只有将其有关理论和资料,应用于涉及地球表层的其他学科如土壤学,也才能增加活力,拓宽服务领域,才能走出单一的为找矿服务而全方位地为社会服务。故而地学主动服务于农学,将其丰富的地质资料为土壤学所认同并在农业生产中予以实践,地学才会发展。因此地学与农学的结合使农业地质学应运而生,农业地质学就架构地学与农学相结合的桥梁,如图2-4所示;这种桥梁作用也可以土壤圈的构成得到说明。土壤圈是在土壤形成因素说及土壤地带性学说提出后,明确土壤是一个独立的历史自然体的基础上发展起来的,赵其国院士提出“土壤是岩石圈、水圈、生物圈和大气圈相互作用的产物(图2-5);土壤圈内各种土壤类型、特征和性质,都是过去和现在的岩石、大气、水及生物相互作用的记录与反映;土壤圈与岩石圈的矿质元素循环表现为以岩石为基础的成土过程或地质过程元素的迁移和物质循环(图2-6)”。显然,土壤圈是农学研究主要对象,岩石圈则是地学研究主要对象。现代农学(土壤学)和现代地学的发展需要共同地并同等重要地研究这两个圈,这是农业地质的主要任务之一,由此也足可说明农业地质学是架构地学与农学的桥梁。

图2-4 农业地质学是地学与农学结合的桥梁

图2-5 土壤圈的地位

图2-6 土壤圈的内涵

❺ 农业地质环境与农业区划

“农业地质”( agro-geology ) 一词最早是由德国地质学家法鲁 ( Fellow E. A. ) 和李希霍芬 ( E. von Richthofen) 于 19 世纪中叶提出的,当时只是用于解释岩石风化与土壤的形成关系,被称为 “农业地质学派”。到 1972 年,美国地质调查所为了统一学科概念,将农业地质解释为应用于农业需要的地质学,勘查土壤的成因和成分、肥料矿产、地下水分布及特征等,属于应用地质学范畴。目前,通常被解释为 “服务于农业的地质学”,主要研究影响土壤形成与分布的地质过程,以及地质材料作为保持和提高土壤生产力的手段在农业、林业和畜牧业等系统中的应用。主要工作涉及岩石和矿物的农用研究与开发、盐碱地土壤调查与改良、农作物和畜牧生产与地球化学元素关系的研究等,后者更是进一步推进了农业地质研究工作的深入。

农业地质环境涉及岩、土、水、气、温、光、热、肥和生物等多种要素,内容和范围非常广泛,它是地质大循环和生物小循环的结果。地质构造条件控制着地层、岩石、地形、地貌类型的发育; 地理位置、地貌形态的不同又深刻影响着气候、水文和土壤的发育; 而土壤环境和气候条件则明显地制约着生物群落的生长和繁育。农业的形成和发展包括由生物圈的形成、生物的生长繁殖和遗传变异到生物蛋白质、酶、细胞乃至 DNA 片段的科学认知过程。在这一历史进程中,始终贯穿着岩石与矿物的风化、土壤的形成、元素的迁移、生物的元素富集与分散、生物的分解与元素的生物再分配,进而不断地改变着地球的圈层构造,以及地壳的不同地层、不同层位的化学成分及物质的形式。农业生产的发展依赖于地质环境,但同时也在不断地而又深刻地改变着地质环境。

农业区划,就是在农业资源调查、评价的基础上,按区内自然资源和社会经济条件相对一致性与区间差异性和区内农业生产的特点相对一致性与区间差异性等的原则划分农业区,对各区农业发展方向,主导产业、辅助产业进行论证和调整,用以指导农业和农村经济的发展。农业区划是随着农业发展的需要产生的,是随着农业生产变化,农业地域单元的形成与演变而发展的。同样,农业区划的产生和发展也随着历史的发展有一个由低级到高级、由简单到复杂、由不完善到完善的过程。因此,农业资源调查和农业区划工作应当随着国家经济发展的进程不断充实完善农业资源调查和农业区划的内容,以适应国家经济发展和全面建设小康社会的需要。

❻ 农业地质背景调查

农业地质背景调查属基础性调查项目,主要是在以往地质资料的系统整理分析的基础上,进行基于地学意义的成土母质分类,结合农业部门相关资料,建立地质学与土壤学之间的联系纽带——土壤地质单位,开展土壤母岩、土壤调查和土壤矿物分析与元素生态有效性研究、土壤地球化学演化研究等工作,编制全省及3个重点区的农业地质背景图,为农业地质环境综合研究提供基础性背景资料。其调查和成果数据如下。

1)以控制主要土壤地质单位的土壤地质剖面共有103条,主要分布于浙北、浙东、浙中3个重点调查区。

2)根据层位在剖面上采取土壤样,其中全量分析共268件;微量元素有效态共268件;pH值、有机质共268件;矿物组成共268件。岩石样也取自剖面点上,其中全量分析42件,薄片共37件。

土壤样的分析测试项目有:①主量元素及微量元素53项(SiO2、Al2 O3、F2 O3、MgO、CaO、Na2 O、K2 O、Ag、As、Au、B、Ba、Be、Bi、Br、C、Cd、Cl、Co、Cr、Cs、Cu、F、Ga、Ge、Hg、Hf、In、I、Li、Mn、Mo、N、Nb、Ni、P、Pb、Rb、S、Sb、Sc、Se、Sn、Sr、Ta、Th、Ti、Tl、U、V、W、Zn、Zr);②稀土元素15 项(La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y);③有效态及可浸提性8项(B、Cu、Mn、Mo、S、Se、Zn、Fe);④pH值、有机质(Org.C)、土壤矿物组成、土壤磁性。

基岩样的分析测试项目有:①主量元素及微量元素49项(SiO2、Al2 O3、F2 O3、MgO、CaO、Na2 O、K2 O、Ag、As、Au、B、Ba、Be、Bi、Br、C、Cd、Cl、Co、Cr、Cu、F、Ga、Ge、Hg、I、Li、Mn、Mo、N、Nb、Ni、P、Pb、Rb、S、Sb、Sc、Se、Sn、Sr、Th、Ti、Tl、U、V、W、Zn、Zr);②稀土元素15项(La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y);③pH值、有机质(Org.C)。基岩的矿物组成通过岩矿鉴定及据主要氧化含量采用CIPW标准矿物计算(仅适用于火山岩)获得,基岩的磁性参数引自“浙江省区域地层岩石地球物理地球化学参数研究”报告中同类岩石的数据。

3)浙北、浙东、浙中3个地区的成土母质图、土壤地质图。

4)浙江省1:50万成土母质图、土壤地质单位图。

5)文档多媒体资料。

❼ 区域农业地质背景的主要内容包括哪些

热量 日照 水源/灌溉条件 地形 土壤 市场

❽ 农业地质调查研究进展

农业地质在国外通常被称作“服务于农业的地质学”,土壤学研究仍然是农业地质学的主要任务之一,包括研究土壤形成与分布的地质过程,以及地质材料作为保持和提高土壤生产力的手段在农业、畜牧业和林业系统中的应用。主要工作涉及岩石矿物的农用研究与开发、盐碱地土壤调查与改良、农林植物和畜牧生产与地球化学元素关系的研究等。目前侧重于对农业地质背景和农业地质环境的研究,以及土壤的化学污染与防治、土壤地球化学、农业中的微量营养元素及土壤区划等,如法国波皮多大学的魏格纳教授等在1980年对波皮多、香滨和布尔贡3个葡萄酒生产地区的葡萄地质背景关系的研究;美国在土壤分类、日本在土壤成土母质研究方面也十分重视土壤与地质体的内在联系的研究、农业矿产的开发利用研究等。

我国由于受到经济、科技发展状况等因素的限制,在农业生态地质环境方面的研究起步相对较晚。但从20世纪80年代以来,国家一直把这一领域的有关研究作为攻关和应用基础研究的重要课题,先后对29个省(自治区、直辖市)的农业生态环境的污染状况进行了调查,在土壤地球化学背景值、污染物的农业生态环境效应、农业区划布局等方面开展了一定程度的研究工作,并在有机氯农药对农业生态系统的影响及作用规律,铅、镉、汞等重金属元素及无机和有机污染物对农业生态系统的危害影响、迁移转化规律与防治措施等方面取得了一定进展。近年来重点侧重于实际应用,在农业与地质背景关系方面做了许多有益探索,并在农业矿产开发方面取得了明显的效益。如四川对棉花、榨菜、柑橘、水稻等农作物与地质背景关系的调查;江西对南丰蜜橘等特色农产品产地进行生物地球化学研究;广西对柑橘、罗汉果地质背景的调查;河南通过编制全省农业地质背景图,相应开发了一些矿肥、农药和矿产饲料添加剂;江苏开展了板栗、柑橘等经济作物的农业地质背景区划;云南研究了烤烟、茶叶种植区地质背景,等等。

我国农业地质工作大致划分为3个阶段;第一阶段为20世纪50~70年代,为解决农田供水问题,而主要开展农田供水水文地质勘查、盐碱地改良、农用矿产开发,以及土壤侵蚀、荒漠化、土地沙化的调查研究与改造等工作,为提高我国粮食的单产和总量作出了重要贡献;第二阶段为20世纪80~90年代中期,主要包括名特优农产品的农业地质调查与开发工作,如广西容县的沙田柚、云南东部的烤烟、四川涪陵的榨菜、浙江萧山的茶叶、江西的南丰蜜橘和万年贡米等,极大地丰富了农产品市场,促进了农村经济的发展,也产生了农业地质背景系统、农业生态地质学等农业地质的理论总结和探索;第三阶段是20世纪90年代中后期以来,我国农业地质发展进入了一个全新的时期,地质学和地质工作开始尝试拓宽服务领域,“九五”期间国土资源部在传统的1∶5万区域地质调查工作中增加了农业生态地质调查试点内容,在全国不同地区部署了十几个试点图幅,1999~2002年进行了珠江三角洲、江汉平原和成都平原多目标地球化学填图试点工作,取得了一系列重要发现,如土壤某些重金属元素和放射性元素的高值区带分布在人口密集区,2002年又在浙江省进行省级试点,并正式启动了省、部合作农业地质环境调查计划,掀起了农业地质工作的新高潮。

加入WTO后,我国粮食的数量和质量安全问题更成为国内外关注的焦点,因此,我国粮食主产区和人口密集区的农业地质环境质量调查就成为当前农业地质工作的首要任务。为此,国土资源部已与10多个省(区、市)签订了农业地质环境调查项目合作协议,部署调查面积近百万平方千米。这项调查计划正在迅速推进,根据国土资源部制定的《农业地质环境调查规划要点》,到2010年,计划将完成我国主要农业区的地球化学调查面积为260万km2

2002年3月,浙江省人民政府与国土资源部中国地质调查局合作开展“浙江省农业地质环境调查”,标志着全国第一个省、部合作的农业地质环境调查项目启动。至2005年9月,该项目基本结束,完成总面积43613km2的农业地质调查,直接为浙江农业的科学规范、农产品的结构调整服务,为发展效益农业、特色农业、绿色农业提供技术支撑,为拓宽地质工作新领域、在全国推广农业地质工作积累了宝贵经验。

❾ 农业地质工作的发展趋势

随着信息技术的发展和对生态环境要求的提高,越来越多的科学家认为,国土资源、农业生态环境、农产品质量等资料和信息是基础性、公益性和战略性的,农业地质研究需要把岩石圈、大气圈、水圈、生物圈和社会经济圈紧密结合起来。农业地质学科的主要内容已扩展到国土资源的利用与管理、农业生产活动、农产品质量及食品安全、农业生态环境保护、区域经济规划、地方病防治、地质灾害防治、可持续发展等众多领域。近年来,与农业地质环境有关的研究和发展趋势可概括为如下几个方面。

(一)农业环境保护已成为世界各国共同关心的重大课题

工业化给人类生存环境带来的种种影响和危害早已引起各国政府和科学家的普遍关注,针对工业化污染的研究相对成熟,许多国家和政府已颁发法令制止有害工业污染物的任意排放,使工业污染在一定程度上得到有效控制。相比之下,工业现代化对农业环境的负面影响到20世纪后半叶才引起人们的警觉,工业“三废”及城市生活污染物排放、农业生产中农药、化肥等化学品大量投入,是导致农业生态(地质)环境日益恶化,农产品质量下降的主要原因之一。目前,农业地质(生态)环境和农产品安全体系的构建已愈来愈被世界各国政府所重视。许多国家,尤其是美国、英国、法国、德国、日本等发达国家相继投入大量的人力和物力,对重金属、硝酸盐、农药以及持久性有机污染物(POPs)等在农业生态环境中的行为和影响开展了一系列基础研究和应用研究,并建立专门机构,制定相应的法令法规,严格限制化学品在农产品生产领域的使用范围和数量,同时大力发展有机农业,走农业可持续发展之路。在大量基础性、应用性研究的基础上,实施了大规模的农业生态环境的实时性监测;生产过程控制技术的精准化、程序化及产品质量的即时性监测;印度等一些发展中国家也逐步认识到农业生态环境污染对农业持续发展的负面影响,积极开展了相关内容的工作,加紧制定保护和改善农业生态(地质)环境、防治农产品污染的政策和技术措施,以适应经济全球化趋势和国际农产品一体化进程。

我国由于受到经济、科技发展状况等因素的限制,在农业生态(地质)环境方面的研究起步相对较晚。但20世纪80年代以来,国家一直把这一领域的有关研究作为攻关和应用基础研究的重要课题,先后对20多个省、自治区、直辖市的农业生态环境污染状况进行了调查,在土壤地球化学背景值、污染物的农业生态(地质)环境效应、农业区划布局等方面开展了一定程度的研究工作,并在有机氯农药对农业生态系统的影响及作用规律,镉、汞等重金属及无机和有机污染物对农业生态系统的危害影响、迁移转化规律与防治措施等方面取得了一定进展。在“十五”期间,针对当前加强农产品安全管理的形势以及适应加入WTO的迫切需要,我国正借鉴发达国家的经验,积极研究农业生态环境保护和防治、农产品安全生产过程控制等关键技术,并在我国首次将生态农业、食品安全技术等方面研究列入“十五”科技攻关重大项目,研究和制定了如《农田灌溉水质标准》等国家标准,将我国农产品(食品)安全纳入《中国食物与营养发展纲要(2001—2010)》,以农业生态环境安全和食品安全为主线,开展科技攻关。

(二)与农业地质相关的基础性、应用性研究不断深入

长期以来地球化学、环境化学、土壤化学、植物营养学、环境生物学、毒理学、污染生态学、环境医学等学科领域对农业生态环境中有毒有害物质赋存形态、活化迁移、转化循环、生物吸收累积机制、生物效应等一系列问题进行了大量基础性研究,取得了大量理论研究成果,建立了理论方法体系,为农业生态环境的综合评价提供了基础理论依据。

美国、英国等一些西方发达国家自20世纪60年代以来,相继对重金属、硝酸盐、有机氯农药等在农业生态环境和农产品中的污染现状、发生规律、迁移富集过程、循环转化机理及农产品质量安全控制策略和治理途径等各个方面开展了一系列深入而广泛的研究。地球化学、环境化学、环境生物学、毒理学等学科领域的理论研究和实验分析,取得了不同浓度、不同形态污染物的地球化学行为、生物可利用性、生物毒性及其临界值、生态效应等大量基础理论成果。

农业生产过程对环境的污染主要为面源污染,因其涉及面广,过程、机理复杂,针对面源污染的研究相对滞后。国外对重金属在土壤和植物中的迁移富集规律、氮磷水平及潜在的面源污染、有机氯等有机物污染、信息技术在农业面源污染调查与评价中的应用等进行了较为深入的研究,但相关研究目前基本上集中在畜牧业发达的地区,研究的土壤基本上为旱地,对湿地土壤和水田土壤的研究尚感缺乏。

在农业信息系统开发方面,发达国家的信息高速公路正迅速伸向农村和农业,利用计算机技术、地理信息技术与网络技术集成优势,在农业面源污染信息系统、生猪管理系统、名优果树新品种、农业信息管理系统、畜禽饲料专家配方系统等方面的应用已经相当成熟,尤其以美国、日本、西欧国家为代表的发达国家,在完成了农业工业化和农业机械化后已经进入农业信息化时代,建立了以AGRIS、CABI、AGRICOLA等为主的三大著名国际农业数据库以及国家食品安全数据库(National Food Safety Database);卫星数据传输系统已被农业生产者广泛应用,使农业生产率得到大幅度提高。

(三)农业地质评价方法技术研究方兴未艾

长期以来,地质、农业、水利、环保、气象等部门从不同专业角度出发,形成了岩、土、水、气、生物等介质的调查和研究方法,制定了相应的规范规定。但这些调查和研究工作多从部门与学科专业角度出发,调查研究的介质要素相对单一,分析测试指标较少,不少方法技术主要适用于局部性、专题性研究目标。与传统的单学科研究、实验室试验、局部调查评价有所不同,农业地质环境调查是一项包括区域和局部多尺度、水土生物多介质、调查研究相结合、基础性和应用性兼顾的复杂系统工程。岩土地质背景、气候、植被生物、地形条件等自然资源、环境条件及其质量状况是影响农业生产的基本要素;需要有一套具有科学性、可操作性、适应实际需要的评价方法技术体系予以支持,因此,近年来针对环境质量、污染程度的评价方法模型,特别是综合考虑多环境要素,从生态系统角度出发的综合评价体系研究,包括评价的框架思路、指标体系、标准依据、方法模型已成为当今生态环境科学的热点研究课题。

随着当代科学技术的进步,高新技术的应用已成为现代农业地质调查和评价的重要手段,GPS、RS、GIS等新技术迅速在农业地质环境调查和研究中推广普及,为野外调查、快速高效地采集数据资料提供了技术条件;现代分析仪器、测试方法及技术水平的发展,土壤沉积物、植物、水等介质中多元素定量测试技术的成熟,为多要素、多指标因子的农业地质环境综合评价研究提供了方法手段;计算机技术、数据库技术、地理信息系统(GIS)的发展和成熟,为海量数据资料的管理、统计处理、空间分析和解释评价提供了技术平台。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864