当前位置:首页 » 地质工程 » 从地质灾害区变美丽乡村纪实

从地质灾害区变美丽乡村纪实

发布时间: 2021-02-26 17:54:25

1. 浅议三峡库区地质灾害预警工程常用监测方法及应用

王爱军1,2薛星桥1,2

(1中国地质大学(武汉),湖北武汉,430074;

2中国地质调查局水文地质工程地质技术方法研究所,河北保定,071051)

【摘要】长江三峡库区地质灾害预警监测是服务于地质灾害防治、保障三峡工程建设安全的主要基础工作。开县、万州区、巫山县的38个滑坡灾害专业监测点,采用大地形变监测、深部位移钻孔倾斜仪监测、地下水动态监测、滑坡推力监测、地表裂缝相对位移监测、GPS全球卫星定位系统监测、TDR时间域反射监测和宏观监测等综合系列监测方法。每个滑坡灾害点,采用2种以上监测方法,分别监测滑坡体地表内部变形或受力变化;重要灾害点采用4~5种方法同时进行监测,以便进行对比和综合分析。对滑坡监测及监测成果统计分析,多种监测数据成果具有明显的一致性和相关性,反映了滑坡体的变形情况和特征,证实监测方法合理有效,监测成果将为地质灾害预警工程和地质灾害防治工程提供可靠依据。

【关键词】三峡库区地质灾害预警工程监测方法应用

1前言

长江三峡库区自然地质条件复杂,是地质灾害的多发区和重灾区。三峡工程的兴建和百万移民工程,在一定程度上改变了原有地质环境的平衡状态,加剧了地质灾害的发生。随着三峡工程建设的不断推进,库区地质灾害对三峡工程和库区人民生命财产安全的影响日益增加,及时有效地防治库区地质灾害已成为三峡工程建设的重要任务之一。地质灾害预警监测工作是实现地质灾害防治的主要基础工作。

三峡库区共有38个滑坡灾害专业监测点在进行专业监测工作,其中重庆市开县14个、万州区14个、巫山县10个。

2监测方法

2.1大地形变监测

采用全站仪监测。在滑坡体外选取地质条件较好、基础相对稳定的点位作为监测基准点,在滑坡体上选择有代表性的点位作为监测点,标志点全部采用混凝土强制对中监测墩。

2.2深部位移监测

采用钻孔倾斜仪进行监测。在滑坡体上选择有代表性的点位布置测斜钻孔,分别在其主滑方向和垂直主滑方向上进行正反两回次自下而上的测读,监测点间距0.5m,使用移动式“CX-01型重力加速度计式钻孔测斜仪”,监测数据稳定后自动记录,每期监测共记录4组数据。

2.3滑坡推力监测

在滑坡体上选择有代表性的点位布置钻孔,在钻孔中选择适当的深度部位,预置一系列滑坡推力传感器,用传导光纤连接至地面,每次监测采用“BHT-Ⅱ型崩塌滑坡推力监测系统”测量记录各点数据。

2.4地表裂缝相对位移监测

在裂缝的两侧适当部位安置数套裂缝计,进行原位裂缝相对位移监测。机械式监测具有干扰少、可信度高、性能稳定特点,监测记录数据可直接做出时间—位移曲线,测量结果直观性强。仪器一般量程范围在25~100mm间,读数器的分辨率为0.01mm,操作温度在-40℃~+105℃之间。

2.5地下水动态监测

在滑坡体上选择有代表性的点位布置钻孔,对地下水水位,孔隙水压力、土体含水率、温度等参数监测,采用自动水位记录仪、孔隙水压力监测仪等仪器监测。其中孔隙水压力监测仪的孔隙水压力量程为-80kPa~200kPa,分辨率0.1kPa,精度0.5%F·S;土体含水率量程为0至饱和含水率,分辨率1%;温度量程为0~70℃,分辨率0.1℃,精度1%F·S。

2.6GPS全球卫星定位系统监测

在滑坡体外选取地质条件较好,基础相对稳定的点位,作为监测基准点;在滑坡体上选择有代表性的点位作为监测点,标志点全部采用混凝土强制对中监测墩,观测时采取多点联测。GPS监测方法,可进行全天候监测,不受通视条件限制,同时监测 X、Y、Z三维方向位移量,方便灵活,并可监测灾害体所处地带的区域地壳变形情况。采用的美国 Ashtech公司生产的UZ CGRS型GPS,最小采样间隔1s,最少跟踪和接收12颗卫星,使用Ashtech Solution 2.6软件解算,精度可达水平3mm+1ppm,垂直6mm+2ppm。

2.7时间域反射测试技术(TDR)监测

即采用电缆中的“雷达”测试技术,在电缆中发射脉冲信号,同时进行反射信号监测。在滑坡体上选择有代表性的点位布置监测钻孔,将同轴电缆埋入监测孔,地表与 TDR监测仪相连接,把测试信号与反射信号相比较,根据其异常情况判断同轴电缆的断路、短路、变形状态,推断出电缆的变形部位,进而推算滑坡体地层的变形部位和位移量。TDR监测采用了固定式预置同轴电缆,成本低,可进行自上而下的全断面连续监测,量程范围大。

2.8宏观监测

以定期巡查方法为主,对变形较大的滑坡体,据其变形特征布置一定数量的简易观测点进行定期观测,及时掌握其变形动态。

对于每个滑坡灾害点,采用2种以上监测方法,分别监测滑坡体地表变形和滑坡体内部变形或受力变化,重要灾害点采用4~5种方法同时进行监测,以便进行对比和综合分析。监测点的布置应重点突出,控制滑坡的重点部位;照顾全面,力求能反映滑坡体整体变形情况。钻孔孔口周围用混凝土浇筑,布置精确监测点位。

3监测效果分析

根据2003年7月至12月滑坡灾害专业监测数据资料,初步分析三峡库区地质灾害预警工程监测方法及应用效果。

3.1大地形变监测

大地形变监测,开展了开县大丘九社和巨坪九社滑坡、巫山县狗子包滑坡和板壁塘滑坡,共4个滑坡的监测。以下以开县大丘九社滑坡为例简述监测效果。

大丘九社滑坡位于开县镇东镇大丘九社斜坡上,滑坡平面形态近似矩形,剖面上呈凹型;分布高程205~300m,滑体长约250m、宽约300m,面积710万m2,估计厚度20m,体积约140万m3。滑坡发育于侏罗系中统沙溪庙组(J2s)紫红色泥岩及砂岩互层组成的平缓层状斜坡中,滑坡体的物质组成主要为砂岩及砂岩碎块石土,表层为松散土壤,局部出露砂岩碎块石,为崩滑堆积体滑坡。

图1开县大丘九社滑坡累计位移量曲线图

(a)X方向(b)Y方向(c)H方向 D1——监测点编号

大丘九社滑坡体上布置了3排监测点,每排3个共计9个监测点,滑坡体对面斜坡上布置了2个基准点,分别在2个基准点进行监测。监测网布置既控制了整体滑坡体又突出重点,采用前方交汇法施测。

8月5日进行了首次测量,9月21日进行D1第二次测量成果与之对比,表明变形趋势明显,滑体向 NEE向滑移。10月24日监测成果表明各监测点的变形趋于缓和。11月和12月监测成果表明各监测点无明显变化(见图1)。监测数据与宏观调查定性分析相一致。

利用全站仪进行大地形变监测,其特点为监测方便,可随时对一些危险滑坡监测,既可以在滑坡体上设置永久性监测桩,又可以设置临时性监测桩;监测精度高,测点中误差可达到3.5mm;不仅能测定相对位移,而且能监测绝对位移;在满足测量条件下可进行连续监测,监测滑坡滑移的全过程,不存在量程限制。但该仪器监测受天气因素和光线条件制约,难以在雨雾条件和夜间实施监测,且受地形和通视条件制约,施测以人工操作为主,不易实现自动化监测。

3.2深部位移钻孔倾斜仪监测

深部位移钻孔倾斜仪监测点为开县6个滑坡、16个钻孔,巫山县5个滑坡、19个钻孔,万州区8个滑坡、24个钻孔,共计19个滑坡、59个钻孔。以下以开县虎城村滑坡为例简述监测效果。

虎城村滑坡为堆积层滑坡,位于开县长沙镇虎城村斜坡。该滑坡在平面近似矩形,剖面为凹形,分布高程330~400m,纵长约300m,横宽约500m,滑体估计平均厚度12m,面积15万m2,体积180万m3。滑坡发育于侏罗系中统沙溪庙组(J2s)紫红色泥岩及泥质粉砂岩组成的水平层状岩层斜坡上,滑体上部为崩坡积紫红色碎石土层。滑坡威胁居民400余人及其财产安全。该滑坡布置了3个深部位移钻孔倾斜仪监测钻孔。

Kx-162钻孔位于滑体的中部。2004年10月,在9.5~10.5m测试深度处发生明显的位移变形,本月变形量5.56mm,变形方向247°。11月,没有增大趋势,累积形变4.58mm,略小于10月份累积变形量,变形方向253°(见图2)。

Kx-165钻孔位于滑体的下部。2004年10月,在15.0~16.5m测试深度处发生明显的位移变形(见图3),本月变形量5.45mm,变形方向241°。11月,没有明显的增大趋势,累积变形5.39mm,同10月份累积变形量相近,变形方向240°。

地质灾害调查与监测技术方法论文集

图2开县虎城村滑坡 Kx-162钻孔位移随深度变化曲线

(a)EW方向(b)SN方向

图3开县虎城村滑坡Kx-165钻孔位移随深度变化曲线

(a)EW方向(b)SN方向

深部位移钻孔倾斜仪监测方法,可在滑坡体上一定部位布置的钻孔中,监测滑坡体内垂直方向上的浅层、中层、深层、滑动带等滑移方向和相对滑动位移量;但在滑坡发生较大或急剧加速的位移变形时,由于钻孔和孔内测斜管变形、破坏,测斜仪探头不能送入钻孔之内,可能使钻孔失去监测价值。

3.3 滑坡推力监测

滑坡推力监测共设有2个测点、4个钻孔:巫山县淌里滑坡钻孔2个,曹家沱滑坡钻孔2个。以下以淌里滑坡为例简述监测方法与效果。

淌里滑坡位于巫山县曲尺乡长江干流左岸斜坡上,滑坡在平面形态上呈不规则的圈椅状,前缘分布高程90m,后缘高程400m,平均坡度约30°~40°,纵长约800m,横宽150~250m,滑体厚20m,面积24万m2,体积490万m3。滑坡发育于三叠系巴东组(T2b)灰岩、泥灰岩、泥岩中,滑体物质主要为泥灰岩及泥岩碎块石土,表层多为松散土层,下部碎块石土结构密实。

Ws-t-tzk1推力孔位于滑体的下部,Ws-t-tzk2推力孔位于滑体的中部。其滑坡推力监测成果数据见图4、图5。推力监测曲线图表明,各次监测数据规律性强,基本一致,传感器没有发现明显的数值变化。滑坡推力监测结果与宏观监测结果和同时进行的钻孔倾斜仪监测结果相一致,说明此阶段滑坡暂时处于相对稳定的微变形状态。

图4巫山县淌里滑坡 Ws-t-tzk1钻孔滑坡推力监测曲线图

图5巫山县淌里滑坡 Ws-t-tzk2钻孔滑坡推力监测曲线图

滑坡推力监测方法属于固定点式监测,在钻孔中预置传感器,用传感光纤连接,在地面用滑坡推力监测系统采集传感信息,可在滑坡体上一定部位布置的钻孔中,自上至下监测滑坡体内垂直方向上的浅层、中层、深层、滑动带等滑坡推力变化量,可定期进行数据采集监测;在对采集和传输处理系统进行改进的基础上,可实现无值守自动化连续监测。

4结论

(1)通过多手段的综合监测,掌握了被监测滑坡体的表面、内部自上至下滑移带的变形及受力情况,数据综合分析表明其反映了滑坡位移变化及动态特征,取得了进行灾害预警的重要基础数据资料,说明采用的监测方法合理有效。

(2)钻孔倾斜仪深部位移监测方法,当滑坡体发生一定量缓变位移后,部分钻孔不能再进行全孔施测,造成勘察监测资金浪费和滑坡体监测点及监测部位减少。

(3)目前一月一次的监测周期,难以保证在滑坡发生滑移险情时能进行有效监测。为此应在进行专业监测的同时,进行群测群防监测。特殊情况下,对危险滑坡灾害点,调整监测方案,进行加密监测或连续监测,使监测满足预警预报要求。

(4)从长远发展考虑,监测应以免值守、易维护、低成本、固定式、自动化快速连续采集传输和半自动化监测及人工监测相结合为方向,以建立起高效的地质灾害监测网络与地质灾害预警系统。

参考文献

[1]王洪德,高幼龙,薛星桥,朱汝烈.链子崖危岩体防治工程监测预报系统及效果.中国地质灾害与防治学报,2001,12(2):59~63

[2]王洪德,姚秀菊,高幼龙,薛星桥.防治工程施工对链子崖危岩体的扰动.地球学报,2003,24(4):375~378

[3]张青,史彦新,朱汝烈.TDR滑坡监测技术的研究.中国地质灾害与防治学报,2001,12(2):64~66

[4]董颖,朱晓冬,李媛,高速,周平根.我国地质灾害监测技术方法.中国地质灾害与防治学报,2001,13(1):105~107

[5]段永侯,等.中国地质灾害.北京:中国建筑工业出版社,1993

2.  中区段地质灾害类型及分布

中区段地形上位于第二阶梯东段的鄂尔多斯高原、黄土高原和山西山地,间夹临汾盆地,海拔标高400~1600m,地形高差对比大,大部分地段沟壑纵横,地形地貌条件复杂。属温带大陆性半干旱季风气候,降水量由西往东递增,季节分配不均。生态环境比较脆弱。本区段全为黄河流域,西部水系稀少,东部则有数条一级支流汇入。区域大地构造位置距板块作用带边界较远,除临汾盆地和东西边沿外,地壳稳定性较好。西部人烟稀少,东部人口密度较大,且对地质环境干扰破坏强烈。人类活动主要是大量开采固体矿产(以煤为主,还有铁、铝土、粘土等),西部还有过牧和滥樵(挖)。水土流失十分严重。

本区段地质灾害类型最多,主要有滑坡、崩塌、泥石流和洪水冲蚀、风蚀沙埋、采空塌陷、黄土湿陷和潜蚀;局部地段还有地震液化、盐渍土、瓦斯爆炸和煤层自燃等灾害。以下分别论述。

一、滑坡和崩塌

由于本区段自然地理和地质环境条件的特殊性,滑坡和崩塌是最主要的地质灾害,主要分布于黄土高原和山西山地区。黄土高原区梁峁起伏,冲沟发育,沟深坡陡;黄土深厚,垂直节理发育,湿陷性较强。山西山地区的吕梁山、太岳山、太行山与汾河、沁河相间排列,沟谷发育,地形起伏高差对比大;基岩裸露,大多上覆以薄层黄土。所以在强降雨和河水冲刷等触发因素作用下,易发生滑坡和崩塌,二者常相伴而生,是这两种地质灾害的易发区和危险区。

在评估区内共发现滑坡116处;崩塌在山西段内有45处,陕西段内有6个地段52处,总长约46km,宁夏段有8处,发育极为普遍。

(一)滑坡

黄土高原区的滑坡绝大多数为土体滑坡,以陕西段居多,有83处之多,山西段有14处。滑坡的成因模式可分两种:一种是顺黄土与下伏中生界基岩面或新近系红土的接触面滑动的,一般分布于河流的冲刷岸或梁峁沟壑区(图4-2(a)、(b),它的规模较大,滑动面较深;另一种是在黄土残塬和梁峁边缘,因坡体陡立,黄土顺坡向的垂直节理又很发育,在雨水下渗时导致潜蚀作用而触发滑坡(图4-2(c),这种滑坡的规模一般较小,属浅层滑坡。在陕西段顺下伏基岩面滑动的滑坡较多,且多为大中型滑坡。对管线有较大影响的滑坡有:枣树坪滑坡(DD143—DD144)、王家院滑坡群(DD279—DD281)、梁家渠滑坡(DD288—DD289)和寒砂石水库滑坡(DE003—DE005)等4处。

图4-2滑坡形成模式

山西山地区发现滑坡19处,其中基岩滑坡8处,土体滑坡11处。基岩滑坡发生在石炭、二叠系灰岩、砂泥(页)岩互层地层中,有顺层滑坡,也有切层滑坡。它们密集分布于阳城县城北、东约20km地段内(EH035—EH114)。滑坡的成因与降雨、河水冲刷和人工筑路切坡等有关,有4处稳定性较差,其中1处距管线仅20m(EG026附近),影响较大。土体滑坡的成因与黄土高原区类似。对输气管线影响较大的有蒿峪村西滑坡(EH086附近)、杜老凹滑坡(EF022)、老炭窑滑坡(EF054)等3处。

(二)崩塌

黄土高原区崩塌主要是黄土体的崩落,而山西山地区则是基岩崩塌。鄂尔多斯高原(宁夏境内)也有少量沟岸坍塌。

黄土高原区崩塌一般分布于各河流分水岭的线路越梁地带,地貌以黄土梁峁为主,由于冲沟溯源侵蚀和沟谷底蚀强烈,高陡边坡随处可见。黄土的垂直节理发育,在高陡坡肩前缘的土体似悬臂梁板,在弯矩的作用下底部突然断裂而发生崩塌(图4-3(a)。还有一种情况是深切狭窄的河谷地段基岩出露,在河流侧蚀和风化剥蚀作用下,下部的泥岩形成凹龛,上部较硬的砂岩悬空,产生拉裂缝,危岩体最终崩落下来(图4-3(b)。清涧河河谷中三叠统胡家村组(T2h)和大理河河谷下白垩统洛河组(K1l),这种崩塌机制较多见。此外,各河流中上游地段岸坡多由黄土或阶地堆积物组成,在曲流作用强烈的河段,冲刷岸坍岸现象较普遍。崩塌规模一般较小,但数量较多,对公路、管线工程危害较大。

图4-3崩塌形成示意图

山西山地区发现的34处崩塌都分布于基岩区,地层岩性是:中奥陶统上马家沟组(O2s)厚层灰岩6处,中石炭统本溪组(C2b)灰岩2处,上石炭统太原组(C3t)和山西组(C3s)砂泥岩和灰岩4处,下二叠统下石盒子组(P1x)砂泥岩5处,上二叠统上石盒组(P2s)和石千峰组(P2sh)砂泥岩11处,下三叠统刘家沟组(T1l)细砂岩6处。在阳城县城北、东分布较集中。崩塌一般分布于坡度大于40°和高度大于10m的陡坡地段,岩体陡倾的构造节理较发育,在坡缘部位追踪形成拉裂缝,逐渐扩展,在暴雨、放炮炸石等触发因素作用下发生崩塌。崩塌的规模也较小,一般数十至数百立方米,最大的一处是晋城市下河村(EJ001附近)崩塌体,为2.25×104m3。对输气管线有影响的有20处,有的为管线直接穿越,有的距管线仅数米至十余米,而且目前处于不稳定状态,危岩矗立,应予关注。

二、泥石流和洪水冲蚀

泥石流和洪水冲蚀是本区段输气管道沿线又一较发育的地质灾害。

据调查,宁夏段有泥石流沟20条,主要分布在下河沿至古城子和盐池县东红井子至陕西定边县红柳沟乡两个地段内。前一地段主要为稀性泥石流型。泥石流沟都发源于南部基岩山区,沟道长,流域面积大。出山区后进入并深切山前冲洪积倾斜平原,在倾斜平原沟口形成小的堆积扇,大部分物质冲入黄河。泥石流的固体物质主要来源于倾斜平原,以砂砾石和泥沙为主。这一地段是宁夏段沿线泥石流较严重的地段。古城子至红井子还有5条稀性泥石流沟。输气管线一般都布设在堆积区,且与沟道直交。后一地段为泥流型,上红柳沟南侧为侵蚀严重的白垩系砂岩构成的基岩丘陵,山前堆积的粉土厚达50m,树枝状冲沟极为发育,侵蚀深达15~45m。因宁夏段管线经过地段人烟稀少,未有泥石流遭致人民生命财产损失的报道。

陕西段泥石流分布于靖边县马路壕东南的黄土高原区,是当地常见的地质灾害,多发生于每年7~9月的雨汛期,往往由强降雨激发,突发性强,来势迅猛,致灾力强。显然,对拟建的输气管线危害较大。由于黄土高原沟壑纵横,沟深坡陡,冲沟溯源侵蚀极强;土体结构疏松,崩塌、滑坡发育,皆为泥石流提供了动能优势和丰富的固体物质来源。在强降雨激发下,极有利于泥石流的形成。根据泥石流所含固体物质的颗粒级配特征,常以泥流形式出现,有稀性、粘性和塑性之分,以前两种出现几率较高。暴雨时在沟谷中时常可出现含沙量大于600~900kg/m3的洪流,由密布的毛沟、支沟流向干沟和河流汇集,形成强大的泥流,溃堤毁坝、淤塞水库,分割坝地,造成严重危害。

山西段泥石流也较发育,在评估区内发现泥石流沟15条。根据物源成分不同,可分为泥流、水石流和泥石渣流三种。泥流主要分布于西部黄土高原区,特征与陕西段类似。水石流主要分布于沁水与浮山两县交界处,当地为林场,水土流失较弱,物源主要为沟谷两侧的基岩崩塌堆积物。泥石流沟的流域面积不大。泥石渣流集中分布于沁水、阳城两县的采矿区,固体物质是堆积于沟谷中的煤矸石和铁矿弃渣,一般流域面积不大。据调查,泥石流已造成一定灾害。输气管线有7处与泥石流沟相交,应予关注。

三、风蚀沙埋

宁夏段和陕西段西部管线经过地段,正好处于毛乌素沙漠与黄土高原的过渡地带,生态环境脆弱,植被稀少,加之当地乱采滥挖甘草、过度放牧和不适当开发矿业,数十年来土地沙化十分严重,荒漠化加剧。因此风蚀沙埋也是需关注的一种地质灾害。

区段内沙丘以固定和半固定草丛沙丘为主,宁夏段的沙丘主要分布于中宁县双井子至盐池县大水坑的丘间洼地中,呈星点状散布于管线两侧,有些管线则直接穿越其间,一般丘高1.5m以下,由于风蚀作用,许多沙丘呈半丘状。丘间为平铺沙地,沙丘密度30%左右。

陕西段的沙丘分布于定边县红柳沟镇至靖边县李家梁地段内,几乎连续展布在长城以北地域。在定边县的贺圈、帐房湾、羊圈有几处移动沙丘,丘高一般3~10m,沙丘主导移动方向东南,平均移动速率4~6m/a。在靖边县附近,黄土被沙丘掩埋,甚至在梁峁、坡面上有薄层低缓新月形沙丘分布,丘高3~5m,风蚀严重。输气管线基本上都在距沙丘以南3~8km地段的平铺沙地上布设,受风蚀和沙埋影响较小。只有靖边北侧一段长约20km的管线布设于沙丘上,必须采取必要的防护措施,以免风蚀发生。

四、采空塌陷

地下开采固体矿产资源所形成的采空区,在一定的地质结构条件下,采空区上覆岩层在自重和围岩应力作用下会导致顶板冒落和顶底板闭合,而引起上覆岩体的变形破坏,进而产生地面开裂和沉陷。一般煤矿地面塌陷是累进性的,而某些围岩坚硬的金属矿山则往往是突发性的。煤矿等层状矿产采空区地面塌陷机理是:一般地下开采采用柱式采空区的空间结构(图4-4)。若某些矿柱实际强度低于设计承载力,或在长期承载过程中因风化、地震等作用,承载力下降,使得这些矿柱先遭到破坏,它们所担负的荷载就要转移到相邻的矿柱上,从而也使它们相继遭受破坏,累进性破坏将导致整个矿柱系统的破坏。矿柱破坏的形式是采空区顶板冒落。顶板冒落引起上覆岩层变形破坏,自下而上可划分为冒落带(Ⅰ)、裂隙带(Ⅱ)和弯曲带(Ⅲ)三个带(图4-5)。由于采空区面积、采掘厚度和矿层埋深不同,上述三带不一定同时存在。当采掘厚度大而矿层埋深又较小时,冒落带可直达地表而形成塌陷坑。自矿层开采至地面出现沉陷,需要一定的时间过程,它受诸多因素影响。地表沉陷洼地面积一般较采空区大。

本区段固体矿产资源丰富,主要是煤矿,还有铁矿、铝土矿和粘土矿等。

煤矿主要分布在山西境内,分布广且蕴藏量很大。含煤地层主要为石炭系上统的太原组和山西组。太原组含煤5~8层,山西组含煤4层;有的煤层厚达7~8m,稳定可采。现正大量开采,均为地下采掘方式。据调查,评估区内发现有大小煤矿159座,其中输气管线直接在采空区上部通过或距管线较近的矿山有25座之多,总长度有37km。尤其是沁水煤田矿山密布,开采历史悠久,开采方式落后,正在开采和已闭坑的矿山遍布地下采空区,其分布大多无档案记载。在临汾以西的河东煤田,在尧都区和蒲县煤矿也是密集分布,遍布地下采空区,在输气管线两侧连接成片。陕西境内的煤矿在管线经过地段集中于子长和永坪一带。含煤地层为三叠系上统瓦窑堡组,共含煤层7~15层,单层厚度最大3m左右,层位稳定。开采历史也很悠久。目前子长矿区有45座小煤矿,永坪矿区有5座小煤矿,开采方式原始落后,无序开采现象严重,采空区大多无档案记载。输气管线直接在采空区顶部或附近通过的总长度有5km左右。宁夏境内位于西部中卫县的下河沿煤矿,含煤矿地层为石炭系上统的太原组和土坡组,目前可采煤层4~8层。煤层分布于输气管线南部,对管线无影响。

图4-4采空区矿柱系统示意图

图4-5采空区冒落引起上覆岩层变形与错动的分带

铁矿也主要分布在山西境内。矿体赋存于石炭系底部,属风化残积型窝状矿体,储量小而不稳定,但开采历史悠久。目前,多为乡村和个体开采。据调查,在评估区内有53座铁矿。由于矿坑埋深浅,易引发地面塌陷;但因规模小,对输气管线影响较小。

此外,本区段在河南西北部太行山区还有铝土矿和粘土矿,在输气管线经过地段已发现有60多个矿洞,都是私人开采的小矿山,采深很浅,地面塌陷严重。目前虽已停采,但它对管线的施工和运营带来了潜在的危险。

由上述分析可知,对输气管线将遭致严重危害的是煤矿采空塌陷。从地面调查来看,采空塌陷最严重的地段在山西的浮山、阳城二县境内,浮山县后交煤矿和阳城县柏山煤矿有三处塌陷坑,塌陷面积总计达36×104m2,最大深度6m,已造成3024亩农田和2580间民房破坏,一座学校被迫搬迁,经济损失严重。输气管线正好在塌陷坑地段通过。采空塌陷还导致产生地裂缝。在蒲县—临汾段、浮山后交煤矿、阳城、泽州等地均发现采矿地裂缝。已造成1995间民房开裂,1300亩耕地荒芜,约200户居民搬迁。

在本区段煤矿区还有瓦斯爆炸和煤层自燃灾害。陕西子长县道园煤矿1995年发生瓦斯爆炸,死亡12人;红石峁沟口旧煤窑和南家咀煤矿也都发生过瓦斯爆炸事故。它们距输气管线都较近。宁夏下河沿煤矿历史上有煤层自燃记载,十几年前还有自燃迹象。山西沁水煤田的南端,阳城、泽州段为高瓦斯煤矿,曾发生过多次瓦斯爆炸事故,在泽州段犁川一带还有煤层自燃现象。

采空塌陷对输气管线工程会导致严重后果,甚至是致命的危害,应引起高度重视。由于不少地段老煤窑较多,目前乡镇企业和私人经营的小煤矿又无序开采,采空区的空间分布范围很难查明。此次调查虽在重点地段进行浅层地震勘探,初步查清了一些采空区,但仍然不能满足工程设计的要求。今后,应在陕西段的子长煤矿焦家沟—王家湾段(DD184—DD277),山西段的蒲县—临汾煤矿密集分布区(EC119—ED073)、浮山后交煤矿区(EF043—EF056)和泽州煤矿密集分布区(EJ002+1—EJ058)进一步加强勘查。

五、黄土湿陷和潜蚀灾害

黄土湿陷和潜蚀往往相伴发生,一般是突发性的,对建筑物和人民生命财产构成危害,是黄土类土分布地段的一种特殊地质灾害。

(一)黄土湿陷

本区段地处黄土高原东缘和山西山地区,地面普遍分布有以上更新统(Q3)风成黄土为主的黄土类土,其中Q3、Q4黄土具湿陷性,且多属自重湿陷类型。据统计,输气管线经过黄土连续分布地段,陕西段长185km,山西段长71km(陕西靖边马路壕至山西临汾盆地以西)。分布厚度大,主要为梁峁沟壑地形,湿陷性最为强烈。临汾盆地以东,浮山段较强,往东逐渐减弱。沿线黄土因其形成时代、成因、结构和所处地貌位置不同,湿陷性有所差异。一般情况是:Q3风成黄土湿陷性最强,属中等—强烈湿陷;Q4坡积—冲积黄土状土,湿陷性弱些,属中等湿陷;而Q2黄土则为轻微湿陷—无湿陷。表4-1列出了陕西和山西段黄土湿陷性指标。

表4-1黄土湿陷性指标

有关黄土湿陷的形成机制有多种解释,其中“加固凝聚力降低或消失的假说”较有说服力。黄土湿陷是一个复杂的物理化学过程,是由黄土固有的特殊成分和结构以及外界诱发条件共同作用的结果。湿陷性黄土含有一定量的碳酸盐胶结物和大孔性的结构特征,是湿陷作用的内因,而浸水和加压则是外部条件。当黄土浸水受压后,水膜楔入和水的溶解作用,使由盐类结晶胶结产生的加固凝聚力降低甚至消失,并使土粒散化。使处于大孔性而呈欠压密状态的土体发生沉陷,结构遭到破坏。

黄土湿陷导致的灾害是多方面的,有地表大面积不均匀下陷、地裂缝,还可诱发滑坡和崩塌的发生。因此它对输气管线可构成危害。

(二)黄土潜蚀

黄土潜蚀分布地域与湿陷性黄土基本一致,多见于Q3、Q4黄土中,形成陷穴、落水洞、盲沟、漏斗、竖井及天生桥等“黄土喀斯特”现象。潜蚀的发育受控于地形、地层及降雨等因素。在河谷阶地及坝、

地等地形平缓处,由于降雨积聚下渗,能形成直径几米至十几米、深度1m左右的碟形陷穴。根据陕西段的调查资料,输气管线沿线潜蚀与地形、黄土地层关系见表4-2。

表4-2潜蚀陷穴与地形、黄土地层关系统计表

由于潜蚀的形成与黄土湿陷性密切相关,加之其作用过程较为隐蔽,常有暗沟分布,一旦突然陷落,将给输气管道的安全带来严重后果。

六、其他地质灾害

(一)地震液化

分布于宁夏段黄河冲积平原和山西段临汾盆地内。该二地段均为地震烈度Ⅷ—Ⅸ度的强震区,历史上曾多次发生过7~8级大地震,是输气管线经过的地震危险区。

宁夏段地震液化分布于中卫县境的黄河冲积平原一级阶地上,岩性为Q4的粉土、粉砂和细砂,埋深1.5~5.3m,潜水位埋深0.8~3.0m。经现场标准贯入试验判别,CA123—CA136和CA164—CA170液化等级轻微,CA144—CA164液化等级中等。

山西段临汾盆地地震液化分布于汾河河漫滩和一级阶地上,岩性为Q4的中细砂和粉砂;夹有粉土和粉质粘土,潜水位埋深0.7~2.6m。经现场标准贯入试验判别,在管线ED089—ED103长约4km的地段内,Ⅶ度地震力条件下液化等级为中等—严重。该地段史藉上曾有地震时喷砂冒水等砂土液化现象的描述。显然,输气管线的安全将会受到严重影响。

(二)盐渍土的腐蚀和盐胀灾害

分布于宁夏段和陕西段内。经查明,宁夏段盐渍土有三段。其中中卫县黄河冲积平原为碳酸(碱性)盐渍土和硫酸盐渍土相间分布,管线长度约42km,危险性小;中宁县古城子西的沼泽地为硫酸盐渍土,长约0.75km,危险性中等;盐池县两个盐碱滩洼地为硫酸盐渍土,长约3.5km,危险性大。陕西段盐渍土主要分布在定边县安边镇屈园子—郝滩乡四十里铺(DA056—DA076)及靖边县小滩则等地段,累计管线长度约21km。盐渍土易溶盐含量一般为0.34%~1.73%,为硫酸盐,经判定,屈园子—四十里铺以中度盐渍土为主。

(三)地面沉降

输气管线临汾段(ED089—ED103)经过地面沉降区,沉降中心位于临汾城西汾河谷地。累积最大沉降量240mm。该地段地面沉降是由于超采中深层地下水引起的。自20世纪70年代中期开始,地下水开采强度逐渐加大,由于超采,地下水位持续大幅度下降,至1986年已形成一个波及面积超过50km2的椭圆形降落漏斗,中心水位较1978年下降了30m,年降幅近4m。1986年以后,水位仍以平均3m/a的速率下降。目前该降落漏斗中心最大降深已达80m。地面沉降现状条件下不会对输气管线造成危害。

3. 山东半岛城市群地区主要地质灾害

在上面论述地区稳定性时,已涉及地震的灾害。地震也是地质灾害的一个重要灾种。在有关水资源的讨论中,也已经分析了山东半岛的旱涝灾害问题。这节着重讨论山东半岛存在的其他主要地质灾害。

地质灾害是自然界不可避免的现象,人类的不当开发,或未能对其很好地进行防治,都会激发、加速或加剧地质灾害的发生与发展,增大其危害性。自然界中的地质灾害,有缓变性地质灾害,如海水入侵、地面沉降、沉陷等,也有急变性地质灾害,如滑坡、泥石流、岩溶塌陷等,下面分别简略分析。

1.海水入侵灾害

在海岸带地区,经常会产生海水入侵使陆地地下水被海水浸染,增大含盐度,会失去作为饮用及工农业供水的价值。海水入侵也会破坏岩体的力学性质,增大产生滑坡等灾害现象的危险性。海水入侵还会增强对碳酸盐岩的岩溶作用,等等。

环渤海地区,海水入侵是广泛的现象(图18)。实际上,除少数为海水完全入侵地带外(图18中1区),多数是海水入侵与地下水相混合地区,形成咸水-微咸水的混合带,其影响宽度在1km至15km以上。

图18 环渤海地区海水入侵现状图(据孙晓明,2005)

莱州是重要的海水入侵地区,其地下水矿化度可由150g/L,经32km的渗流途径,与入侵地下海水不断汇合相混后,变成矿化度为2g/L的微咸水(图19)。大王—羊口地下水矿化度变化见图20。

图19 莱州湾南岸固堤—央子地下水矿化度变化剖面(据徐建国,2005)

图 20 大王—羊口地下水矿化度变化剖面( 据徐建国,2005)

莱州湾南岸海水入侵始于 20 世纪 70 年代末,当时是局部地区发生海水入侵,后来由于 80 年代初潍坊、昌道、库克等地加强了地下水资源开采,另外河流中、上游修建水库,使地表水补给量减少,而诱发了海水大量入侵,使咸 ( 海水) 与淡 ( 地下水) 界面向陆地迁移,形成大宽度的海水 - 淡水混合带,原先淡地下水的矿化度一般在 500mg/L 以下,少数达 1000mg/L。

莱州湾地下水超采与海水入侵关系见表 29。

表 29 莱州市地下水超采量与海水入侵

( 中国地质调查局海洋地质研究所)

莱州市1976年海水入侵面积为15.8km2;至1989年,海水入侵面积已占全市面积的11.12%,入侵速度由46m/a增至404.0m/a;至2001年,莱州市海水入侵已达260km2(李萍,2004);目前海水入侵面积为304km2。据1976~1989年的初步统计,莱州湾地区累计开采地下水38×108m3,地下水位平均下降15m左右,地下水漏斗面积达2000km2,低于海平面的负值区有1600km2

龙口市海水入侵面积为78.4km2。烟台市从70年代起开采地下水,由于海水入侵,地下水氯离子含量由0.13g/L至1981年已变为1.7g/L,1989年,海水入侵线已达850m。

青岛地区海水入侵面积达95.6km2,也开始于20世纪70年代。1981~1988年,大沽河流域海水入侵峰面内移750m。1981年开始开采地下水资源,在李哥庄一带形成面积约100km2的地下水降低漏斗,中心最低水位-8.13m。1990年由于引贵济青工程输水,地下水开采减少,1994年丰水期漏斗平复。

青岛其他地区,如白沙河—城阳河下游、黄岛辛安等地,也有海水入侵,加上胶南市、胶州市和平度市,这几个地方海水入侵面积已达159km2

渤海的海水总矿化度为34.4g/L,黄海为33.33g/L,在大连地区海水与岩溶含水层中总矿化度为0.62g/L的淡水混合后,形成的地下咸水总矿化度为8.14g/L,是由76.78%的岩溶淡水和23.22%的海水相混形成的(卢耀如,1999),则:

山东半岛城市群地区地质-生态环境与可持续发展研究

式中:Vf、Vb、Vs———形成体积为Vb的咸水时,相应地下水和咸海水的体积为Vf和Vs(L);CClf、CClb、CCls———分别为地下淡水、混合后咸水和海水中Cl离子含量。

在山东半岛莱州湾地区,卤水矿化度达50~150g/L,这不是海水的自身总矿化度,实际上是经蒸发、浓缩的盐卤水,就是说海水入渗后,经过自然和人工蒸发浓缩,使地下水中矿化度达到50~220g/L,其中包括了古海水入侵后,经过地下蒸发不断聚集的卤水。从这个数值上看,莱州湾海水入侵是叠加了古海水入侵的影响。

莱州湾东南岸地区海水入侵面积于1979~1993年是急剧增加的,近几年面积扩大率稍有所下降(图21)。

图 21 莱州湾东南岸地区海水入侵面积变化( 据徐建国等,2005)

海水入侵,在世界滨海城市也多有发生,地下水中所含 Cl-离子含量可作为海水入侵强度的一个指标,前面已讨论了环渤海北岸大连地带海水入侵的强度,下面将国外一些地区海水入侵、造成 Cl-离子增多的情况列于表 30。

表 30 世界部分沿海国家 ( 地区) 海水 Cl-含量

莱州湾地区海水入侵是严重的,其中也包括高浓度盐卤水入渗形成的地下水。

2. 地面沉降灾害

在莱州湾地带的东营市,由于开采油气资源及地下水资源,于 1985 年发现了地面沉降。地震部门曾用大面积精密水准测量复测了地壳形变规律,结果表明,丘陵区、莱州湾南岸及鲁北平原埕宁隆起的东部,几十年来处于抬升状态,最大抬升区在胶北断块隆起区,上升速率为 4 ~8mm/a,东营—垦利地面沉降量最大达 80mm,利津县以北地带,沉降速率为 4 ~8mm/a,寿光西部地区,沉降速率也是 4 ~8mm/a。2000 ~2003 年,对该地进行了复测,发现地面沉降量为248 ~397mm。2002 ~2003 年,东营地面沉降观测点有43个,沉降量在 10 ~30mm 以上。

地面沉降,必定会诱发或加剧海水入侵,莱州湾其他地区存在的地下水大降落漏斗,也存在着加剧海水入侵的问题。

3. 矿区地面塌陷

地面沉降,相对是个缓慢形变的过程,而地面塌陷,主要是由矿山开采引起的,有缓变发展的过程,也有突然发生的现象。山东半岛地区采煤、金、铁等矿产资源引起了较多的地面塌陷现象,特别是大面积煤田采用冒落式方法开采,引起地面塌陷、沉降现象更加严重。山东半岛城市群矿区地面沉降概况见表 31。

表 31 山东半岛城市群矿区地面沉降概况

( 山东省国土资源厅)

目前已闭矿的矿山,有的进行了复垦。矿山开采过程中,尾矿、排土厂等对环境影响较大,尚需治理。总的看来,山东半岛城市群地区,煤矿、金矿及铁矿的矿山环境问题,相对影响的地域比环渤海北翼这一带要小些,但也是今后需予以关注的地质灾害现象。

对山东半岛地区开采地下水诱发地质灾害、影响地质环境的情况进行了综合评价,见图 22。

4. 滑坡、泥石流地质灾害

滑坡、崩塌与泥石流是常见的地质灾害,山东半岛地区也常发生。滑坡、泥石流等灾害多是突发性的,易造成突发性灾害,但是,多有相应的早期形变迹象,如后沿岩土体开裂,滑坡前沿的挤压、隆起,或有少量塌方、崩落等前兆现象。

图 22 山东半岛城市群地下水诱发灾害对环境质量影响评价( 山东国土资源厅供图)

1648年,郯城-莒县地震,诱发了体积为480×104m3的滑坡;近期有济南长清马山滑坡、崩塌群,长600m,宽500m,平均厚15m,体积近300×104m3,都是规模较大的滑坡。济南历城区西营镇十崖村,于2000年8月暴雨后山体坡面出现35处滑塌点,形成泥石流,毁农田4hm2,牲畜死亡50头,冲垮桥梁7座、树木3000多棵。1998年,淄博山区也发生了泥石流,20多公顷耕地被毁,270hm2农作物被毁,并毁坏光缆、供电线路。

山东半岛城市群发生滑坡等地质灾害的情况见表32。山东半岛地区崩塌、滑坡、泥石流灾害,规模比中国西部地区小得多,最主要的是减轻及避免这类灾害,需要及早监测发现,以便提供适时的依据,采取相应措施予以防治。最主要的一点是,工程建设中,特别注意不要随意开挖施工,避免天然状态下稳定的岩体坡角被破坏而诱发滑坡、泥石流等地质灾害。

表 32 山东半岛城市群崩塌、滑坡、泥石流灾害概况

( 山东省国土资源厅)

5. 岩溶塌陷灾害

在碳酸盐岩分布区,长期超量开采岩溶地下水,会使岩溶地下水位持续下降,并导致岩溶水与上覆第四系孔隙水水动力条件发生变化,并对岩土体稳定性产生影响,从而诱发岩溶塌陷的发生。目前,鲁中南地区岩溶塌陷主要发生在泰安、枣庄、莱芜等地,危害性非常突出。

(1)泰安市岩溶地面塌陷

主要发生于泰安旧县、铁路三角区及东郊訾灌庄一带。1970~1994年,在25km2范围内,共发生塌陷152处。塌陷直径一般1~6m,最大16m,深度在铁路三角区为4~8m,訾灌庄一带为2~5m。旧县地面塌陷造成9个村庄房屋开裂倒塌。20世纪90年代初期,京沪铁路行经本段列车车速限在5km/h。后来,经过勘测处理,如采用旋喷桩、灌浆、连锁铁轨及控制地下水开采等途径,使这一带岩溶塌陷的灾害得到控制。

(2)枣庄市岩溶地面塌陷

主要发生在十泉水源地、丁庄—东王庄水源地及薛城区大吕巷等地,1980~1996年累计产生塌陷200处,目前塌陷分布面积达25km2。塌陷多为点状椭圆形,直径3~10m,东王庄西桥附近一处最大塌陷坑,长80m,宽60m,深1.5m。

塌陷的发生使部分村民住房的地面、墙壁开裂,给人民生命财产安全带来一定威胁。同时,地下水位的大幅度下降,又导致顺河道排放的污水渗入地下,使岩溶水遭受污染。

(3)莱芜市岩溶塌陷

岩溶塌陷主要发生在阵公清—西泉河一带铁矿区,由于铁矿生产和当地工农业生产长期大量采排岩溶地下水而引起。1973~1997年间,共发生岩溶塌陷139处,塌坑最大直径35m,最大深度13m,累计塌陷面积6435.0m2

在这个岩溶塌陷区范围内,共有13个村庄的民房受到不同程度的破坏。其中,199户的1001间房屋破坏严重,裂缝宽度超过4cm,被迫搬迁。

此外,在临沂市区、沂源县、平阴县、蒙县及蒙阴县等地,亦有一定规模的岩溶塌陷发生,造成很大的经济损失。

4. 地质灾害易发区的划分与评价

一、地质灾害易发区划分及分区特征

将山东半岛全区划分为8种地质灾害易发区,其他则为地质灾害不易发区(图8-1)。

图8-1 山东半岛城市群地区地质灾害易发区划分

1)采空塌陷为主易发区:主要分布于鲁中南山前平原、山间盆地、谷地、胶东半岛西北部。本区是山东省煤炭、黄金、滑石等固体矿产所在地,如淄博、龙口煤田,莱州、招远等金矿。采空塌陷是由于地下矿体被采出,悬空的地表岩层在重力作用下发生弯曲变形,形成塌陷并伴生地裂缝。随着经济的快速发展,对资源的大规模开发势在必然,由此引发的塌陷将呈进一步加剧之势。

2)岩溶塌陷为主易发区:主要分布于鲁中南山前平原的济南岩溶水水源地和其他隐伏灰岩分布区。上部为松散堆积物,地下灰岩岩溶发育,水资源丰富。多为城市、工农业重要供水水源地或后备水源地。该分布区村镇集中、人口稠密,也是当地最重要的经济带,因而塌陷对地表建筑、人民生命财产安全构成极大威胁,同时对生态环境造成极大破坏,也影响社会安定。

3)崩塌、滑坡、泥石流为主易发区:主要分布于鲁中南的淄博和济南市南部、潍坊市西南部的中低山丘陵区。区内地势较高,海拔多大于400m,其中鲁山在1000m以上,周围丘陵多在500~600m之间。

4)崩塌、泥石流为主易发区:主要分布于鲁东的北部和南部的变质岩低山丘陵区。区内的大泽山、崂山、艾山、牙山、昆嵛山等海拔超过800m,其他一般不超过700m。

以上两区区内岩石风化强烈,沟谷深切,地形陡峻,岩石裸露,危岩多见;又是暴雨多发地,加之河流源短流急,遇有较强的降水过程时,易突发崩塌、滑坡、泥石流等地质灾害,对社会经济发展和人民生命财产安全构成严重威胁。

5)地面沉降为主易发区:主要分布于东营市及附近以及黄河三角洲平原。区内地势平坦,岩性多为松散岩类亚砂土、亚黏土、黏土、砂等,厚200~400m。区内地层较松软,随着深层地下水资源和油气资源的大量开发,上部土层负压增加,在自重和地表荷载等共同作用下,土层空隙被压缩变密,导致地面垂直下沉。它对城市建筑、道路、桥梁、城市供排水系统及防洪等构成较大威胁。

6)海水入侵为主易发区:分布于胶东半岛的莱州湾东岸沿海地带,烟台夹河河口至牟平沿海、胶州湾沿岸、日照付疃河及其他入海河流河口等地带的冲积成因滨海平原,第四系厚5~100m。

7)咸水入侵为主易发区:分布于潍北冲海积平原的寿光、寒亭、昌邑等沿海地带,岩性多为松散岩类黏土、亚黏土、砂等,地势低平。第四系厚10~150m。由于地下淡水资源的大量开采,导致地下水位过度下降,引起海(咸)水反向补给淡水区———导致海水入侵,淡水咸化甚至枯竭;造成机井报废、人畜饮水困难、地方病发病率增高等。

8)地裂缝为主易发区:主要分布于沂沭断裂带,属郯庐断裂带的中段,主要由4条主干断裂组成,北宽南窄,宽20~60km。区内南北两端被松散的第四系覆盖,中间基岩断续出露。新构造运动使地面拉裂变形,导致塘坝、桥梁、民房等地表建筑物开裂,造成重大经济损失,同时危及人民生命安全。

9)地质灾害不易发区:主要分布于鲁西南、鲁北平原深层水开采程度低、矿产资源较贫乏区及胶莱盆地等地。

二、八大城市地质灾害易发区评价

1.八大城市单一地质灾害发育程度评价

根据上述山东半岛城市群地区地质灾害的类型与特征分析,可以看出,地面变形灾害、斜坡环境变异灾害、海咸水入侵灾害是本地区的主要灾种,为此,根据灾害发生面积,以八大城市为统计单位,对地面变形灾害、斜坡环境变异灾害、海咸水入侵灾害分别进行统计分析。

地面变形灾害发生面积占城市总面积的比例由大到小分别是东营市、淄博市、烟台市、日照市、青岛市、威海市、济南市、潍坊市,东营市是地面变形灾害易发区,淄博市、烟台市、日照市是地面变形灾害较易发区,青岛市、威海市、济南市、潍坊市是地面变形灾害不易发区,见图8-2。

图8-2 山东半岛地区地面变形灾害发育程度评价

斜坡环境变异灾害发生面积占城市总面积的比例由大到小分别是淄博市、日照市、烟台市、青岛市、济南市、威海市、潍坊市、东营市,淄博市、日照市是斜坡环境变异灾害易发区,烟台市、青岛市、济南市、威海市是斜坡环境变异灾害较易发区,潍坊市、东营市是斜坡环境变异灾害不易发区,见图8-3。

海咸水入侵灾害发生面积占城市总面积的比例由大到小分别是潍坊市、烟台市、青岛市、威海市、日照市、淄博市、济南市、东营市,潍坊市是海咸水入侵灾害易发区,烟台市、青岛市是海咸水入侵灾害较易发区,日照市、淄博市、济南市、东营市是海咸水入侵变异灾害不易发区,见图8-4。

图8-3 山东半岛地区斜坡环境变异发育程度评价

图8-4 山东半岛地区海咸水入侵灾害发育程度评价

2.八大城市地质灾害发育程度综合评价

上述单一地质灾害发育程度评价结果能够较好地反映城市单一地质灾害的发育状况,但却不能反映地质灾害的总体状况。为此,根据上述统计结果,以城市为单元,通过对各类灾害所占比例进行加权,对八大城市地质生态环境质量进行比较分析。

比较分析的模型如下:

山东半岛城市群地区地质-生态环境与可持续发展研究

式中:j为城市编号:Pj为地质灾害发育程度综合指数;Wi为各类地质灾害发育区所占比例大小(权重);Pij为各类地质灾害区赋值,对地质灾害不易发生区、地质灾害较易发生区、地质灾害易发区分别以2、4、6赋值。据此,计算八大城市的地质灾害发育程度的总体状况。

威海市、济南市不易发生地质灾害,青岛市、潍坊市相对不易发生地质灾害,烟台市、日照市较易发生地质灾害,淄博市、东营市易发生地质灾害。

5. 地区地质灾害风险评价与防治对策

一、地质灾害风险评价

综合相关方面专家学者近年的研究成果,密切结合山东半岛城市群地区的特点和现有的地质灾害发育程度,制定了山东半岛城市群地区地质灾害风险评价指标(表8-2)。

表8-2 山东半岛城市群地质灾害风险评价指标体系

将半岛城市群地区划分为5km×5km共2978个独立单元,根据分区指标对每个单元的区域地质灾害发育程度评价指标进行赋值、评价,将所得数值进行加权。根据上述16个半岛城市群地区地质灾害发育程度评价指标,确定每个单元内各因素(指标)的特征值P'i,再乘以其权值,即得到每个单元的地质灾害发育程度评价基准值。其数学模型如下:

山东半岛城市群地区地质-生态环境与可持续发展研究

式中:SEj为j单元的基准值;i为效应指标数,i=1,2…16;j为各单元数,j=1,2,3…2978;Wi为各效应指标的综合权重;P'i为各单元内单项指标的性质特征值(为研究方便,统一在0~1之间)。

根据计算出的各单元基准值的大小,将区域地质灾害风险评价分为4级,其结果见图8-5。

图8-5 山东半岛城市群地质灾害风险评价

计算结果表明,山东半岛城市群地质灾害风险评价分为4个等级,即地质灾害风险小(Ⅰ类区)、地质灾害风险较小(Ⅱ类区)、地质灾害风险中等(Ⅲ类区)、地质灾害风险大(Ⅳ类区),它们所占的比例分别是22.8%、38.9%、23%和15.3%。

地质灾害风险小(Ⅰ类区):分布在威海大部分、青岛北部大泽山低山区、济南中部、潍坊东部平原区,占全区面积的22.8%。该区自然生态环境优良,植被发育,一般无明显的环境地质问题,有少量崩塌点,采矿、采石坑少,局部有轻微的水土流失,地下水质量为Ⅲ级,人类工程活动强度不大。

地质灾害风险较小(Ⅱ类区)、分布在烟台大部分、潍坊西部、青岛市区周围地区、胶南市东南地区,占全区面积的38.9%,在各类区中所占比例最大。该类区自然生态环境良好,植被比较发育,一般有较明显的环境地质问题,如有少量采矿、采石坑分布,地下水质量为Ⅲ—Ⅳ级,有地表污染源,人类工程活动强度较大。

地质灾害风险中等(Ⅲ类区):分布在烟台南部采矿点、日照东部、潍坊中部、青岛市中东部,占全区面积的23%。该区自然生态环境中等,植被不很发育,一般有明显的环境地质问题,例如,采矿过程中,形成了采矿坑、矿渣堆,并在采矿过程中形成大量废水,由此引起植被破坏、边坡失稳、地下水污染等问题。地表水和地下水污染程度较重,平度西南部一般分布由于地下水高氟引起的地方性氟中毒症,地下水污染,地表水资源贫乏,地下水超采引起了地下水降落漏斗。人类工程活动强度大。

地质灾害风险大(Ⅳ类区):分布在东营市大部分、日照东部、烟台中部采矿点,占全区面积的15.3%。该区自然生态环境较差,植被不很发育,一般有很明显的环境地质问题或地质灾害,一是采矿引起比较严重的生态环境破坏问题和地质环境破坏问题,二是海咸水入侵区,三是活断层或地震灾害发育。

二、地质灾害防治对策及建议

1.地质灾害的防治策略

地质灾害的减灾防灾是一项系统工程,只有将行政、经济、法律、科技等手段统一协调好,才能达到理想的效果。

1)加强防灾减灾的法制建设。

2)加强减灾防灾能力建设。

3)提高公众减灾意识。

2.地区地质灾害的防治措施

从上述可见,山东半岛城市群地区地质灾害包括人类不可避免会遇到的灾害如地震或活动性断裂作用、风暴潮等造成的灾害,人类不合理的开发与建设和自然地质作用相互影响造成的灾害,以及本来是可以避免但由于不合理规划造成的潜在地质灾害。对于不同灾害应采取不同的措施来防止或减少其危害程度:

1)防止、降低地震、活动性断裂破坏性的措施。

2)地面塌陷的防治对策与建议。

3)崩、滑、流防治对策。

4)流体灾害与水土环境变异灾害的防治措施。

5)预防城市建设潜在灾害的措施。

6. “8·” 三峡地区暴雨引发地质灾害

1 前言

2014年8月日至9月1日,三峡地区东北部等地区遭受50年一遇的重大暴雨,部分地区日最大雨量超过400mm。由于降雨强度大、范围广、时间长,引发山洪造成道路损毁、房屋倒塌、山体滑坡、堰塞湖等多种严重灾害。其中,地质生态环境脆弱的云阳、奉节、巫山、巫溪、开县等渝东北五县受灾特别严重。据初步统计,五县暴雨期间共发生2340起地质灾害(灾情1014起、险情1326起),紧急转移50324名群众,造成11154户房屋垮塌,32人死亡、10人失踪,其中受灾最严重的云阳县江口镇团滩地区滑坡引发泥石流造成11人死亡、五县其余14起地质灾害造成21人死亡。

2 特大地质灾害的基本特征

2.1 暴雨情况

川东红层地区一直是我国暴雨高发区,发生过多次极端降雨,并诱发大规模地质灾害。如1981、1982、1987、1989、1998、2004和2007年的极端降雨,诱发了大范围区域性滑坡灾害。1982年7月川东特大暴雨,280mm/2d,触发数万处滑坡,如鸡扒子滑坡;1998年9月特大暴雨,260mm/d,触发2000多处滑坡。

2014年8月31日-9月1日,渝东北开县、云阳、巫溪、奉节、巫山等5个县的48个雨量站超过250mm,其中最大日降雨量、最大累计雨量出现在云阳县咸池气象站,分别达403.4mm(9月1日)、455.2mm,创下自1956年有气象记录以来的最大单日降雨量。

)广泛分布于斜坡浅表层,灰褐色、浅黄色,物质成分主要为粉质黏土夹强风化砂泥岩碎块石,块石直径5~15cm,含量分布不均,厚0~10m,坡体植被较发育。

照片1 奉节县青莲乡白果寨滑坡泥石流

滑坡地形坡度20°~36°,滑坡后壁顶部高程约1160m,剪出口高程约为700~850m之间,相对高差为310~460m,滑坡平面形态呈上大下小“倒葫芦”状,平均长度约1500m,平均宽度约450m,滑体厚度5~20m,滑动方向为200°。野外调查发现基岩滑动区原始地形为上陡下缓的砂岩泥岩互层地区,地形坡度约30°,滑动后滑源区存在大量松散岩体和土石混合体,以拉裂挤压破坏的块状砂岩为主,块石直径15~35cm。目前,基岩滑动区松散堆积体处于极不稳定状态,在强降雨触发作用下,仍然存在再次滑动的可能性。滑坡启动后形成泥石流堆积,厚度10~20m,堆积区的长度约1600m,总体流动方向为235°~250°,坡度约为20°。

3.2 奉节县大树镇堆积层滑坡

2014年9月1日凌晨6时许,在强降雨作用下,至9月1日中午时分,奉节县大树镇场镇后山高约300m、长约600m的大树危岩,不时有滚石落下,至9月2日凌晨5点,爆发大规模的滑坡,冲毁了大树镇东南方向新街的三栋楼房,同时老街房屋也相继垮塌,阻断了省道奉竹公路。此次滑坡造成了183户915间房屋垮塌,但3500多居民无一伤亡。

照片2 奉节大树场镇滑坡前

奉节县大树场镇滑坡是典型的表层崩坡积堆积物沿三叠系中统巴东组泥灰岩岩土界面的滑动。大树城镇滑坡后缘坡顶为陡崖下方,高程约570m,滑坡前缘为大树场镇新区平台,高程约360m。此次极端降雨是触发滑坡的直接因素,特大暴雨(降雨量高达360~380mm)在大树场镇后坡形成坡面地表径流,大量雨水快速渗入坡体崩坡积物,导致坡体崩坡积物饱和并强度降低,从而沿三叠系巴东组泥灰岩表层岩土界面形成滑坡,摧毁大量的房屋建筑。大树镇斜坡上部的陡崖及危岩带,经过喷锚网防护后,经受住了此次暴雨的考验,表明防治工作的成效。这类上部为陡崖,下部为堆积层滑坡的失稳模式是西南山区常见类型,亟待关注其成灾模式的研究与防灾对策。

照片3 奉节大树场镇滑坡后

4 应对处置经验

(1)“点、线、面”结合是重点。区域性强降雨造成的地质灾害往往不是个别和局部的,而是群发性的,因此必须坚持“点、线、面”结合防灾。在“点”上,就是组织群测群防员与威胁区群众一起严防死守全市已查出来的1.7万余处隐患点;在“线”上,就是积极配合交通、铁路、水利等部门做好公路、铁路、重要河流沿线地质灾害防范工作;在“面”上,就是组织各片区专管员与乡镇(街道)、村(社)一起加强场镇、学校、医院等公共场所和居民聚居区的防范工作。

(2)坚强有力的全民防灾机制是基础。在此次抢险救灾中,重庆市近年来建立健全的政府领导、国土牵头、部门分工负责、乡镇(街道)、村组(社)、片区地质灾害专管员齐抓共管,地质技术支撑,群测群防员和受威胁群众共同参与的全民防灾体系发挥了重要作用。

(3)落实四级防灾责任是根本。重庆市建立了市、区县、乡镇、村社,一层抓一层,层层落实到位的四级防灾责任体系。并按照部门职责分工,国土、建设、交通、市政、水利等市级行业主管部门分别抓好了本行业内的地质灾害防治工作,并对口指导和督促区县级相应部门做好防治工作,形成了纵横交织、分工明确、职责清晰的防灾格局。

(4)扎实有效的群测群防体系是关键。重庆市不断健全和完善群测群防体系和工作机制,每处隐患点落实了监测责任人和群测群防员,并加强了宣传培训和应急演练。近年来,通过加强了地质灾害防灾知识宣传和培训,采取各种形式大力宣传地质灾害防治知识,利用通俗易懂的宣传单、张贴画和顺口溜对威胁区群众、群测群防员、片区地质灾害责任人、农村基层干部、镇国土所人员、乡镇(街道)分管领导等进行防灾培训,发放宣传地质灾害防治资料,极大提高了广大党员干部和威胁区群众防灾意识和自救互救能力。组织开展了多次综合应急避险演练和所有地质灾害隐患点上的简易应急避险演练,让群众知晓预警信号、撤离路线和避险场所,切实提高了基层干部群众应对突发地质灾害的快速反应能力。

(5)反应迅速的应急体系是保障。近年来,紧紧依托在渝国有地勘队伍,建立健全应急救援队伍,不断加强应急体系建设。此次抢险救灾,重庆市14支地质灾害应急救援分队和应急专家迅速响应,夜以继日,忘我工作,在此次抢险救灾中做出了重大贡献。应急救援队运用无人飞机、卫星遥感等先进装备和手段对灾害现场进行航拍测绘,为研判灾情,应急处置和灾后重建设提供了有力支撑。

5 暴雨型地质灾害防灾建议

(1)川东红层地区是我国暴雨的高发区,往往诱发特大地质灾害,造成严重的破坏和人员伤亡。针对这一灾害特大亟须采用新思路、研发新方法、采用新模式,加强这些地区的地质灾害防治工作。

(2)近年来受全球极端气候影响,我国西南山区多次出现超越有气象水文记录以来的降雨极值,造成了多起重大人员伤亡的地质灾害。本次降雨过程仅9月1日,累计平均降雨量达320mm,最大414mm,如此短暂时间内的特大暴雨触发了数十起超过百万方量的大型顺层基岩滑坡、堆积层滑坡。这些大型滑坡灾害往往发生在地形较缓、适宜居住的场地,其破坏模式比传统降雨型滑坡灾害的发生机理、成灾模式更为复杂。因此,在本次灾后恢复重建中,要增大地质灾害的整治力度,降低集镇的风险水平。在地质调查、勘查的基础上,做好全面的地质环境评估,借鉴成功的重建经验,尽快划定可建区、限建区、禁建区,建设生态屏障区带,结合地质环境容量和承载力,制定社会经济发展规划,并严格按照规划发展。

(3)要关注高位滑坡、高位泥石流的防范。现场调查表明,奉节无山坪滑坡、白果寨滑坡、刘家屋场滑坡等运动距离长达1~2km远在视线之外的“拐弯型”滑坡泥石流,防范难度极大,极易发生群死群伤。

(4)重灾区的一些道路、集镇、居民点所在的斜坡已经出现缓慢变形的趋势。今后强降雨,估计加速这些灾害的发展。建议从整个灾区出发,要防范人口密集区斜坡缓慢变形的直接灾害。建议建立交通、水利、国土资源地质灾害防治的联动机制,做好重大地质灾害防治和受威胁群众搬迁避让等工作。

(5)从现在的情况来看,传统调查、设计理论和综合防治技术亦不能完全适应极端暴雨条件下的灾害防治需要。因此,建议加强这些特大型地质灾害的前期地质勘查工作,尤其对滑坡整体体积、失稳模式和成灾风险的评估,为科学开展工程治理提供坚实依据。在今后恢复重建中,建议提高防治等级,淘汰落后工法,保障治理工程的安全和长效。

7. 地质灾害区域预警原理

据检索统计,世界上约有20多个国家或地区不同程度地开展过降雨引发滑坡、泥石流的研究或预警工作。其中,中国香港(Brandetal.,1984)、美国(Keeferetal.,1987)、日本(Fukuzono,1985)、巴西(Neiva,1998)、委内瑞拉(Wieczoreketal.,2001)、波多黎各(Larsen&Simon,1993)和中国大陆等曾经或正在进行面向公众社会的降雨引发区域性滑坡、泥石流的早期预警与减灾服务工作,预警的地质空间精度达到数千米量级,时间精度达到小时量级。这些国家和地区一般都在地质灾害多发区或敏感区开展或完成了比较详细的地质灾害调查评价工作,拥有比较长期且比较完整的降雨与滑坡、泥石流关系资料,或在典型地区建立了比较完善的降雨遥控监测网络和先进的数据传输系统。

综合分析国内外研究与应用状况,基于气象因素的区域地质灾害预警预报理论原理可初步划分为三大类,即隐式统计预报法、显式统计预报法和动力预报法。

4.2.1 隐式统计预报法

隐式统计预报法把地质环境因素的作用隐含在降雨参数中,某地区的预警判据中仅仅考虑降雨参数建立模型。隐式统计预报法可称为第一代预报方法,比较适用于地质环境模式比较单一的小区域。由于这种方法只涉及一个或一类参数,无论预警区域的研究程度深浅均可使用,所以这是国内外广泛使用的方法,也是最易于推广的方法。这种方法特别适用于有限空间范围,且地质环境条件变化不大的地区,如以花岗岩及其风化残积物分布为主的中国香港地区多年来一直在研究应用和深化这一方法。

这种方法考虑的降雨参数包括年降雨量、季度降雨量、月降雨量、多日降雨量、日降雨量、小时降雨量和10min降雨量等。实际应用时,一般只涉及1~3个参数作为预报判据,如临界降雨量、降雨强度、有效降雨量或等效降雨量等。

突发性地质灾害临界过程降雨量判据的预警方法抓住了气象因素诱发地质灾害的关键方面,但预警精度必然受到所预警地区面积大小、突发性地质事件样本数量、地质环境复杂程度和地质环境稳定性及区域社会活动状况的限制,单一临界降雨量指标作为预警判据的代表性是有限的。

代表性研究成果主要有:

Onodera et al.( 1974) 通过研究日本的大量滑坡,提出累计降雨量超过 150 ~ 200mm,或每小时降雨强度超过 20 ~30mm 作为判据。Nilsen et al.( 1976) 发现美国 Alameda,Califor-nia 在累计降雨量超过 180mm 时,滑坡将频繁发生。Oberste-lehn( 1976) 认为累计降雨量达到 250mm 左右,美国 San Benito,California 将发生滑坡。Guidicini and Iwasa( 1977) 通过对巴西 9 个地区滑坡记录和降雨资料的分析,认为降雨量超过年平均降雨量的 8% ~17%,滑坡将滑动; 超过 20%,将发生灾难性滑坡。Caine( 1980) 全面总结了全球的可利用数据,给出了不同地区诱发滑坡暴雨事件的降雨强度和持续时间与滑坡的关系式。这一关系式当然不可能适用于全球所有地区( Crozier 在 1997 年证明) ,仍不失为探讨诱发滑坡临界降雨值的里程碑。

Brand et al.( 1984) 在中国香港研究表明,大多数滑坡由局部高强度短历时降雨诱发,而前期降雨量不是主要因素,除非是小型滑坡。Ng and Shi( 1998) 认为降雨的持续也是一个非常重要的诱发滑坡的因素。中国香港地区预测 24h 内降雨量达到 175mm 或 60min 内市区内雨量超过 70mm,即认为达到滑坡预报阈值,即由政府发出通报。中国香港平均每年约发出 3 次山洪滑坡暴发警报。

Ganuti et al.( 1985) 提出了临界降雨系数( critical precipitation coefficient,CPC) 的概念,并总结出当 CPC >0.5 时,将有 10a 一遇的滑坡发生; 当 CPC >0.6 时,将有 20a 一遇的滑坡发生。

Glade( 1997) 综合前人研究成果建立了确定诱发滑坡的降雨临界值的 3 个模型,并在纽西兰北岛南部的 Wellington 地区进行了验证。3 个模型要求的基本数据为: 日降雨量、滑坡发生日期和土体潜在日蒸发量( 通过 Thornthwaite method 方法计算得到) 。降雨强度临界值Glade( 1997) 的模型 1———日降雨模型( daily rainfall model) ,只使用日降雨量参数,简单地分析诱发滑坡和不诱发滑坡的日降雨量( Glade,1998) ,得出最小临界值和最大临界值,即在最小临界值以下,没有滑坡发生; 在最大临界值以上,滑坡一定发生。降雨量等级划分以20mm 为一个等级; 降雨过程雨量临界值 Glade( 1997) 的模型 2———前期日降雨量模型( an-tecedent daily rainfall model) ,考虑了前期降雨的影响。他认为决定前期情况有两个主要因素: 前期降雨的历时时间和土体含水量减少的速率; 土体含水状态临界值 Glade( 1997) 的模型 3———前期土体含水状态模型( antecedent soil water status model) ,他认为除了前期雨量,土体含水量和潜在的蒸发量对滑坡的影响也很大。

刘传正在 2003 年 5 月主持全国地质灾害气象预警工作过程中,利用地质灾害发生前15d 降雨量建立滑坡、泥石流发生区带的临界过程降雨量创建了预警判据模式图,并结合具体区域( 2003 年28 个区、2004 年以后74 个区) 进行校正的方法。该方法适应3 级预报的要求界定了 α 线和 β 线作为预警等级界限。3 年多来汛期的预警成果发布检验与应用证明,该方法在科学依据上是成立的,但限于预警区域过大、基础数据和地质灾害统计样本数量太少,准确率有待提高,同时也充分说明了开展地质灾害数据集成研究的迫切性。

另外,中国科学院成都山地灾害与环境研究所等机构在单条泥石流监测与预警建模方面进行了多年持续不懈的研究工作,取得了具有代表性的成果。

4.2.2 显式统计预报法

显式统计预报法是一种考虑地质环境变化与降雨参数等多因素叠加建立预警判据模型的方法,它是由地质灾害危险性区划与空间预测转化过来的(CarraraA.,1983;HaruyamaH.&KawakamiH.,1984;BaezaC.&CorominasJ.,1996;CarraraA.,CardinaliM.&GuzzettiF.,1991;刘传正,2004;殷坤龙,2005)。

区域地质灾害危险性评价和风险区划研究仍是当前的研究主流,而利用之进行地质灾害的实时预警与发布则多处于探索阶段。这种方法可以充分反映预警地区地质环境要素的变化,并随着调查研究精度的提高相应地提高地质灾害的空间预警精度。显式统计预报法可称为第二代预报方法,是正在探索中的方法,比较适用于地质环境模式比较复杂的大区域。

基于地质环境空间分析的突发性地质灾害时空预警理论与方法是根据单元分析结果经过合成实现的,克服了仅仅依据单一临界雨量指标的限制,但对临界诱发因素的表达、预警指标的选定与量化分级等尚存在需要进一步研究的诸多问题。

因此,要实现完全科学意义上的区域突发性地质灾害预警,必须建立临界过程降雨量判据与地质环境空间分析耦合模型的理论方法———广义显式统计模式地质灾害预报方法,预警等级指数(W)是内外动力的联立方程组。即

中国地质灾害区域预警方法与应用

式中:W为预警等级指数;a为地外天体引力作用,包括太阳、月亮的引潮力,太阳黑子、表面耀斑和太阳风等对地球表面的作用,a=f(a1,a2,…,an);b为地球内动力作用,主要表现为断裂活动、地震和火山爆发等,b=f(b1,b2,…,bn);c为地球表层外动力作用,包括降雨、渗流、冲刷、侵蚀、风化、植物根劈、风暴、温度、干燥和冻融作用等,c=f(c1,c2,…,cn);d为人类社会工程经济活动作用,包括资源、能源开发和工程建设等引起地质环境的变化,d=f(d1,d2,…,dn)。

20世纪70年代,以美国加利福尼亚州旧金山地区圣马提俄郡的滑坡敏感性图为代表,利用多参数图的加权(或不加权)叠加得到区域滑坡灾害预测图。

20世纪80年代,CarraraA.(1983)将多元统计分析预测方法引用到区域滑坡空间预测中,并在世界各国得到迅速发展与推广。如HaruyamaH.&KawakamiH.(1984)利用数学统计理论对日本活火山地区降雨引起的滑坡灾害进行了危险度评价。BaezaC.&CorominasJ.(1996)利用统计判别分析模型进行了浅层滑坡敏感性评估,结果斜坡破坏的正确预测率达到96.4%,有力地说明了统计预测的适用性。CarraraA.,CardinaliM.&GuzzettiF.等(1991)将统计模型与GIS结合,应用于意大利中部某小型汇水盆地的滑坡危险性评估,实现从数据获取到分析、管理的自动化,结果证明统计分析与GIS的综合使用是一种快速、可行、费用低的区域滑坡危险性评价与制图方法。

20世纪90年代中后期以来,随着计算机技术和信息科学的高速发展,RS、GIS和GPS等“3S”技术联合应用使快速处理海量的地质环境数据成为可能,出现了地质灾害空间预测模型方法应用研究逐步从地质灾害危险评价与预警应用相结合的新态势。

刘传正等(2004)创建并发表了用于区域地质灾害评价和预警的“发育度”、“潜势度”、“危险度”和“危害度”时空递进分析理论与方法,简称“四度”递进分析法(AMFP),并在三峡库区(54175km2)和四川雅安地质灾害预警试验区(1067km2)进行了应用,结果是可信的。

李长江等(2004)将GIS和ANN(人工神经网络)相互融合,考虑不同的地质、地貌和水文地质背景,建立了给定降雨量的浙江省区域群发性滑坡灾害概率预报(警)系统(LAPS)。

宋光齐等(2004)根据地貌、岩性和地质构造几率分布,基于GIS建立了给定降雨量的四川省地质灾害预报系统。

殷坤龙等(2005)以浙江省为例探索了基于WebGIS的突发性地质灾害预警预报问题。

由于我国政府在全国范围内推行区域地质灾害预警预报机制,目前我国的预警探索工作走在世界前列。

4.2.3 动力预报法

动力预报法是一种考虑地质体在降雨过程中地-气耦合作用下研究对象自身动力变化过程而建立预警判据方程的方法,实质上是一种解析方法。动力预报方法的预报结果是确定性的,可称为第三代预报方法,目前只适用于单体试验区或特别重要的局部区域。该方法主要依据降雨前、降雨中和降雨后降水入渗在斜坡体内的转化机制,具体描述整个过程斜坡体内地下水动力作用变化与斜坡体状态及其稳定性的对应关系。通过钻孔监测地下水位动态、孔隙水压力和斜坡应力-位移等,揭示降雨前、降雨过程中和降雨后斜坡体内地下水的实时动态响应变化规律、整个坡体物理性状变化及其变形破坏过程的关系。在充分考虑含水量、基质吸力、孔隙水压力、渗透水压力、饱水带形成和滑坡—泥石流转化因素条件下,选用数学物理方程研究解析斜坡体内地下水动力场变化规律与斜坡稳定性的关系,确定多参数的预警阈值,从而实现地质灾害的实时动力预报。

目前,这种方法局限于试验场地或单个斜坡的研究探索阶段,必须依赖具有实时监测、实时传输和实时数据处理功能的立体监测网(地-气耦合)作为支撑才能实现实时预报。由于理论、技术和经费等方面的高要求,这种方法比较适用于重要的小区域或单体的研究性监测预警。

据研究,美国旧金山海湾地区的6h降雨量达到4in(101.6mm)时,就可能引发大面积泥石流。为了监测降雨期间地下水压力的变化,研究人员设置了若干个孔隙水压力计以观测斜坡中地下水压力变化。旧金山海湾地区实时区域滑坡预警系统包括降雨与滑坡发生的经验和分析关系式,实时雨量监测数据,国家气象服务中心降雨预报以及滑坡易发区略图。

在我国,刘传正等(2004)在四川雅安区域地质灾害监测预警试验区进行了大气降水与斜坡岩土层含水量变化的分层响应监测,发现不同降雨过程和降雨强度下,斜坡岩土体的含水量相应发生明显变化,可以研究降雨在斜坡岩土体内的渗流过程直至出现滑坡、泥石流的成因机理。

2003年8月23~25日是一个引发多处地质灾害并造成人员伤亡的典型降雨过程,可以作为分析实例。以8月19日15时的含水量为背景值,则8月23,24和25日降雨过程分别对应第96,120和144h的含水量,4个层位的记录曲线明确反映了随累计降雨量增加斜坡岩土体含水量急剧增加,第一、二层位达到过饱和状态,且含水量急剧增加出现于第121h,即24日15时之后,滞后于降雨时间约20h。各层含水量峰值出现于第151h,即接近滑坡呈区域性暴发时间(26日零时,对应第153h)。该分析未考虑沿裂隙的地下水渗流作用(图4.1)。

图4.1 四川雅安桑树坡监测试验点第1~4层含水量随时间变化曲线

分析对比隐式统计预报法、显式统计预报法和动力预报法3类方法,我们认为,未来的方向是探索地质灾害隐式统计、显式统计与动力预警3种模型的联合应用方法,以适应不同层级的地质灾害预警需求。研究内容包括临界雨量统计模型、地质环境因素叠加统计模型和地质体实时变化(水动力、应力、应变、热力场和地磁场等)的数学物理模型等多参数、多模型的耦合。3种模型的联合应用不仅适应特别重要的区域或小流域,也为单体地质灾害的动力预警与应急响应提供决策依据。

8. 确定地质灾害重点防治区的原则和方法

5.3.1 确定地质灾害重点防治区的原则

(1)以地质环境条件和地质灾害类型组合为主的原则

地质灾害的发生取决于多种因素,不同的灾害种类又有不同的主导因素。充分研究不同区域控制地质灾害发生、分布规律及危害特征的地质环境条件的差异性,据“区内相似,区际相异”原则,在圈划时,将发生条件相同或相近的区域划入一个区,把发生条件不同的区域划入不同的区。

(2)相对完整原则

主要是为政府进行地质灾害防治、管理决策服务的,为增强规划的实用性和易操作性,划分出的地质灾害重点区在遵循地质规律的前提下,应尽量考虑地质环境、流域的完整性,尽可能保证行政区的完整性。

(3)定性分析为主的原则

地质灾害重点防治地区划分,综合考虑了地质环境条件、国家重要经济发展规划、国家重要基础设施和人类工程活动状况,结合各类地质灾害的发育程度,并考虑近年地质灾害灾情,以定性分析为主确定地质灾害防治重点区。

(4)在区域上东、中、西部并重,在灾害类型上突发性和缓变性地质灾害同举

地质灾害重点区确定既要考虑地质灾害发育的地域规律,又要考虑我国重大战略部署,体现在区域上东部平原区以地面沉降等缓变性地质灾害防治为重点,中、西部地区以崩塌、滑坡、泥石流和地面塌陷等突发性地质灾害防治为重点。

5.3.2 地质灾害重点防治区的确定方法

依据全国地质灾害防治分区和易发程度分区,主要针对地质灾害易发程度中等以上的地区,考虑社会经济重要性因素,从中选出规划期内人口密集,社会经济财富集中,有重要基础设施,或涉及国家安全的地区,以及国民经济发展的重要规划区,作为地质灾害重点防治区,共有16个,总面积143万km2,占易发区面积的23%。

经济社会重要性以人口分布、经济发展和重要基础设施,以及国家安全和社会发展的重要性等情况为基础,按照各县(市)(2004年)经济社会统计资料,依据表5.2所列标准,划分为经济社会重点区和经济社会一般区。

表5.2 经济社会重要程度判别标准

9. 我们这一位60多岁老人和他的孙女,住在危房里,政府说让他从建给补贴

农村建房补贴政策

各市州、县市区人民政府,省政府各厅委、各直属机构:

农村建房是指在城镇规划建设用地以外的集体建设用地上进行的各类房屋建设活动。为规范农村建房行为,集约节约用地,改善农村人居环境,保护传统文化,突显湖湘民居特色,建设美丽乡村,推动城乡发展一体化,根据有关法律法规,经省人民政府同意,现就加强农村建房管理的有关事项通知如下:

一、坚持先规划后建设

(一)科学规划。加快制定镇(乡)域村镇布局规划和镇区(集镇)规划。根据镇(乡)域村镇布局规划要求和行政村区划调整情况制定村庄规划。规划要充分考虑农村生产生活的实际需求,合理确定农村居民点的分布、范围、规模和设施配套,明确建房位置。严格履行乡村建设规划许可制度。不符合规划要求的,不得批准建房。

(二)合理选址。引导村民坚持在规划确定的居民点选址建房,避开地质灾害易发地段和地下采空区。严禁在基本农田保护区、生态资源保护区、饮用水源一级保护区、历史文化核心保护范围、河道管理范围和公路两侧建筑控制区建房。

二、控制农村建房规模

(三)坚持一户一宅。一户村民只能拥有一处农村住宅。村民申请住宅建设应符合下列条件之一:具备分户条件,确需另立户建设住宅的;现有宅基地面积尚未达到国家规定限额标准需扩建的;现有住宅属旧房、危房需拆除新建或改、扩建的;因国家或农村集体经济组织建设需搬迁新建的;住宅因灾害损毁需重建的;其他符合法律、法规、规章规定情形的。

(四)控制建房规模。引导村民按照经济适用原则和实际需求理性建房,严格执行《湖南省实施<中华人民共和国土地管理法>办法》,注重完善功能,控制建房面积,避免资源浪费或因建房致贫返贫,各地可根据实际制定具体要求。严格按照相关规定控制村级公共服务用房及行政办公用房面积,坚持"一房多用",避免超标和重复建设。

(五)实行建新拆旧。原址重建的,除保留施工期间必须的生活用房外,应先拆除旧房后方可开工建设;保留的生活用房,应在新房建成3个月内拆除。异地新建的,原则上在新房建成6个月内拆除全部旧房。村民应与乡镇人民政府签订协议,承诺在规定时间内自行拆除旧房。逾期不拆除的,由乡镇人民政府依法组织拆除。

三、坚持集约节约用地

(六)盘活集体建设用地。积极开展农村集体建设用地整理,尽可能利用旧宅基地、荒坡地、空闲地、废弃地等进行建设。严格控制零星建房。鼓励统筹利用闲置土地和村部、小学、厂房等现有房屋,改造、建设村级公共活动场所和公租房。盘活现有村民住宅。允许将闲置村民住宅出租,鼓励向本村无房户或危房户转让。开展农民住房财产权抵押贷款试点工作,推广试点经验。推动城乡建设用地增减挂钩,拆除旧宅复耕或者恢复生态面积的宅基地,置换出城镇建设用地指标的收益,应按一定比例返还用于农村公共服务设施和配套设施建设。

(七)引导村民适度集中居住。在农户自愿、方便生产、符合规划的前提下,引导村民到规划确定的农村居民点建房。切实保障集中建房用地。多方筹措建设资金,加大对农村集中居民点的投入,完善配套设施,完善社会保障体系和服务体系,改善生产生活条件,让村民"进得来、留得住、过得好"。加快推进集镇建设,提高集镇综合承载能力和辐射带动能力,引导农业转移人口就近进入集镇购房居住。

四、提高农村建房质量和彰显民居特色

(八)强化质量安全管理。建立健全农村建房质量安全管理制度。农房设计要符合抗震设计要求,允许注册建筑师、注册结构师个人从事村民住宅设计并对设计负责。农村建房必须由经培训合格的农村建筑工匠或有资质的施工单位承担。农村建筑工匠或者施工单位要对质量安全负责,并按合同约定对房屋承担质量保修责任。

(九)推行绿色农房建设。探索绿色农房建设方法和技术,提高农民绿色发展、循环发展、低碳发展意识。推广乡土绿色建筑,开展绿色农房示范,提高环境敏感区域绿色农房比重。推动绿色建材下乡,推广应用节能门窗、轻型保温砌块、陶瓷薄砖、节水洁具、太阳能热水器、水性涂料等绿色建材产品。

(十)推进农村住宅产业化。制定支持农村住宅产业化发展政策,加大宣传力度,提高农民对住宅产业化的认识。发展农村住宅产业化生产基地,加强技术标准和新产品新材料的研发,制定农村装配式住宅标准图集,提高产品质量和多样性,降低生产成本。结合农村危房改造整村推进和易地扶贫搬迁集中安置区建设,在交通便利、集中建房户数较多、农户积极性较高的村庄开展农村住宅产业化试点示范。

(十一)突出湖湘民居特色。尊重村庄的传统选址格局及与周边景观环境的依存关系,新建房屋不改变传统建筑形式。尊重村民意愿,在一定范围内以乡镇为单位规范村民住宅建筑风格,特色鲜明的地区以行政村为单位。组织编制农村住宅设计图集,开展送图下乡,向村民推荐。享受各类财政补助资金的村民住宅,应严格按照规划和图集进行建设。有条件的地方可在群众自愿的前提下,有序开展村庄整治。

五、改善农村人居环境

(十二)开展农村生活垃圾专项治理。开展农村生活垃圾治理5年专项行动,到2020年,90%的村的生活垃圾得到治理。推行农村生活垃圾减量化、资源化和无害化处理,通过就地分类实现减量70%。合理选用堆肥池和分散型环保焚烧设施,能够通过就地牲畜饲养、堆肥、焚烧等无害处理的,尽可能做到"不出户、不出村";有资源回收价值的,依托农村再生资源回收体系、农村综合服务社网点等回收利用;其他农村生活垃圾和农业生产废弃物、医疗废弃物、危险废弃物等,转运区域集中处理。建立农村保洁长效机制,加强保洁队伍建设,开展培训,落实待遇,逐步实现每1000名村民配备3至5名农村保洁员。鼓励社会资本参与农村生活垃圾治理,支持将一定区域内的垃圾处理项目打捆推向市场。

(十三)完善配套设施。开展农村生活污水治理,因地制宜、合理确定农村污水处理工艺,优先选用技术成熟、简便易行、成本低廉的符合农村特点的污水处理设施。到2018年争取实现重点集镇生活污水处理设施"全覆盖",到2020年,90%的村生活污水得到治理,农村卫生厕所普及率达到90%。结合水土保持等工程,加强环境建设,实施村庄绿化,修复田园景观。完善村庄道路、供水、供电、清洁能源、通讯、广播电视、电信、网络等配套设施。积极发展休闲农业、乡村旅游、乡村文化等产业。积极开展地方适用技术研究,制定全省改善农村人居环境规划和技术指南、标准,加强技术下乡宣传培训。

六、加强组织保障

(十四)落实责任。各级人民政府要切实加强对农村建房管理工作的领导,建立健全工作机制,制定当地农村建房管理制度,依法将农村建房管理权限下放给乡镇人民政府,为乡镇人民政府履行农村建设管理职责提供保障条件。要督促有关部门根据各自职责开展工作,将规范农村建房纳入绩效考核。要结合各地实际情况,组织开展农村违法建房专项治理。

县级以上人民政府要切实加强对农村建房的指导和服务,各有关部门要明确工作职责和任务,加强协作,形成合力。住房城乡建设部门要牵头制定当地农村建房管理办法,对审批条件、流程、时限及建房选址、规模等做出具体规定。城乡规划部门要组织科学编制村镇规划,严格履行乡村建设规划许可制度。国土资源部门要清理一户多宅,杜绝占用基本农田现象,建立和完善承包地和宅基地的调配机制。财政部门要整合有关涉农资金,确保农村建房管理工作经费,并对规范农村建房的工作典型实施奖补。环保部门和农业部门要积极开展农村环境卫生连片整治和新农村建设。其他各部门要根据各自职能职责,积极开展规范农村建房工作。

乡镇人民政府是农村建房管理的实施主体,应加强农村建房的规划、建筑方案审批,施工、质量安全监管,违法建设的查处等工作。建筑方案不符合规划、规模等要求的,不得审批。涉及农用地转用和宅基地审批的,应按规定上报审批。乡镇人民政府应建立健全规划建设管理机制,完善工作制度,充实技术力量,明确适应工作需要的农村建房专职管理人员,有效实施监管。要加强巡查,及时发现违法建设行为,依法处理。乡镇规划建设管理人员要加强对农房设计的指导和审查,及时到现场逐户进行技术指导和检查,发现不符合基本建设要求的当即告知建房户,并提出处理建议和做好记录。

村委会是村民建房日常监管的基层组织,应结合实际,制订村规民约,规范村民建房行为,主动掌握村民建房动向,发现违法建设行为及时劝阻,并上报乡镇人民政府。根据有关规定和要求建立"村民议村民定、村民建村民管"的村民建房自治机制,依托村务监督委员会,组织干部群众参与管理,对村民建房申请提出意见。有条件的地方可以设立村民建房理事会,明确规划建设协管员。

(十五)加强宣传和教育培训。各地要采取有效方式和途径宣传有关农村建房的法律法规和政策规定,对规范农村建房的典型要大力宣传推介,对违法违规建房行为予以曝光,引导村民提高依法建房和理性建房的意识,杜绝违法违规建房行为。加快实施全省乡镇规划建设管理干部和农村建筑工匠3年培训计划。

(十六)加强示范带动。各地应结合农村危房改造整体推进、改善农村人居环境、特色民居等工作,整县整乡开展规范农村建房示范。2016年至2018年,省里将每年选择1个市、10个县市区、20个乡镇开展省级规范农村建房示范,并对优秀项目"以奖代补"安排一定新型城镇化专项资金。有条件的地方可根据当地实际,对规范农房建设的农户进行一定补贴。

(十七)加强监督检查。各地要建立规范农村建房监督检查制度,对在规范村民建房监管中"不作为"和"乱作为"的单位和人员,严肃追究其责任。建立农村违法违章建房举报制度,对经查实的举报人给予奖励。

10. 赫山区龙光桥镇地质灾害应急演练方案

赫山区龙光桥镇人民政府

(2013年9月20日)

第一部分 应急演练基本概况

一、演练目的

地质灾害应急演练的目的:一是通过实践演练进一步提高广大人民群众自救能力,在灾情发生时避免发生慌乱;二是增强地质灾害防治工作主动性,认真总结演练取得的效果和经验,提高应变能力;三是通过演练进一步明确各部门职责,强化责任意识,充分认识地质灾害防治工作的重要意义,确保人民群众生命财产安全。

二、应急预演的任务

本次地质灾害应急预演的任务是:受连续降雨的诱发龙光桥镇石坝村腰仑上组地质灾害隐患点山体崩塌体后缘裂缝突然加大,有可能发生小型崩塌或滑坡,情况十分紧急。按照《赫山区龙光桥镇突发性地质灾害应急预案》的要求,需要立即启动应急预案,组织相关部门各司其职,用最短的时间安全地撤离危险区的住户,尽快采取防灾减灾的有效措施。

三、应急预演背景

石坝地质灾害隐患点位于石坝村腰仑上组曹新昌、曹云辉、曹卫兵、曹青等四栋住宅楼背后山体。该地灾隐患发生于2012年7月8日,由暴雨诱发所致。山体边坡长约100米,宽约40米的范围内已垮塌土石方50立方米,并发现崩塌体或滑坡体上方长约30米,宽1~3厘米的裂缝。如果发生整体滑坡危岩体体积约300立方米,将严重危及曹姓5户四栋楼房16人生命和财产安全。目前,危岩体后缘裂缝突然加大,若遇连续大雨和强降雨极易引起大面积山体滑坡。

四、演习时间及地点

(1)演习时间:2013年9月20日9:30—11:30

(2)演习地点:龙光桥镇石坝村腰仑上组

五、参演人员

龙光桥镇全体干部职工,民兵应急分队,镇卫生院,石坝村支两委及腰仑上组受影响群众。

六、演练组织及编组工作职责划分

(一)演练组织

演练组建由王瑜镇长任指挥长,分管地质灾害防治工作的温卫明副镇长及镇人武部部长赵辉两位同志任副指挥长,镇派出所、国土所、卫生院,当地村组负责人和监测员为成员的龙光桥镇地质灾害防治指挥部,按照人员编排和人员分工进行演练,主要内容是模拟从地质灾害预警预报到灾情应急处置的全过程。

(二)各职能组及工作职责

(1)综合协调组:由分管地质灾害防治工作的温卫明副镇长牵头,全面负责各项准备工作的协调与筹划。主要是搞好演练方案的制定,参与演练人员的组织与分工,演练现场的布置和主持人员的落实等。

(2)紧急抢险组:由镇武装部部长赵辉牵头,镇应急小分队配合。任务为:及时掌握和报告现场处置和险情处理情况,尽快组织群众撤离危险区。

(3)监测调查组:由王登科副镇长牵头负责,人员组成由国土所及灾害点监测员。任务为:调查、核实险情,组织监测、预测灾害发展趋势和潜在威胁,提出对策和措施。

(4)后勤保障组:由分管财政的刘照兵副镇长负责,成员由镇干部、村干部组成。任务为:搞好撤离群众安置和物资供应等有关事项。

(5)医疗卫生组:由镇卫生院院长牵头负责。任务为:抢救伤员,提供所需药品和医疗器械,防止灾区疾病暴发。

(6)治安保卫组:由派出所所长负责。任务为:负责封闭公路,维护现场交通秩序,社会治安及群众生命财产安全。

第二部分 地质灾害应急演练实施程序

一、演练准备

参加演练的镇主要负责人,指挥长,村代表和演练主持人;参加观摩演练的有关区直部门领导,周边兄弟乡镇领导和村代表进入会场。

综合协调组、紧急抢险组、医疗卫生组、治安保卫组等各工作组在观摩席前集合。

二、应急演练过程

主持人:“同志们,根据镇党委政府的统一部署,今天在石坝村腰仑上组开展我镇地质灾害应急演练。下面,我向大家介绍一下,我镇地质灾害排查情况和我镇这次演练的主要内容:

我镇地处山丘区乡镇,受气候及地质条件影响,近年来,我镇地质灾害频发,去年因灾死亡6人,损毁倒塌房屋4栋,直接或间接财产损失近千万元,今年5月又因灾死亡2人,重伤2人,损毁房屋一栋,直接或间接财产损失几百万元。为此,区人民政府组织相关部门或单位对我镇地质灾害情况开展了一次全面调查摸底,据统计,目前,我镇共有地质灾害隐患点175处,涉及14个行政村337户村民1348人生命财产安全。今天大家所在的石坝村腰仑上组也是我镇地质灾害隐患点之一。该地质灾害点位于曹新昌、曹云辉、曹卫兵、曹青等四栋住宅楼后背山山体,长约100米,宽约40米的范围内,并发现了一条长约30米,宽约1~3厘米的裂缝。如若发生总体滑坡危岩体体积300立方米,将严重危及曹姓5户四栋楼房16人生命和财产安全。”

为了提高我镇突发性地质灾害应急预案的可操作性,检验各部门快速反应能力,使受威胁群众明白预警信号,撤离路线,应急避险场所,增强群众防灾避险意识,锻炼应急抢险队伍能力,确保人民群众生命财产安全。镇人民政府精心组织了这次地质灾害应急演练。

这次演练由王瑜镇长任指挥长,分管地质灾害工作的副镇及镇武装部长任副指挥长,按照事先人员编排和人员分工进行演练,主要内容是模拟从地质灾害预警预报到灾情应急处置的全过程。演练的内容包括一是地质灾害预警预报;二是巡查监测,三是险情上报,四是启动应急预案,五是险情应急处置等五个方面。

下面请地质灾害应急抢险指挥部指挥长王瑜镇长宣布应急演练开始。”

指挥长王瑜:“我宣布龙光桥镇2013年地质灾害应急演练现在开始。”

主持人:龙光桥镇地质灾害应急演练现在开始,下面进行演练第一环节:地质灾害预警预报。

(播放背景音乐:风雨雷电声)

指挥长王瑜:“数天来,我镇连降暴雨,局部地区出现特大暴雨,极易引发地质灾害。刚接到益阳市国土资源局地矿分局与赫山区气象局联合发布的地质灾害手机短信预警,目前,我镇降雨量已达80毫米,强降雨天气还将持续,局部地区有大到暴雨,地质灾害等级为三级预警,望各村密切关注天气变化,防止强降雨引发滑坡、崩塌等地质灾害,请各村加强对地灾隐患点监测。”

主持人:下面进行演练第二环节:巡查监测。

指挥长王瑜:“请巡查监测到位,立即对石坝村腰仑上组地灾隐患点进行监测,并将巡查监测的情况及时报告镇地质灾害应急指挥部。”

(接到命令后,巡查监测员用喊话器回答:“是。”接着便进入隐患点进行巡查监测)

主持人:下面进行演练第三个环节:险情上报。

指挥长王瑜:“请巡查监测员报告险情。”

刘文权(在地灾隐患点用喊话器):“报告指挥长,我是石坝村腰仑上组地质灾害隐患点巡查监测员刘文权,由于连续降暴雨,我地质灾害隐患监测点危岩体后缘裂缝突然加大,并有进一步加大加宽的趋势,危及曹姓5户四栋房屋16人生命和财产安全。报告完毕。”

指挥长王瑜:“请你们继续加强监测,及时报告危岩体变化情况,并通知群众做好撤离准备,随时准备撤离。我们马上向上级汇报,并派人到现场协助你们。”

刘文权:“明白。”

指挥长王瑜:“石坝村腰仑上组地灾隐患点危岩体裂缝发生变化,请副镇长周晓同志立即带领国土所和相关人员迅速赶往现场查看灾情,并随时向我报告。”

周晓:“明白。”

(周晓带领二名成员进入地灾隐患点查看灾情)

主持人:下面进行演练第四个环节:启动应急预案,发布预警。

主持人:“请调查人员向指挥长汇报灾情具体情况。”

周晓(在地质灾害点用喊话器):“报告指挥长,我已到达灾害点现场,正在现场查看险情,从现场情况来看,有进一步扩大趋势,极有可能危岩体发生崩塌或滑坡,建议立即启动我镇地质灾害应急预案。报告完毕。”

指挥长王瑜:“经请示区人民政府同意,我宣布立即启动《赫山区龙光桥镇地质灾害应急预案》,请各部门按职责分工开展工作:①综合协调组立即通知村干部和监测员到灾害点区域范围内发布预警信号;②监测调查组进入隐患点进行跟踪监测;③紧急抢险组和村干部组织村民向灾害点右侧安全地带撤离;④治安保卫组封锁村两头道路交通;⑤医疗卫生组和后勤保障组立即赶往现场待命。请各组立即行动,马上执行!”

主持人:下面进行演练第五环节:向村民发布预警。

主持人:①请监测调查组进入隐患点进行跟踪监测;②请村干部和监测员到灾害点区域范围内吹口哨,敲锣发布预警信号;③请紧急抢险组两名队员到灾害点预警宣布撤离;④请治安保卫组四名队员带上“禁止通行”的牌子和警戒线到村庄两头道路设置警戒。

主持人:下面进行演练第六环节:组织村民进行撤离。

紧急抢险组跑步进入灾害点组织村民撤离到安全区(撤离情况由该组长向指挥长报告)。

主持人:下面进行演练第七环节:开展医疗救援。

紧急抢险组龙江:“报告指挥长,应急分队队员在村民屋内发现一位腿部受伤无法行动的老人,请指示。”

指挥长王瑜:“请医疗卫生组进入现场救治和撤离。”

医疗卫生组进入现场进行施救,并将伤者安全撤离到安全地带(救援完毕,由该组组长向指挥长报告)。

主持人:下面进行演练第八环节:清场。

指挥长王瑜:“请治安保卫组进入现场进行清场。”

治安保卫组进入现场进行清场和维护安置点安全秩序(清场完毕,由该组组长向指挥长报告)。

主持人:下面进行演练第九环节:搞好群众安置。

指挥长王瑜:“请后勤保障组检查群众安置情况和发放生活物品。”

后勤保障组进入安置点检查群众的安置情况和发放生活物品(检查和发放完毕,由该组组长向指挥长报告)。

主持人:下面进行演练第十环节:解除警报。

综合协调组温卫明:“报告指挥长,石坝村腰仑上组地灾隐患点所在地村民已经全部撤离完毕,各项任务已经完成。同时根据监测调查组提供的报告,目前,降雨已停止,危岩体变化已稳定,建议解除警报。”

指挥长王瑜:“同意解除警报,请继续做好安置点转移人员的安置工作和危险区域的警戒工作。我宣布,龙光桥镇地质灾害应急演练到此结束。”

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864