当前位置:首页 » 地质问题 » 地质年代是怎么测定

地质年代是怎么测定

发布时间: 2021-01-25 19:48:39

A. 用什么方法来确定地质年代

1、相对年代的确定方法
(1)地层学方法(地层层序律:1669年,出生于哥本哈根的斯特诺(Nicolaus Steno,1638-1686)总结出在岩层之间,存在着如下的规律:岩层在形成后,如未受到强烈的地壳运动的影响而颠倒原来的位置,应该是先沉积的在下,后沉积的在上,一层压一层,保持近于水平的状态,延展到远处才渐渐尖灭。地层形成时是水平或近于水平的,先形成的位于下部,后形成的位于其上部.注意:原始产出的上新下老,并非现在野外见到的地层都是上新下老,其中又有后期地壳运的改造。对于后期地壳运动使地层变动(倾斜、倒转)的地层层序可用沉积构造中的层面构造(波痕、泥裂、有痕等)作为“示底构造”恢复顶底后,判断先后顺序。
(2)古生物学方法(化石层序律):生物演化是由简单到复杂,由低级到高级,生物种属由少到多,而且这种演化和发展是不可逆的。因而,各地质时期所具有的生物种属、类别是不相同的。时代越老,所具有的生物类别越少,生物越低级,构造越简单;时代越新,所具有的生物类别越多,生物越高级,构造越复杂。因此,在时代较老的岩石中保存的生物化石相对较低级,构造较简单;而在时代较新的岩石中保存的生物化石相对较高级,构造较复杂。
(3)构造地质学方法(切割律):上述两条准则主要适用于确定沉积岩或层状岩石的相对新老关系,但对于呈块状产出的岩浆岩或变质岩则难以运用,因为它们不成层,也不含化石。但是,这些块状岩石常常与层状岩石之间以及它们相互之间存在着相互穿插、切割的关系,这时,它们之间的新老关系依地质体之间的切割律来判定,即较新的地质体总是切割或穿插较老的地质,或者说切割者新、被切割者老。
2、同位素年龄(绝对年龄)的测定
(1)铷-锶法、铀(钍)-铅法:主要用于测定较古老岩石的年龄;
(2)钾-氩法:有效范围大,几乎可以适用于绝大部分地质时间,而且钾是常见元素,许多矿物中都富含钾,因而使钾-氩法的测定难度降低、精确度提高,所以钾-氩法应用最为广泛;
(3)14C法:由于其同位素半衰期短,它一般只适用于5万年以来的年龄测定;
(4)钐-钕法、40Ar-39Ar法:精度高,分辨率强。

B. 用什么方法来确定地质年代

1、相对年代的确定方法
(1)地层学方法(地层层序律:1669年,出生于哥本哈根的斯特诺(Nicolaus Steno,1638-1686)总结出在岩层之间,存在着如下的规律:岩层在形成后,如未受到强烈的地壳运动的影响而颠倒原来的位置,应该是先沉积的在下,后沉积的在上,一层压一层,保持近于水平的状态,延展到远处才渐渐尖灭.地层形成时是水平或近于水平的,先形成的位于下部,后形成的位于其上部.注意:原始产出的上新下老,并非现在野外见到的地层都是上新下老,其中又有后期地壳运的改造.对于后期地壳运动使地层变动(倾斜、倒转)的地层层序可用沉积构造中的层面构造(波痕、泥裂、有痕等)作为“示底构造”恢复顶底后,判断先后顺序.
(2)古生物学方法(化石层序律):生物演化是由简单到复杂,由低级到高级,生物种属由少到多,而且这种演化和发展是不可逆的.因而,各地质时期所具有的生物种属、类别是不相同的.时代越老,所具有的生物类别越少,生物越低级,构造越简单;时代越新,所具有的生物类别越多,生物越高级,构造越复杂.因此,在时代较老的岩石中保存的生物化石相对较低级,构造较简单;而在时代较新的岩石中保存的生物化石相对较高级,构造较复杂.
(3)构造地质学方法(切割律):上述两条准则主要适用于确定沉积岩或层状岩石的相对新老关系,但对于呈块状产出的岩浆岩或变质岩则难以运用,因为它们不成层,也不含化石.但是,这些块状岩石常常与层状岩石之间以及它们相互之间存在着相互穿插、切割的关系,这时,它们之间的新老关系依地质体之间的切割律来判定,即较新的地质体总是切割或穿插较老的地质,或者说切割者新、被切割者老.
2、同位素年龄(绝对年龄)的测定
(1)铷-锶法、铀(钍)-铅法:主要用于测定较古老岩石的年龄;
(2)钾-氩法:有效范围大,几乎可以适用于绝大部分地质时间,而且钾是常见元素,许多矿物中都富含钾,因而使钾-氩法的测定难度降低、精确度提高,所以钾-氩法应用最为广泛;
(3)14C法:由于其同位素半衰期短,它一般只适用于5万年以来的年龄测定;
(4)钐-钕法、40Ar-39Ar法:精度高,分辨率强.

C. 请问地层的年代是怎么确定的

地层的相对年代主要是根据地层的上下层序、地层中的化石、岩性变化和地层之间的接触关系等来确定的。
(1)地层层序法 正常的地层是老的先沉积在下,而新的后沉积在上。地层这种新老的上下覆盖关系,称为地层的层序定律。常利用地层层序来确定其相对地质年代。但在剧烈构造运动中地层发生倒转的情况下,这一方法就不能应用了。
(2)古生物比较法 古生物化石是古代生物保存在地层中的遗体或遗迹,如动物的外壳、骨骼、角质层和足印,植物的枝、千、叶等。地球上自有生物出现以来,每一个地质时期有相应的生物繁殖。随着时间的推移,生物的演化是由简单到复杂,由低级到高级,在某一地质时期绝灭了的种属不能再出现。这一规律称为生物演化的不可逆性。因此.新地层内的生物化石的种类和组合,往往不同于老地层内的生物化石的种类和组合。通常利用那些演化快、生存短、分布广泛的生物化石,又称标准化石来确定地层的相对年代。
(3)标准地层对比法 不同地质时代的沉积环境不同,因而不同地质时期形成的沉积岩,其岩性特征有很大的差异。只有在同一地质时期内,相同的沉积环境,形成的沉积岩才具有相似的岩性特征。因此,可以地层的岩性变化来划分和对比地层。一般是利用已知相对年代的,具有某种特殊性质和特征的,易为人们辨认的“标志层”来进行对比。例如,我国华北和尔北的南部,奥陶纪地层是厚层质纯的石灰岩;广西、湖南—·带的泥盆纪早期地层为紫红色的砂岩等都可以作为“标志层”。还可利用地层中含燧石结核的灰岩、冰碛层、硅质层、碳质层等特征米定“标志层”。标准地层对比法,一般用于地质年代较老而又无化石的“哑地层”。对含有化石的地层,可与古生物比较法结合运用,相互印证。
(4)地层接触关系 是根据不同地质年代的地层之间的接触关系,米确定其相对年代。地层之间的接触关系有:接合接触、平行不整合(假整合)接触、角度(斜交)不整合接触(图3-1)。
①整合接触 在地壳长期下降情况下,沉积物在沉积盆地中一层一层沉积下来,不同时代的地层是连续沉积的,中间没有间断。这种地层之间的接触关系,称为整合接触。
②平行不整合接触(假整合) 当地壳由长期下降的状态转变为上升时,早先形成的地层露出水面,不仅不再接受沉积,而且还遭受到风化剥蚀,形成高低不平的侵蚀面;其后地壳再次下降,原来的侵蚀面上又沉积了一套新地层。这样,新老两套地层的岩层面大致平行,但它们之间存在着一个侵蚀面,称不整合面,并缺失一部分地层,反映沉积作用曾发生过间断。新老地层之间的这种接触关系叫做旷行不整合<假整合)接触。
③角度(斜交)不整合接触 当地壳由下降转为上升过程中, 早先形成的地层因地壳剧烈运动而产生褶皱和断裂时,岩层便产生倾斜。当这套地层露十水面后经过风化剥蚀,再次下降接受新的沉积。新老两套地层之间不但有地层缺失,而且不整合面上下两套地层的岩层产状呈角度相交。这种接触关系叫做角度(或斜交)不整合接触。

D. 如何确定相对地质年代和绝对地质年代

地质年代:地壳上不同时期的岩石和地层,时间表述单位:宙、代、纪、世、期、时;地层表述单位:宇、界、系、统、阶、带。在形成过程中的时间(年龄)和顺序。
它包含两方面含义:其一是指各地质事件发生的先后顺序,称为相对地质年代;其二是指各地质事件发生的距今年龄,由于主要是运用同位素技术,称为同位素地质年龄(绝对地质年代)。这两方面结合,才构成对地质事件及地球、地壳演变时代的完整认识,地质年代表正是在此基础上建立起来的。

相对地质年代:

是指地层的生成顺序和相对的新老关系。它只表示地质历史的相对顺序和发展阶段,不表示各个地质时代单位的长短。
在研究地球的演化历史或者地质过程时,有时候并不一定需要知道地质事件发生的准确时间,而只需要知道它们之间的先后顺序,这种只确定地质事件发生先后顺序的方法称为相对地质年代。在没有找到合适的定龄方法之前,地质学家采用的就是相对地质年代的方法来确定地质事件发生的先后顺序。这种相对地质年代学的方法至今仍然是地质学家研究地质过程的主要手段。

绝对地质年代:
指通过对岩石中放射性同位素含量的测定,根据其衰变规律而计算出该岩石的年龄。
绝对地质年代是以绝对的天文单位“年”来表达地质时间的方法,绝对地质年代学可以用来确定地质事件发生、延续和结束的时间。
在人类找到合适的定年方法之前,对地球的年龄和地质事件发生的时间更多含有估计的成分。诸如采用季节-气候法、沉积法、古生物法、海水含盐度法等,利用这些方法不同的学者会得到的不同的结果,和地球的实际年龄也有很大差别。较常见也较准确的测年方法是放射性同位素法。其中主要有U-Pb法、钾-氩法、氩-氩法、Rb-Sr法、 Sm-Nd法、碳法、裂变径迹法等,根据所测定地质体的情况和放射性同位素的不同半衰期选用合适的方法可以获得比较理想的结果。

相对地质年代的确定
确定相对年代,主要是根据岩层的叠复原理、生物群的演化规律和地质体(岩层、岩体、岩脉等)之间的切割关系这三个主要方面进行的.
叠复原理
沉积岩的原始沉积总是一层一层的叠置起来,表现了下老上新的关系.遗憾的是,各地区的地层并非都是完整无缺,有的地区因地壳下降而接受沉积,另一些地区又因地壳上升而遭受剥蚀.在这种各地不统一的情况下,要建立大区域的或全球性的统一地层系统,就必须把各地零星的地层加以综合研究对比,最后综合出一个标准的地层顺序(或地层剖面),这种方法叫地层学法.它主要是研究岩石的性质.
生物群的演化规律
除了利用岩性和岩层之间的叠复关系来解决岩层的相对新老外,人们发现保存在岩层中的生物化石群也有一种明确的可以确定的顺序.而且处在下部地层中的生物化石,有的在上部地层中也存在,有的则绝灭了但又出现一些新的种属.这充分说明,生物在演化发展过程中具有阶段性.而且在某一阶段中绝灭了的生物种属,不会在新的阶段中重新出现,这就是生物进化的不可逆性.因此,愈老的地层中所含的生物化石愈原始,愈低级;愈新的地层中所含生物化石愈先进,愈高级.这就是划分地层相对年代的生物群演化规律.这种方法叫古生物学法.
这里特别要指出的是,生物的存在与发展总是要适应随时间而变化的环境,所以在不同时代的地层中,往往有不同种属的生物化石.有趣的是,有些生物垂直分布很狭小(生存时间短),但水平分布却很广(分布面积大,数量多),这种生物化石对划分、对比地层的相对年代最有意义,称为标准化石.所以不论岩石的性质是否相同,相差地区何等遥远,只要所含的标准化石或化石群相同,它们的地质年代就是相同或大体相同的.
地质体之间的切割关系
由于地壳运动、岩浆作用、沉积作用、剥蚀作用的发生,常常会出现地质体(岩层、岩体、岩脉)之间的彼此穿切现象.显然,被切割的岩层比切割的岩层老;被侵入的岩体比侵入的岩层或岩脉老.利用这种关系来确定岩层的相对地质年代,就叫构造地质学法.

因而可以通过岩层的种类,以及某个地质年代的特殊化石(例如三叶虫就是寒武纪的标志)能够确定了

E. 年代测定的方法有几种

测定年代的方法,一般可分为两类,即绝对年代测定法和相对年代测定法。

(1)绝对年代测定法

绝对年代的测定,是根据沉积或火山岩在形成后其中化学元素自然放射性的衰变而计算的。沉积岩中的某些元素含有不稳定的同位素,在发生自然的放射性衰变时,它们的原子有规则地分解成为其他的元素,如钾40逐渐衰变成氩40,铀235衰变成铅207,碳14衰变成氮14等等。

衰变的速度不受外界因素如压力、温度或时间推移的影响。经过一定的时间,原先的原子只留下一半了。这个时间叫“半衰期”,放射的量也只有一半了。这留下的一半经过一定的时间,又去掉一半,只留下原先的1/4,再过一定的时间,再去掉一半,留下原先的1/8,如此等等。如果确定这块岩石样品中剩余的不稳定的同位素的量,再确定衰变产生的元素的量,得出它们的比例,这样根据已知的半衰期年代,便可计算出它的绝对年代。

这些间接的绝对年代测定的准确性,也有赖于标本与沉积年代的关系;如果年代测定还有赖于与其他沉积的相关,则其可靠性又差了一段。总之,绝对年代测定法虽然给人们一个年代的数目,但不要忘记,这只是一种估计,并不是准确数目。

(2)相对年代测定法

相对年代是使化石年代与其他东西的年代发生联系,如与其他化石、旧石器文化或地质事件相联系,从而来确定化石的年代。在不能使用绝对年代测定法时,使用相对年代测定法是很有用的。但是这种方法的准确性受到一系列因素的影响。

相对年代测定法主要是利用化石与它的沉积物的关系。当骨骼被埋藏时,它们逐渐吸收土壤中的某种元素。埋藏的时间越长,它们吸收得越多。比较各骨中这些化学物质的量,就可得知其相对的年代。如果人化石与其周围的动物化石埋藏时间是相同的,则两者中的各种元素的百分率会是一样的,如果人骨是埋藏在较晚的层位中,而后与较老的动物骨骼相混杂,则人骨内的各种元素的量会较少。最早用这种方法是分析骨中氟(Fluorine)的含量,例如在上世纪末和20世纪初时,初次用含氟量来判别在南斯拉夫克拉皮纳(Krapina)地点发现的人化石是否与该地点的绝灭动物群的骨骼是同时化的,从而确定了克拉皮纳人在尼人中的地位。其他常用的元素有氮和铀。这些化学测定法完全决定于当地的土壤条件,而不能用来比较不同的地点,即使是互相邻近的地点也不行。随着当地条件的变化,这种方法得出的结果有时不一致,或者根本不能应用。特别是人类化石,要考虑到在近10万年内埋葬的习俗逐渐风行起来。

相对年代的另一种测定方法,是确定出产化石的沉积,或者化石本身在当地的地层顺序、考古顺序或者动物进化顺序中的位置,从而测定其年代。

根据出产化石的地层与已知地层的特征相对比,从而确定化石的年代。例如,在东非肯尼亚特卡纳湖的一二百万年前的沉积中发现的人类化石的地层层位,可以用火山的凝灰岩而追踪其相互关系。又如欧洲的许多尼人的相对地位,可以用西欧当地的温度变化的序列、古土壤的成分以及其他受温度影响的地质现象来确定。

用考古器物的文化顺序,来测定年代是有很大困难的。人类技术的进步,更多是增加新的工具,而不是抛弃旧的。现代人还有用很原始的石器工具的。如果单从极简单的工具来判断,则可能会把晚的东西弄得很早。可是如果发现一把铁斧,则此地点肯定是相当晚的。所以,只能从最先进的工具来确定一个地点在当地文化顺序中的地位。

F. 地质年代是怎样划分的

地球从形成、演化发展46亿年来,留下了一部内容丰富的大自然的巨大史册,这就是各时代的地层。地质年代的划分是研究地球演化、了解各处地层所经历的时间和变化的前提。1881年,国际地质学会正式通过了至今通用的地层划分表,以后又不断进行修订、完善,形成了一张系统完整的地质年代表。

地质学家常用放射性同位素测定法和古生物学两种方法来划分不同地质年代的地层。用放射性同位素测定的地层或岩石的年代,是地层或岩石的真实年龄,称为绝对地质年代;用古生物学方法测定的年代,只反映地层的早晚顺序和先后阶段,不说明具体时间,称为相对地质年代。把两种方法结合起来,就能更准确地反映地壳的演变历史。

地质学家把地层分为六个阶段:即远太古代、太古代、元古代、古生代、中生代和新生代。其中远太古代、太古代和元古代为地球的发展初期阶段,距今时间最远,经历时间也最长,当时的生物仅处于发生和孕育时期。进入古生代时,海洋里的生物已经相当多了,无论是植物还是动物都开始由低级向高级阶段进化。到了中生代和新生代,像恐龙、始祖鸟、鱼龙、古象等大型动物相继出现,地球生物界出现了空前的繁荣。

为了深入揭示各地质年代中地层和生物的特征,地质学家又在“代”的下面划分出许多次一级的地质时代。如古生代自老到新可分为六个纪:寒武纪、奥陶纪、志留纪、泥盆纪、石炭纪和二叠纪。中生代分为:三叠纪、侏罗纪和白垩纪。新生代分为:第三纪和第四纪。这些“纪”的名称听起来很古怪,但都各有各的来历。例如,在英国的威尔士地区,古时候曾居住过两个名叫“奥陶”和“志留”的民族,于是地质学家便把在这儿发现的两套标准地层称为“奥陶纪”和“志留纪”地层。又如,在德国和瑞士交界处的侏罗山里发现了另一种标准地层,就取名为“侏罗纪”地层。而“石炭纪”和“白垩纪”,则表明地层中含有丰富的煤层和白垩土,等等。

G. 测定地质年代

地质学家很早就开始了利用岩层的相对层和其中所含的标准化石,作地层对比来研究 地层的年代。但是岩石的年龄有绝对年龄(即自岩石形成到现在的实际年限)和相对年龄(即依据岩石形成的先后次序而得到的年代)。像这样由地层对比确定的只能是相对年龄,而不是绝对年龄。1902年卢瑟福(E.Rutherford)提出利用放射性核素的自然衰变作为 宇宙的时间尺度,即通过计算衰变母体和子体的比值,来确定岩石形成的时间,这才给地 质年代的研究开创了一条新的道路。

图5-13 栖霞水泥厂综合物探找水(据程业勋等,2005)

图5-14 α法寻找地下热水(据程业勋等,2005)

图5-15 安徽半汤放射性勘探综合剖面图(据贾文懿,1988)

(一)测定地质年代的原理

依据放射性衰变来测定岩石和矿物的形成时间,可取得各个地质时期岩石的绝对 年龄。

根据本章 第一节中已叙及的放射平衡概念,当母元素与其后代的子元素达到放射平衡时,它们的衰变率应相等。现设母元素的量为N,其后相继的子元素的量为N1,N2,…,Nn;Nn表示最后的稳定元素的量,则它们中间应有如下关系:

勘探地球物理教程

若初始t=0时N=N0,即N1=N2=…=Nn=0时,式(5-15)的解为

勘探地球物理教程

中间各代子元素的解较复杂,这里不予列出。但已知除最后稳定元素外,中间各代子元素 的半衰期都很短,都比初始的长寿母元素短很多。所以,λ1,λ2,…,λn-1》λ,而经历的 时间t也是很长的,因此,λ1t,λ2t,…,λn-1t都是很大的。这样式(5-17)和式(5- 18)即可化简为

勘探地球物理教程

可见,除最后的稳定同位素以外,各代子元素与起始的母元素数量之比皆为常数。

由式(5-16)和式(5-20)可得

勘探地球物理教程

因此,当分析岩石取得母元素和最后稳定元素的数量时,便可由式(5-21)计算出岩石 年龄。

(二)测定地质年代的方法

地质年代测定的方法很多,通常使用的有铀—铅法、钾—氩法、铷—锶法、碳法及裂变径迹法等,这里主要介绍前两种方法。

1. 铀—铅(U-Ph)法

在许多岩浆岩中,特别是伟晶岩中,常含有少量的铀和钍,238U、235U与232Th各系衰 变时,最后形成的都是稳定的铅同位素。

勘探地球物理教程

这三个放射系都能满足上述式(5-16)~式(5-18)的条件。若岩石和矿物在形成时,原来不含放射性来源的铅,则由现在所含的铀或钍与铅的比值,就可测出矿物自形成 时到现现的时间,由式(5-20)可写:

勘探地球物理教程

由式(5-23)中任一等式均可求出t。

另一方法是将式(5-23)中前两式相除,即得

勘探地球物理教程

式中: 是两种铀同位素现在的比值,是已知的,等于137.8。所以,由岩石(或矿石)所含的两种铅同位素的比值 即可求出t。

铀—铅法是最早使用的测定地质年代的放射性方法。由于铀、钍常常共生,一块标本 可测得四种比值,算得的年龄可以彼此验证。又因为它们的半衰期很长,所以最适用于比 较古老的(如前寒武纪)岩石。在实际测定中当然还会碰到更复杂的情况:如在矿物形成 时原来就有铅;铀、钍和铅在地质时期中都可能丢失或增加等等。这些因素常可用适当方 法校正。

2.钾—氩法

铀—铅法虽然是一种较可靠的方法,但含铀、钍的岩,矿石不太多。钾则是一种几乎到处都有的元素,尤其在两种主要造岩矿物——长石和云母中存在。钾的一种同位素40K 是放射性的,它衰变有两种产物:一种是40Ca;另一种是40Ar。由式(5-16),可类比 写出

勘探地球物理教程

式中:40K0为t=0时的数量。

同理,可以写出

勘探地球物理教程

利用式(5-25)和式(5-26)可求t。但自然界中40Ca和Ca常混在一起,故难以测 定40Ca的含量。因此,钾—钙法很少用。钾—氩法可用于岩浆岩和变质岩区,有时也可用 于测定陨石的年龄。

H. 如何利用沉积岩判定岩石的地质年代

利用沉积岩判定岩石的地质年代,可分为两方面。一是判定绝对地质年代,即专通过检测沉积属岩中的放射性元素和它蜕变生成的同位素含量,即用同位素地质测定法测定沉积岩的绝对年龄,也就是距今多少年;二是判定沉积岩的相对地质年代,有多种方法。第一是根据沉积岩中所含古生物化石,按生物进化规律排出岩石形成的先后顺序;第二是根据沉积岩层之间的接触关系、沉积序列、沉积岩体横向展布以及沉积岩中的沉积构造特征等判定岩层的上下或新老关系。

I. 地质年代学的测定方法

如根据 α射线和裂变碎片对周围物质的次生作用来确定物质形成的年龄,主要有裂变径迹法、热释光法、多色晕法和氧法。裂变径迹法是根据矿物中铀自发裂变产生的辐射损伤径迹的数目作为矿物存在时间的函数来计算矿物的年龄。该法测试技术简单,测定年龄范围大,一般为100万年至2亿年,这一数值与钾-氩法基本一致。裂变径迹法适用的矿物有云母类、角闪石类、榍石、磷灰石、锆石和火山玻璃等。热释光法与岩石中放射性物质辐射能量有关,它在测定年青岩石、矿物年龄方面能起较大作用。
此外,还有根据地质体中某些物理变化特征来确定其地质年龄的方法:①氨基酸降解法、双折射比较色散法等;②根据沉积岩中纹泥层测算沉积时间长度;③根据古生物生长节律(古生物钟)来测算其生存的地质时间长度等。 主要包括地质、岩石、古生物和古地磁的方法。根据地层层序律确定地层新老关系的方法,开始于18世纪末期。一些具有特殊性或特殊矿产的岩层,可作为确定相对地质年代的标志,例如条带状磁铁石英岩只形成于太古宙至元古宙,煤(包括石煤)仅出现于前寒武纪以后。生物地层法是利用化石来鉴定地层时代。利用化石来划分地质时代是可靠的,因为生物界的矛盾发展具有特殊的规律,表现出清楚的不可逆性和阶段性。生物界的演化,由简单到复杂,由低级到高级,不可能出现完全重复。这个过程也不是均一的或等速的,而是由缓慢的量变与突变或生物大量绝灭的急速质变交替出现所组成。在同一时期内,生物的总体面貌大体具有全球的一致性,至少在大区内具有一致性。因此,化石是确定相对地质年代的主要手段,并据此对地质年代进行划分。时间对比图解法是利用化石总延续时限来显示沉积岩地层序列上的时间控制,此法包括一种图像标绘,根据两个剖面上共有化石的最早出现和最终消失的顺序(即延限),以及各剖面上岩石堆积速率,来显示出相似年代的两个岩层剖面间的最佳时间对比。此外,根据岩层穿切关系原理能够简易地判别岩层相对的新老关系,被穿切的地层总是老于后期穿切的地质体。不整合面存在时,在正常情况下,不整合面以上的地层总晚于其下的地层序列。
古地磁法是利用地磁极性正常和倒转的交替,借助于已知地层时代和同位素年龄数据,编出地磁极性年代表,它是进行磁性地层工作的标尺。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864