刘勇胜地质大学
㈠ 第四篇参考文献
Miyashiro A(1973),周云生译.1979.变质作用与变质带.北京:地质出版社.
Passchier C W,Myers J S,Kroner A(1990),朱志澄,张家声,游振东译.1992.高级片麻岩区野外地质工作方法.北京:地质出版社.
Vernon R H(1976),游振东,王仁民等译,1988.变质反应与显微构造。北京:地质出版社.
Winkler H G F(1976),张旗,周云生译.1980.变质岩成因.北京:科学出版社.
毕先梅,莫宣学.2004.成岩-极低级变质-低级变质作用及有关矿产.地学前缘,11(1):287-293.
陈曼云,金巍,郑常青.2009.变质岩鉴定手册.北京:地质出版社.
陈鸣.2007.岫岩陨石坑:撞击起源的证据.科学通报,52(23):2777-2780.
陈鸣,肖万生,谢先德等.2009.岫岩陨石撞击坑的证实.科学通报,54(22):3507-3511.
程裕淇,沈其韩,刘国惠,李泽九.1963.变质岩的一些基本问题和工作方法.北京:中国工业出版社.
邓晋福.1987.岩石相平衡与岩石成因.武汉:武汉地质学院出版社.
董申保等.1986.中国变质作用及其与地壳演化的关系.北京:地质出版社.
韩郁菁.1993,变质作用P-T-t轨迹.武汉:中国地质大学出版社.
简平,程裕淇,刘敦一.2001.变质锆石成因的岩相学研究——高级变质岩U-Pb年龄解释的基本依据.地学前缘,8(03):183-191.
梁祥济.2000.中国矽卡岩和矽卡岩矿床形成机理的实验研究.北京:学苑出版社.
刘守偈,李江海,Santosh M.2008.内蒙古土贵乌拉孔兹岩带超高温变质作用:变质反应结构及P-T指示.岩石学报,24(6):85-92.
刘援朝,倪志耀,蔡学林.2010.塔里木盆地北缘幔源岩石包体特征及岩石圈上地幔流变规律.矿物岩石,30(2):82-86.
路凤香,桑隆康.2002.岩石学.北京:地质出版社.
钱祥麟,王仁民.1994.华北北部麻粒岩带地质演化.北京:地震出版社.
桑隆康.1992.变质岩岩石学的定量分类与原岩恢复.矿物学岩石学论丛,(8):65-74.
桑隆康,游振东.1992.玲珑花岗岩的成因演化及其与鲁东金矿的关系.地球科学,17(5):521-529.
桑隆康,王人镜,张泽明等.2000.九资河-天堂寨地区燕山晚期花岗岩与大别造山带核部隆升.地质学报,74(3):234-246.
索书田,毕先梅,赵文霞等.1998.右江盆地三叠纪岩层极低级变质作用及地球动力学意义.地质科学,33(4):395 405.
索书田,桑隆康,韩郁菁等.1993.大别山前寒武纪变质地体岩石学与构造学.武汉:中国地质大学出版社.
覃功炯,欧强,常旭.2001.国内外对天体撞击地球的撞击构造研究的新进展.地学前缘,8(2):345-352.
汤艳,桑隆康,刘嵘等.2007.矿物共生分析在很低级变质作用研究中的应用——以松潘-阿坝地区红参1井为例.现代地质,21(3):457-461.
王仁民,陈珍珍.1980.河南桐柏变质海相火山岩系的钠化和钙化及其在解决细碧岩与有关矿产成因问题上的意义.矿物学与岩石学论丛,(1):90-106.
王仁民,游振东,富公勤.1989.变质岩石学.北京:地质出版社.
魏春景,周喜文.2008.变质相平衡的研究进展.地学前缘,10(4):341-351.
吴元保,郑永飞.2004.锆石成因矿物学及其对U-Pb年龄解释的制约.科学通报,49(16):1589-1603.
徐树桐,刘贻灿,江来利等.1994.大别山的构造格局和演化.北京:科学出版社.
许志琴,杨经绥,张泽明等.2005.中国大陆科学钻探终孔及研究进展.中国地质,12(2):177-182.
燕守勋.2003.广西右江盆地利周河口剖面极低级变质带的伊利石结晶度与粘土矿物光谱标志对比研究.中国科学,33(5):459-468.
游振东,钟增球,索书田.2007.论超高压变质的矿物学标志.现代地质,21(2):195-202.
游振东.2007a.超高压变质带的全球分布及其大地构造意义.高校地质学报,13(3):1-9.
游振东.2007b.超高压变质作用:地球科学的新热点.自然杂志,29(5):255-264.
游振东,刘嵘.2008.陨石撞击构造作用的研究现状与前景.地质力学学报,14(1):22-36.
游振东,韩郁菁,杨巍然等.1988.东秦岭大别高压超高压变质带.武汉:中国地质大学出版社.
游振东,王方正.1991.变质岩岩石学教程.武汉:中国地质大学出版社.
游振东.索书田等.1991.造山带核部杂岩变质过程与构造解析——以东秦岭为例.武汉:中国地质大学出版社.
游振东,陈能松,张泽明.1996.中国桐柏大别构造带变质演化的岩石学证迹.地球学报,17(增刊):16-22.
游振东,钟增球,张泽明.1999.桐柏-大别山区高压变质相的构造配置.地学前缘,6(4):237-245.
张立飞.2007.极端条件下的变质作用——变质地质学研究的前沿.地学前缘,14(1):33-42.
张立飞,王启明,任磊夫.1992.陕北鄂尔多斯盆地三叠系泥岩中粘土矿物在埋藏变质过程中的转化.中国科学(B辑),(7):759-767.
张泽明.1992.大别山榴辉岩带的岩石学研究.见:岩石学论文集.武汉:中国地质大学出版社,197-205.
张泽明,沈昆,刘勇胜等.2007.南苏鲁造山带毛北超高压变质岩体的成因与成矿作用.岩石学报,23(12):3095-3115.
赵一鸣,林文蔚,毕承思等.1990.中国夕卡岩矿床.北京:地质出版社.
钟增球,郭宝罗.1991.构造岩与显微构造.武汉:中国地质大学出版社.
周高志,J.G.Liou,刘源骏等.1996.湖北北部高压、超高压变质带.武汉:中国地质大学出版社.
朱志澄.1999.构造地质学.武汉:中国地质大学出版社.
Best M G.2003.Igneous and metamorphic petrology(2nd Edition).Malden,USA:Blackwell Science Ltd.
Blatt H,Tracy R J,Owens B E.2006,Petrology:Igneous,sedimentary,and metamorphic(3rd Edition).NewYork:W.H.Freeman and Company.
Brown M.2007.Metamorphism,plate tectonics and the supercontinent cycle.Earth Science Frontiers,14(1):1-15.
Carmichael D M.1969.On the mechanisms of prograde metamorphic reactions in quartz-bearing pelitic rocks.Contrib.Mineral.Petrol.,20:244-267.
Carswell D A.1990.Eclogite facies rocks.New York:Blackie &Son Ltd.
Carter N L,Tsenn N C.1987.Flow properties of continental lithosphere.Tectonophysics,136:27-63.
Chen M,Xiao W,Xie X.2010.Coesite and quartz characteristic of crystallization from shock-proced silica melt inthe Xiuyan crater.Earth and Planetary Science Letters,297(1-2):306-314.
Chopin C.1981.Talc-phengite:A widespread assemblage in high-grade pelitic blueschists of the Western Alps.J.Petrol.,22:628-650.
Chopin C.1984.Coesites and pure pyrope in high-grade blueschists of the Western Alps:A first record and someconsequence.Contr.Mineral.Petrol.,86:107-118.
Coleman R G,Lee D E,Beatty L B et al.1965.Eclogites and eclogites:their differences and similarities.Geol.Soc.America Bull.,76:483-508.
Earth Impact Database,2010-7-15.http://www.unb.ca/passc/ImpactDatabase/index.html.
England P C,Richardson S W.1977.The influence of erosion upon the mineral facies of rocks from differentmetamorphic environments.J.Geol.Soc.London,134:201-213.
England P C,Thompson A B.1984.Pressure-temperature-time paths of regional metamorphism I.Heat transferring the evolution of regions of thickened continental crust.Journal of Petrology,25(4):894-928.
Ernst WG,Liou J G.2000.Ultrahigh pressure metamorphism and geodynamics in collision type orogenic belts.Bellwether Publishing Ltd.For Geological Society of America,20-74;216-229.
French B M.2003.Traces of catastrophe:A handbook of shock metamorphic effect in terrestrial meteorite impactstructures,10-07,http://www.Lpi.usra.E/publications/books/CB.
Harker A.1960.Metamorphism.London:Methuen Co.Ltd.
Harley S L.1998.On the occurrence and characterization of ultrahigh-temperature crustal metamorphism.In:Treloar P J & O'Brien P J(eds.),What drives metamorphism and metamorphic reactions? Geological Society,London,Special Publication,138,81-107.
Harley S L.1989.The origins of granulites:A metamorphic perspective.Geol.Mag.,126:215-247.
Hirsch D.2011.Different kinds of reactions,integrating research and ecation,Western Washington University,http://serc.carleton.e/research_ecation/equilibria/reactioncurves.html.
Hokada T.2001.Feldspar thermometry in ultrahigh-temperature metamorphic rocks:Evidence of crustalmetamorphism attaining~1100℃ in the Archaean Napier Complex,East Antarctica.American Mineralogist,86:932-938.
Horsfield B,Rullketter J.1994.Diagenesis,catagenesis,and metagenesis of organic matter.In:Magoon L B,DowD G(eds.),The Petroleum System—From Source to Trop.American Association of Petroleum Geologist Memoir,60:189-199.
Jiao S,Guo J.2011.Application of the two-feldspar geothermometer to ultrahigh-temperature(UHT)rocks in theKhondalite belt,North China craton and its implications.American Mineralogist,96:250-260.
Johannes W.1983.On the origin of layered migmatites.In:Atherton M P,Gribble C D(eds.),Magmatites,melting and metamorphism.Shiva Publishing Ltd.
Korprobst J.2002.Metamorphic rocks and their geodynamic significance.New York:Kluwer Academic Publishers.
Leake B E.1964.The chemical distinction between ortho-and para-amphibolites.J.Petrol.,5:238-254.
Maruyama S,Masago H,Katayama I et al.2010.New perspective on metamorphism and metamorphic belts.Gondwana Research,18:106-137.
Maruyama S.1994.Plume tectonics.Journal Geological Society of Japan,100(1):24-29.
Mason R,Sang L.2007.Metamorphic geology.Wuhan:China University of Geosciences Press.
Mason R.1990.Petrology of metamorphic rocks(2nd Edition).London:Uniwin Hyman ltd.
Mason R.1999.Metamorphic petrology.Wuhan:China University of Gosciences Press.
Massonne H J,Schreyer W.1989.Stability field of the high-pressure assemblage talc-phengite and two new phengitebarometers.Eur.J.Mineral.,1:391-410.
Matton G,J6brak M,Lee J K W.2005.Resolving the Richat enigma:Doming and hydrothermal karstification abovean alkaline complex.Geology,33(8):665-668.
Mehnert K R.1968.Migmatites and the origin of granitic rocks.Amsterdam:Elsevier.
Merriman R J,Frey M.1999.Patterns of very low-grade metamorphism in metapelitic rocks.In:Frey M,RobinsonD(eds.),Low-grade metamorphism.Oxford:Blackwell Science,61-107.
Merriman R J,Peacor D R.1999.Very low-grade metapelites:mineralogy,microtextures and measuring reactionprogress.In:Frey M,Robinson D(eds.),Low-grade metamorphism.Oxford:Blackwell Science,10-60.
Miyashiro A.1994.Metamorphic petrology.London:UCL Press.
Niggli P.1919.Geometrische Kristallographie.Borntroger,Leipzig.
Press F,Siever R.1986.Earth(4th Edition).New York:W.H.Freeman and Company.
Pupin J.1980.Zircon and granite petrology.Contrib.Mineral.Petrol.,73,207-220.
Raymond L A.1995.Petrology:The study of igneous,sedimentary,metamorphic rocks.New York:WCBPublishers.
Raymond L A.2002.Petrology:The study of igneous,sedimentary,metamorphic rocks(2nd Editin).New York:McGraw-Hill.
Reimold W U,Koeberl C,Gibson R L et al.2005.Economic mineral deposits in impact structures:A review.In:Koeberl C,Henkel H(eds.),Impact tectonics.New York:Springer,479-552.
Sajeev K,Osanai Y.2003.First finding of osumilite from Highland Complex,Sri Lanka:A case of melt restiteinteraction resulted isobaric cooling after UHT metamorphism.Vth Hutton Symposium Abstracts,127.
Sang L.1991.The petrochemistry of the Lower Proterozoic metamorphic rocks from the Dabieshan-Lianyungang area,the southeastern margin of the North China Platform.Mineralogical Magazine,55(379):263-276.
Sang L.1997.Rock assemblages and forming age of Dabie-Tong complexes.J.China University of Geosciences,8(2):106-113.
Santosh M.Sajeev K,Li J H.2006.Extreme crustal metamorphism ring Columbia supercontinent assembly:Evidence from North China Craton.Gondwana Research,10:256-266.
Schaltegger U,Fanning C M,Gunther D et al.1999.Growth,annealing and recrystallization of zircon andpreservation of monazite in high-grade metamorphism:Conventional and in-situ U-Pb isotope,cathodoluminescenceand microchemical evidence.Contrib.Mineral Petrol.,134,186-201.
Schreyer W.1988.Subction of continental crust to mantle depths:Petrological evidences.Episodes,11(1):97-104.
Shaw D M,Kudo A M.1965.A test of the discriminant function in the amphibolite problem.Min Mag.,34:423-435.
Shaw D M.1972.The origin of Apsley gneiss Ontario.Can.J.Earth Sci.,9:18-35.
Sibson R H.1977.Fault rocks and fault mechanisms.J.Geol.Soc.London,133:191-213.
Simonen A.1953.Stratigraphy and sedimentation of the Svecofennidic Early Archean supracrustal rocks in South-western Finland.Bull.Comm.Geol.Finland,(160):64.
Sobolev N V,Shatsky V S.1990.Diamond inclusions in garnets form metamorphic rocks:A new environment fordiamond formation.Nature,343:742-746.
Spear F S,Cheney J T.1989.A petrogenetic grid for pelitic schists in the system SiO2-Al2O3-FeO-MgO-K2O-H2O.Contr.Mineral.Petrol.,101:149-164.
Spear F S,Selverstone J,Hickmott D.1984.P-T paths form garnet zoning:A new technique for deciphering tectonicprocesses in crystalline terrains.Geology,12:87-90.
Spry A.1969.Metamorphic texture.Oxford:Pergamon Press.
Suo S T,Zhong Z Q,Zhou H W et al.2005.Tectonic evolution of the Dabie-Sulu UHP and HP metamorphic belts,east central China:structural record in UHP rocks.International Geology Review,17(11):1207-1221.
Thompson A B,England P C.1984.Pressure-temperature-time paths of regional metamorphism Ⅱ.Their inferenceand interpretation using mineral assemblages in metamorphic rocks.Journal Petrology,25(4):929-955.
Treloar P J,O'Brien R J.1998.What drives metamorphism and metamorphic reactions? Geological Society,London.
Turner F J.1981.Metamorphic petrology(2nd Edition).Mc Graw-Hill Book Company.
Vielzeuf D,Holloway J R.1988.Experimental determination of the fluid-absent melting relations in the peliticsystem.Consequences for crustal differenciation.Contr.Mineral.Petrol.,98,257-276.
Walker K B,Joplin G A,Lovering J F et al.1960.Metamorphic and metasomatism convergence of basic igneousrocks and lime magnesia sediments of the Precambrian of northwestern Queensland.Geol.Soc.Australia,6:149-178.
Wang H,Rahn M,Tao X et al.2008.Diagenesis and metamorphism of Triassic Flysch along profile Zoige-Lushan,Northwest Sichuan,China.Acta Geologica Sinica,82(4):917-926.
Wang F,Chen N.1996.Regional and thermodynamic metamorphism of the Western Hills,Beijing.Beijing:Geological Publishing House.
Wang X,Liu J G,Mao H K.1989.Coesite-bearing eclogite from Dabie Mountains in central China.Geology,17:1085-1088.
Wei C J,Powell R,Clarke G L.2004.Calculated phase equilibria for low- and medium-pressure metapelites in theKFMASH and KMnFMASH systems.J.Metamorphic Geol.,22:495-508.
Williams H,Gilbert G M,Turner F J.1982.Petrography(2nd Edition).W H Freeman & Company.
Yardley B W D.1989.An introction to metamorphic petrology.New York:Wiley.
Емельяненко ПФ,Яковлева Е Б.1985.Петрлогия магматических и метаморфических пород.Изд.МГУ,Москва.
Коржинский Д С.1973.Теоретические основыаналцза петроге-незисов минералов.Изд.“Наука”,Москва.
Кориковский С П.1979.Фации метаморфизма метапелитов.Изд.Наука,Москва,8-23.
Маракушев А А,и Бобров А В.2005.Метаморфическая петрология.Изд.МГУ,Изд.Наука,Москва,206-227
Маракушев А А.1986.Петрография.Изд.МГУ,Москва.
Маракушев А А.1993.Петрография.Изд.МГУ,Москва,267-319.
㈡ 中国地质大学地球化学哪些教授比较牛
中国地质大学(武汉)高山院士
㈢ 火山岩的年代学研究
(一)祁漫塔格地区滩间山群的地层时代
茫崖镇小狼牙山灰岩透镜中采集到角石,Clinoceras sp.,Whiteavesctes sp.,Giangxiceras sp.,十字沟灰岩夹层中产珊瑚:Plasmoporella sp.,Heliolites sp.,野马泉-苏海图带长山地区碳酸盐岩岩组中采集到珊瑚Rhabdotyadium qinghaiense lin(青海省地质矿产局,1991),可以看出,祁漫塔格群中已有化石的时代集中于中晚奥陶世;近年来黎敦朋等(2003)从祁漫塔格群中解体出了一套志留纪浊积岩相地层,含Monoclimacis griestoniensis(Nicol),Monograpt us priodon(Bronn),Monograpt us sp.,Streptograpt us cf.becki等早志留世笔石动物群,该套地层岩石组合特征与祁漫塔格群有一定的区别,二者的接触关系目前是不清楚的。
(二)祁漫塔格地区滩间山群火山岩同位素测年结果
本次研究工作针对宽沟-小狼牙山带中基性火山岩组玄武岩及酸性火山岩组流纹岩中采用单颗粒锆石激光探针LA-ICP-MS U-Pb方法定年。
玄武岩样品采自莲花山地区的块状玄武岩。激光剥蚀电感耦合等离子体质谱LA ICP-MS U-Pb定年在西北大学大陆动力学国家重点实验室完成,实验采用的ICP-MS为美国Agilent公司生产的Agilent7500a,激光剥蚀系统为德国MicroLas公司生产的GeoLas 200M,激光剥蚀斑束直径为30μm,激光剥蚀样品的深度为20~40μm。测试数据列于表3-3,相应的谐和图见图3-16,所测定的锆石比较复杂,具有多组年龄信息(图3-17),第一组2号、11号、13号锆石206Pb/238U年龄在231~246 Ma之间,为最年轻的年龄,火山岩特别是基性火山岩中最年轻锆石年龄一般代表火山的喷发年龄,但2号、11号锆石测点位置在锆石边部,为早期锆石的增生边,13号锆石似具两阶段生长的特点,锆石测点在具较清晰环带结构的边部,似为火山喷发的年龄,但这一结论与第二章第一节中论述的化石年龄是相矛盾的,且与区域地质资料也不相符,整个祁漫塔格地区甚至是东昆仑北坡是缺失中下三叠统的,值得注意的是,该区早中三叠世深成侵入岩浆作用十分强烈,这些地区早中三叠世花岗岩组合被称为豹子沟花岗闪长岩+(斑状)二长花岗岩组合,在祁漫塔格北部出露面积近千平方千米,并以滩北雪峰地区出露面积最大,形成规模巨大的岩基,该花岗岩组合锆石U-Pb LA-ICP-MS年龄在241.7~250.0 Ma之间,因此玄武岩中的这组最年轻的年龄可能与这期花岗岩浆作用有关。第二组1、5、8、10、16、17、18号锆石206Pb/238U年龄在432~454 Ma之间,图3-18中7、8号测点位于同一颗锆石,具有多阶段生长的特征,其中8号测点可能为混合年龄,应剔除,其余6个测点加权平均值为440.2±2.4Ma,16、17号测点为同一颗锆石的不同部位,这颗锆石自形程度高,震荡环带发育并且细长柱的晶形,最接近火山喷发形成锆石的特点。其余锆石206Pb/238U 年龄分散,地质意义不明确。因此,440.2±2.4 Ma应代表玄武岩的喷发年龄,且与区域地质背景相吻合。
表3-3 玄武岩LA-ICP-MS锆石U-Pb同位素测试结果(ⅡJD(U-Pb)2712-1)
图3-16 锆石U-Pb谐和图和206Pb/238U年龄图
图3-17 锆石阴级发光照片
酸性火山岩组流纹岩锆石U-Pb测年由天津地质矿产研究所测试,该套系统的多接收器电感耦合等离子体质谱仪为Thermo Fisher公司制造的Neptune,其离子光学通路采用能量聚焦和质量聚焦的双聚焦设计,并采用动态变焦(ZOOM)使质量色散达到17%;仪器配有9个法拉第杯接收器和4个离子计数器接收器,除了中心杯和离子计数器外,其余8个法拉第杯配置在中心杯的两侧,并以马达驱动进行精确的位置调节,4个离子计数器捆绑在L4法拉第杯上。激光器为美国ESI公司生产的UP193-FX ArF准分子激光器,激光波长193nm,脉冲宽度5ns,束斑直径为1、2、10、20、25、35、50、75、76、100 和150μm可调,脉冲频率1~200 Hz连续可调。实验方法:将锆石用双面胶粘在载玻片上,罩上PVC环,然后将环氧树脂和固化剂进行充分混合后注入PVC环中,待树脂充分固化后将样品靶从载玻片上剥离,并对其进行打磨和抛光,然后对靶上样品进行显微镜下的反射光和透射光照像以及阴极荧光照像。根据锆石阴极发光照片、反射光和透射光照片选择锆石的合适(感兴趣)的测年晶域,利用193 nm激光器对锆石进行剥蚀,通常采用的激光剥蚀的斑束直径为35或50μm,激光能量密度为13~14J/cm2,频率为8~10Hz,激光剥蚀物质以He为载气送入Neptune,利用动态变焦扩大色散可以同时接收质量数相差很大的U-Pb同位素从而进行锆石U-Pb同位素原位测定。采用TEMORA作为外部锆石年龄标准。采用中国地质大学刘勇胜博士研发的ICPMSDataCal程序和Kenneth R.Ludwig的Isoplot程序进行数据处理,采用208Pb校正法对普通铅进行校正。利用NIST612 玻璃标样作为外标计算锆石样品的Pb、U、Th含量。实验条件和关键参数:接收器设置——L4,206Pb;L3,207Pb;L4,208Pb;C,219.26;H2,232Th;H4,238U。冷却气体16L/min,辅助气体0.75L/min,Ar载气 0.968L/min,He载气 0.86L/min。RF 功率 1251Ω,积分时间0.131s,样品信号采集时间60s(其中20 秒为空白的测定)。测试成果列于表3-4,图3-18中,样品采自P28剖面第7层(图3-12),镜下鉴定与TAS分类均为流纹岩,岩石为基本不含岩屑等外来物质干扰的纯净的熔岩。所测定30 颗锆石中,除24号、25号测试点206Pb/238U 表面年龄在408~425 Ma 之间,其28个测试点206Pb/238U 表面年龄在444~457 Ma之间,加权平均值为450.3±1.2 Ma。形成时代为晚奥陶世。
图3-18 流纹岩锆石U-Pb年龄和谐图和直方图
另外,1:25万区域地质调查在火山岩中采中Sm-Nd等时线法测年,现将这些成果列于表3-5,供参考使用。
㈣ 你好,我想问一下中国地质大学(武汉)地球化学专业有哪些老师从事环境地球化学的。谢谢
搞环境的老师多以年轻的为主,地大地化还是岩石圈这块名人比较多
搞环境的回老师我记得有闭向阳答,凌其聪,汤华云,乔胜英,还有个新老师叫严森.....
搞岩石圈中间貌似也有几个跟环境扯上关系的,好像是刘勇胜(新院长哦~),鲍征宇(也是院长...)等等
㈤ 九瑞地区中生代岩浆活动及其与成矿关系
罗小洪
(江西省地质调查研究院,向塘)
摘要:通过对九瑞地区中生代不同时期形成的花岗岩的研究,认为该区主成矿期前(160~200Ma)形成C型埃达克岩,这时的地壳是增厚的地壳(>40km),随后在该地区的软流圈地幔上涌和岩石圈的伸展减薄作用过程中,形成Ⅰ型花岗岩(130~160Ma)及其有关矿床,达到该地区铜金成矿高峰期。随着地壳减薄作用进一步加强,岩浆活动和成矿作用减弱。不但强调Ⅰ型花岗岩的成矿专属性,而且也强调成矿时间,强调大地构造环境转换期成矿。
关键词:C型埃达克岩;大地构造环境转换;成矿;九瑞
岩浆岩是地球动力学过程的记录之一,也是研究壳幔作用与成矿的窗口。岩浆活动是本区铜金成矿的主导因素。探讨伸展造山作用与成矿的关系,研究者比较多(马长信等,1999;卢树东等,2004)。本文将从研究该区中生代岩浆岩的成因的不同,以及从其岩石地球化学特征对比出发,探讨该区中生代地壳线型减薄作用。从而证明与形成武山、城门山矿床有关的代表主成矿期的花岗岩为Ⅰ型花岗岩,应为增厚(>40km)地壳在减薄过程中形成的,在地壳减薄到一定程度后,地幔物质混入,形成与矿有关的武山、城门山花岗闪长斑岩,强调大地构造环境转换期成矿。
1 区域中生代岩浆活动概况
区内中生代岩浆活动较强,以小型岩体成带展布为特征。出露约30个小岩体,呈北西西和北东东向带状分布,呈北西西向近纬向线性分布为主成矿期前和主成矿期花岗岩,范围约900km2,单个岩体出露面积为0.01~2.5km2,总面积约14km2。另一条为主成矿期后花岗岩带,近北北东向沿赣江断裂带呈带状展布。其中城门山、武山、东雷湾3个岩体呈岩株产生,其他岩体呈岩墙或岩脉。主成矿期岩体以武山(140Ma)、城门山花岗闪长斑岩体(148Ma)为代表,主成矿期前岩体以东雷湾(196Ma)、宝山(176Ma)花岗闪长斑岩体为代表,主成矿期后则为武山煌斑岩(107Ma)、城门山石英斑岩(103Ma)和沿赣江断裂带分布的星子二云母花岗岩(100Ma)、海会变斑状(眼球状)花岗岩(107Ma)为代表。岩体属浅成-超浅成相,岩石类型主要有闪长岩、石英闪长玢岩、花岗闪长岩与石英斑岩等,其中以花岗闪长斑岩和石英闪长玢岩占绝对优势。造岩矿物主要由斜长石、钾长石、石英组成,其次为黑云母、角闪石。岩石以斑状结构为主。
2 区内3个时期的岩浆岩特征
2.1 岩浆岩研究概况
主成矿期前形成的东雷湾,宝山花岗闪长斑岩体为C型埃达克岩。埃达克岩(adakite)是1978年在阿留申的Adak岛上发现的(Kay,1978),Defant et al.和Drummond et al.(1990)从现代火山弧中厘定出一种新的富钠火成岩——“adakite”(绝大多数学者给出的中文译名为埃达克岩),现己引起广泛关注(张旗,王焰,1999;李献华,2002,等)。
张旗、李献华、熊小林(2001)在研究中国东部和西部燕山期岩浆作用时,发现有许多中酸性火山岩和侵入岩类似埃达克岩的地球化学特征,但它们是陆相的,产于板内环境,其成因与板块的消减作用无关,而可能是加厚的陆壳底部的基性岩部分熔融形成的,因此,埃达克岩可分为O型和C型的两类,O型埃达克岩与板块的消减作用或玄武岩底侵作用有关,C型埃达克岩则是加厚的地壳底部的中-基性岩部分熔融的产物。C型埃达克岩富K(大部分仍然是钠质的,即K2O/Na2O<1,少数为钾质的),产于大陆内部,可能是玄武岩浆底侵到加厚的陆壳(>40km)底部导致的下地壳中基性变质岩部分熔融的产物。两类埃达克岩的对比见表1。
表1 两类埃达克岩的对比
主成矿期形成的武山、城门山花岗闪长斑岩,为Ⅰ型花岗岩。谢桂青,胡瑞忠,贾大成等(2002),认为主成矿期后形成的武山煌斑岩为挤压隆起转变为拉张裂陷,在软流圈上涌和岩石圈伸展拉张时形成的基性岩脉。
2.2 3个不同时期花岗岩的岩石学、岩石化学特征
2.2.1 样品采集与测试
主成矿期前的东雷湾和宝山岩体,样品分别采自两个岩体的坑道中,样品送中国科学院地球物理地球化学勘查研究所分析,其中Ce、La、Sc、Y、Dy、Er、Eu、Gd、Ho、Hf、Lu、Nd、Pr、Sm、Tb、Tm、Yb、Ta、Co、Cs、Ni、Th、Nb、U采用等离子体质谱法,Ba、Sr、Cr、Rb、V、Zr采用压片法X-射线荧光光谱法,SiO2、Al2O3、MgO、CaO、TFe2O3、Na2O、K2O、TiO2、P2O5、MnO采用熔片法X-射线荧光光谱法,CO2采用电导法,
图4 岩浆岩的球粒陨石标准化的(La/Yb)N-YbN图解(据Drummond et al.,1990,王强等,2001)
东雷湾宝山“C”型埃达克岩强烈亏损HREE和Y,暗示埃达克岩浆熔出后的残留物中有石榴石,形成榴辉岩或含石榴石的麻粒岩,而富Al、Sr,无负铕异常则说明残留物中无斜长石(Taylor et al.,1985;刘勇胜等,1998)。实验研究表明,埃达克岩可以在较宽的压力范围内(10~32kbar)
由低钾拉斑玄武岩脱水熔融形成,但是在大多数情况下形成的压力较高(18~26kbar),大约相当于60~85km深度(Drummond and Defant,1990;Rapp et al,1991;Peacock et al,1994)。Defant and Drunmond(1990)和Kay等(1993)认为,在增厚的地壳下因拆沉作用形成的岩浆与年轻的、热的俯冲岩片熔融产生的岩浆有相似的成分(如高La/Yb、Sr),因为两者都是高压下基性岩熔融形成的,残留物为不含斜长石的榴辉岩。
一般认为,由地幔部分熔融直接形成埃达克岩的可能性极小(Defant and Drummond,1990;Martin,1999;Atherton and Petrofed,1993)根据埃达克岩具有高的Sr/Y和La/Yb比值,低的Yb和HREE丰度以及Sr和Ba的正异常,玄武岩浆的分离结晶(斜长石、角闪石和辉石)、岩浆混合及地壳岩石的混染成因也是不可能的(Martin,1986,1999;Defant and Drummond,1990,1993;Drummond and Defant,1990;Atherton and Detford,1993)。因此,不论是O型或C型埃达克岩,都是镁铁质岩石在高压下部分熔融形成的,残留物为榴辉岩或含石榴石的麻粒岩。
表2 花岗岩化学分析(主元素%,微量元素μg/g)
3 不同时期岩浆岩成因及大地构造意义讨论
由上述岩浆岩的论述可知,在主成矿期前(170~200Ma)形成东雷湾、宝山C型埃达克岩时,该区为挤压环境,地壳增厚(现在的莫霍面深度应为32.5km),这时下地壳可能变成榴辉岩,从而拆离并下沉到地幔中(拆沉),这个拆沉过程将导致下地壳下部或拆沉的下地壳的上部与相对热的地幔接触,进而引起下地壳熔融和埃达克岩的形成。东雷湾、宝山岩体形成后,埃达克岩浆房被一定程度地抽空,这时,区域构造发生了转换,由挤压转换至伸展,形成了不均衡的物理化学环境,软流圈地幔上涌和岩石伸展、减薄,一定地幔物质混入岩浆房,岩浆上侵形成武山、城门山主成矿期Ⅰ型花岗闪长斑岩。尔后,岩浆房继续被抽空,区域进入了较为稳定的伸展期,在软流圈地幔上涌和岩石圈进一步减薄过程中,形成含有更多地幔物质的武山煌斑岩脉,物理化学环境由强烈的不均衡演化至较为均衡,岩浆活动由减弱至终止。必须强调的是,当地壳开始减薄作用时成矿,在区域构造发生转换时形成的Ⅰ型花岗闪长斑岩是主成矿期岩体,应强调转换期成矿。当纬向线性减薄作用进一步发展,物理化学环境趋于均衡时,并不成矿,只形成没有矿化蚀变的煌斑岩。
本文只是起到抛砖引玉的作用,埃达克岩与Ⅰ型花岗岩如何更有效去研究区分,目前在区内甚至国内都还是有待进一步解决的问题。
本文得到了杨建国教授级高级工程师、陈祥云博士的帮助,作者并与李武显博士进行了有益的讨论,在此一并致谢。
参考文献
[1]崔学军,赵赣,陈祥云等.江西庐山中生代构造事件的40Ar/39Ar同位素年龄研究.成都理工学院学报,2002(6):646~649
[2]卢树东,高文亮,汪石林等.江西彭山锡铅锌多金属矿床成矿特征与成因浅析.华东理工学院学报(自然科学版),2004(4):1~4
[3]马长信,项新葵.赣北燕山期花岗岩浆的底辟伸展造山作用.华东地质学院学报(自然科学版),1999(1):4~8
[4]史晓颖.35Ma——地质历史上一个重要的自然周期:自然临界的概念及其成因.地球科学——中国地质大学学报,1996(3):235~241
[5]王焰,张旗,钱青.埃达克岩(adakite)的地球化学特征及其构造意义.地质科学,2000(2):251~256
[6]王强,许继锋,赵振华.一种新的火成岩——埃达克岩的研究综述.地球科学进展,2001(2):201~206
[7]王强,赵振华,熊小林等.底侵玄武岩下地壳的熔融:来自安徽沙溪adakite质富钠石英闪长玢岩的证据.地球化学,2001(4):353~360
[8]谢桂青,胡瑞忠,贾大成等.赣西北基性岩脉的地质地球化学特征及其意义.地球化学,2002(4):329~337
[9]张旗,王焰,钱青等中国东部燕山期埃达克岩的特征及其构造-成矿意义.岩石学报,2001(2):236~242
[10]张旗,钱青,王二七等.燕山中晚期的中国东部高原:埃达克岩的启示.地质科学,2001(2):248~255
[11]张旗,王焰,王元龙.燕山期中国东部高原下地壳组成初探:埃达克质岩Sr、Nd同位素制约.岩石化学,2001(4):505~512
[12] Defant M J, Drummond M S. Derivation of some modern are magmas by melting of young subcted lithosphere. Nature, 1990,347:662~665
[13] Kay R W. Aleutian magnesia n andesites:melts from subcted Pacific Ocean crust. J. Volcanol. Geotherm. Res.,4:117~132
The Mesozoic Magma Activity and Relation with Mineralization in Jiu-Rui Area
Luo Xiaohong
(Jiangxi Institute of Geological Survey, Xiangtang 330201 )
Abstract: By studying the Mesozoic granites formed at different time in Jiu-Rui area, it’s concluded that C-type adakites come into being before the primary mineralization time , when the earth’s crust is incrassate, then ring the course of the interactions between the ascent and the lithosphere’s estension or attenuation, I -typegranites and their orebodies formed and Cu or Au mineralization reached the climax. With the incrassation of the earth’s crust further strengthening, the magma activity and mineralizationaction weakened. The paper emphasizes not only the exclusive speciality of I -type granites, but also the mineralizationtime and the mineralizationaction ring the geotectonic environmental conversion time.
Key words: C-type adakites; Geotectonic environmental conversion; Ore-forming; Jiu-Rui area