总结海洋地质作用包括哪些内容
A. 海洋的作用有哪些
海洋的地质作用
陆源物质等。有时发育于大陆坡的浊流沉积可延入深海平原海水运动、海水中溶解物质的化学反应和海洋生物对海岸、海底岩石和地形的破坏和建造作用的总称。海洋地质作用包括海蚀作用、搬运作用和沉积作用。海水的运动方式主要是波浪、潮汐、洋流和浊流。这 4种海水运动是海洋地质作用的重要的机械动力。由于海水深度和海底地形的影响,它们在海洋中构成了不同的水动力带。海水较浅的滨海带和大陆架是波浪和潮汐为主的水动力带,在波浪影响不到的大陆坡和深海盆地,是洋流和浊流的水动力带。这 4种机械动力都能产生海蚀作用、搬运作用和沉积作用。机械海蚀作用是海水运动时的水力冲击(也叫冲蚀)和海水挟带的碎屑产生的磨蚀对海岸和海底的破坏作用。海水机械搬运的方式有 3种:①推移,粗大的碎屑沿海底滚动和滑动;②跃移,较粗的碎屑间歇地跳跃式移动;③悬移,细小碎屑悬浮在水中移动。这 3种方式随水动力的强弱和碎屑粒径大小而变化。有时3种方式同时存在,有时推移和跃移并存,或者仅有悬移。当海水机械动力消失时,即发生沉积作用。机械沉积作用遍布海洋各处,但以大陆架和大陆坡上的沉积量最多。 水的化学作用主要是对可溶性岩石的溶解作用(也叫溶蚀),以及海水中溶解物质的化学反应在海底上形成沉积物的作用。
海洋中的生物不仅数量大而且种类多,在不同深度的海水中都有生物繁殖,但以大陆架上的海水中最为繁盛。海洋生物的地质作用主要指生物的遗体在海洋底上的沉积作用。
海洋的3种地质作用中,海蚀作用在滨海地区最显著而强烈,广阔的海洋盆则以沉积作用为主。海洋约占地球表面积的71%,是地球上最大的沉积场所,沉积物的数量大,种类多。现代大陆上大部分地区都有不同地质时期的古海洋沉积物。研究海洋的地质作用,特别是海底沉积物,对了解地球发展史、开发利用海底矿产资源都十分重要。 波浪的地质作用 波浪(也称海浪)是由于风的摩擦,海水有规律的波状起伏运动。波浪的大小与风力强弱、风势久暂和海面开阔程度有关。通常波浪的波长自数十厘米至数百米,波高自数厘米至十余米不等。水质点的波动振幅和与此相关的能量,均随水深增加而衰减。它们在水深为半个波长处已大为减小,因此,通常将半个波长的深度看作是波浪影响的下限。在水深小于半个波长的浅水区,波浪受海底摩擦而变形以至破碎,变为激浪,形成复杂的近岸流系,称激浪流。激浪流的冲击力可达9.80665×104帕至29.41995×104帕。当波浪运动方向与海岸直交时,产生与海岸垂直的进流和退流;当波浪运动方向与海岸斜交时,由于波浪的折射而产生与海岸平行的沿岸流。波浪及其在不同情况下衍生的各种波浪流是浅水区的重要动力。激浪流可直接破坏海岸。当海水渗进岩石裂缝,压缩空气,空气的膨胀力便加剧了岩石崩裂。激浪流携带的碎屑还是磨损岩石的工具。海浪对海岸、海底岩石的上述机械破坏作用叫作冲蚀作用。沙、砾随海浪运动就是海浪的搬运作用。波浪的冲蚀作用与搬运作用常常同时出现。当海浪水动力减小时,被搬运物即沉积。
在波浪冲蚀岩岸时,最先在贴水处形成海蚀凹槽。凹槽扩大,上部崩坍,形成海蚀崖。海岸后退一段距离。随着陡崖后退,海蚀凹槽的底部扩大为向海微倾斜的平台,叫海蚀平台。海面下降或陆地上升,海蚀平台出露海面而呈现的阶梯状地带,称海蚀阶地。海蚀平台在波浪作用下,坡度渐缓,一旦海浪的能量不能冲击海岸而分散消耗在摩擦上,海浪对海岸带海底岩石的破坏力趋于零。这时的海岸带横剖面叫海岸平衡剖面。由于构成海岸的岩石及构造的差异,抗蚀能力 不同,冲蚀作用还可以形成海蚀洞穴、桥、柱等地形。
在平缓的沙岸,海浪主要是以进流和退流或沿岸流对沙、砾进行搬运和沉积。进流沿海滩向陆地前进,进流动力耗尽后,退流在重力作用下沿斜坡向海退去。进流将沙、砾带上岸,部分较粗的停留在海浪到达的终点,部分较细的又随退流向海移动。碎屑在进流、退流往返搬运中,不断地磨圆、分选。海水动力消失时,它们就沿海岸堆积为砾滩、沙滩以及水下沙堤。沿岸携带的碎屑以沙为主,作大致平行海岸的纵向运动。这种纵向运动在水深 4米左右处最为活跃。其速度取决于多种因素,通常随波浪增强和搬运物粒径减小而增大,并当波浪运动方向与海岸以45°的角度相交时最快。沿岸流若遇海湾,流速减低,泥沙在湾口处沉积,形成一端与陆地相连的沙嘴等地形。沙嘴加高伸长,可以形成滨海带的障壁,在内侧形成与外海半隔绝的舄湖。
潮汐的地质作用 海水在月球和太阳的引潮力作用下所发生的周期性涨落运动称潮汐,与周期性升降同时发生的海水水平运动称潮流。潮汐改变着激浪带的范围,增强或减弱海岸带的海蚀作用。潮流在平坦的粉沙、淤泥质海岸可影响到相当宽的范围。潮流搅动泥、沙,冲刷海滩,刻蚀出细长的潮水沟。在狭窄的海峡和河口段,潮高激增,流速加大。落潮时,潮水奔腾而下,将峡底或河口底的泥沙挖掘起来搬运入海。
洋流的地质作用 海水沿固定途径的大规模流动叫洋流或海流。表层洋流主要由风及海水密度差引起,水层厚度一般不超过100米;深层洋流主要与海水的密度有关。洋流的速度一般不超过0.5~1.5米/秒,且随水深增加而变小,由此构成水深不同流速各异的所谓等深流。洋流的地质作用主要是将浅海的粉沙、粘土等悬浮物质缓慢地搬运到深海沉积。等深流的流速差异和搬运能力差异影响着其搬运物的粒径大小和搬运方式。加上搬运物沉积速率大小不同,以及紊流的出现等,所有这些因素决定着洋流搬运的距离。
浊流的地质作用 浊流是一种含大量悬移质,主要靠自重沿海底斜坡呈片状向下流动的高密度海流。浊流具有极强大的搬运力,流速达3米/秒的浊流能搬运重达30吨的岩块。大陆坡堆积大量饱含水的软泥和松散碎屑物,这些软泥在暴风浪、潮流、海底地震等外界因素的诱发下,易于液化并沿斜坡向下流动。因此,浊流多半起源于大陆架外缘或大河口外缘。浊流沿大陆斜坡向深海平原运动时,刻蚀出狭窄而底深壁陡的深海峡谷。浊流出峡谷到达深海平原时,速度骤降,将大量碎屑物质堆积下来,形成长条形或舌状沉积体或扇形地,叫浊积扇。浊流沉积物由典型的陆源碎屑组成,夹有浅海的生物遗体,具分选性和层理。
海底沉积物 海洋沉积物可分为机械的、化学的和生物的3种类型。整个海洋底都有沉积物,但以大陆架上的沉积物数量大、种类多。大陆架是海洋中最重要的沉积区域。海洋沉积物质主要是由河流、风等带入海洋的碎屑物质,其次是生物遗体、微生物分解物质等有机质成分。此外,沉积物中还有少量的由火山喷发堕入海中的火山灰,以及来自宇宙空间的陨石和宇宙尘粒等。海洋沉积物与海洋沉积环境密切相关。一般按不同海水深度的海洋沉积环境将海洋沉积物分为:滨海带(高潮线与低潮线之间水域)沉积物、浅海带(低潮浅~ 200米深水域)沉积物、半深海(200~ 2500米水域)沉积物和深海(水深大于2500米的水域)沉积物。
①滨海带沉积物。主要是分布在海滩、潮滩地带的机械碎屑,即不同粒度的沙、砾石和生物骨骼、壳体的碎屑等。在干旱气候下的□湖中,因蒸发作用可以形成岩盐、石膏和钾盐等化学沉积物;在潮湿气候条件下,□湖可变成滨海沼泽,堆积大量成煤物质。
②浅海带沉积物。浅海带占海洋面积的25%,但这一海域的沉积物却占海洋全部沉积物的90%。浅海沉积物有3类:碎屑沉积物主要是沙质级的,由于波浪随海深的增加而减弱,所以碎屑沉积物的粒径一般是从浅水往深水变小。但是因潮流、洋流,以及海底的起伏和大陆的剥蚀强度等的影响,现代的浅海带的沉积物的粒度,并非都是近岸粗,远岸细。生物沉积主要是生物遗体形成的沙和泥,它们成分主要为碳酸钙质。在热带、亚热带的温暖海洋中,还有以珊瑚骨骼为主,其他生物的骨骼和壳体为辅所构成的生物礁堆积,叫珊瑚礁。化学沉积物主要是来自大陆的铁、锰、铝、硅的氧化物和氢氧化物的胶体,与海水电解质相遇时,絮凝成鲕状或豆状的沉积物。
③半深海带沉积物。通常以陆源泥为主,可有少量化学沉积物和生物沉积物。在浊流和海底地滑发育区,可有来自浅海的粗碎屑物,局部地段可见冰川碎屑和火山碎屑。大陆坡上分布最广的沉积物是形成于还原环境中的蓝色软泥;分布于热带、亚热带海岸大河口外的红色软泥和发育于大陆架与大陆坡接壤地带的绿色软泥。
④深海沉积物。通常以浮游生物遗体为主,而极少陆源物质。沉积速率极为缓慢。深海区生物源沉积物通常为各种生物软泥;包括硅藻软泥和放射虫软泥的硅质软泥;包括有孔虫(又称抱球虫)软泥、翼足类软泥和颗石软泥的钙质软泥。此外,还有深海褐色粘土和少量。
======================================
海洋与大气的交互作用
海洋与大气之间的关系相当密切,因为两者不但都是流体,而且彼此直接接触。
大气对海洋的影响
大气密度和比热较海水小,所以对於海水的影响主要来自风或对流运动。例如长时间沿著岸边流动的风,不但会影响表面海流的方向,也可能引起海水的垂直运动。
空气流动对於海流的影响
图片来源:南一版高中基础球科学
例如右上图中风向在大陆边缘由南向北吹拂,海流会受风和科氏力影响流向外海,沿岸就会形成上升流;反之,风由北向南流动时会引起海流流向陆地方向,在沿岸附近形成下降流。
大气环流也会影响海水表层盐度大小。例如在副热带高压区〈纬度三十度左右〉,由於大气对流以下沉运动为主,空气较为乾燥温暖,海面蒸发量大於降水量的结果,造成盐度较高。
水循环
自然界中,水气经由三态变化,以及蒸发、凝结、降水等过程,不但可以提供陆上的淡水,而且也能平衡地球大气的热量。
海水占地球水圈的绝大部分,海面水分蒸发进入大气,随著大气对流到空中后冷却凝结为云,并可在陆地上产生降水,所以水循环可以视为一个天然的海水淡化过程。此外,水分蒸发时会吸热、凝结时会散热,水气本身是重要的温室气体,而云则是阳光的主要反射体,也就是说水循环过程也会影响大气的热能收支。
水循环
图片来源:南一版高中基础球科学
圣婴现象
圣婴现象是指每隔二~七年,赤道东南太平洋海面异常增温,导致全球气候异常的现象。圣婴现象是大气与海洋交互作用的结果。
通常赤道附近之南太平洋海面主要吹东风,海水不断向西流动,导致东南太平洋出现涌升流,来自下方的海水不但带来丰富的营养盐,也使得海面温度偏低。
圣婴现象发生时,赤道东风减弱、甚至吹起西风,原本的涌升流消失,海面温度升高
海温变化导致大气对流改变,气候也受影响。例如太平洋东岸平时较为乾燥少雨、西岸潮湿多雨,圣婴年则反之,造成东岸洪水成灾、西岸容易出现森林火灾一发不可收拾。
海洋对大气的影响
海洋对於大气的影响除了海流会影响气候以外,海温的高低也会影响大气的湿度和对流。以台湾冬季海流流况来说,南部与东部地区由於黑潮的影响,气温会比中国沿岸流流经的区域来得高。
海温高低也会影响天气现象。例如水温必须达到摄氏廿七度以上的海面,才有机会形成台风。
B. 海洋地质作用有哪些运动形式,各自特点是什么
海水的运动是海洋地质作用最重要的动力
运动形式:波浪、潮汐、洋流、浊流
一、 波浪
海水作有规律的波状起伏。是海洋中海水经常性普遍存在的运动形式。
1.波浪的形成:①风摩擦海水表层;②海底地震;③水面上大气压剧变化;
2. 波浪要素
浊流在海底深处难观察,对浊流的重要证据是1929.12.18大西洋底纽芬兰附近的一次地震后海底电缆的破坏。
2. 浊流的地质作用
强烈的冲刷海底,比重大,流速快,在大陆坡形成横切大陆坡的海底峡谷
大量的沉积物(碎屑)在大陆坡角下形成深海扇,浅水生物化石碎屑被带入深海。
C. 海洋地质作用的介绍
海水运动、海水中溶解物质的化学反应和海洋生物对海岸、海底岩石和地形的破坏和建造作用的总称。
D. 地质作用包括哪些
地质作用的自然力是地质营力。力是能的表现,按照能的来源不同,地质作用可分版为外力作用和内权力作用.
1,外力作用按照方式不同分为风化作用,包括物理作用、化学作用和生物作用。剥蚀作用,包括机械风化作用,化学风化作用,搬运作用,包括机械搬运和化学搬运作用两类.沉积作用,包括机械,化学,生物三类.
2,内力作用,
它们既发生于地表,也发生于地球内部。有的强烈急促,如地震;有的微弱缓慢,如风化作用。地球的地表现状是地质作用对地球表面长期改造的结果。
E. 海洋工程地质问题包括哪些内容
海洋工程地质是研究与人类工程建筑活动有关的地质问题的学科,是地质学的一个分支.海洋工程地质学的目的在于查明建设地区或建筑场地的地质条件,分析、预测和评价可能存在和发生的海洋工程地质问题,及其对建筑物和地质环境的影响和危害,提出防治不良地质现象的措施,为保证工程建设的合理规划、建筑物的正确设计、顺利施工和正常使用,提供可靠的地质科学依据.海洋工程地质学还要研究海洋工程地质条件的区域分布特征和规律,预测其在自然条件下和工程建设活动中的变化,和可能发生的地质作用,评价其对工程建设的适宜性.
研究方法
包括地质学方法、实验和测试方法、计算方法和模拟方法. 地质学方法即自然历史分析法,是运用地质学理论,查明海洋工程地质条件和地质现象的空间分布,分析研究其产生过程和发展趋势,进行定性的判断.它是海洋工程地质研究的基本方法,也是其他研究方法的基础. 实验和测试方法,包括为测定岩、土体特性参数的实验、对地应力的量级和方向的测试,以及对地质作用随时间延续而发展的监测. 计算方法,包括应用统计数学方法对测试数据进行统计分析,利用理论或经验公式对已测得的有关数据,进行计算,以定量地评价海洋工程地质问题. 模拟方法,可分为物理模拟(也称海洋工程地质力学模拟)和数值模拟,它们是在通过地质研究,深入认识地质原型,查明各种边界条件,以及通过实验研究获得有关参数的基础上,结合建筑物的实际作用,正确地抽象出海洋工程地质模型,利用相似材料或各种数学方法,再现和预测地质作用的发生和发展过程. 电子计算机在海洋工程地质学领域中的应用,不仅使过去难以完成的复杂计算成为可能,而且能够对数据资料自动存储、检索和处理,甚至能够将专家们的智慧存储在计算机中,以备咨询和处理疑难问题.
特征和规律
海洋工程地质学还要研究海洋工程地质条件的区域分布特征和规律,预测其在自然条件下和工程建设活动中的变化,和可能发生的地质作用,评价其对工程建设的适宜性. 由于各类工程建筑物的结构和作用,及其所在空间范围内的环境不同,因而可能发生和必须研究的地质作用和海洋工程地质问题往往各有侧重.据此,海洋工程地质学又常分为水利水电海洋工程地质学、道路海洋工程地质学、采矿海洋工程地质学、海港和海洋海洋工程地质学等. 海洋工程地质学的主要研究方法包括地质学方法、实验和测试方法、计算方法和模拟方法. 地质学方法即自然历史分析法,是运用地质学理论,查明海洋工程地质条件和地质现象的空间分布,分析研究其产生过程和发展趋势,进行定性的判断.它是海洋工程地质研究的基本方法,也是其他研究方法的基础. 实验和测试方法,包括为测定岩、土体特性参数的实验、对地应力的量级和方向的测试,以及对地质作用随时间延续而发展的监测. 计算方法,包括应用统计数学方法对测试数据进行统计分析,利用理论或经验公式对已测得的有关数据,进行计算,以定量地评价海洋工程地质问题. 模拟方法,可分为物理模拟(也称海洋工程地质力学模拟)和数值模拟,它们是在通过地质研究,深入认识地质原型,查明各种边界条件,以及通过实验研究获得有关参数的基础上,结合建筑物的实际作用,正确地抽象出海洋工程地质模型,利用相似材料或各种数学方法,再现和预测地质作用的发生和发展过程. 未来发展 海洋地质
电子计算机在海洋工程地质学领域中的应用,不仅使过去难以完成的复杂计算成为可能,而且能够对数据资料自动存储、检索和处理,甚至能够将专家们的智慧存储在计算机中,以备咨询和处理疑难问题.
F. 海洋的作用有哪些
海洋的地质作用
陆源物质等。有时发育于大陆坡的浊流沉积可延入深海平原海水运动、海水中溶解物质的化学反应和海洋生物对海岸、海底岩石和地形的破坏和建造作用的总称。海洋地质作用包括海蚀作用、搬运作用和沉积作用。海水的运动方式主要是波浪、潮汐、洋流和浊流。这 4种海水运动是海洋地质作用的重要的机械动力。由于海水深度和海底地形的影响,它们在海洋中构成了不同的水动力带。海水较浅的滨海带和大陆架是波浪和潮汐为主的水动力带,在波浪影响不到的大陆坡和深海盆地,是洋流和浊流的水动力带。这 4种机械动力都能产生海蚀作用、搬运作用和沉积作用。机械海蚀作用是海水运动时的水力冲击(也叫冲蚀)和海水挟带的碎屑产生的磨蚀对海岸和海底的破坏作用。海水机械搬运的方式有 3种:①推移,粗大的碎屑沿海底滚动和滑动;②跃移,较粗的碎屑间歇地跳跃式移动;③悬移,细小碎屑悬浮在水中移动。这 3种方式随水动力的强弱和碎屑粒径大小而变化。有时3种方式同时存在,有时推移和跃移并存,或者仅有悬移。当海水机械动力消失时,即发生沉积作用。机械沉积作用遍布海洋各处,但以大陆架和大陆坡上的沉积量最多。 水的化学作用主要是对可溶性岩石的溶解作用(也叫溶蚀),以及海水中溶解物质的化学反应在海底上形成沉积物的作用。
海洋中的生物不仅数量大而且种类多,在不同深度的海水中都有生物繁殖,但以大陆架上的海水中最为繁盛。海洋生物的地质作用主要指生物的遗体在海洋底上的沉积作用。
海洋的3种地质作用中,海蚀作用在滨海地区最显著而强烈,广阔的海洋盆则以沉积作用为主。海洋约占地球表面积的71%,是地球上最大的沉积场所,沉积物的数量大,种类多。现代大陆上大部分地区都有不同地质时期的古海洋沉积物。研究海洋的地质作用,特别是海底沉积物,对了解地球发展史、开发利用海底矿产资源都十分重要。 波浪的地质作用 波浪(也称海浪)是由于风的摩擦,海水有规律的波状起伏运动。波浪的大小与风力强弱、风势久暂和海面开阔程度有关。通常波浪的波长自数十厘米至数百米,波高自数厘米至十余米不等。水质点的波动振幅和与此相关的能量,均随水深增加而衰减。它们在水深为半个波长处已大为减小,因此,通常将半个波长的深度看作是波浪影响的下限。在水深小于半个波长的浅水区,波浪受海底摩擦而变形以至破碎,变为激浪,形成复杂的近岸流系,称激浪流。激浪流的冲击力可达9.80665×104帕至29.41995×104帕。当波浪运动方向与海岸直交时,产生与海岸垂直的进流和退流;当波浪运动方向与海岸斜交时,由于波浪的折射而产生与海岸平行的沿岸流。波浪及其在不同情况下衍生的各种波浪流是浅水区的重要动力。激浪流可直接破坏海岸。当海水渗进岩石裂缝,压缩空气,空气的膨胀力便加剧了岩石崩裂。激浪流携带的碎屑还是磨损岩石的工具。海浪对海岸、海底岩石的上述机械破坏作用叫作冲蚀作用。沙、砾随海浪运动就是海浪的搬运作用。波浪的冲蚀作用与搬运作用常常同时出现。当海浪水动力减小时,被搬运物即沉积。
在波浪冲蚀岩岸时,最先在贴水处形成海蚀凹槽。凹槽扩大,上部崩坍,形成海蚀崖。海岸后退一段距离。随着陡崖后退,海蚀凹槽的底部扩大为向海微倾斜的平台,叫海蚀平台。海面下降或陆地上升,海蚀平台出露海面而呈现的阶梯状地带,称海蚀阶地。海蚀平台在波浪作用下,坡度渐缓,一旦海浪的能量不能冲击海岸而分散消耗在摩擦上,海浪对海岸带海底岩石的破坏力趋于零。这时的海岸带横剖面叫海岸平衡剖面。由于构成海岸的岩石及构造的差异,抗蚀能力 不同,冲蚀作用还可以形成海蚀洞穴、桥、柱等地形。
在平缓的沙岸,海浪主要是以进流和退流或沿岸流对沙、砾进行搬运和沉积。进流沿海滩向陆地前进,进流动力耗尽后,退流在重力作用下沿斜坡向海退去。进流将沙、砾带上岸,部分较粗的停留在海浪到达的终点,部分较细的又随退流向海移动。碎屑在进流、退流往返搬运中,不断地磨圆、分选。海水动力消失时,它们就沿海岸堆积为砾滩、沙滩以及水下沙堤。沿岸携带的碎屑以沙为主,作大致平行海岸的纵向运动。这种纵向运动在水深 4米左右处最为活跃。其速度取决于多种因素,通常随波浪增强和搬运物粒径减小而增大,并当波浪运动方向与海岸以45°的角度相交时最快。沿岸流若遇海湾,流速减低,泥沙在湾口处沉积,形成一端与陆地相连的沙嘴等地形。沙嘴加高伸长,可以形成滨海带的障壁,在内侧形成与外海半隔绝的舄湖。
潮汐的地质作用 海水在月球和太阳的引潮力作用下所发生的周期性涨落运动称潮汐,与周期性升降同时发生的海水水平运动称潮流。潮汐改变着激浪带的范围,增强或减弱海岸带的海蚀作用。潮流在平坦的粉沙、淤泥质海岸可影响到相当宽的范围。潮流搅动泥、沙,冲刷海滩,刻蚀出细长的潮水沟。在狭窄的海峡和河口段,潮高激增,流速加大。落潮时,潮水奔腾而下,将峡底或河口底的泥沙挖掘起来搬运入海。
洋流的地质作用 海水沿固定途径的大规模流动叫洋流或海流。表层洋流主要由风及海水密度差引起,水层厚度一般不超过100米;深层洋流主要与海水的密度有关。洋流的速度一般不超过0.5~1.5米/秒,且随水深增加而变小,由此构成水深不同流速各异的所谓等深流。洋流的地质作用主要是将浅海的粉沙、粘土等悬浮物质缓慢地搬运到深海沉积。等深流的流速差异和搬运能力差异影响着其搬运物的粒径大小和搬运方式。加上搬运物沉积速率大小不同,以及紊流的出现等,所有这些因素决定着洋流搬运的距离。
浊流的地质作用 浊流是一种含大量悬移质,主要靠自重沿海底斜坡呈片状向下流动的高密度海流。浊流具有极强大的搬运力,流速达3米/秒的浊流能搬运重达30吨的岩块。大陆坡堆积大量饱含水的软泥和松散碎屑物,这些软泥在暴风浪、潮流、海底地震等外界因素的诱发下,易于液化并沿斜坡向下流动。因此,浊流多半起源于大陆架外缘或大河口外缘。浊流沿大陆斜坡向深海平原运动时,刻蚀出狭窄而底深壁陡的深海峡谷。浊流出峡谷到达深海平原时,速度骤降,将大量碎屑物质堆积下来,形成长条形或舌状沉积体或扇形地,叫浊积扇。浊流沉积物由典型的陆源碎屑组成,夹有浅海的生物遗体,具分选性和层理。
海底沉积物 海洋沉积物可分为机械的、化学的和生物的3种类型。整个海洋底都有沉积物,但以大陆架上的沉积物数量大、种类多。大陆架是海洋中最重要的沉积区域。海洋沉积物质主要是由河流、风等带入海洋的碎屑物质,其次是生物遗体、微生物分解物质等有机质成分。此外,沉积物中还有少量的由火山喷发堕入海中的火山灰,以及来自宇宙空间的陨石和宇宙尘粒等。海洋沉积物与海洋沉积环境密切相关。一般按不同海水深度的海洋沉积环境将海洋沉积物分为:滨海带(高潮线与低潮线之间水域)沉积物、浅海带(低潮浅~ 200米深水域)沉积物、半深海(200~ 2500米水域)沉积物和深海(水深大于2500米的水域)沉积物。
①滨海带沉积物。主要是分布在海滩、潮滩地带的机械碎屑,即不同粒度的沙、砾石和生物骨骼、壳体的碎屑等。在干旱气候下的□湖中,因蒸发作用可以形成岩盐、石膏和钾盐等化学沉积物;在潮湿气候条件下,□湖可变成滨海沼泽,堆积大量成煤物质。
②浅海带沉积物。浅海带占海洋面积的25%,但这一海域的沉积物却占海洋全部沉积物的90%。浅海沉积物有3类:碎屑沉积物主要是沙质级的,由于波浪随海深的增加而减弱,所以碎屑沉积物的粒径一般是从浅水往深水变小。但是因潮流、洋流,以及海底的起伏和大陆的剥蚀强度等的影响,现代的浅海带的沉积物的粒度,并非都是近岸粗,远岸细。生物沉积主要是生物遗体形成的沙和泥,它们成分主要为碳酸钙质。在热带、亚热带的温暖海洋中,还有以珊瑚骨骼为主,其他生物的骨骼和壳体为辅所构成的生物礁堆积,叫珊瑚礁。化学沉积物主要是来自大陆的铁、锰、铝、硅的氧化物和氢氧化物的胶体,与海水电解质相遇时,絮凝成鲕状或豆状的沉积物。
③半深海带沉积物。通常以陆源泥为主,可有少量化学沉积物和生物沉积物。在浊流和海底地滑发育区,可有来自浅海的粗碎屑物,局部地段可见冰川碎屑和火山碎屑。大陆坡上分布最广的沉积物是形成于还原环境中的蓝色软泥;分布于热带、亚热带海岸大河口外的红色软泥和发育于大陆架与大陆坡接壤地带的绿色软泥。
④深海沉积物。通常以浮游生物遗体为主,而极少陆源物质。沉积速率极为缓慢。深海区生物源沉积物通常为各种生物软泥;包括硅藻软泥和放射虫软泥的硅质软泥;包括有孔虫(又称抱球虫)软泥、翼足类软泥和颗石软泥的钙质软泥。此外,还有深海褐色粘土和少量。
======================================
海洋与大气的交互作用
海洋与大气之间的关系相当密切,因为两者不但都是流体,而且彼此直接接触。
大气对海洋的影响
大气密度和比热较海水小,所以对於海水的影响主要来自风或对流运动。例如长时间沿著岸边流动的风,不但会影响表面海流的方向,也可能引起海水的垂直运动。
空气流动对於海流的影响
图片来源:南一版高中基础球科学
例如右上图中风向在大陆边缘由南向北吹拂,海流会受风和科氏力影响流向外海,沿岸就会形成上升流;反之,风由北向南流动时会引起海流流向陆地方向,在沿岸附近形成下降流。
大气环流也会影响海水表层盐度大小。例如在副热带高压区〈纬度三十度左右〉,由於大气对流以下沉运动为主,空气较为乾燥温暖,海面蒸发量大於降水量的结果,造成盐度较高。
水循环
自然界中,水气经由三态变化,以及蒸发、凝结、降水等过程,不但可以提供陆上的淡水,而且也能平衡地球大气的热量。
海水占地球水圈的绝大部分,海面水分蒸发进入大气,随著大气对流到空中后冷却凝结为云,并可在陆地上产生降水,所以水循环可以视为一个天然的海水淡化过程。此外,水分蒸发时会吸热、凝结时会散热,水气本身是重要的温室气体,而云则是阳光的主要反射体,也就是说水循环过程也会影响大气的热能收支。
水循环
图片来源:南一版高中基础球科学
圣婴现象
圣婴现象是指每隔二~七年,赤道东南太平洋海面异常增温,导致全球气候异常的现象。圣婴现象是大气与海洋交互作用的结果。
通常赤道附近之南太平洋海面主要吹东风,海水不断向西流动,导致东南太平洋出现涌升流,来自下方的海水不但带来丰富的营养盐,也使得海面温度偏低。
圣婴现象发生时,赤道东风减弱、甚至吹起西风,原本的涌升流消失,海面温度升高
海温变化导致大气对流改变,气候也受影响。例如太平洋东岸平时较为乾燥少雨、西岸潮湿多雨,圣婴年则反之,造成东岸洪水成灾、西岸容易出现森林火灾一发不可收拾。
海洋对大气的影响
海洋对於大气的影响除了海流会影响气候以外,海温的高低也会影响大气的湿度和对流。以台湾冬季海流流况来说,南部与东部地区由於黑潮的影响,气温会比中国沿岸流流经的区域来得高。
海温高低也会影响天气现象。例如水温必须达到摄氏廿七度以上的海面,才有机会形成台风。
上述内容分别介绍大气和海洋对於彼此的影响,然而近来我们更重视的主题是两者间的交互作用,以下将分别针对水循环和圣婴现象进行讨论。
G. 海洋地质作用的特点
地球与其它星球抄特征的区别袭是有浩瀚的海洋
,
海洋
緼
育了地球上的生命
,
现
代地球上
70.8%(4/3)
的面积为海洋
.
地史中由于海陆的变迁海水增多次侵入大陆
内部
,
在地层中留下了广泛的遗迹。例如,淮南地区保留的从云古代中晚期(
Pt
2
)
到中奥陶(0
2
)的地层都属海相沉积也就是说从10亿前——5亿年这个时期,
淮南地区曾被海水淹没,成为了海洋的一部分,
0
2
——C
2
上升出海面,C
2
-P
又处于海陆交互的滨岸地带(成煤时期)
。
海洋是陆地上最大的沉积盆地,蕴藏有丰富的矿产资源(海洋中几乎含有
所有的化学元素,其中铀是获得原子能的主要元素)含量达亿吨,是陆地含量的
900
倍。因此对海洋地质作用的研究是极其重要的,无论对地壳形成的了解及现
实资源的利用都有深刻的意义。
H. 海洋作用是什么
海洋的地质作用
陆源物质等。有时发育于大陆坡的浊流沉积可延入深海平原海水运动、海水中溶解物质的化学反应和海洋生物对海岸、海底岩石和地形的破坏和建造作用的总称。海洋地质作用包括海蚀作用、搬运作用和沉积作用。海水的运动方式主要是波浪、潮汐、洋流和浊流。这 4种海水运动是海洋地质作用的重要的机械动力。由于海水深度和海底地形的影响,它们在海洋中构成了不同的水动力带。海水较浅的滨海带和大陆架是波浪和潮汐为主的水动力带,在波浪影响不到的大陆坡和深海盆地,是洋流和浊流的水动力带。这 4种机械动力都能产生海蚀作用、搬运作用和沉积作用。机械海蚀作用是海水运动时的水力冲击(也叫冲蚀)和海水挟带的碎屑产生的磨蚀对海岸和海底的破坏作用。海水机械搬运的方式有 3种:①推移,粗大的碎屑沿海底滚动和滑动;②跃移,较粗的碎屑间歇地跳跃式移动;③悬移,细小碎屑悬浮在水中移动。这 3种方式随水动力的强弱和碎屑粒径大小而变化。有时3种方式同时存在,有时推移和跃移并存,或者仅有悬移。当海水机械动力消失时,即发生沉积作用。机械沉积作用遍布海洋各处,但以大陆架和大陆坡上的沉积量最多。 水的化学作用主要是对可溶性岩石的溶解作用(也叫溶蚀),以及海水中溶解物质的化学反应在海底上形成沉积物的作用。
海洋中的生物不仅数量大而且种类多,在不同深度的海水中都有生物繁殖,但以大陆架上的海水中最为繁盛。海洋生物的地质作用主要指生物的遗体在海洋底上的沉积作用。
海洋的3种地质作用中,海蚀作用在滨海地区最显著而强烈,广阔的海洋盆则以沉积作用为主。海洋约占地球表面积的71%,是地球上最大的沉积场所,沉积物的数量大,种类多。现代大陆上大部分地区都有不同地质时期的古海洋沉积物。研究海洋的地质作用,特别是海底沉积物,对了解地球发展史、开发利用海底矿产资源都十分重要。 波浪的地质作用 波浪(也称海浪)是由于风的摩擦,海水有规律的波状起伏运动。波浪的大小与风力强弱、风势久暂和海面开阔程度有关。通常波浪的波长自数十厘米至数百米,波高自数厘米至十余米不等。水质点的波动振幅和与此相关的能量,均随水深增加而衰减。它们在水深为半个波长处已大为减小,因此,通常将半个波长的深度看作是波浪影响的下限。在水深小于半个波长的浅水区,波浪受海底摩擦而变形以至破碎,变为激浪,形成复杂的近岸流系,称激浪流。激浪流的冲击力可达9.80665×104帕至29.41995×104帕。当波浪运动方向与海岸直交时,产生与海岸垂直的进流和退流;当波浪运动方向与海岸斜交时,由于波浪的折射而产生与海岸平行的沿岸流。波浪及其在不同情况下衍生的各种波浪流是浅水区的重要动力。激浪流可直接破坏海岸。当海水渗进岩石裂缝,压缩空气,空气的膨胀力便加剧了岩石崩裂。激浪流携带的碎屑还是磨损岩石的工具。海浪对海岸、海底岩石的上述机械破坏作用叫作冲蚀作用。沙、砾随海浪运动就是海浪的搬运作用。波浪的冲蚀作用与搬运作用常常同时出现。当海浪水动力减小时,被搬运物即沉积。
在波浪冲蚀岩岸时,最先在贴水处形成海蚀凹槽。凹槽扩大,上部崩坍,形成海蚀崖。海岸后退一段距离。随着陡崖后退,海蚀凹槽的底部扩大为向海微倾斜的平台,叫海蚀平台。海面下降或陆地上升,海蚀平台出露海面而呈现的阶梯状地带,称海蚀阶地。海蚀平台在波浪作用下,坡度渐缓,一旦海浪的能量不能冲击海岸而分散消耗在摩擦上,海浪对海岸带海底岩石的破坏力趋于零。这时的海岸带横剖面叫海岸平衡剖面。由于构成海岸的岩石及构造的差异,抗蚀能力 不同,冲蚀作用还可以形成海蚀洞穴、桥、柱等地形。
在平缓的沙岸,海浪主要是以进流和退流或沿岸流对沙、砾进行搬运和沉积。进流沿海滩向陆地前进,进流动力耗尽后,退流在重力作用下沿斜坡向海退去。进流将沙、砾带上岸,部分较粗的停留在海浪到达的终点,部分较细的又随退流向海移动。碎屑在进流、退流往返搬运中,不断地磨圆、分选。海水动力消失时,它们就沿海岸堆积为砾滩、沙滩以及水下沙堤。沿岸携带的碎屑以沙为主,作大致平行海岸的纵向运动。这种纵向运动在水深 4米左右处最为活跃。其速度取决于多种因素,通常随波浪增强和搬运物粒径减小而增大,并当波浪运动方向与海岸以45°的角度相交时最快。沿岸流若遇海湾,流速减低,泥沙在湾口处沉积,形成一端与陆地相连的沙嘴等地形。沙嘴加高伸长,可以形成滨海带的障壁,在内侧形成与外海半隔绝的舄湖。
潮汐的地质作用 海水在月球和太阳的引潮力作用下所发生的周期性涨落运动称潮汐,与周期性升降同时发生的海水水平运动称潮流。潮汐改变着激浪带的范围,增强或减弱海岸带的海蚀作用。潮流在平坦的粉沙、淤泥质海岸可影响到相当宽的范围。潮流搅动泥、沙,冲刷海滩,刻蚀出细长的潮水沟。在狭窄的海峡和河口段,潮高激增,流速加大。落潮时,潮水奔腾而下,将峡底或河口底的泥沙挖掘起来搬运入海。
洋流的地质作用 海水沿固定途径的大规模流动叫洋流或海流。表层洋流主要由风及海水密度差引起,水层厚度一般不超过100米;深层洋流主要与海水的密度有关。洋流的速度一般不超过0.5~1.5米/秒,且随水深增加而变小,由此构成水深不同流速各异的所谓等深流。洋流的地质作用主要是将浅海的粉沙、粘土等悬浮物质缓慢地搬运到深海沉积。等深流的流速差异和搬运能力差异影响着其搬运物的粒径大小和搬运方式。加上搬运物沉积速率大小不同,以及紊流的出现等,所有这些因素决定着洋流搬运的距离。
浊流的地质作用 浊流是一种含大量悬移质,主要靠自重沿海底斜坡呈片状向下流动的高密度海流。浊流具有极强大的搬运力,流速达3米/秒的浊流能搬运重达30吨的岩块。大陆坡堆积大量饱含水的软泥和松散碎屑物,这些软泥在暴风浪、潮流、海底地震等外界因素的诱发下,易于液化并沿斜坡向下流动。因此,浊流多半起源于大陆架外缘或大河口外缘。浊流沿大陆斜坡向深海平原运动时,刻蚀出狭窄而底深壁陡的深海峡谷。浊流出峡谷到达深海平原时,速度骤降,将大量碎屑物质堆积下来,形成长条形或舌状沉积体或扇形地,叫浊积扇。浊流沉积物由典型的陆源碎屑组成,夹有浅海的生物遗体,具分选性和层理。
海底沉积物 海洋沉积物可分为机械的、化学的和生物的3种类型。整个海洋底都有沉积物,但以大陆架上的沉积物数量大、种类多。大陆架是海洋中最重要的沉积区域。海洋沉积物质主要是由河流、风等带入海洋的碎屑物质,其次是生物遗体、微生物分解物质等有机质成分。此外,沉积物中还有少量的由火山喷发堕入海中的火山灰,以及来自宇宙空间的陨石和宇宙尘粒等。海洋沉积物与海洋沉积环境密切相关。一般按不同海水深度的海洋沉积环境将海洋沉积物分为:滨海带(高潮线与低潮线之间水域)沉积物、浅海带(低潮浅~ 200米深水域)沉积物、半深海(200~ 2500米水域)沉积物和深海(水深大于2500米的水域)沉积物。
①滨海带沉积物。主要是分布在海滩、潮滩地带的机械碎屑,即不同粒度的沙、砾石和生物骨骼、壳体的碎屑等。在干旱气候下的□湖中,因蒸发作用可以形成岩盐、石膏和钾盐等化学沉积物;在潮湿气候条件下,□湖可变成滨海沼泽,堆积大量成煤物质。
②浅海带沉积物。浅海带占海洋面积的25%,但这一海域的沉积物却占海洋全部沉积物的90%。浅海沉积物有3类:碎屑沉积物主要是沙质级的,由于波浪随海深的增加而减弱,所以碎屑沉积物的粒径一般是从浅水往深水变小。但是因潮流、洋流,以及海底的起伏和大陆的剥蚀强度等的影响,现代的浅海带的沉积物的粒度,并非都是近岸粗,远岸细。生物沉积主要是生物遗体形成的沙和泥,它们成分主要为碳酸钙质。在热带、亚热带的温暖海洋中,还有以珊瑚骨骼为主,其他生物的骨骼和壳体为辅所构成的生物礁堆积,叫珊瑚礁。化学沉积物主要是来自大陆的铁、锰、铝、硅的氧化物和氢氧化物的胶体,与海水电解质相遇时,絮凝成鲕状或豆状的沉积物。
③半深海带沉积物。通常以陆源泥为主,可有少量化学沉积物和生物沉积物。在浊流和海底地滑发育区,可有来自浅海的粗碎屑物,局部地段可见冰川碎屑和火山碎屑。大陆坡上分布最广的沉积物是形成于还原环境中的蓝色软泥;分布于热带、亚热带海岸大河口外的红色软泥和发育于大陆架与大陆坡接壤地带的绿色软泥。
④深海沉积物。通常以浮游生物遗体为主,而极少陆源物质。沉积速率极为缓慢。深海区生物源沉积物通常为各种生物软泥;包括硅藻软泥和放射虫软泥的硅质软泥;包括有孔虫(又称抱球虫)软泥、翼足类软泥和颗石软泥的钙质软泥。此外,还有深海褐色粘土和少量。
======================================
海洋与大气的交互作用
海洋与大气之间的关系相当密切,因为两者不但都是流体,而且彼此直接接触。
大气对海洋的影响
大气密度和比热较海水小,所以对於海水的影响主要来自风或对流运动。例如长时间沿著岸边流动的风,不但会影响表面海流的方向,也可能引起海水的垂直运动。
空气流动对於海流的影响
图片来源:南一版高中基础球科学
例如右上图中风向在大陆边缘由南向北吹拂,海流会受风和科氏力影响流向外海,沿岸就会形成上升流;反之,风由北向南流动时会引起海流流向陆地方向,在沿岸附近形成下降流。
大气环流也会影响海水表层盐度大小。例如在副热带高压区〈纬度三十度左右〉,由於大气对流以下沉运动为主,空气较为乾燥温暖,海面蒸发量大於降水量的结果,造成盐度较高。
水循环
自然界中,水气经由三态变化,以及蒸发、凝结、降水等过程,不但可以提供陆上的淡水,而且也能平衡地球大气的热量。
海水占地球水圈的绝大部分,海面水分蒸发进入大气,随著大气对流到空中后冷却凝结为云,并可在陆地上产生降水,所以水循环可以视为一个天然的海水淡化过程。此外,水分蒸发时会吸热、凝结时会散热,水气本身是重要的温室气体,而云则是阳光的主要反射体,也就是说水循环过程也会影响大气的热能收支。
水循环
图片来源:南一版高中基础球科学
圣婴现象
圣婴现象是指每隔二~七年,赤道东南太平洋海面异常增温,导致全球气候异常的现象。圣婴现象是大气与海洋交互作用的结果。
通常赤道附近之南太平洋海面主要吹东风,海水不断向西流动,导致东南太平洋出现涌升流,来自下方的海水不但带来丰富的营养盐,也使得海面温度偏低。
圣婴现象发生时,赤道东风减弱、甚至吹起西风,原本的涌升流消失,海面温度升高
海温变化导致大气对流改变,气候也受影响。例如太平洋东岸平时较为乾燥少雨、西岸潮湿多雨,圣婴年则反之,造成东岸洪水成灾、西岸容易出现森林火灾一发不可收拾。
海洋对大气的影响
海洋对於大气的影响除了海流会影响气候以外,海温的高低也会影响大气的湿度和对流。以台湾冬季海流流况来说,南部与东部地区由於黑潮的影响,气温会比中国沿岸流流经的区域来得高。
海温高低也会影响天气现象。例如水温必须达到摄氏廿七度以上的海面,才有机会形成台风。
上述内容分别介绍大气和海洋对於彼此的影响,然而近来我们更重视的主题是两者间的交互作用,以下将分别针对水循环和圣婴现象进行讨论。
I. 海洋地质的简介
主题词或关键词: 地质科学 海洋科学
内容
在进入21世纪后的十几年里,国际海洋地质学界关注的问题是从“全球变化”这个层面,探索人类活动之前的地质时期,或宇宙范围内的地球自然环境变化周期和发展趋势。揭示地球系统在漫长的地质演化过程中,水圈与其他圈层的内部反馈机理以及相互作用,预测地球未来的环境变化趋势。 科学家们将从以下几个方面进行研究。 (1)地球板块构造和地球构造仍然是海洋地球物理学家们关注的课题。在过去的几十年里,人们花费了大量人力、物力,对新的地球板块构造理论进行论证。其研究领域多集中在大洋地壳、被动陆缘和主动陆缘等方面。从早先的大陆漂移说,海底扩张说等基础,发展成了板块构造理论,并为今天大多数科学家所接受。人们关心的问题是,关于板块运动的驱动力的作用方式和内在机理,或者说,造成板块运动的驱动力受哪些因素影响?板块的刚性程度、板块动力学以及相关的地质作用是什么?其发展过程又是如何进行的?
20世纪70年代后、80年代初,科学家们提出地体构造理论。随后,各国地质学家、海洋地质学家,相继发现许多性质不同的地体组成。例如,地层地体、破裂地体、变质地体和复合地体等。虽然,地体本身或各地体之间产生断裂、漂移、碰撞和增生等不同演化过程,但是,人们有理由相信,地体构造乃是现代板块构造学说的重要组成部分。
关于板块构造的驱动力问题,多数学者赞同是地幔对流及其与岩石圈的相互作用,但是,在具体的对流性质、规模、板块运动方式等,仍存在较大分歧。特别是对已经提出来的“浅对流模式”和上下地幔分别存在的对流形式--“双层对流模式”等论点,由于论据不足,产生争议。
人们更为关注地壳构造和沉积史及俯冲史,包括被动陆缘热矿史等方面的研究。希望解决的问题是,被动陆缘底下地壳的性质如何确定?在大陆产生分离之前,是否会出现过地壳拱起、扩张、断裂等地质现象?出现的性质和时间如何确定?被动陆缘下的地壳是否是从大陆地壳演化而来的?大陆分离后立即形成的大洋地壳是否与海底扩张的稳定期形成的大洋地壳不同?被动陆缘如何随时间的推移而上下运动?它们又是如何影响沉积过程、沉积物的热状冷状史?被动陆缘块状滑动过程和模式是什么?从减少灾害的角度看,人们关心,深海沟与岛弧之间地带的构造形式,火山弧与深海沟之间地带的上下垂直运动,孔隙水在俯冲过程中的作用是什么?弧后盆地的直接或间接成因?
(2)古海洋学呈现快速发展势头。古海洋学是20世纪70年代后产生的新学科,主要是把大洋水体的变迁作为研究对象。在海洋系统中,依靠海洋沉积,研究过去海水与水团、海水化学和海洋生产力、生物地理等方面的演化规律,讨论它们对全球大气和大陆环境的影响。国际古海洋学界正积极投入“全球变化”的研究,其研究的重点是探索人类活动以前或地球以外的全球自然环境变化的周期和趋势。进入20世纪90年代以后,古海洋学已经被许多国际组织列为海洋地质学的重要内容。由于古海洋学本身固有的学科多,有跨学科性质,能建立探索机制模式等特点,与“全球变化”的总研究目标十分吻合,已成为“过去全球变化”、“全球海洋通量计划”等核心研究项的重要组成部分。
(3)关注大洋热液循环研究课题。20世纪70年代后,通过载人深潜器等,人们对太平洋和大西洋的若干洋底进行调查。人们陆续发现几个大的洋底热泉区。热泉区的发现,表明洋底热液活动对大洋地壳、沉积物和海水的地球化学研究,起着十分重要的作用。同时,也为海底扩张理论,提供了重要科学依据。
洋底热液是含量极高的热液矿床。这一发现,立即引起学术界和工业界的极大兴起。毫无疑问,洋底热泉将有可能成为未来的矿藏,为21纪人类开采矿藏提供了新的可能。
人们在洋底热泉区的周围,发现大量的特殊生物区系,以及高温缺氧条件下,海水中有极高浓度的有机物,也就是类似原生生命体的细菌。科学家们称,洋底热泉好像是一片生命的绿洲。地质学家们为此设想,洋底热泉的环境,酷似前寒武纪早期生命诞生时的环境。如果这一命题能够成立,那么,它将为地球生命地源研究提出很多新研究课题。
洋底热泉中还有高浓度的化学物质,例如,硅和钙等。这就提出一个课题,如果热泉水中溶解的二氧化硅的测量值有代表性的话,那么,硅可能是由热液过程以与大陆侵蚀过程相同的速率进入大洋的。假如这个推断能够成立,这对于估算在过去2亿年中,大洋化学收支平衡具有十分重要的意义。这个过程,应当与海底扩张的速率有某种关系。
(4)海洋沉积学已经形成,并发挥巨大作用。在全球变化研究中,人们采用比较沉积学、碳酸盐浊流沉积和事件沉积进行研究,取得丰硕成果。例如,确定了第四纪以来的海面变化,特别是渐新世以来变化的可比性。资料显示,它与全球气候的变化曲线有某种一致性。再如,对灾变事件研究表明,灾变事件对沉积物的影响,要比长期正常沉积作用大许多。20世纪80年代后,幕式沉积研究和现代灾变理论逐渐引入沉积学。陆架沉积动力学研究重点,开始转向事件沉积学的研究,特别是旋回和事件沉积在陆架沉积层中的作用和地位,愈显重要。
大洋沉积物具有明显的韵律性和旋回性,它反映出一系列交替的气候状况。这与人们普遍关心的海平面变化有直接的关系。大陆及其边缘地带的显生代沉积地层资料,反映了全球海平面的变化。地质时期全球海平面变化范围在几十米到几百米之间。研究表明,长期的海平面变化,可能与洋盆体积变化有直接关系,而短时期的海平面变化,则是由气候因素引起的。显然,海平面变化的确切原因,应该说还没有完全为人们所认识。在南大洋进行的若干深海钻探获得大量资料信息,使人们对南极大陆及其周围的古气候演变过程有初步了解。但是,当南极冰川在第三纪中期发生大量扩展时,北半球的冰川并不存在。这种极大的反差,让地质学家们百思不得其解。这是大自然给人们设置的一道课题。