工程地质期中考试煌斑岩
A. 工程概况
青岛某深基坑工程位于城市闹市区,某主干道以西,支干道以南,海泊河北岸;拟建物为3栋27层高层建筑及群房等,建筑面积73600m2,设计2层地下室,设计室内地坪±0.000~+15.00m。基坑工程地下室外轮廓面积约7920m2,周长约400m,基底标高4.70m。基坑初始设计深度10m,后基底标高变更,基坑深度为13~14m。基坑安全等级为一级。
工程地质条件:场区地形平坦,整体上北侧略高,地面标高14.0~14.8m;地貌成因类型,南侧属河漫滩一级阶地,北侧属洪坡积平原,后经人工回填改造;场区第四系厚度中等(7~8m),层序清晰,地层结构较简单,场区岩土层主要由第四系全新统人工填土、第四系全新统与上更新统洪冲积层及燕山晚期花岗岩、细粒花岗岩岩脉、煌斑岩岩脉组成。岩土层物理力学性质(基坑支护设计C、D单元)见表6-5所示。其中南北两侧地层差异较明显,南侧第四系为全新统洪冲积层,北侧为第四系上更新统洪冲积层。场地表层回填土,地基承载力标准值fak=100kPa;降水砂层压缩系数α=0.394;通过计算,基坑支护C、D单元开挖深度内,厚度加权密度分别为rcm=19.7kN/m,rDm=20.0kN/m;厚度加权内摩擦角分别为φcm=24.6°,φDm=25.3°。
表6.5 基坑西侧工程地质条件
水文地质条件:地下水类型为第四系孔隙潜水-弱承压水,含水层为填土、砾砂层,透水性强。主要补给为大气降水,稳定水位埋深约1.8~3.5m,勘察时间为10月,年水位变幅约1m。地层综合渗透系数k取2.2m/d,估计基坑涌水量为297m3/d。
环境条件:基坑北侧为城市支干道,地下室外墙距离围墙约7.8m,东侧为城市主干道,地下室外墙距离围墙约15m;南侧为沿河路,地下室外墙距离围墙约7~12m,沿河路以南为海泊河;西侧为宽约5m的小区道路,地下室外墙距离围墙约4m,距离西侧5栋多层(7~8层)住宅楼约10~60m范围内自南向北并排,均为1992年建设,砖混结构,天然地基,条形基础,基础埋置深度约2m,设计保护等级为Ⅲ级。基坑周边环境状况如图6.1所示。
图6.1 基坑设计及周边环境平面图
B. 岩石分类
三种常见的岩浆岩:
1.花岗岩 是分布最广的深成侵入岩。主要矿物成分是石英、长石和黑云母,颜色较浅,以灰白色和肉红色最为常见,具有等粒状和块状构造。花岗岩既美观抗压强度又高,是优质建筑材料。
2.橄榄岩 侵入岩的一种。主要矿物成分是橄榄石及辉石,深绿色或绿黑色,比重大,粒状结构。是铂及铬矿的惟一母岩,镍、金刚石、石棉、菱铁矿、滑石等也同这类岩石有关。
3.玄武岩 一种分布最广的喷出岩。矿物成分以斜长石、辉石为主,黑色或灰黑色,具有气孔构造和杏仁状构造,玄武岩本身可用作优良耐磨的铸石原料。
(2)工程地质期中考试煌斑岩扩展阅读:
岩石是由一种或几种矿物和天然玻璃组成的,具有稳定外形的固态集合体。由一种矿物组成的岩石称作单矿岩,如大理岩由方解石组成,石英岩由石英组成等。
有数种矿物组成的岩石称作复矿岩,如花岗岩由石英、长石和云母等矿物组成,辉长岩由基性斜长石和辉石组成等等。没有一定外形的液体如石油、气体如天然气以及松散的沙、泥等,都不是岩石。
岩石是组成地壳的物质之一,是构成地球岩石圈的主要成分。其中,长石是地壳中最重要的造岩成分,比例达到60%,石英则是数量第二多的矿石。
岩石按其成因主要分为火成岩(岩浆岩)、沉积岩和变质岩三大类。整个地壳中,火成岩大约占95%,沉积岩只有不足5%,变质岩最少。不过在不同的圈层,三种岩石的分布比例相差很大。地表的岩石中有75%是沉积岩,火成岩只有25%。
距地表越深,则火成岩和变质岩越多。地壳深部和上地幔,主要由火成岩和变质岩构成。火成岩占整个地壳体积的64.7%,变质岩占27.4%,沉积岩占7.9%。其中玄武岩和辉长岩又占全部火成岩的65.7%,花岗岩和其他浅色岩约占34%。
这三种岩石之间的区别不是绝对的。随着构成矿物的变化,它们的性质也会发生变化。随着时间和环境的变迁,它们会转变为另外一种性质的岩石。因而有人认为这种分类法较为武断。
特征
①构造特征:岩浆岩中有一些自己特有的结构和构造特征,比如喷出岩是在温度、压力骤然降低的条件下形成的,造成溶解在岩浆中的挥发份以气体形式大量逸出,形成气孔状构造。当气孔十分发育时,岩石会变得很轻,甚至可以漂在水面,形成浮岩等;
②冷凝特征:岩浆岩是由岩浆直接冷凝形成的岩石,因此,具有反映岩浆冷凝环境和形成过程所留下的特征和痕迹,与沉积岩和变质岩有明显的区别。
依冷凝成岩时的地质环境的不同,将岩浆岩分为三种类型:
1 喷出岩(火山岩):岩浆喷出地表后冷凝形成的岩浆岩称为喷出岩。在地表的条件下,温度下降迅速,矿物来不及结晶或者结晶差,肉眼不易看清楚。如流纹岩、安山岩、玄武岩等;
2 浅成岩:岩浆沿地壳裂缝上升至距地表较浅处冷凝形成的岩浆岩。由于岩浆压力小,温度下降较快,矿物结晶较细小。如花岗斑岩、正长斑岩、辉绿岩等;
3 深成岩:岩浆侵入地壳深处(约距地表3公里)冷凝形成的岩浆岩。由于岩浆压力大,温度下降缓慢,矿物结晶良好。如花岗岩、正长岩、辉长岩等。
其中,深成岩和浅成岩又统称侵入岩。
C. 岚皋煌斑岩岩区地质概况及深源捕虏体岩石类型
岚皋煌斑岩岩区位于湖北、陕西交界的紫阳、岚皋、平利和竹溪境内。构造上位于南秦岭造山带。加里东期,南秦岭属于扬子块体的大陆边缘,发育了地垒和地堑隆凹相间的拉张构造,形成扬子块体北缘裂谷带。
煌斑岩岩体群中最大的是岚皋岩体,沿曾家坝-红椿坝断裂呈NW向分布,岩体长60km,宽2~6km,平面上呈狭长的哑铃形,岩体向北西方向变窄呈树枝状侵入到志留纪地层中。寄主岩为橄榄煌斑岩、白榴金云透辉煌斑岩及辉石玢岩,岩石蚀变强烈,有碳酸岩化、蛇纹石化、滑石化及绿泥石化等。第二和第三类岩石中含大量的捕虏体和捕虏晶。夏林圻等测得的金云透辉煌斑岩Rb-Sr内部等时年龄(磷灰石、透辉石、金云母及全岩)为413±3.03Ma,黄月华等测得的橄榄煌斑岩中的金云母39Ar-40Ar年龄为431.9Ma,均为早志留纪晚期侵位。上述煌斑岩是在裂谷环境下由含水交代地幔经低度熔融的岩浆结晶产物。
白榴金云透辉煌斑岩及辉石玢岩中的深源捕虏体是由不同含量的辉石、角闪石、金云母组成的,岩石类型有角闪石岩、角闪辉石岩、辉石角闪石岩、金云角闪辉石岩、金云辉石岩、金云辉石角闪石岩、金云角闪石岩、辉石角闪金云母岩及钙钛矿金云母岩。岩石的交代结构发育,第一期为角闪石交代辉石,形成角闪辉石岩,交代强烈时,变为角闪石岩;第二期为金云母交代角闪石和残留的辉石,形成金云母辉石岩或金云母角闪辉石岩,交代强烈时变为金云母岩;第三期为钛铁矿和磷灰石的交代作用,呈细脉或沿隙间交代先成的矿物。从岩相学观察可以认为深源捕虏体的成因与交代作用关系密切。
D. 三江地区煌斑岩具有相同的富集地幔源区,属于交代富集地幔部分熔融的产物
煌斑岩在三江地区和扬子地块西缘所研究的5个矿区(姚安金矿、鹤庆北衙金矿、镇沅老王寨金矿、祥云马厂箐铜金多金属矿和金平白马寨镍矿)均广泛发育,其分布明显受区域NW向主干断裂及其次级断裂控制。5个矿区煌斑岩矿物组合相似,岩石类型主要为云煌岩,只在老王寨金矿区发现少量云斜煌岩;不同矿区煌斑岩形成时代基本一致(27~36Ma),其主要元素、微量元素、稀土元素、铂族元素和Sr-Nd同位素组成不具明显变化(表3-1)。
在SiO2-ALK图上(图3-2),5个矿区的煌斑岩均投点于钙碱性煌斑岩区;岩石的K2O>Na2O,在K2O-Na2O图中(图3-3),全部样品位于钾玄岩系列;不同矿区煌斑岩的不相容元素配分模式相似(图3-4),均为具“Ta-Nb-Ti(TNT)”负异常的“驼峰”型,与MORB相比相对富集大离子亲石元素和高场强元素,稀土元素配分模式也为相似的轻稀土富集型(图3-5),PGE配分模式也不具明显差别(图3-6)。
5个矿区煌斑岩的(87Sr/86Sr)0(0.70623~0.71037)高于原始地幔现代值(0.7045)、(143Nd/144Nd)0(0.512036~0.512524)低于原始地幔现代值(0.512638),εSr和εNd分别为24.56~83.90和-1.34~-11.22,在(87Sr/86Sr)0-(143Nd/144Nd)0图中全部样品位于第四象限(图3-7)。
这些特征均表明该区的煌斑岩具有相同的富集地幔源区。模拟计算结果也显示(图3-8),不同矿区煌斑岩的源区为稀土元素(不相容元素)相对富集、且稀土元素含量相近的富集地幔,进一步证实上述结论。在岩浆过程判别图上(图3-9),本区煌斑岩母岩浆为地幔不同部分熔融程度产物。
煌斑岩母岩浆成分模拟高温高压实验结果表明:煌斑岩液相线温度随压力升高而增加,H2O和黄铁矿均可降低煌斑岩的液相线温度,煌斑岩母岩浆既富Mg,又富K,同样证明自然界这种岩浆可能为交代富集地幔岩部分熔融的产物。
表3-1 “三江”地区煌斑岩地球化学统计结果)wB)Table3-1 The statistical results of geochemistry of lamprophyres in the Sanjiang area
续表
注:统计样品为相对新鲜煌斑岩;主要元素、微量元素、稀土元素和铂族元素由中国科学院地球化学研究所分析,同位素组成由中国科学院地质与地球物理研究所分析。
微量元素地球化学和相关的数值模拟结果还表明,深部流体和俯冲进入地幔的地壳物质脱水形成的流体与早期亏损地幔相互作用是形成本区富集地幔的主要机制。
图3-2 煌斑岩SiO2-(Na2O+K2O)图
(原图据Rock,1987)
Fig.3-2 The SiO2-(Na2O+K2O)diagram of lamprophyres
(primary diagram after Rock,1987)
CAL—钙碱性煌斑岩;AL—碱性煌斑岩;UML—超镁铁煌斑岩;LL—钾镁煌斑岩;ALK—碱性岩;TH—拉斑玄武岩
图3-3 煌斑岩SiO2-K2O图
(原图据Muller,1992)
Fig.3-3 The SiO2-K2Odiagram of lamprophyres
(primary diagram after Muller,1992)
图3-4 煌斑岩微量元素配分模式
(MORB据Sun and McDoonough,1989)
Fig.3-4 The trace elements patterns of lamprophyres
(MORB after Sun and McDoonough,1989)
姚安金矿区煌斑岩微量元素配分模式与其他矿区煌斑岩相似,由于其含量范围较小,没有作图;虚线为MORB,点线为钙碱性煌斑岩平均值(据Rock,1990)
E. 海岸工程地质条件
环胶州湾海岸区域工程地质条件受地形地貌、地层岩性、地质构造、水动力条件等因素的控制,不同地区上述诸因素存在着差异。详细研究近海不同地区的工程地质条件,对海岸带规划、工程地质环境适宜性、沿海工程建设和地质环境保护等方面均具有重要意义。
7.1.1 地形地貌
根据旁测声呐扫描、水深测量以及浅地层剖面资料,对青岛近海地貌体系特征进行了研究,按地貌成因将其划分为潮流地貌、潮汐河流复合地貌、海滩浪成地貌和人工地貌4个大单元。
(1)潮流地貌
潮流是半封闭海湾和开阔岸浪击面(一般水深20m)以下塑造海底地貌的主要营力,该现象在胶州湾表现明显。
胶州湾是一个半封闭的港湾,潮差大,波浪作用较弱,往复流成为控制湾内沉积作用的主要动力。湾口受基岩岬角地形的限制,口门狭窄,涨、落潮流在通过口门时,由于胶州湾口门的“狭管”效应,潮流加强了对底部的冲刷,使得湾口被侵蚀成沟槽。底部侵蚀的物质,在涨、落潮流的带动下,涨潮在湾内沉积,落潮在湾外堆积,形成涨、落潮流三角洲。在地貌形态上,湾口处为主潮道,向湾内呈分支状散开成为分支潮道,形成涨潮三角洲上的沟-脊相间地形,潮流沙脊为涨潮三角洲上的次级地貌形态。
(2)潮汐河流复合地貌
入湾河流多从西侧进入,且为源近流短的小河。主要河流为大沽河,每年输入湾内的泥沙达到959200t;其次为洋河,每年输沙量为258100t。海湾波浪作用很弱,浪高多小于0.5m;沉积物受到潮流的作用,大部分在河口发生沉积。大沽河入海的流量为27.74m3/s,洋河入海平均流量在1.78m3/s,总体约为30m3/s,与潮流作用相比河流的作用相对较小。胶州湾西部潮流平均流速小于20cm/s,湾顶平均潮差比湾口增大约30cm,计算该区平均潮差在300cm,最大潮差500cm,所以该区主要动力为潮汐作用。当落潮至平均低潮面位置时(图7.1),大沽河河道突入到三角洲前缘;当高潮时,大沽河及洋河下部曲流河道在潮流的顶托作用下实际上成为一条潮道,具有双向潮流的特征。罗家营剖面可见明显的点坝和泥质潮上带,主要由粉砂与泥互层组成,含有丰富的植物碎屑,在烟台顶附近潮坪可见贝壳堤。根据以中沙为主的潮道内贝壳的14C年龄测定,大沽河河口湾形成于约8.24±0.12kaB.P.,大沽河口7.40~7.65m贝壳14C年龄为5.93±0.18kaB.P.,李家庄2.30m淤泥14C年龄为6.01±0.08kaB.P.,确定该相属于全新世中期高水位以来的沉积相。
图7.3 大沽河-洋河三角洲沉积相序
(3)海滩浪成地貌
胶州湾海滩海浪侵蚀地貌也较发育,海蚀平台、海蚀洞、海蚀崖是常见的海蚀地貌形态。海蚀崖底部多处于波浪作用之下,因组成物质不同,其形态也各异。湾内的断层海蚀崖分布在阴岛东北的东洋嘴—邵哥庄一带,该段海崖为NE-SW走向,岸线平直,断层面向东南倾,倾角60°左右,断层面除有浪蚀痕迹外,还有断层镜面和擦痕;海岸的东南侧,尚有从东北向西南分布的海蚀平台和海蚀柱等海蚀地貌形态。
(4)人工地貌
随着经济建设的蓬勃发展,胶州湾近海沿岸的开发日新月异。湾北部和西北部平原海岸区开辟了大规模的盐田,东部沿岸建设了许多工厂、海港。近几年来,黄岛也先后建筑了几座码头,并在近岸处建筑了各种防潮墙、防浪堤。胶州湾的许多岸段早已不再是自然海岸,而是人工海岸。
7.1.2 地层岩性
(1)地层及基岩类型
胶州湾内的地层有古生界胶南群邱官庄组,白垩系的青山组和莱阳组,此外还有燕山期的花岗岩。其中,古生界胶南群邱官庄组主要为中厚层的白云变粒岩和黑云变粒岩及浅粒岩,青山组和莱阳组主要以青山组中酸性火山岩和中基性火山岩为主。
岩石力学差异性主要受岩性本身、断裂构造及断层附近相应岩脉侵入的影响,造成各种岩性的岩石力学指标不同; 同时,岩性变化及构造的影响,导致岩石风化界面的差异性甚为明显,不同岩性的岩石风化层厚度相差巨大。上述差异性是工程建设中应重点考虑的主要工程地质问题之一。针对胶州湾的工程地质条件,以下几点应予考虑:
1) 岩石界线: 两种岩石的差异性可能导致承载力的不同,从而引起不均匀沉降。即使在力学性质较好的花岗岩区,如被无数条岩脉及断层切割成非完整的块体,其力学性质则会大大降低。
2) 脉岩带 ( 群) 的发育: 脉岩发育本身就代表着处于伸展构造带,在地下水的作用下,容易发生附近岩石的破碎和弱 ( 软) 化; 其次,岩脉自身岩性存在差异,特别是煌斑岩容易发生风化。故工程建设应尽量避开脉岩带。
3) 节理裂隙的发育: 易造成岩石软 ( 弱) 风化程度的差异。缓平的节理在水做润滑剂及建筑物重压下,如具有临空面,则可能发生滑裂。因此,工程建设时应考虑节理裂隙的发育情况。
4) 基底起伏: 在湾口存在海底地表的强烈切割、小型冲沟发育以及不同地段基岩埋深的差异性,因此当建筑物置于不同性质与厚度 ( 或埋深) 的地层上时,岩石地基存在较大的差异,将给工程带来不良的影响。
( 2) 底质类型
胶州湾区内表层沉积物底质类型可分为以下几大类型: 泥质砾、沙、粉沙质沙、泥质沙、沙质粉沙、砾质泥、含碎石结核砾质泥、沙质泥、粉沙、泥和黏土。其中,砂质粗粒沉积主要分布在大沽河、洋河河口附近,主潮道及分支潮道,涨、落潮流三角洲潮流沙脊以及大福岛南部残留沉积区; 粉沙及泥质细粒沉积主要分布在潮下带水动力条件较弱的区域。研究区沉积体系划分为大沽河 - 洋河潮汐河流复合三角洲、湾口两侧涨落潮流三角洲以及波浪作用下的海滩沉积体系。
( 3) 第四系厚度
调查发现,胶州湾内的沉积物大致与海岸平行分布。在 “V”形的底部是沉积中心,沉积物较为集中,湾内厚度变化很大,自 0m 至 52m 变化,平均厚度 21m。湾口附近缺失松散沉积物,向两侧逐渐增厚。在胶州湾西侧,岸边附近沉积物厚度一般小于 10m,向湾中心沉积物厚度逐渐缓慢增厚,中心厚度稳定,均在 25m 左右。在湾东岸,根据已有的资料显示,沉积物厚度变化剧烈,自基岩海岸处 0m 厚迅速增加至 25m,且在马蹄礁以北有两个较厚的沉积中心,最厚处为 40 ~ 45m。在湾口以北 36°05'纬线附近,沉积厚度呈EW 向迅速变化,从湾口的 5m 左右迅速变为 25 ~ 40m。全新世以来的海相沉积层的厚度在胶州湾内最大约 10m,位置处于 36°05' ~36°08'和 120°09' ~120°17'之间,总体近 EW向展布。其余地方的沉积物厚度约为 5m。自 36°05'以南至 120°19'之间的湾口位置,沉积物厚度基本为 0m。湾外主潮流通道处沉积厚度也较薄,根据钻孔资料分析沉积厚度小于2m。向落潮流三角洲方向,沉积厚度逐渐增厚,在 36°及 120°30'位置厚度达到 10m。
7.1.3 地质构造
海岸带主要以基岩断裂构造为主,褶皱构造不发育。断裂构造以 NE、NNE 向和 NW向3组断裂为主要构造线,它们控制了区域地貌特征和地层空间分布。其中,对工程地质环境有一定影响的断裂主要是通过陆上露头或海上浅地层剖面探测或调查推断的断裂。区内有重要影响的沧口断裂宽度为50~100m,走向40°,倾向310°,倾角70°,控制莱阳群、青山群沉积及崂山超单元的分布;带内发育碎裂岩、粉碎岩及糜棱岩。第四系覆盖严重,胶州湾内下降盘第四系厚度大。
7.1.4 水深及水动力条件
湾内地形总趋势是西北浅、东南深,海底地势自北向南倾斜,湾内平均水深约7m,湾口附近水深较深,最大水深为64m;湾口以外地势较为平坦,平均水深约为20m。
该区潮流属于正规半日潮流,涨潮历时1~2h,运动方式为往复流,潮流流速从湾口至湾顶逐渐递减,湾口的团岛断面流速为150~160cm/s,湾中部为70~80cm/s,湾顶部小于50cm/s。胶州湾的波浪主要有两种:一是外海产生的涌浪,涌浪为E—SW向,以SE向的涌浪最多,年频率为26%;二是湾内本身产生的风浪,NW向的风浪最多,年频率为10%。波浪自湾口向湾内传播时波高逐渐减小,湾内年平均波高一般不超过0.5m;胶州湾口中心50年一遇波要素H1/10大波平均波高为318cm。
7.1.5 潜在地质灾害
从空间分布上将地质灾害划分为推断断层、不规则基岩面、地震、埋藏古河道、埋藏谷、潮沟、陡坎及沙波。构造、深层控制引起的地质灾害有断层、不规则基岩面和地震;处于海底浅层范围的灾害现象有埋藏古河道、埋藏谷及冲沟;海底表层因水动力条件的不同引起的微地貌现象有潮沟、陡坎和沙波;水动力条件强烈引起的滨岸及海岸变迁有海岸侵蚀及海水入侵。
7.1.6 岩土物理力学参数
岩土物理力学参数参考海湾大桥工程地质勘察相关资料,工程地质特征主要表现为岩土力学性质的差异以及淤泥质软土的土体物理力学性质。
F. 煌斑岩的岩石成因
关于煌斑岩的成因,说法不一,流行观点有以下几种:①由上地幔岩石在富等挥发组分条件下,经部分熔融产生,类似于金伯利岩成因。②由形成花岗质岩石的残余岩浆,分异出基性岩浆,从而结晶出煌斑岩。③由富挥发组分的玄武岩浆结晶而成,挥发分H2O和CO2促使煌斑岩中黑云母和角闪石等自形斑晶的形成、运动、浮起和圆化。④由于水热气流的碱交代作用,使玄武岩脉转变为煌斑岩。⑤岩浆液态不混溶作用或同化混染作用,也能形成煌斑岩。
钾镁煌斑岩是一类煌斑岩状、呈次火山或喷出产状的火成岩。它在化学上富K2O和MgO,有时还富 TiO2,但SiO2基本饱和。它的特征矿物是白榴石金云母、钾-碱镁闪石和硅锆钙钾石。主要岩石是透辉白榴岩、白榴金云煌斑岩、金云白榴斑岩和镁铁白榴金云火山岩,它们有时呈凝灰岩状外貌产出。钾镁煌斑岩可含金刚石,澳大利亚西部阿吉尔火山通道(Argyle Diatreme)就因钾镁煌斑岩富含金刚石(每吨岩石中含1.03克)而著名于世。由于钾镁煌斑岩常与金伯利岩共生,因此它的成因就与金伯利岩的形成相联系,有人认为它是中、低压力下金伯利岩浆的分异产物。
通过对其进行详细的地质学、岩石学、矿物学、同位素年代学、元素和同位素地球化学研究,并和整个条带这类岩石地质地球化学进行充分对比,总结了白马寨镍矿区煌斑岩的成因信息及其与区域富钾火成岩的成因联系;初步查明白马寨镍矿区煌斑岩富集地幔交代流体的性质和交代富集事件发生的时代;定量反演了岩石的部分熔融程度、源区残留矿物相、源区REE含量、结晶分异过程;初步建立了本区煌斑岩的地球动力学成因模式。
1、白马寨镍矿区煌斑岩的侵位时代为32.01±0.60~32.46±0.62Ma,为哀牢山断裂带新生代早期高钾岩浆活动的产物。
2、白马寨镍矿区煌斑岩为碱性系列、钾玄质-超钾质的钙碱性煌斑岩。俯冲陆壳和洋壳析出的流体对交代富集地幔源区均有贡献,岩浆演化过程中地壳混染作用微弱,部分熔融和结晶分异对成岩过程均有影响。依REE含量可以将其分成两组,元素地球化学特征显示低REE组煌斑岩经历了单斜辉石+橄榄石+斜长石±Fe-Ti氧化物±磷灰石的结晶分异。高REE组煌斑岩经历了橄榄石+单斜辉石+斜长石的结晶分异。低REE组和高REE组煌斑岩分别是交代富集地幔约10﹪和4﹪部分熔融的产物。岩石学混合计算模拟出的低REE组煌斑岩原始岩浆熔融残留相的矿物比例分别为Ol67.21Opx16.99Cpx11.82Gar4.00。源区REE含量定量模拟计算表明白马寨镍矿区煌斑岩源于富LREE的交代富集地幔。
低REE组煌斑岩结晶分异模拟计算表明,矿区低REE组煌斑岩为原始岩浆直接结晶、相对低结晶分异程度(23.74﹪)、相对高结晶分异程度(44.15﹪)的产物。造岩矿物和全岩地球化学特征与马厂箐金矿区、北衙金矿区、姚安金矿区、老王寨金矿区煌斑岩和钙碱性煌斑岩相似但又有区别,体现了哀牢山断裂带新生代富钾火成岩地幔源区和岩浆演化既相似又存在不均一性。
3、依据区域地质、岩石学、矿物学、地球化学,初步建立了白马寨镍矿区煌斑岩的成因模式:约70~50Ma开始的印度板块向亚洲板块碰撞俯冲,俯冲析出的流体(包括小规模熔体)交代了扬子地块陆下岩石圈地幔,形成白马寨镍矿区煌斑岩的富集地幔源区,随俯冲进一步进行,约40Ma(哀牢山断裂带新生代高钾岩浆活动开始的时间),俯冲进入地幔的古特提斯板片和印度板片发生断离(Slabbreak-off),引起软流圈地幔上涌,在转换拉张的背景下,热的软流圈触发了以前富集岩石圈地幔的部分熔融,形成了白马寨镍矿区煌斑岩。区域上广泛的富钾火成岩岩浆活动触发了哀牢山断裂带大规模的走滑剪切(约27~22Ma)。
G. 煌斑岩的藏品信息
图片描述:煌斑岩属于火成岩,黑绿色;斑状结构;斑杂构造;主要矿物组成为黑云母、角闪石、辉石。此图为中国昌平区虎峪的煌斑岩(Lamprophyre)的标本照片。
保存单位:中国地质博物馆
H. 三峡工程建设存在哪些工程地质问题
1. 断裂构造问题
坝区前震旦纪岩体在漫长的地质历史过程中,经受了多期构造运动,留下了以断裂构造为主体的多种构造形迹。断裂构造是控制岩体工程地质条件最主要的因素,坝区的主要工程地质问题均与断裂构造有关。对断裂构造的分布、出露位置、规模、性状、工程特性及其对不同建筑物地基的影响的勘察研究始终是坝区工程地质工作的重点。坝区构造岩主要为角砾岩、碎裂岩、碎斑岩、碎粒岩、碎粉岩及少量初糜棱岩等,反映了断层从破裂、裂解至磨碎的脆性变形过程。不同方向构造岩由于形成的地质力学环境不
同,工程特性有明显差别。
2.坝基深层抗滑稳定问题
三峡工程坝基裂隙岩体中发育不同程度的缓倾角结构面(优势方向倾向下游),构成了对大坝抗滑稳定不利的地质条件。其中大坝左厂1 号~5 号机坝段是坝址区缓倾角结构面发育程度最高的地段。由于采取坝后式厂房布置方案,坝基下游形成坡度约54°,坡高67.8 m 的临空面,因此,其坝基深层抗滑稳定问题十分突出,是三峡工程最为关键性的技术问题之一。
3. 船闸高边坡稳定与变形问题
船闸边坡开挖后,形成巨大的临空面,使亿万年来岩体中所形成的原有应力平衡体系被急剧打破,产生一系列的岩体卸荷与变形问题,时效变形与变形总量能否控制在设计允许的范围内又成为了一大问题。
4. 地下电站主厂房围岩块体稳定问题
开挖以来,地质人员结合三峡工程地下电站地质条件的特点,利用大型洞室仪
测成像可视化地质编录技术和地下洞室三维块体自动搜索计算软件系统,形成了一套合理、快速、高效的施工地质工作流程,在整个施工过程中,做到实时跟踪、及时预报、定位定量累计预报了118 个块体,总体积15 万多m3 ,为地下厂房加固提供了翔实资料和可靠的地质依据。
I. 产状、分布及有关矿产
脉岩类的产状均以脉状产出,可以是规则的,也可是不规则的;大小不一,宽度可从几厘米至几米以至十几米,长度可从几米至几十、几百米,甚至数千米。有些岩脉带可延伸数百至上千千米,可单独出现,也可呈岩脉群出现,产状多样(见前述)。
脉岩分布广泛,各种岩体附近或变质岩地区,均可见到。大多数脉岩与相应的侵入体有关,脉岩多次侵入的现象也很常见,早期形成的脉岩被后期形成的脉岩所切割。一般情况,酸性脉岩如细晶岩、伟晶岩常形成于侵入体的内部或其附近围岩中,而基性脉岩和煌斑岩,则形成于离岩体较远的地方。在野外工作时可注意脉岩的这种分布特点。
脉岩与矿脉往往都是岩浆作用晚期的产物,所以二者无论在时间上或空间上均有密切关系。成矿前的岩脉常常作为成矿溶液的通道,对矿体形成创造了有利的条件。在脉岩中,比较有经济价值的是伟晶岩。伟晶岩本身就可作为非金属矿产进行开采。与花岗伟晶岩有关的矿产就有40种以上,如Li、Be、Nb、Ta、Rb、Cs、U、Th、Y、Ce、Zr、Hf,以及云母、水晶、长石等,这些都是现代工业的重要原料。另外脉岩发育的地区,对水文工程地质的评价也有重要意义。脉岩发育,就表明该区裂隙比较发育,物质成分及结构不均一。有些岩脉本身可能就是地下水的通道,因此,在选择地基坝址及其他工程设施时,必须考虑岩脉发育地带对整个工程的承压、稳定性、渗漏、透水性的影响等问题,应采取相应措施,保证工程质量。
J. 军都山隧道施工地质超前预报实例
隧道施工地质超前预报问题是怎么提出来的?1985年底,铁道部专业设计院邀请著者到军都山隧道现场去看看塌方事故处理工作。著者到现场对军都山隧道正在施工的掌子面进行了考察,听取了工地施工人员的反映,当时在2#斜井进主洞处正处于停工状态,通不过去,要我们给看看能不能过去。我们做了些地质工作,认为前方也不过是4~5m宽的一条断层带,可以用紧跟支护的办法强行通过。他们按我们的意见办了,结果很快就通过去了。使停工达半年之久的掌子面开始了正常掘进。考察过程中,还了解到这个隧道掘进过程中经常发生塌方、涌水。引起塌方的地质因素是什么?我们经过分析认为,主要有4个:①断层;②大节理;③风化的岩脉;④地下水。这就提出了一个问题,有没有办法对施工掌子面前方的断层、节理、岩脉及地下水做出超前预报?我们经过认真考虑以后,认为是可以办得到的,这就是用地质的办法作超前地质预报。刚提出这个办法时,有人讲是不可能的。他的根据是什么?因为20世纪70年代成昆线隧道施工中就曾碰到过这样的一个问题,塌方、涌水非常严重。曾经成立过一个地质预报组,研究施工过程中掌子面前方地质预报方法和技术问题。当时他们的着眼点是什么?主要是抓前方地质预报的新技术、新方法,结果没有获得成功,而预报组变成了抢险组。因为新技术没有研制成功,预报不了前方的地质条件,塌方、涌水得不到超前控制,塌方、涌水造成的停工不断产生,一出现事故就把他们找去,研究治理对策,他们的工作内容变成了抢险。地质预报组变成了抢险组,地质预报落了空,成了一个梦想。我们这次又提出了地质超前预报,自然就有人怀疑能否成功的问题了。关键在于怎么作,也就是技术路线问题。当时是议论纷纷,有的说要搞物探,有的说要搞水平钻进,有的说要搞平行导洞探测。我们分析了各种方法的使用条件和成功的可能性,决定不把这些技术作为主要预报手段,而把地质素描作为主要手段。因为物探方法主要困难在于掌子面形状太杂乱,搞接触物探耦合问题没有办法解决,非接触物探精度又不高。再有,断层带宽度只要大于30cm,就会引起塌方,而当时物探精度可能测得的断层带宽度要大于1.5m,现有物探水平达不到要求测的小断层条件,所以我们否定了这个技术;钻探技术问题,日本青涵隧道曾用过,我国大瑶山隧道也曾用过,效果也不是很理想,特别是对施工有干扰,施工单位也不欢迎;平行导洞我们采用过,结果也不理想,原因是有的平行导洞施工进度常落后于正洞,起不到预报作用;即使超前了,预报的精度也不高,后面我们将介绍这方面资料,在此暂不详述。到底采用什么方法好?经过比较,还是采用以地质方法预报为基础,也就是以地质素描为基础,辅助以风钻孔钻速测量、声波测试等手段开展超前预报工作,这样,获得了比较满意的结果。当时现场要求我们超前预报30m,我们办不到,根据他们施工所用台钻车的条件,用两根钻杆接起来可以超前打15m深,因此,开始时我们是采用15m深的风钻孔测试和地质素描资料分析进行超前预报。后来钻杆接头没有了,就采取8m深的风钻孔测试加地质素描资料分析进行超前预报。工作做得越多,胆子越大。实践结果表明,5m深的风钻孔也就可以满足要求。因为坏的地方摆在你眼前,不需要再作预报,好的地方一次爆破深度也不过2~3m,前方还有2m厚的防护层,基本可以保证施工安全。这样我们就形成了一套简易而又非常有效的隧道施工地质超前预报的方法。概括起来,这个方法就是以洞体地质素描为基础,配合风钻孔的钻速测量、声波测量、压水试验等为辅助的综合超前地质预报方法。
这样一项工作的经济效益是非常大的。以军都山隧道为例,施工的第一年未作地质超前预报工作,5个掘进掌子面停工650多天,占施工日期的40%,就等于两个掌子面全年停工;第二年我们开始研究预报方法,边研究边预报,6个掌子面工作总共停工了129天,仅占施工日期的6%,也就相当于一年里只有半个掌子面停工;施工的第3年,即1986年7月以后,我们全面地开始了地质超前预报工作,在以后的施工中基本没有发生大的塌方。下面举几个预报成功的实例:
(1)隧道掘进过程中曾遇到一条宽达60多米的F9 断层破碎带,由于坚持了地质超前预报工作,顺利通过施工,没有发生大的导致停工的塌方。
(2)1986年3月我们对 DK291+162—DK290+805段长达270m一段围岩的类别做出了预报,定为Ⅳ~Ⅴ类围岩,由于心中有数,施工加快了速度,结果创造了月成洞241m的全国隧道施工记录。
(3)在隧道DK285+410地段,我们根据地质素描资料预报前方存在有断层交汇带,岩体破碎,建议采用短进尺、强支护的手段进行施工,结果长60m的Ⅱ类围岩顺利通过施工。
上面实例可以说明,隧道施工地质超前预报不仅是可行的,而且是有很大的经济效益与社会效益。下面简单介绍一下军都山隧道施工地质超前预报工作情况。
军都山隧道长8.46km,是双线隧道,隧道截面为10.5m×11m。隧道经过地段火山岩占70%,地质条件比较复杂。隧道经过地段有三个火山口,对隧道所通过地段的地质条件产生了很大影响。但是这个地区的地质构造还是很有规律的,测绘时见到这个地区存在的断层主要为北西向,少量的是南北向,而东西向和北东向的极少见,在地质图上没有显示。地质图中编号的断层共11条,都是北西向的,北东向的仅有节理。这里应该强调地说一句,隧道开挖过程中间见到了大量的、规模不大的东西向的和北东向的小断层和大节理。这表明地面测绘结果不能完全反映地下的情况。我们第一次去考察时,他们把隧道线路地质图给我们看了一下,问我们哪些地方在施工过程中会出现麻烦,哪些地方是危险地段。我们根据看到的印象和他们提供的1∶2000的地质图,当时明确地提出了这条线路上存在5个施工困难地段。第一个是进口处,岩体风化破碎,节理面内夹泥,岩体松动,而且还有少量地下水,这个地段施工时要注意产生塌方;第二个施工困难地段是隧道通过黄土地段,这个地段有地下水,施工时会遇到困难,主要困难是洞壁收敛变形大,洞体成型困难;第三个施工困难地段是小金房沟地段,那里存在一个断层束,而且泉水溢出比较多,地势低,说明岩体破碎,有可能是隧道施工最困难的地段,塌方、涌水都会出现,施工中必须作好预防塌方措施准备;第四个施工困难地段是花岗岩与火山岩接触带,这个地方图上没有绘出断层,而在附近画有一条断层,这里有不少泉水溢出,而溢出点不在断层带上而在花岗岩与火山岩接触带上,这儿地形也偏低,地下岩体肯定是比较破碎的,施工通过这个地方时也有可能产生塌方和涌水;第五个施工困难地段是隧道出口处,这儿是由花岗岩组成的,但是有大量基性岩脉穿插,主要为煌斑岩,在这个地区煌斑岩脉风化都比较厉害,而且路边上也可见到泉水溢出。这个地方也可能出现比较大的塌方,但因为这儿地势较低,地下水量和水头都不大,而不会产生涌水。今天,军都山隧道已经竣工,施工结果证明,当时做出的判断是正确的,实际上这也是一种预报,是战略性预报。可以帮助施工单位作好施工抢险准备,避免问题出现时措手不及。在作了上面预报的3个月以后,我们到现场落实地质超前预报研究工作,来到出口段时,这时出口段正好发生了一次大塌方,从地下塌到山顶,塌方产生的原因就是掘进中截断了一条倾向洞外的煌斑岩脉,这条煌斑岩脉已经风化成泥状了,开挖过程中首先在洞底出现,施工人员没有重视,没有及时支护处理,在放第二炮时就发生了大塌方,主要是上盘部分大量滑塌下来。这个塌方造成停工达1个半月之久。当时工地停工一天损失约5万元。这次塌方停工造成的损失就达200多万元。我们目前存在一个问题,施工中出现了事故造成200多万元损失好像是合法的,为了避免事故提前作一点科研和技术工作,申请一点儿投资那是难上加难,而且先期作点预报性工作,预报准了,避免了塌方,多数是不承认的,因为没有塌。谁也没有看见造成什么损失,怎么好承认,这是隧道施工地质预报工作的又一难题。实际上这是一个重大认识误区。以前的施工没有地质超前预报,对前方地质情况不太了解,掘进带有很大的盲目性,盲目的掘进就避免不了不出事故。地质超前预报实际上是帮助施工单位查明掌子面前方的地质情况,情况明了,就可以做到有科学依据、有准备、有计划地掘进,克服了盲目性。实际上施工地质超前预报工作具有隧道施工发展划阶段的作用,也就是由盲目的掘进转变为有科学依据的掘进。这在军都山隧道施工中和以后的其他隧道施工中都具有重要意义。
图9-1 地上与地下节理间距分布对比
图9-2 2#斜井地段地表和地下节理统计
●节理面开度小于1mm的节理;×节理面开度为1~5mm的节理;○节理面开度大于5mm的节理
上面讲到,地面测绘观察到的地质构造和地下开挖揭露出来的地质构造情况不完全一样,现在来举几个实例说明一下。下面几个资料是在军都山隧道工作中取得的,如图9-1所示,a表明地面测绘统计得的节理间距大约主要为0.7~0.8m,c是在地下统计得的大节理间距主要为1.0~1.2m,a与c的分布规律大本相似;b为地下统计得的所有的节理的分布情况,主分布的节理间距为0.2~0.4m,这是为什么?b统计的资料中有很大假象,这种小间距的节理实际上是施工爆破引起的。地上、地下节理对比时应采取较大的节理,大节理间距的分布是较相近的。这个特征我们可以从下面两张节理统计极点投影图上看得更清楚。图9-2的资料说明地表的构造,特别是小小构造,大节理、小断层,地下见到的与地表见到的不一样。前面已经谈过小金房沟地段,地面见到的断层仅有5条,而地下开挖遇到的有100多条,断层带宽度达2m以上的也有几十条,这说明它们之间的差别是相当大的。由于有这么多差异,所以我们提出要作施工地质超前预报。施工地质预报工作量很大,说起来容易,实际作起来可不那么简单。为了统一管理我们编写了《军都山隧道快速施工地质超前预报指南》,有了《指南》施工单位下死命令将地质超前预报纳入为一道工序,硬性规定必须贯彻执行。这是一个非常重要的条件,没有施工部门的配合,方法再好也发挥不了作用。这个《指南》现在已经由铁道出版社正式出版,铁道部基建局决定推广这一技术。应该说这是隧道施工中的一个重大举措。它将对我国隧道建设事业发挥重要作用。