当前位置:首页 » 地质问题 » 地质雷达物探属于什么

地质雷达物探属于什么

发布时间: 2021-01-26 06:54:32

A. 中国矿业大学(徐州)资源学院的地球物理专业(电法方向)有哪些好的研究生导师

学院网站最近被攻击了!
电法老师还是不少的,看你的选择了。做电法的就是
岳建华(在版校里面有职务,权平时见面不多,也不带本科生的课),
于景村(于宝马,做瞬变电磁法勘探很牛的),
刘树才(地球物理系主任),
刘盛东(全才,不过好像我们这里想跟他的就很多人,他刚从安徽理工过来,不是很了解),
以上的几位都是博导,建议可以考虑刘树才和于宝马的,他们的研究生很多是外校的。
刘志新(今年刚开始招收研究生,对学生应该很好。不过不要奢望他了,跟的人肯定多!)
应该就这几个了,这里的电法还是可以的,尤其是瞬变电磁法勘探,在中国都是有一定的说服力的。这里的电法主要面对的是矿井物探,很多项目都是在井下做的。电法组应该是最挣钱的方向了,像于宝马,开宝马525i,其他人更是不用说了,每个老师都有车的。就业也还可以的,主要是老师的推荐了,像这些老师一般都有同学在哪里哪里的!
考题都不是物探系出的,好像考什么普地还是构造来着?不过就是考本专业,肯定特简单。考矿大物探只用看直流电法,瞬变电磁,地质雷达,频率域电磁这几个就够了!
你可以留个QQ给我,可以详细给你介绍一下他们的情况!

B. 坑道物探

坑道物探,是指把接收传感器置于坑道中采集有关物理量数据,从而获得坑道周围隐伏探测目标有用信息的各种物探方法。

这里所说“坑道”,包括矿井、巷道、隧道、硐室、洞穴等一切可以容人进入活动的地下空间。和前节井中物探的主要区别是,在坑道物探数据采集过程中,整个数据采集系统和操作人员可以进入坑道作业。

(一)应用发展

坑道物探最主要的应用领域是煤炭勘查,特别是在煤矿开采阶段。显然,这是因为多数煤矿的井下开采方式最需要也最有利于坑道物探工作的开展,也因此我国物探工作者又常把坑道物探称为“矿井物探”。在煤矿井下,坑道物探可有效地以较高精度探测巷道两侧、顶底板上下、掘进头(掌子面)前方以及巷道间的煤层及其他地质小构造,如煤层赋存状态、厚度变化、夹矸分布、断层、陷落柱、冲刷带、破碎带、软弱带、溶洞、老窑等,为煤炭开采特别是综采机采作业及安全生产提供重要资料。国外煤炭领域坑道物探应用始于20世纪60年代初,并迅速在各产煤国家得到发展。我国煤矿坑道物探起步较晚。1974年和1977年煤炭部门科研单位和有关院校、工厂、矿山合作先后开始了坑道电磁波法和槽波地震法试验。20世纪80年代在推广这些方法的同时又相继开发使用了矿井直流和音频电法、矿井地质雷达、矿井反射和瑞利波地震等方法[1~11]。20世纪90年代,又开发了接收井下天然电磁辐射和声发射异常预测煤与瓦斯突出的技术[12,13]。坑道物探方法在我全国上百个局矿单位获得广泛应用。一些矿务局已明文规定,综采机采工作面地质说明书必须有坑道电磁波法等资料方可批准投产[3,10]

20世纪80年代末以来,我国在某些铜、镍、锡、金等金属矿山的采矿巷道中使用物探方法探测巷道外、巷道间或更深部隐伏矿体取得不同程度成效。工作中使用了自然电场、直流电剖面、直流电测深、频率测深、激发极化、充电、电磁波、弹性波等方法,但工作量尚很有限[14~17]

坑道物探在我国一些隧道工程特别是铁路隧道、公路隧道、大型输水涵洞及水电站地下厂房施工过程中也有较广泛应用。其中包括预报掘进掌子面前方可能出现的断层、破碎带、含水带、岩溶、岩脉等异常地质情况,检测隧道、硐室岩壁稳定性及人工衬砌质量等。主要使用了浅层地震、声波、电阻率及探地雷达等方法[18,19]

(二)技术进步

原则上,几乎所有地面物探方法都有可能在坑道中应用。当然,由于坑道的特殊条件,需要在技术上采取某些相应的措施。如采集设备的小型化轻便化及在许多煤矿井下的防爆化,坑道中各种工业设备干扰的防避或消除,坑道空间影响的校正,全空间位场数据的特殊处理解释方法等等。就具体方法而言,坑道磁法和核法工作与地面工作差别最小。坑道重力法数据的外部校正及处理解释有自己的特点[20]。这几种方法在我国坑道中实际应用不多,仅见有个别煤矿井下微重力测量案例[21]。下面我们将仅重点涉及在我国得到发展的坑道电法和坑道弹性波法。

1.坑道电法

在我国坑道中曾应用多种电法方法,其中应用较多的是电磁波法和直流(或低频)电法。

A.坑道电磁波法

坑道电磁波法又常被称为坑道无线电波透视法。它在我国起步早,应用广。早在1960年,我地质部门科研单位就自制实验设备在关门山铅锌矿坑道中进行了电磁波透视矿体的试验[22]。1967年地质部门工厂小批量生产了DKT型坑道无线电波透视仪。1976年和1978年煤炭部门相继研制了WKT-J1型和WKT-J2型坑道无线电波透视仪,并在短短数年内生产百余台装备了数十个局矿单位[3]。这些仪器使用晶体管电路,表头读数,透距较小,不防爆。此后十余年中,煤炭部门和地质部门又分别先后研制生产了七种型号的坑道无线电波透视仪近二百台。它们由模拟式进展到数字式微机化,频带拓宽,频点增多,功能增强,透距增大(可达350~450m,个别煤层可达600m),安全防爆,并有配套软件[10,23]

坑道电磁波法的数据处理解释和井中电磁波法类同,井中电磁波法数据处理解释技术在我国的进展也适用于坑道电磁波法,有些研究成果则明确面对这两类工作方法[24~26]。我国物探工作者还就煤矿井下电磁波法实际工作中某些特殊问题,如巷道相对位置的影响,人工导体的干扰,场强衰减与煤层倾角的关系等进行了专门讨论[27,28]

B.坑道直流及低频电法

为适应坑道特别是矿山巷道的特殊条件,传导类的直流或低频电法采用了各种特殊的电极布设方式,其中包括在同一巷道内不同位置不同方式排列及在相邻巷道内的不同位置不同方式排列。我国物探工作者给它们赋以层测深、电穿透、电透视等多种名称。它们可以分别在探测巷道四周或巷道间煤层赋存状态及其构造,巷道顶板上方、底板下方及迎头前方异常地质构造等方面发挥优势作用。我国煤炭部门于20世纪80年代后期开始推广这种方法,研制生产了多种型号的井下防爆直流电法仪和低频电法仪,在许多矿山井下应用并在技术上有所发展提高[29~34]。在有关数据处理解释研究方面,包括巷道空间影响分析,巷道电法物理及数值模拟,处理解释软件研制等,取得了一些实用成果[35~38]

C.其他电法

探地雷达在矿井下可用于探测巷道上下左右及掘进前方数十米范围内的矿体矿层及各种异常地质情况。我国煤炭部门于20世纪70年代中期开始矿井探地雷达的专题研究。针对煤矿井下小型轻便、安全防爆等特殊要求,我煤炭部门科研单位自20世纪80年代中期至20世纪末已先后研制出逐步升级的六种型号KDL系列矿井探地雷达产品,并和有关单位合作研制生产出新的低功耗液晶显示矿井探地雷达。坑道探地雷达技术已在我国煤矿开采及铁道、公路隧道施工中日益发挥更多作用[39]

20世纪90年代初,我煤炭部门科研单位基于岩石破裂产生电磁辐射的原理,研制了在煤矿巷道掘进过程中连续自动检测异常天然电磁辐射信号的煤与瓦斯突出危险检测仪。它能探测采掘工作面前方10~16m距离范围内危险带(应力集中区)的方位,初步试验应用取得较好效果[12]

前已提及,其他一些电法,如自然电场法、充电法、激发极化法、频率测深法等也曾在我国少数矿山巷道中应用。这些工作在技术上和地面工作类同,不必赘述。

2.坑道弹性波法

在我国坑道中使用的弹性波法有面波类的槽波地震法和瑞利波地震法,以及体波类的反射波和透过波地震(或声波)法。

A.槽波地震法

槽波地震法观测在煤层(作为在顶底板界面约束下的低速波导)中激发和传播的导波——通常称为槽波。它以其具有探测距离远,精度高,环境适应性强等特点而成为在煤矿井下探测煤层内小构造的一种重要物探方法。国外于20世纪60年代开始槽波地震法的实验研究,70年代末开始正式应用和得到发展。我煤炭部门各有关单位20世纪70年代末起积极开展了有关研究工作。20世纪80年代先后研制生产了井下用非防爆型和防爆型模拟磁带式矿井地震仪,并开发了槽波地震专用数据处理软件。1986年煤炭部门引进了德国SEAMAX数字槽波地震仪和专用软件,在此基础上进一步开展了槽波数字地震勘查方法技术的系统研究。我国物探工作者结合物理和数值模拟及现场实际工作结果,在煤层中导波形成理论及槽波传播特性,数据采集方法及井下施工技术,数据处理解释方法及软件等方面取得了若干创新性研究成果,编写出版了专著[40~44]。20世纪80年代末我国研制生产并推广应用了自己的多道遥测数字矿井地震仪[45]。槽波地震方法在我国各矿务局许多采煤工作面上探测小断层、陷落柱、冲刷带等小构造取得了明显成效。

B.瑞利波地震法

1988~1989年我煤炭部门引进了日本GR-810瑞利波地震仪及稳态瑞利波勘查技术,1991年将它应用于井下煤层残厚及巷道独头前方探测[5]。随后煤炭部门科研单位研究开发了瞬态瑞利波技术并研制生产了适用于井下的瑞利波探测仪器。井下瞬变瑞利波法由于具有设备轻便,施工场地小,数据处理解释相对简单,成果比较直观实时等特点,很快在许多煤矿井下推广应用。在巷道侧壁、顶底板及掘进前方探测煤层及小构造取得明显成效。瑞利波地震法在我国工程隧道掘进前方预测方面也获有效应用。我国物探工作者在坑道瑞利波地震方法技术及仪器的发展方面,其中包括24位A/D高分辨率本安型矿井瑞利波探测仪的研制,多分量瑞利波探测系统的试验等,也取得若干新的进展[46~48]

C.其他弹性波方法

浅层弹性波(地震或声波)反射法在我国矿山地下巷道及工程隧道中也有较多应用。在煤矿井下较多用于分层采煤过程中测定残煤厚度。为此,我煤炭部门研制生产了数种型号被称为“底煤厚度测定仪”或“煤层厚度探测仪”的井下浅层地震仪。在工程隧道及硐室施工中较多用于掘进前方地质情况预测,使用方法主要有震源及检波器沿隧道轴线排列的“坑道垂直地震剖面法”,及可在掘进掌子面上排列的“陆地声纳”法。这两种在20世纪80年代由我国物探工作者首创的方法在煤矿巷道掌子面前方预测中也有应用[6,18,19]

20世纪80年代后期,地下巷道间的弹性波层成像方法在我国一些金属矿及煤矿井下得到应用。这些工作主要观测透过波的初至走时并使用射线层析处理解释方法[14,16,50]。显然,前面“井中物探”一节中我国在弹性波层析成像处理解释技术方面的进展也可用于坑道弹性波法。

近年我国物探工作者利用岩石在应力集中突发性破裂过程中的声发射现象,研制出多道非接触式声发射实时监测预报系统及有关软件,用于预测预报煤矿井下煤与瓦斯突出,并解决了不均匀介质条件下小尺度声发射源的定位问题。现场试验初步取得良好效果[13]

(三)总的评价

我国作为一个世界性煤炭生产大国,随着机采综采作业的普遍应用,对坑道物探工作的需求日益迫切。大规模基础建设中日益增多的大型复杂隧道及其他地下工程也提出了这种需求。我国物探工作者及有关单位对坑道物探的发展给予了充分重视,在有关方法技术的研究开发,专用仪器的研制生产,以及积极推广应用方面做了大量工作,取得良好成效。总的可以认为,我国坑道物探技术和应用已跻身世界先进水平行列。随着我国危机矿山的增多,有必要进一步加强在各处老矿山特别是老金属矿山井下找寻矿井周边及深部隐伏矿体的坑道物探工作,并进一步发展提高有关技术。

C. 中国地震局物探中心 这个单位怎么样

成立于年的中国地震局地球物理勘探中心是中国地震局直属科研事业单位,从事地球深部、浅部地球物理探测研究的科研机构。现有科研人员300余人,其中研究员16名,高级工程师94名,工程师123名。拥有深地震测深、陆地水域浅层人工地震勘探、地质雷达、电法、重、磁勘探等探测研究工作的雄厚实力。是我国城市活动断层地球物理探测基地和国家人事部批准的博士后科研工作站。

主要科研方向:以深、浅人工地震探测方法为主,重力、电、磁等其他地球物理方法为辅,依托现代新技术新方法综合探测研究地球内部结构构造、大陆强震的构造背景和孕震环境,深、浅活动构造、介质物性和状态及与强震孕育发生、地震灾害、火山活动的关系,为防震减灾,保障人民生命财产安全和国民经济建设服务。
中国地震局地球物理勘探中心拥有配套齐全的各类先进的深、浅地球物理探测仪器设备和数据处理软、硬件系统。自主开发研制了具有国际先进水平的轻便数字地震仪,建立了人工地震测深数据库,开发了以地震数据从一维到三维的构造成像和层析成像及地球物理数据处理解释系统。几十年来,承担并完成了一批国家重大科研项目,如联合国开发计划署与中国合作的京、津、唐地震预报实验场项目、国际地学大断面中的中国地学大断面项目、国家高技术项目(863计划)、国家重点基础研究发展规划项目(973计划)、国家科技攻关项目、国家自然科学基金项目以及中国地震局重点科研项目,取得了一批具有国际水平和国内领先的科学研究成果,获得国家科技进步奖、中国地震局科技进步奖多项。在国际、及国内核心期刊上发表高水平科研论文千余篇。完成的深地震测深宽角反射/折射剖面近4万公里,深地震垂直反射剖面一千多公里。
中国地震局地球物理勘探中心与国内外科研机构、学术团体保持广泛的联系和密切的合作,与联合国开发计划署、美国、俄罗斯、德国、日本、捷克、法国、瑞士、澳大利亚及香港、台湾等十余个国家和地区进行技术交流和卓有成效的合作。中国地震局地球物理勘探中心利用先进的技术装备和技术力量积极为国民经济建设服务,出色完成了多项重大工程场地选址、地震安全性价、工程地质勘察、水文地质勘察、钻探、桩基检测、消防工程、工程爆破、工程质量评估、局域网络工程等项目。

D. 井中物探

井中物探,或称钻井(钻孔)地球物理勘查,是指把接收传感器下到钻井中采集有关物理量数据,从而获得钻井周围某些待查隐伏目标有用信息的各种物探方法。

和前述测井方法不同之处在于,井中物探的勘查范围是钻井四周、钻井之间或钻井下方的较大空间。其具体范围决定于所用物探方法技术及探测目标状况,目前一般为井轴横向或井底垂向数十至数百米。

应当说明,某些主动源电法和弹性波法,有把激发源置于井中而在地面采集有关数据的工作方式,即“井-地”工作方式。按我们的分类原则它们应属于地面物探。事实上,主要采用井-地方式工作的某些物探方法,如充电法、接触极化曲线法、逆垂直地震剖面法等,我国物探界通常也是把它们视为地面物探方法。也有一些物探方法,如激发极化法、声波透视法等,我国许多物探工作者习惯上把它们的井-地工作方式和其地-井、井-井工作方式一概视为井中物探方法。另一方面,我们列为井中物探方法的垂直地震剖面法又常被地震工作者视为地面地震方法的组成部分。

(一)应用发展

井中物探在我国首先用于金属矿产勘查。1958年地质部门在辽宁大套岫峪铅锌矿区进行的井中单分量磁测应是我国井中物探工作的开端。此后,随着我国铁矿找矿工作的大规模展开,20世纪60~80年代井中磁测方法在全国大量推广使用,投入仪器数百台,勘测井孔数千个,成效卓著[1~4]。20世纪60年代开始,井中激发极化法和井中电磁波法在我国铜、铅锌、镍、铬等矿产勘查中的应用也得到较快发展[5~10]。上述三种方法在判断地面异常性质,找寻井旁井底隐伏矿体并推定其位置、延伸、边界、产状等方面发挥了特有的重要作用,曾被我地质部门物探工作者誉为“地下物探三朵花”。20世纪80~90年代,其他一些井中物探方法,包括井中脉冲瞬变电法、井中低频感应电法、井中弹性波法等也在我国金属矿勘查中得到应用,在一些地区取得良好效果[11~14]。进入20世纪90年代,随着我国金属矿勘查工作特别是钻探工作量锐减,金属矿领域的井中物探工作也大幅度减少。

井中物探在我国的另一重要应用领域是油气勘查和开发。主要使用了井中弹性波法,其中包括20世纪80年代以来在我国快速发展的垂直地震剖面法,以及90年代获得应用的井间地震法及声波法。众所周知,近二十年来,垂直地震剖面法已成为我国油气地震工作的重要组成部分。它在辅助地面地震资料解释,研究井孔附近地层构造细节及岩性变化,预测钻头前方目的层深度和岩性等方面发挥重要作用[15]。井间地震层析成像是近年油气领域最活跃的前沿技术之一,它在储层描述、油藏开发方面的作用日益显著[16]。20世纪90年代中期我石油部门引进了井中重力仪器和技术,用于测量井周地层密度从而获得有关孔隙度及溶洞裂隙构造资料,初步取得成效[17,18]。20世纪90年代后期,我石油部门又引进低频电磁成像仪器和技术,获得了较大井间距的电导率构造图像,认为在研究井间砂体连通性,监测储层水淹状况及残余油分布等方面有良好应用前景[19]

20世纪70年代初以来,井中物探在我国煤炭勘查中也有较多应用。主要是使用井中电磁波法勘查煤矿区地下溶洞裂隙等构造,在解决矿区水文地质特别是井下水害防治问题上发挥了良好作用[9,10,20]。20世纪80年代中期以来,随着煤田地震工作的蓬勃发展,垂直地震剖面及井间地震方法也在煤炭勘查领域获得应用[21]。20世纪90年代后期,我煤炭部门引进了钻孔地质雷达,取得初步成效[22]

20世纪80、90年代,井中物探在我国水文及工程勘查领域获得快速发展,其应用的广度已超过同期固体矿产勘查领域。使用方法主要是井中电磁波法和井中弹性波法。电磁波层析成像和弹性波层析成像在我国大桥、水库、电站及其他大型高层建筑基础探测,坝体及其他大型混凝土建筑质量检测,以及岩溶区地下暗河调查等方面发挥了重要作用[9,l0,23~27]

(二)技术进步

在我国曾经使用的井中物探方法主要有磁法、电法、弹性波法和重力法。其中电法和弹性波法又有多种具体方法及单井、井-井、地-井等工作方式。

1.井中磁法

井中磁法在钻井中采集地磁异常数据。和地面及航空磁测目前主要测定标量总磁异常不同,迄今为止我国井中磁测主要是测定地磁异常单个或三个分量。

1958年我地质部门用自制磁通门式单分量井中磁力仪在辽宁大套岫峪铅锌矿区试验,取得了我国首条井中磁测曲线,在磁黄铁矿层上获得明显地磁异常。当时,沿用了原苏联“磁测井”名称。1960年地质部门工厂曾生产出一批磁通门式单分量井中磁力仪,但性能不过关。随后,冶金部门在研制出补偿式磁通门单分量井中磁力仪的基础上,1965年试制出我国首台三分量井中磁力仪[28]。1968年冶金和地质部门合作制出正式样机,1970年地质部门工厂开始批量生产我国首批野外推广应用的井中三分量磁力仪,其传感器采用了当时居先进水平的垂向三轴系统。1979年至1985年地质部门工厂又先后生产出两种型号小口径三分量井中磁力仪。它采用了五个磁敏元件,除测定地磁异常垂向和水平三分量外,还可同时测定钻井顶角。总体性能也有所改善。

这些井中磁力仪在全国强磁性矿床——主要是磁铁矿床的普查勘探中普遍推广应用。我国物探工作者在大量实践的基础上,对各种产状磁性体三维空间磁场(包括磁性体内部磁场)的理论及异常特征,单分量及三分量井中磁测数据处理解释作了深入研究,形成了一整套实用的野外及室内工作方法技术,并出版了专著[1,29~31]

由于在小口径下井探管中磁敏系统自动高精度定向技术和工艺等问题有待进一步解决,迄今我国所生产井中磁力仪垂向分量观测精度仅为±(100~150)nT,水平分量精度更低,尚仅能用于强磁异常探测,影响了这一方法的扩展应用。

2.井中电法

井中电法在我国起步于20世纪60年代中期。在此后的三十余年中,发展了包括传导类和感应类,低频和高频,频率域和时间域的多种方法。其中获得广泛应用的是井中激发极化法和井中电磁波法。

A.井中激发极化法和直流电法

井中激发极化法于20世纪60年代末由原苏联传入我国。我国对其较系统的研究、实验和应用始于20世纪70年代初,在一些金属矿区发现或追踪井旁隐伏矿体取得良好效果。由于井中激发极化法的应用理论基础和地面激发极化法相同,工作方法技术类似,在地面采集系统基础上增添简单设备即可实施井中采集,因此迅速在地矿、冶金、有色、核工业、建材等部门许多基层物探工作单位获得推广。

在推广应用的同时,我国物探工作者对井中激发极化法的数据采集及资料处理解释方法技术作了进一步研究,进行了系统的物理和数值模拟,编印了模型实验图册,编写出版了方法专著[32~35]。地质部门仪器工厂还专门生产了配套的井中激发极化采集系统[36]

和地面方法一样,井中激发极化法在获得井周或井间激发极化异常的同时,也实现了井中直流电法作业,获得井周或井间电阻率分布资料。实际上,从20世纪60年代初开始,我国已经开展了某些在地面或邻井中以点源或线源方式供电,在井中观测电位或电位梯度分布的井中直流电法工作。在发现井旁或井间低电阻或高电阻矿体或其他异常体方面取得一些成效。20世纪80年代后期,特别是进入90年代,在地球物理层析成像技术发展带动下,井间直流电法也进一步受到重视,研究发展了根据井中直流电场数据获得井间电阻率分布图像的方法。我国物探工作者在这方面也取得了一些重要研究成果[37~40]

B.井中电磁波法

井中电磁波法(也称“钻孔电磁波法”或“井中无线电波法”)在我国起步于20世纪60年代初,借鉴了原苏联“阴影法”技术资料。1964年我地质部门科研单位研制出我国首台电子管电路的井中电磁波仪,次年即在安徽月山铜矿区找寻深部盲矿工作中发挥了重要作用。随后,这一方法在其他金属矿产及水文工程勘查工作中也取得良好成效,在技术上和应用上获得快速发展。1982年我国物探工作者编写出版了这一方法专著[41]

至20世纪末的三十余年中,我国地质、煤炭、铁道、地震等部门有关工厂及科研单位先后研制生产了14种型号适应于不同应用领域不同工作条件的井中电磁波采集系统,总数近200台。其工作频点由少到多进而实现宽带跳频扫描,频率范围扩展到0.3~35MHz,20世纪90年代初开始生产微机化采集系统。在配用小型宽频有源天线方面也作了一些努力,但尚未达到实用水平[9,42~44]

我国物探工作者在扩大井中电磁波法应用的同时,十分重视其理论和数据处理解释技术水平的提高。从最初的正常场对比、平面交会,到空间交会、吸收系数剖面,进而到层析成像,我国物探工作者作了大量深入研究工作。发展了多种处理解释方法,进行了系统的物理和数值模拟,形成了系统的处理解释软件并逐步升级[40,41,45~52]。作为地球物理层析成像的重要组成部分,我国物探工作者在电磁波层析成像的理论、方法和软件方面取得了许多重要研究成果[53~59]

也应指出,迄今为止我国实际应用的地下(包括井中和坑道)电磁波方法及仪器尚仅限于利用振幅参数,限制了其功能和效果的进一步提高。早在20世纪80年代原苏联在这一方法中已开始综合利用振幅和相位两种参数,最近我国多参数地下电磁波系统的研究已经起步。

C.其他井中电法

除上述外,在我国曾经使用过的井中电法还有井中低频电法、井中脉冲瞬变电法和钻孔雷达方法。这些方法在我国开始使用较晚,工作不多。

20世纪80年代初,我地质部门勘查单位研制了频率域的井中低频电磁仪。它使用三种频率和地面回线源,曾在一些金属矿上试验应用取得较好效果,并通过模型实验编制了典型曲线图册,但未继续发展和推广应用[10]。20世纪90年代后期,我石油部门和美国公司合作引进了井间低频电磁成像系统和技术。它使用100~103Hz间多个频点。在胜利油田工业性试验中获得了间距434m裸眼井对间及间距150m裸眼井-套管井对间良好的电导率图像资料[19,60]。我国物探工作者对井间电磁成像的反演算法也作了初步研究[61]

20世纪80年代中期,我有色金属工业和地质部门在发展地面瞬变电磁法的同时,也开展了一些地-井方式井中瞬变电磁法的试验和应用。引进并研制了有关仪器和下井探头,进行了模型实验,在一些矿区找寻井旁和井底隐伏矿体取得了成效[14,62,63]。我国物探工作者在瞬变电磁法专著中也对井中瞬变电磁法作了系统论述[64]

1995年,我煤炭部门首次引进了瑞典公司生产的钻孔雷达系统,用它在煤矿区探测碳酸盐岩裂隙和溶洞发育情况。使用了单孔反射和跨孔层析成像两种工作方式,取得初步成效[22]

3.井中弹性波法

在我国使用的井中弹性波法包括井中地震法和井中声波法。前者的地-井和井-井工作方式分别被称为“垂直地震剖面法”和“井间地震法”;后者也有地-井和井-井工作方式。实际上,井中地震法和井中声波法工作频段相近或相同,具体作业方法技术也无实质性差异。通常,前者泛指使用各种不同类型震源和检波器(以井中三分量检波器为主)采集不同类型和性质弹性波(纵波和横波,透射、反射和折射波)数据的工作方式;后者则特指使用压电、磁致伸缩或电火花振源和压敏式井中检波器采集透射纵波的工作方式,故又常被称为“井中声波透视法”。

采用地-井工作方式的“地震测井”仅作为一种求取平均速度和层速度的参数测定手段,我们不将其列入井中地震勘查方法。

20世纪60年代末,井中声波透视法首先在原苏联开始应用和发展。20世纪70年代,我国一些部门有关单位开始研究用于工程领域的声波探测技术。1979年我铁道部门科研单位研制出用电火花振源的井中声波透视仪并用于野外岩体结构探测[65]。1986年我地质部门科研单位研制成首台可用于矿产勘查记录声波走时和振幅的井中声波仪。此后又陆续研制生产了多种型号的微机化井中声波探测系统,形成了系列产品,配套了包括层析成像在内的处理解释软件。这些采集系统都使用电火花振源,并成功地把蓄能和控制电路全部置入下井探管,避免了电缆传输高压脉冲的损耗。井中声波法在我国矿产和工程勘查中取得了良好效果[66,67]

垂直地震剖面法在我国主要应用于油气勘查领域,煤炭及工程勘查工作中也有应用。它在提供地层岩层弹性力学参数,配合提高地面地震资料处理解释质量,研究井旁地质剖面,预报钻头前方反射层面等方面有重要作用。垂直地震剖面法于20世纪70年代在国外开始发展,很快引起我国物探工作者的重视。1983~1984年我地质及石油部门使用引进的井中三分量检波器,在江苏、中原、南海首先进行了试验,以后迅速在全国推广应用。1988年我国物探工作者编写出版了有关专著[15]。我石油和地质部门工厂生产了多种型号的井中三分量检波器,满足了野外工作需要。我国物探工作者对垂直地震剖面法数据处理和反演解释方法技术的研究,包括偏移处理、波场分离、定向井资料处理、各向异性介质资料处理解释、纵横波联合解释等方面,取得了许多有价值的进展和成果[68~76]。我国物探工作者还在用人工电场改善垂直地震剖面数据质量方面作了初步尝试[77]

井间地震方法研究在国外始于20世纪70年代,到20世纪80年代才随着井中震源等技术问题的解决和地球物理层析技术的兴起而得到发展。它能以比地面地震高得多的分辨率提供井间岩层、地层、储层特征及结构图像,因而日益受到重视。我国在20世纪80年代后期开始进行井间地震方法技术的试验研究。20世纪80年代末及90年代,井间地震法在我国工程领域,如大型或高层建筑基础勘查等方面取得了一些重要成果。1994~1995年开始在吉林、辽河、胜利等油田用于油气储层研究,随后在其他一些油田也获得应用。工作中使用了电火花震源、锤击震源、特制井中炸药震源及井中液压可控震源等多种类型震源。我国物探工作者在数据采集技术和井间观测系统的设计、采集系统的改进等方面取得了一些有益经验或研究成果[78~82]。把井间地震和垂直地震剖面、逆垂直地震剖面、地面地震等方法综合应用形成所谓“立体地震法”的实践也取得良好效果[83]

我国井间地震方法实际应用历史尚较短,但对作为地球物理层析成像技术重要组成部分的弹性波层析成像技术,我国物探工作者自20世纪80年代后期开始就给予充分关注,在理论、方法、软件等方面做了大量工作。编写出版了专著,发表了许多有关论述,涉及弯曲射线、最短路径、最大熵、级联、透射、反射、折射、纵波、横波等射线层析和波动方程层析方法和算法,其中不乏有创意的进展和研究成果[84~108]

4.井中重力法

井中重力法的发展主要决定于井中重力仪制造技术。1966年国外研制出首台可实用的井中重力仪以来,虽也有新产品问世,但限于其较大外径,迄今仍只能在油气钻井中使用。主要用以测定井周地层宏观密度进而获得不受泥浆滤液侵入影响的孔隙度及裂缝溶洞发育情况。我石油部门1991年引进了美国拉科斯特公司井中重力仪,在重庆地区作了深井实测,对其效果和局限性作了初步分析研究[17,18]

(三)评价和差距

井中物探在我国起步较早,受到不同领域物探工作者和各有关部门的重视,在扩大应用和发展技术上作了积极努力。我国井中电磁波法和井中激发极化法技术及应用居世界先进水平,井中三分量磁测技术及应用在20世纪70~80年代曾一度堪称世界领先。我国在电磁波、电磁场及弹性波层析成像理论和方法研究方面也有不少先进水平成果。

作为物探向深部和立体空间扩展主要途径的井中物探,在我国的发展总体上尚不够理想。特别是近十余年,在一些方面和国际水平差距增大。我国井中三分量磁力仪研制长期停滞不前,迄今仍停留在二十年前的低精度水平,而国外已有高精度产品。井中瞬变电磁法在国外已成为在老矿区找寻大深度良导电性大型盲矿体的有力工具,生产了多种型号配有三分量深井探头的大功率瞬变电磁系统,而我国目前还只能开展一些较浅的单分量工作。我国实用的井中电磁波法尚停留在仅利用振幅参数阶段。井中物探工作离不开钻孔,而由于认识上和管理上的原因,我国近年在金属矿上使用地质勘查钻孔进行井中物探工作的非技术性困难增多,也影响了适用于这一领域的井中物探技术的发展。

E. 物探方法

重力勘探,磁法勘探,电法勘探,地震勘探,这些是主要的四种方法。电法和磁法多用于固体矿产的勘探,地震多用于石油勘探。

F. 在工程地质调查中的应用

一、在水利工程中的应用

水利工程有堤坝、堤岸、渠道、输水洞等。地球物理方法在水利工程中的应用,一方面用于工程场地的选址勘查,查明被选区域的岩溶发育情况、覆盖层厚度、风化层厚度以及地质构造等情况,对拟建工程场址的稳定性和建筑适宜性作出评价;另一方面用于水利工程的质量隐患检测,查明坝体是否存在有裂缝、空洞、动物巢穴、管涌等工程质量隐患,为水利工程的消险加固提供依据。目前,常用于水利工程隐患检测的物探方法有地质雷达、自然电位法、高密度电阻率法、人工地震勘探以及声波测试等方法。

1.探测堤坝蚁巢与洞穴

土体堤坝中因碾压不实、库水浸透或动物危害等因素,在坝体中常出现土洞、动物巢穴等危害坝体安全的隐患。在我国南方各省(区)水利工程中白蚁巢穴是一种常见的隐患,白蚁主巢直径一般在40~60 cm,大者可达数米,主巢周围分布着几十个甚至数百个卫星菌圃,其间由四通八达的蚁道沟通,且有的贯穿堤坝的内处坡。因此,深藏于堤坝中的白蚁危害造成的堤坝险情和溃堤率远高于其他原因,找出堤坝白蚁巢是消除堤坝白蚁隐患的关键。地质雷达和高密度电法是对坝体中的土洞、动物巢穴探测的有效方法。图5-1-1是埋深约3m的白蚁主巢的地质雷达图像,白蚁巢在图像上的反射波形态特征为多重强弱交错的凸形条纹区,与周围土壤有明显的分界。

图5-1-1 某堤坝白蚁巢穴的地质雷达图像

2.水坝渗漏的地球物理探测

渗漏是水坝常见的隐患,是造成水坝发生事故的主要原因。水坝渗漏可分为坝基渗漏和坝体及附属结构渗漏,坝基渗漏较为常见。造成水坝渗漏的原因与水坝基础处理的好坏、坝体施工质量、坝基下方地质构造等因素有关。

自然电位法探测水坝渗漏点和渗漏通道是一程常用的方法。由于库水具有天然吸附带电离子的能力,当水库发生渗漏时,带电离子也一起运动,形成电流场,在渗漏位置上自然电位出现负异常,其负异常的大小与渗漏水量有关。图5-1-2是利用自然电场法确定地下水和地表水补给关系的实例。当地下水补给地表水时,在地面上观测到自然电位正异常。图5-1-2(a)为灰岩和花岗岩接触带上的上升泉的自电正异常;图5-1-2(b)为水库渗漏地点上出现的自然电位负异常。

图5-1-2 用自然电位法确定地下水与地表水的补给关系

地质雷达方法用于探测水坝渗漏点和渗漏通道也具有较好的效果。渗漏部位土体的含水量变大,与未发生渗漏的土体形成明显的介电常数上的差异,为采用地质雷达方法探测水坝渗漏位置提供了地球物理条件。黑龙江省某水坝为均质土坝,1998年遭受百年不遇的洪水后,在水坝后坡出现多处面积不等的漏水点。为了查明漏水点在坝体内的分布情况,采用地质雷达在坝顶、坝前坡和后坡进行了探测。图5-1-3为坝顶测线K0+240—K0+400的地质雷达剖面。图中强振幅异常推断为坝体内受到水浸较重的部位,异常埋深为10~12 m。钻探结果表明地质雷达推断的异常区域是发生渗漏的严重区段。

图5-1-3 黑龙江省某水坝地质雷达探测剖

3.坝基帷幕灌浆效果检测

对病险水库的维护处理一般采用帷幕灌浆等方法,灌浆效果的好坏需要采用物探方法检查。某电站大坝岩基帷幕灌浆前后进行超声波探测,图5-1-4是质量检查孔在灌浆前、后的超声波检测曲线,图中可见,在检查孔中上部,灌浆前和灌浆后的波速值差异非常明显,灌浆前岩体的裂隙率高,波速较低;灌浆后岩体裂隙被水泥浆填充,且粘结牢固,波速明显升高。在检查孔的下部,灌浆前和灌浆后波速差异微小,波速较高,这说明岩体本身比较完整,渗透性小。

图5-1-4 质量检查孔灌浆前后声波检测结果

地质雷达对水坝帷幕灌浆质量检测也有较好的探测效果,根据地质雷达图像上灌浆物的影像可计算出有效灌浆深度和水泥浆扩散半径。根据坝体土体和基岩处的强反射弧形影像,可判别已被灌浆物充填的溶洞的大小、形态和深度以及未被灌浆物充填的溶洞、土洞等隐患。

4.古河道的地球物理勘查

古河道常引起大量渗漏,在水库建坝时需对坝基下古河道的地质情况进行详细勘查,了解古河道的分布范围,埋深以及砂砾石厚度等。探测古河道常用的物探方法是电测深法、自然电位法、地震勘探和地质雷达等方法。

图5-1-5 用对称四极剖面法追索古河道的ρs剖面平面图

图5-1-6 横穿古河道的对称四极剖面ρs曲线

图5-1-5和图5-1-6为对称四极剖面法探测和追索古河道的实例。由图5-1-5中各对称四极剖面特征可以看出,在低阻背景上有一高阻异常带。该高阻异常带推断为古河道的反映,该河道由一条主流和一条支流组成。此外,利用ρs曲线特征可大致确定出古河道的形态、中心位置和宽度。若ρs曲线具有对称性,ρs曲线极大值对应于古河床最深的中心位置。若ρs曲线不对称,可根据曲线两翼陡缓推断古河道两岸坡度的大小(图5-1-6),其视宽度可由ρs曲线的拐点位置大致确定。通过等ρs断面图上的等值线形状可反映出古河道的断面形态。由图5-1-7可见,在371号点附近ρs等值线呈高阻闭合圈。结合当地的水文地质条件,推断该异常为一浅层古河道引起。经ZK8、ZK10、ZK11孔验证,证实了古河道的存在,ZK11打到了富含地下水的砂砾石层。

图5-1-7 云南某地寻找浅层砂砾石富水地段(古河道)成果图

图5-1-8为地震横波法探测古河道的实例剖面图。根据钻探资料推测该区域一带有一条古河道,河道埋深为20~30 m,为了查明古河道的位置,采用横波地震勘探。图中可见,40 ms左右的同相轴为第四系地层内部的反射,同相轴连续性好、起伏小;140~220 ms为古河道及两岸附近地层的反射,同相轴连续性好、起伏较大,其形态特征反映了古河道的形态,河道埋深为28 m左右,视宽度约为130 m。

图5-1-8 横波t0时间剖面

二、在交通建设和维护中的应用

1.公路质量检测

公路质量检测的原始方法是采用钻探取心法,该方法不仅效率低、代表性差,而且对公路有破坏。为了快速、准确和科学地评价公路质量,必须采用无损检测方法。目前,常用于公路检测的物探方法有地质雷达、瞬态面波法、高密度电阻率法和人工地震等方法。在这些物探方法中,由于地质雷达方法具有快速、连续、无损检测的特点。因此,在公路质量检测中得到更加广泛的应用。

图5-1-9 电磁波在公路剖面中的传播

高速公路是由土基础、二灰土、二灰碎石、面层等构成,由于空气、沥青面层、二灰碎石、土壤等介质的介电常数不同,电磁波将在其介质发生变化的界面产生反射波。图5-1-9为电磁波在公路剖面中各界面的传播、反射途经示意图。图5-1-10为电磁波在公路剖面中各界面的扫描示意图。

图5-1-10 电磁波在公路剖面中各界面的扫描

长春至四平高速公路采用沥青路面,路面下为碎石垫层。路面分三次铺设完成,设计路面厚度为25 cm。在工程竣工前采用地质雷达进行了路面厚度检测。

工作中使用的地质雷达为SIR-2型,工作天线频率为900 MHz。图5-1-11为长春至四平高速公路上某段路面的地质雷达检测剖面图,图中5.8 ns附近的强反射为沥青面层与碎石垫层界面的反射,根据反射界面的双程走时和电磁波在沥青路面中的传播速度计算出路面厚度。沥青路面的电磁波速度采用实验标定并进行统计后得到。检测结果表明,由于二灰石垫层凸凹不平,导致沥青路面厚度有较大变化,最薄为26 cm,最厚为43 cm。达到了设计的要求。路面厚度评价按国家公路路面结构层厚度评价标准进行。在经数据处理后的地质雷达剖面中读取电磁波在面层中的反射波双程走时,计算出面层厚度并作出厚度评价结果。

地质雷达方法在公路质量检测中除可进行路面厚度检测外,还可进行路基隐患(脱空、裂缝等)的检测以及桥涵的质量检测。有些学者开展了地质雷达对公路压实度、强度及含水量的检测研究,也取得了较好的检测效果。

图5-1-11 长春至四平高速公路某段路面的地质雷达检测剖面

2.铁路路基病害勘查

铁路路基病害一般指铁路路基平台顶部结构不坚实而且渗水,以及原填充物的不均匀性,经长期雨水冲刷和渗透,行车振动等所形成的一定规模的充坑,洞穴或渣石填充物。路基病害比较隐蔽,一旦受到外界因素影响造成塌陷,将直接威胁行车安全,因此,铁路病害的勘查十分重要。

路基勘查中,由于受到电磁干扰、铁轨干扰及行车震动干扰的影响,限制了一些地球物理方法的应用。因此,目前常用于对铁路病害检测的物探方法是微重力测量。

由于路基的病害地段和完整地段有一定的密度差异,为微重力测量提供了前提。图5-1-12是法国波尔多至塞特铁路线上路堤下喀斯特溶洞的微重力异常等值线图,测量位置位于铁路线巴尔萨克处,勘查对象是5 m高的路堤和路基部。图中可见,在该带中部有一处密度较大的地段(异常达3×10-1g.u.),这是一处过去曾进行过灌浆处理的地段。在过去处理时,由于突然塌陷,未能进行专门研究。在地段两端出现-2×10-1~-6×10-1g.u.两处异常,位于边坡基部并向路基底下延伸。经对异常的解释和钻探验证,证实在路基下3~6 m深处的灰岩中存在喀斯特溶洞。

图5-1-12 波尔多至塞特铁路线上路堤下喀斯特溶洞的测定和处理

铁路路基多是用耕土堆垫压实而成,如果出现路基病害,必将引起电性差异。路基位于地面以上(或潜水面以上),所以无论是洞穴或渣石充填物都可使勘探体积所涉及范围内的视电阻率增大,由此对称四极剖面会出现高阻异常。路基病害越严重,规模越大,高阻异常越明显。例如,图5-1-13是陇海路某段采用对称四极剖面法实测曲线,采用AB=7 m,MN=1 m装置,由图可见,全线有三种病害形式:①较大洞穴或渣石填充物的严重病害段,视电阻率曲线值很高;②病害较重段,视电阻率曲线呈高低交错;③轻度病害段,视电阻率较高,视电阻率曲线呈高低交错。病害严重段的影响可至路基外侧钢轨下,是亟需处理部位。轻度病害段,短期内不会形成大的病害,可作为今后雨季的防范对象。

根据物探测量和钻孔所提供的资料,可以确定出需要灌浆地带,得出最佳的工程计划。灌浆处理后,除打钻检查外,还可以进行微重力测量,以圈出灌浆不足或灌浆过量的地层。图5-1-14是在一已知灌浆地带,对灌浆后地层的重力异常变化,与计算机根据模型(用灌浆前的钻孔资料制作的地质模型)计算出来的理论异常曲线对比图5-1-14(a),可以看出,该地带的右半部灌注未超出预计范围,也未出现重力异常。在模型左半部出现剩余异常,表明灌浆不足。图5-1-14(b)是灌浆容量对比图,图5-1-14(c)是地质模型(沿Ⅰ号测线的剖面)。

图5-1-13 路基勘查剖面图(选段)

图5-1-14 巴黎—斯特拉斯堡铁路线上瓦朗吉维尔处

近年来,使用瞬态面波进行铁路路基承载力的检测也取得了较好的结果,为路基病害的确定和治理提供了可靠数据。

利用瞬态瑞雷面波法测试线路路基承载力时,由于受到行车影响,在测线布置时只能在枕轨外侧或路肩上进行。由于瑞雷面波是一个体波,具有体积勘探的特点,因此可代表路基道心的实际情况。瞬态面波数据采集时使用面波仪和低频检波器测量。震源采用18磅大锤和铁板。道间距随着勘探深度的增大而相应增大。数据处理主要是求取频率—速度频散曲线,对频散曲线经过反演拟合并结合路基的实际情况进行分层,计算出各层厚度及瑞雷波的层速度。通过频散曲线上vR数值的大小可以定性地判断测点处瑞雷波速度随深度的变化情况和路基的相对强度特征,vR较高区域反映路基强度较高,vR较低区域反映路基强度较低。

在部分瑞雷波测点上作轻型动力触探(N10)值,根据铁道部轻型动力触探技术规定(TBJ18—87)将N10值换算为乘承载力σ0(σ0=8N10-20),然后将瑞雷面波速度vR与相对应测点的轻型动力触探(N10)击数进行数学统计分析,得到vR与N10的相关关系式:

环境地球物理教程

式中A、B为常数。当相关系数r>0.7时,说明vR与N10是相关的,可用vR代替N10来计算承载力σ0的大小,即:

环境地球物理教程

根据此式可用vR定量计算路基的承载力。

图5-1-15 承载力等值线图

图5-1-15为京广线部分区段K2011+170—K2100+270段路基瑞雷波测试,并按上述换算关系(取A=91.07913,B=2.940517)换算得到的承载力等值线图。图中在K2011+230附近路基的承载力偏低,约为80 kPa。而在其两侧的路基的承载力相对偏高,约为180 kPa。此结果与现场实际的情况非常吻合。

3.隧道掌子面前方地质情况预报

在隧道挖掘过程中常因掌子面前地质情况不详,在不良地质地段经常出现塌方、涌水等现象,严重时会造成人身伤亡和设备损坏等重大事故,造成巨大的经济损失。因此,在隧道掘进过程中及时了解掌子面前方地质情况,特别是断层、破碎带等不良地质构造的规模和特征,这对确保施工安全、合理安排掘进方案、掘进速度和支护措施至关重要。

隧道掌子面前方地质情况预报可分为中长距离预报和短距离预报,中长距离预报采用的物探方法一般是人工地震,短距离预报可采用地质雷达或声波探测。

吉林省某公路隧道岩石以花岗岩为主,其中穿插有角闪岩及绿泥角闪岩破碎带,岩石节理裂隙发育。在掘进方向上有两组断裂(走向为NNE及NNW)交替出现,与EW向小断层及破碎带相切割,形成屋顶形,易产生大块脱落体。为了施工安全及合理设计掘进方案,采用人工地震和地质雷达相结合进行掌子面前方地质情况预报。人工地震方法的实施是在掌子面不同高程上水平布置几条地震测线,用石膏在掌子面上等距离粘接检波器,使用大锤在测线两侧激发和接收地震波。地质雷达方法的实施是在掌子面两侧洞壁及掌子面上水平布置雷达测线,使用100MHz天线等距离点测采集。

图5-1-16为在桩号K241+138掌子面上人工地震中长距离预报的解释结果,在K241+138—K241+063段有断层3处,岩性异常带一处。推断位置为K241+115、K241+120、K241+136和K241+068。挖掘证明,有断层2条(F115、F136),出露位置与推测位置相差1 m左右,走向近EW,断距0.3 m。桩号K241+068处为破碎带,宽度约10 m,系由伟晶岩及角闪岩多次侵入造成。

图5-1-16 桩号K241+138地震中期预报结果示意图

图5-1-17 桩号K241+247雷达短期预报结果示意图

图5-1-17为K241+247掌子面上地质雷达短距离预报的解释结果。洞两壁检测到断层3条(F1、F2、F3),走向为NNE和NNW。按几何关系推测,F1与F3在掌子面前方10 m附近相互交会,F2与F3在掌子面前方约35 m附近相互交会。掌子面上测量到前方断裂5条,分别为F242、F239、F235、F230、F225,走向近EW,与F1和F3断层相切割,洞顶极易形成塌落的块体,对施工安全有严重危害。挖掘证明,掌子面上地震与地雷达探测所预报的结果与地质构造出露位置接近。根据预报的结果,施工单位及时调整掘进方案和掘进速度,采取了更合理的安全防范措施。

4.隧道衬砌质量检测

隧道衬砌后,受诸多因素影响,衬砌混凝土可能出现厚度未达到设计要求或有脱空等质量问题。为及时发现衬砌质量问题,需对隧道衬砌质量进行快速和高分辨率的检测,为隧道工程的科学管理提供依据。在隧道质量检测中最常用的地球物理方法是地质雷达方法。

地质雷达法进行隧道衬砌质量检测的主要内容是混凝土密实性、脱空和衬砌厚度。检测中一般采用500 MHz 或900 MHz高频天线,检测厚度可达几十厘米。测线一般布置在隧道的拱顶、拱腰及边墙三个部位(图5-1-18),拱顶为隧道的正顶部附近,拱腰为隧道的起拱线以上1 m左右,边墙为排水盖板以上1.5 m左右。测量方式采用剖面法,测点间隔一般为几厘米~几十厘米,由测量轮跟踪测量里程。

图5-1-18 测线分布图

隧道衬砌厚度检测中,相关介质的物理参数如表5-1-1所示。

衬砌厚度评价,首先在地质雷达剖面上确认出混凝土与岩石界面间的反射波同相轴,读取反射波双程旅行时间,按公式h=v×计算出混凝土衬砌厚度,速度V可通过明洞地段或钻孔资料标定。密实度的评价可根据探地雷达剖面反射波振幅、相位和频率特征划分为密实和不密实两种类型。不密实的混凝土体在雷达剖面上波形杂乱,同相轴错断;脱空体在雷达剖面上在混凝土与围岩交接面处反射波同相轴呈弧形,与相邻道之间发生错位,依此特征可计算出空洞的范围。由于爆破使围岩表面凹凸不平,因此,在确定脱空时应对剖面上的异常加以细致的分析和确认。

表5-1-1 隧道衬砌厚度检测中相关介质的物理参数表

某公路隧道全长约1.6 km,为全面了解衬砌质量,在隧道即将贯通前开展了地质雷达检测。该隧道衬砌类型有:Sm3、Sm4、Sm5,设计衬砌厚度分别为40 cm、35 cm、30 cm。图5-1-19为里程号K21+390—K21+430区段边墙测线的地质雷达剖面。该区段衬砌类型为Sm5。图中10 ns附近起伏变化的同相轴为围岩界面反射波同相轴,图5-1-20为计算出的混凝土衬砌厚度曲线。

图5-1-19 K21+390K21+430区段边墙测线的地质雷达剖面

图5-1-20 K21+390K21+430区段边墙测线混凝土衬砌厚度解释曲线

G. 井下物探

如果采用地质手段,那么可以采用钻探手段;
如果考虑成本,采用物探,可以用电测深,如果探测深度不大,可以使用地质雷达或面波探测。

H. 电测深仪器一般多少钱,请搞物探的各位给参谋一下找水和采空区勘探用的仪器

这个范围太大,目前找水大地电磁(EH4)用的多些,采空瞬变用的多些!仪器因配置和厂家及产地不同价格就不同,从10万到300多万的都有!

I. 什么是隐蔽管线点怎么测量的呢是必须用物探仪才能查出来的吗

隐秘管线点应该就是指那些无法从资料或者肉眼看出来的管线点。对隐蔽管线点检查的版主要方法权是利用探测仪对隐蔽点进行重复探查和开挖检查。但是开挖的话如果没有先验信息很难准确的确定管线位置。所以物探仪器是有必要应用的。
对与周围介质无明显物性差异而又无法开挖验证的目标管道, 辅以钢钎触探和雷达探测等手段进行检查。
一般用地质雷达吧。。。之类的。
详细可以参考一下关于管线测量的文献或者书籍。

J. 什么是隐蔽管线点怎么测量的呢是必须用物探仪才能查出来的吗

隐秘管线点应该就是指那些无法从资料或者肉眼看出来的管线点。对隐蔽管线内点检查的主要方法是容利用探测仪对隐蔽点进行重复探查和开挖检查。但是开挖的话如果没有先验信息很难准确的确定管线位置。所以物探仪器是有必要应用的。
对与周围介质无明显物性差异而又无法开挖验证的目标管道,
辅以钢钎触探和雷达探测等手段进行检查。
一般用地质雷达吧。。。之类的。
详细可以参考一下关于管线测量的文献或者书籍。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864