gis在地质灾害方面的应用文献
㈠ GIS空间分析在地震灾害和损失估计中的应用
GIS可以提供地图背景,还可以分析地震受灾面积,受灾沉降三维图等。
㈡ 跪求一篇“地质灾害论文”要东北地区的,急急急!!!!谢谢!!!
摘要:地理信息系统技术(GIS)已经广泛渗透到了多种学科领域,从比较简单的、单一功能的、分散的系统发展到多功能的、共享的综合性信息系统,并向多媒体GIS、智能化、三维、虚拟现实及网络方向发展,新兴的地理信息系统将运用专家系统知识,进行分析、预报和辅助决策。本文介绍了地理信息系统的开发工具,从专业开发工具的组成结构上,可以归纳为集成式GIS、模块化GIS、组件式GIS和网络GIS等几个主要类别;总结了地理信息系统在地质灾害研究中的应用及其在地质灾害评价和管理、地质灾害的危险度区划评价和GIS与专家系统的集成应用的进展态势。
关键词:地理信息系统 集成式GIS 模块化GIS 组件式GIS 网络GIS 地质灾害
1地理信息系统的基本概念
地理信息系统(Geographic Information System,GIS) 是介于信息科学、空间科学和地球科学之间的交叉科学与新技术学科,它是计算机科学、遥感技术、信息工程与现代地学理论和方法的有机结合。地理信息系统是基于数据库系统、地图的可视化和地理信息的空间分析的计算机系统,处理的数据是具有地理特征和表征地学现象之间空间关系的属性数据。地理信息系统的主要功能有:采集、存储、管理、检索、查询、分析、显示和输出多种数据〔1,2〕,进行数据维护与更新、区域空间分析、多要素综合分析和动态预测〔3〕等。
地理信息系统,按其内容可以分为三大类〔4〕:(1)专题信息系统,它是具有有限目标和专业特点的地理信息系统,为特定的专门目的服务,如水资源管理信息系统、矿产资源信息系统和水土流失信息系统等。(2)区域信息系统,主要以区域综合研究和区域的信息服务为目标,可以有不同的规模,如加拿大国家地理信息系统和我国黄河流域信息系统等。(3)地理信息系统工具,它是一组具有图形图像数字化、存储管理、查询检索、分析运算和多种输出等地理信息系统基本功能的软件包。地理信息系统的任务,就是对地球表层人文经济(包括人类工程活动)和自然资源及环境多种信息进行综合管理与分析。
2 地理信息系统的开发工具
近年来GIS应用系统发展迅猛,GIS工具软件版本也不断更新升级,比较鲜明的发展动向有[5]:(1)各GIS软件工具厂商在优化性能的同时,重视发展Internet 上的GIS;(2)更换开发语言和开发模式,更换或扩展到Windows NT 平台;(3)在空间数据库管理方面,客户/服务器体系结构仍是GIS 软件追求的目标;(4)除了属性数据外,人们也希望图形数据采用关系数据库管理系统或面向对象的数据库管理系统;(5)理论研究方面,时空数据的处理及其三维或四维GIS仍然是一个研究热点;(6)为了进行空间数据共享和交换,各国都制定了空间数据的交换格式;(7)元数据(Metadata)的记录、处理与标准也是GIS技术发展的一项重要内容;(8)对GIS软件影响较为深刻的技术还有组件对象模型(COM),软件厂商已由原来向用户提供系统转为提供对象类型库或ActiveX控件。
在地理信息系统的发展过程中,目前已出现了大量的GIS系统专业开发工具。从这些专业开发工具的组成结构上,可以归纳为集成式GIS、模块化GIS、组件式GIS和网络GIS等几个主要类别〔6〕。
(1) 集成式GIS
集成式GIS指集合各种功能模块的大型GIS系统软件包。ESRI公司推出的Arc/Info,Genasys公司的GenaMap, MapInfo 公司的MapInfo,AutoDesk公司的AutoMap,Maptitude[7], MapGIS, MapEngine〔8〕, TitanGIS等都是集成式的GIS开发工具。集成式GIS系统的优势是各项功能已形成独立的完整系统,提供了强大的数据输入输出功能、空间分析功能、良好的图形平台和可靠性能,缺点是系统复杂、庞大和成本较高,并且难于与其它应用系统集成。
(2) 模块化GIS
模块化GIS系统是把GIS系统按功能划分成一系列模块,运行于统一的基础环境中。Intergraph公司的MGE是具有代表性的模块化GIS系统。模块化GIS系统具有较强的工程针对性,便于开发和应用。
(3) 组件式GIS
组件式GIS是随着近年来计算机软件技术的发展而产生的,代表了GIS系统的发展潮流。组件式GIS具有标准的组件式平台,各个组件不但可以进行自由、灵活的重组,而且具有可视化的界面和使用方便的标准接口。组件式GIS平台的核心技术是Microsoft的组件对象模型(Component Object Model,简称COM)技术[9],新一代组件式GIS大都是采用ActiveX控件技术来实现的,如Intergraph 公司推出的Geomedia,ESRI公司推出的MapObjects, MapInfo公司推出的MapX,中科院地理信息产业发展中心开发的ActiveMap, 北京灵图公司开发的三维虚拟现实地理信息系统VRMap等。这类GIS系统提供的是为完成GIS系统而推出的各种标准ActiveX控件和类型库(Type Library),使GIS系统开发者不必掌握专门的GIS系统开发语言,只需熟悉基于Windows平台并且支持ActiveX控件技术的通用集成开发环境,了解组件式GIS各个控件(包括对象)的属性、方法和事件,就可以实现GIS系统。所以,组件式GIS在系统的无缝集成和灵活方面具有优势,从一定意义上讲,它代表了GIS系统的发展方向。
(4) (4)网络GIS(Web GIS)
进入上世纪90年代后期,信息技术迅猛发展,新的信息技术层出不穷。随着电信网、有线电视网、Internet三网融合步伐的加快和第二代Internet技术的日趋成熟,Internet正日益成为信息化社会人们联系、交流、获取信息的重要工具。Internet技术改变着世界。戈尔所倡导的“数字地球”概念引起了人们广泛的关注,Internet环境下的空间信息处理技术也愈来愈受到重视,它把多维虚拟现实技术(Virtual Reality)、计算技术、遥感技术(Remote Sensing)、地理信息系统、全球定位系统(Global Position System)、网络技术等作为主要的技术支撑系统。GIS的网络化应用趋势已成为必然。Web GIS 是指基于Internet平台的地理信息系统,又称为因特网GIS(Internet GIS)。Internet技术的发展,使地理信息系统发生了质的飞跃,对传统意义上的GIS带来了极大的冲击,导致了Web GIS时代的开始。以单机或局域网为操作平台的工作模式终将被Internet 操作平台所取代。
利用这种新方法,从WWW的任意一个节点,Internet的用户都可以浏览到Web GIS站点上的地理数据,制作专题图件,进行空间查询检索以及空间分析,地理数据的概念已经扩展为分布式、超媒体特点的、相互关联的数据,使GIS进入千家万户。终端用户可以在任何时候、任何地点共享、使用各GIS服务商或政府机构提供的空间信息、应用服务。通过一个简单的浏览器就可以访问经过复杂的专业GIS分析产生的简洁、直观的结果。可以交互式访问动态更新的地图网址,在Internet网上完成单机系统常见的各种基于地图的GIS信息查询功能。另外,Internet与组件对象模型技术相结合,进一步发展了基于分布式组件模型的Web GIS。空间数据库供应商在服务器上存储数据的同时,根据数据元的格式安装操纵该数据的控制,用户在网上可调用不同的控件和数据,在本机或某个服务器上进行分布式组件的动态组合和空间数据的协同处理与分析,完全实现远程异构数据的共享。
已经有一些公司推出了Web GIS,如AutoDesk公司的MapGuide,MapInfo公司的MapInfo ProSever,Intergraph公司的GeoMedia Web Map,ESRI公司的MapObjects Internet Map Sever for AcrView等。已经推出的Web GIS是利用现有的GIS软件通过CGI或者Sever API构造的过渡产品,随着组件式GIS的发展和分布式对象Web技术的逐渐成熟,未来的Web GIS将是基于COM/ActiveX或CORBA/Java技术开发的分布式对象GIS系统。
3 地理信息系统在地质灾害研究中的应用进展
目前,国内外利用地理信息系统,主要用于研究国土和城市规划、地籍测量、农作物估产、森林动态监测、水土流失、地下水资源管理〔4〕和矿产资源勘查〔10〕、潜力评价及开发〔11〕等众多领域。GIS在地质灾害研究中的应用大致有以下几个方面:
(1) 地质灾害评价和管理
利用地理信息系统的各种功能,建立地质灾害空间信息管理系统[12,13,14],管理地质灾害调查资料,显示并查询地质灾害的空间分布特征信息,评价地质灾害的危害程度,分析地质灾害和影响因素之间的关系,提出减轻和防治地质灾害的措施,对将来可能发生的地质灾害进行预测〔15,16〕。戴福初等利用GIS对香港地区的滑坡灾害进行历史滑坡编录,分析滑坡的时空分布特征与动态和静态环境因素之间的相关关系,对滑坡灾害风险进行评价和危险区域划分〔17〕。
(2) 地质灾害的危险度区划评价
由于各种地质因素本身的不确定性,以及地质因素之间相互作用的复杂性,在收集大量的基础地质环境资料前提下,利用GIS对这些基础资料进行有效地处理来提高数据的可靠性,通过选取合适的评价预测指标〔18〕,运用恰当的数学分析模型〔19,20,21〕,对研究区进行地质灾害危险性等级的划分,从而为地质灾害的管理及防治和预警决策提供依据。
(3) GIS与专家系统的集成应用
GIS与专家系统的集成应用中,GIS所起的作用主要是管理时空数据,进行空间分析;专家系统所起的主要作用是利用专家知识和空间目标的事实推理判定灾害的危险度〔22〕。二者的结合将使专家经验得到推广,减少野外和室内手工作业工作量,使区域地质灾害的动态管理成为可能。
4 结语
(1)地理信息系统技术已经广泛渗透到了多种学科领域,从比较简单的、单一功能的、分散的系统发展到多功能的、共享的综合性信息系统,并向多媒体GIS、智能化、三维、虚拟现实及网络方向发展,新兴的地理信息系统将运用专家系统知识,进行分析、预报和辅助决策。
(2)地理信息系统的开发工具,从专业开发工具的组成结构上,可以归纳为集成式GIS、模块化GIS、组件式GIS和网络GIS等几个主要类别。其中组件式GIS在系统的无缝集成和灵活方面具有优势,代表了GIS系统的发展方向。
(3)地理信息系统在地质灾害研究中的应用方兴未艾,尤其在地质灾害评价和管理、地质灾害的危险度区划评价和GIS与专家系统的集成应用方面进展很快。
你自己在改改吧
㈢ 基于GIS的地质灾害区域评价与危险性区划系统研究
黄润秋许强沈芳向喜琼阮沈勇罗文强
(成都理工大学地质灾害防治与地质环境保护国家专业实验室,四川成都,610059)
【摘要】本文主要介绍了如何将现代地理信息系统(GIS)技术与一些用于多变量预测评价的数学模型有机地结合起来,快速高效地进行地质灾害区域评价与危险性区划。主要内容包括崩滑地质灾害区域评价指标的选取和指标体系的建立、评价及预测的数学模型以及具体的实现过程,并通过一个实际例子说明该思路和方法手段的可行性、可靠性和先进性。
【关键词】地理信息系统地质灾害区域评价指标体系
1前言
随着对山区资源开发利用的日益加剧,特别是我国目前正在实施的西部大开发战略,山区流域地质灾害已经直接影响到人民的生命财产安全和国家经济的发展。而地质灾害危险性区划是全面反映灾情,确定减灾目标,优化防治措施,提高减灾效益,进行减灾决策的重要依据。
地质灾害区域评价和危险性区划的主要工作方法是在大量收集、分析处理基础地质资料的前提下,运用恰当的数学统计模型,划分出相应的危险性级别,然后从整体上对研究区进行危险性区划。
由于各种地质因素在各个局部区域的差异性和复杂性,要做到较为精确的评价,需将整个研究区域分成若干个小图元,根据各个小区域的不同情况,分别赋予不同的属性,然后才能根据这些属性进行区域评价和危险性区划。这个工作依赖手工准备基础数据工作量十分巨大,所以传统的区域评价手段在实际应用中受到多方面的限制,常常只能人为地作出判断,先分区,后评价,这样割舍了区域内部本身固有的层次。
而地理信息系统(GIS)技术恰好可以很方便地管理多源数据,生成任意大小的图元,还可以结合专业特点和具体问题进行二次开发用以空间评价预测,并能直观显示评价预测结果。同时,我们开发成功的基于GIS的地质灾害区域评价与危险性区划系统,已经实现了从基础资料的收集与管理→评价因素的选取与定量→评价结果的直观显示流水线作业方式,大大地提高了工作效率,使崩滑地质灾害的区域评价与危险性区划初步达到实用化的程度。
2评价预测指标的选取及指标体系的建立
建立指标体系的目的主要包括两个方面的内容:一是一般工程技术人员或软件的用户可根据该指标体系确定研究区各因素的取值方法;另一方面,该指标体系可以指导野外地质人员在进行地质灾害危险性评价调查时有目的按照同一的标准进行地质灾害评价预测因素的调查。
2.1评价预测指标的选取
影响地质灾害发生的因素非常多,有基础地质因素(地形地貌、地层岩性等),也有外界诱发因素(如地震、暴雨等),还有人为因素(地表和地下开挖、爆破等人类工程活动)。
评价预测因素的选取的基本原则为:从地质和工程地质的角度尽量全面地考虑影响地质灾害发生的所有因素,通过广泛地查阅文献资料和对大量崩滑地质灾害实例的分析总结,采用目标分析方法。首先将地质灾害划分为已有地质灾害和潜在地质灾害两大类,分别对待,建立不同的指标体系。在此基础上再将影响地质灾害发生的因素分为基本因素和诱发因素,然后再进一步细分,直到子目标能够用定量或定性的指标衡量为止(如图1)。
图1评价预测指标体系的结构
基本因素是指地质灾害形成的基本条件和内在因素(内因),诱发因素是指影响和诱发地质灾害演化和发生的外在因素(外因)。从图1可以看出,基本因素主要为地形地貌、地层岩性、岸坡结构类型、软弱地层状况、构造情况、地面变形情况、植被发育情况、河流动力地质作用、水文地质条件、结构面组合状况、岩体结构(裂隙发育程度)等。诱发因素主要包括降雨状况、地震状况以及人类工程活动强度等。
2.2评价预测指标的量化
从所选取的评价预测指标可以看出,影响地质灾害发生的各种因素有些是定性的因素,如地层岩性、岸坡结构等;而有些又是测量或通过试验得到的定量数据,如地震烈度、降雨量等。
为了便于数学处理和计算机识别,在实际操作过程中,首先应通过一定的方法,将定性因素定量化。同时,即使是定量数据,由于各个因素间数值差别较大(如地震烈度和降雨量),若将这种量值差别较大的因素输入同一个数学模型进行分析处理,从数学上讲也会产生较大的误差。
因此,在将各个评价因素输入分析评价的数学模型之前,需对这些因素进行量化处理,其具体处理方法为:①对于定性变量,采用专家打分法、统计分析法、信息量法或模糊数学方法进行量化取值;②对于定量数据,可采用标准化、规格化、均一化、对数、平方根等数值变换方法统一量纲。
表1为利用专家打分法对工程岩组进行定量化的示例。
表1利用专家打分法对评价预测因素进行量化的示例
2.3评价预测指标的筛选与优化
在不同的地区和不同的环境,上述各评价预测指标对地质灾害的影响程度可能会有较大的差别,也就是说,在不同的地区上述各评价预测指标的主次关系可能会不一样。同时,在大多数情况下,上述各评价预测因素本身并不是相互独立的,各因素之间(如地形地貌与岸坡结构、岩体结构与裂隙组合状况、水文地质条件与降雨状况)往往存在着非常复杂的交叉和重叠关系。
因此,在具体的地质灾害区域评价与危险性区划过程中,往往并不是所采用的评价因素越多,评价的效果越好。因为,所采用评价因素过多,可能会间接地导致某些因素的重复利用,相当于人为地加大了该变量的权重。
对于具体研究区域,如何才能筛选出合理的评价预测指标,使评价预测结果最大限度地符合当地实际呢?我们认为解决此问题的关键应该针对不同的地区和不同的实际问题,确定各个评价因素对地质灾害的影响程度(重要性),最好是先将各个评价因素按重要性程度排序,最终选取比较重要的因素作为真正的评价预测指标。这种筛选和优化评价因素的方法主要有:
2.3.1主成分分析
主成分分析是将多个指标化为少数指标的一种统计方法。它可以通过对数学方法对评价因素按对地质灾害的影响程度大小进行排序,找出主要影响因素。
2.3.2两两比较法
将 k个评价指标作两两对比,列出比较结果表。如指标 B1比指标 B2重要,在B1行 B2列写上3,而在B2行 B2列写上1;若指标 B1与 B2分不出谁重要,则可在B1行 B2列和B2行 B1列都写上2。例如,有5个指标的比较结果为:
∑为对该行的求和,λ为对∑的归一化的结果。根据∑或λ的相对大小便可对其重要性进行排序。
2.3.3工程地质类比法
选用与研究区地质条件类似且研究程度较高的地区作类比,确定研究区的评价指标。
3地质灾害区域评价与危险性区划的数学模型
通过查阅大量的文献资料表明,目前用于地质灾害区域评价和危险性区划的数学模型主要有如下几种:逻辑信息法、判别分析法、信息量法、模糊综合评判法、专家评分法、综合评价法、变形破坏指数法、危险概率分析法以及神经网络法等。通过对其适用条件、可操作性、数据的可得性、分析结果的可靠性等多方面的分析比较,选定了回归分析法、信息量法、不确定性分析方法(模糊综合评判和模糊可靠度分析)以及神经网络方法作为地质灾害区域评价和危险性分区的基本数学模型。
4基于GIS的地质灾害区域评价与危险性区划系统
在上述基础上,我们基于Windows和GIS操作环境,采用面向对象的编程语言,开发了基于GIS的地质灾害区域评价与危险性区划系统。该系统不仅能充分利用GIS本身所具有的强大的空间数据管理与分析功能,还可以直接利用GIS的数据资源,方便快捷地实现地质灾害的危险性区划,为地质灾害的勘察、评价、预测、防治提供了一套行之有效的方法技术和适用的工具。该系统的实现途径见图2。从图2可以看出,地质灾害区域评价与危险性区划系统主要包括前处理、危险性区划主模块和后处理3个部分。利用该系统进行地质灾害区域评价和危险性区划需要经历如下几个步骤:
图2地质灾害区域评价与危险性区划系统的实现途径
(1)利用GIS软件对研究区基础地质资料(主要为指标体系中所列的各因素)进行数字化处理,对指标体系中所列出的各种评价预测因素最好采用单独的图层,分层数字化。
(2)根据指标体系对各评价预测因素所对应的数字化图层赋予相应的属性,这实际上是对各评价预测因素(指标)的初步定量化处理。
(3)为了提高分析评价精度,获取足够多的评价预测样本,需对评价预测因素图件进行网格化处理和图元裁剪处理,并根据第二步的结果对这些细化的网格赋予各类评价因素属性,同时将各个网格的信息(样本的自变量和因变量)存入一专门的数据库。
(4)在选中危险性区划主模块中的某种方法后,系统将自动从上述专门的数据库中提取分析评价所需信息,评价完毕后将直观地以图形的方式显示评价预测结果。
5基于GIS的地质灾害区域评价与危险性区划实例
5.1长江三峡库区新滩—巴东段地质灾害危险性区划
为配合准备新一轮国土资源大调查的“一个计划,四个工程”中的“地质灾害预警工程”,国土资源部1998年年底拟在长江三峡库区的新滩—巴东库段(含香溪河)建立地质灾害监测工程试验(示范)区。全区面积为50km×50km,区内现已查明的滑坡崩塌计有124个,其中包括链子崖危岩体、新滩滑坡、黄腊石滑坡等国内外知名的地质灾害体。
图3神经网络模型得出的地质灾害危险性区划结果
我们收集了该区1:5万地形图、地质图、降雨分布图、地震烈度区划图、城市交通图等图件,利用 MapGIS数字化成电子地图,并获取大量野外现场调查资料,分类录入相应图件的属性库,并选取坡度、岩性、岸坡结构类型、已有动力地质现象、地面变形状况、河流地质作用、构造复杂程度、人类工程活动等评价指标。作为试验,在对研究区进行网格化时采用的基本图元大小为500m×500m,最后实际获取评价样本(图元)4459个。
通过利用我们所开发的地质灾害区域评价与危险性区划系统中的多种分析评价模型(图3为神经网络模型分析结果)进行研究,得出如下结论:
(1)地质灾害危险性区划结果中稳定性最差的地段与已有的地质灾害分布位置一般有较好的对应关系。这说明,地质灾害频发区对应地质灾害最危险区,同时也从另一方面说明评价结果的正确性。
(2)地质灾害最危险区一般沿河流呈带状分布。
(3)研究区最危险地段主要有3个,即黄腊石—黄土坡段、香溪河段、秭归河段,其次在新滩和链子崖附近以及牛口镇附近还分别分布有新滩—链子崖段和牛口段。
(4)通过现场调研结果表明,上述分析预测结果与实际情况能够较好地符合,说明本文所采用的方法和技术手段是可行的,地质灾害区域评价与危险性区划系统的评价预测结果具有较高的可靠性,值得进一步推广。
5.2金沙江溪落渡水电站近坝库区地质灾害危险性区划
金沙江溪落渡水电站位于四川省雷波县与云南永善县交界处的金沙江下游河段的溪落渡峡谷。电站大坝采用双曲拱坝坝型,坝高285m,库容110亿m3,总装机容量1440万千瓦,是我国拟开发的仅次于三峡的又一座巨型水电站。为进一步论证电站近坝库岸稳定性,为库区移民搬迁、地质灾害防治及生态地质环境保护提供合理的规划及决策依据,对该水电站近坝库区的地质环境进行了基于GIS的综合评价,圈定了地质灾害危险地段。
根据野外调查、有关研究报告和1∶2.5万的工程地质图,在对本研究区基础地质资料进行系统分析后,选取地形坡度、工程地质岩性、地质构造、岸坡结构类型、河流地质作用等为主要评价因素,将评价预测目标——危险性等级分为不危险、轻度危险、中度危险、重度危险四个等级,建立了相应的评价指标体系。按照山区流域地质环境评价与地质灾害危险性预测 GIS系统的工作程式,在对研究区各种基础图件进行数字化,对各种评价因素进行定量化以及对矢量图形进行栅格化处理后,采用数量化理论、信息量法、模糊综合评判、模糊可靠度和神经网络等数学模型进行地质灾害危险性区划。
图4和图5分别为采用模糊可靠度方法所作出的溪落渡近坝库区上游段和下游段的地质灾害危险性分区图。现场调研发现,危险性分区结果与野外调查结果基本相符。
图4溪落渡近坝库区(上游段)危险性分区图
图5溪落渡近坝库区(下游段)地质灾害危险性分区图
6结语
通过本文的研究,主要取得以下成果:
(1)针对我国西南山区流域地理地质环境,形成了一套基于GIS的从数据采集→空间属性数据库建立→评价指标体系选择→预测评价模型分析→地质灾害危险性预测与区划,较为完整的山区流域地质环境评价和地质灾害预测的研究技术路线、方法体系和工作流程。
(2)建立了山区流域地质环境评价和地质灾害预测的基本评价指标体系,并从多个角度提出了其数量化方法。
(3)基于GIS工作平台,研究开发了地质灾害区域评价与危险性区划系统,并在金沙江溪落渡水电工程库区和长江三峡工程库区新滩—巴东段对该系统进行了实际检验。应用结果表明,本文所提出的基于GIS的地质灾害区域评价和危险性区划的理论和技术方法可用于实际的地质灾害评价预测,其评价预测结果基本与实际情况相符合。
在完成本项研究工作的过程中,曾得到国土资源部国际合作与科技司、地质环境司以及国土资源部长江三峡地质灾害防治指挥部的大力支持和帮助,在此对他们表示衷心的感谢。
参考文献
[1]陈述彭,鲁学军,周成虎编著.地理信息系统导论.北京:科学出版社,1999
[2]Wadge G.The potential of GIS modelling of gravity flows and slope instabilities[J].International Journal of Geographical Information Systems,1988,2(2):143~152
[3]Gupta R.P.&Joshi B.C.Landslide hazard zoning using the GIS approach;a case study from the Ramganga Catchment,Himalayas [J].Engineering Geology,1990,28(1~2):119~131
[4]沈芳,黄润秋等.地理信息系统与地质环境评价[J].地质灾害与环境保护,1999,11(1):6~10
[5]沈芳.山区地质环境评价与地质灾害危险性区划的GIS系统[博士论文].成都理工学院,2000
[6]Mario Mejla-Navarro and Ellen E.Wohl,Geological Hazard and Risk Evaluation Using GIS:Methodology and Model Applied to Medellin,Colombia,Bulletin of the Association of Engineering Geologists, 1994,XXXI(4):459~481
[7]Gupta-R-P;Joshi-B-C,Landslide hazard zoning using the GIS approach;a case study from the Ramganga Catchment,Himalayas,Engineering Geology,1990,(28):1~2,119~131
[8]Campbell-Russell-H;Bernknopf-Richard-L,Forecasting the spatial distribution of landslide risk,Abstracts with Programs-Geological Society of America,1991,(23):5,145
㈣ 最近在学MAPGIS软件,想请问一下,MAPGIS在地质灾害危险性评估中有什么应用
主要是制作实际材料图,地质灾害易发程度图、地质灾害危险区划图等,国土部分提交的很多图形数据格式也是基于mapgis格式的!
㈤ 地质灾害都有哪些相关的文献
灾害方面论文 报告 书籍 评估方面 规范 地区规定 文件 收费规定等
㈥ GIS在地质学中的应用
石油和矿产勘查要求多种数据集进行综合分析。过去对数据存档、检索及迭加分析通常使用图件或表格数据,对比与综合要花费大量时间,遥感与GIS技术则为这些多源勘探数据综合处理提供了现代化手段。
在石油等矿产勘查时,地质学家首先要对各种地质图件、地球物理和地球化学数据、地震剖面以及遥感图像等数据进行综合分析,以便能清楚地了解各种不同数据集之间的关系。
地质数据通常也是由点、线、多边形三种形态构成的。点数据以地球化学分析数据最典型,它与某一特定的取样点有关;线数据可以是一条岩性分界线或一条断裂;多边形数据如某种岩类的出露范围。这些数据,有的采用图件形式,用颜色表示岩石类型(专题图),符号表示地球化学取样点位置,用等值线表示磁场测量值。许多地质数据还以报告、图形或实验室结果表格等形式提供。在GIS中,这些不同的数据集(如地球化学分析数据、航磁调查数据、地震数据、地质图和地形图以及遥感数据)经过数字化、编码、矢量到网格数据转换,产生连续或离散的数据集,存入建立起目标区的地质数据库,图13-1给出了地质地表数据的输入,分析和建库的过程。
在地质数据库中,地质数据按专题内容分层存贮,几何特征以图形图像表达,属性数据则记录在二维关系表中,两者为一对一或一对多的关系。于是,在这个数据模型的基础上,勘探工作区的所有地球物理、地球化学、岩石学及辐射场的数据都可以纳入数据库。一旦工作区的地质数据库被建立,地质学家便可以利用已有的专家(概念)模型来指导数据分析。例如,在石油勘探中,首先利用石油存贮条件与变量之间已知的物理、化学和地质联系来分析数据库提供的数据,对直接或间接与这些联系有关的数据进行分析、处理、生成各种派生数据。表13-1显示某工作区地质数据库中的原始数据和派生数据集。用这些数据所提供的信息来选定油气储藏有利地区。
如将重力和航磁数据叠合,有助于对基底形态的分析。又由于基底形态对沉积盖层构造发育有影响,因而据重力和航磁的一阶、二阶导数可推断出构造的总体特征。又如,基底隆起地区可能影响盖层构造特征,基底凹陷的地区沉积厚度较大,可能成为盆地的沉积中心。
图13-1 地质地表数据处理、分析及建库流程图
背斜构造是重要储油构造。是油气勘探数据库的重要内容。构造的向下延伸范围是一个最有价值的参数,目前的技术水平还难以确定。在数据库中,背斜用多边形表示,并以背斜轴为中心向下延展来定性表达背斜的地下影响范围。
断层对油气的生、储、盖都很重要。断层等密度图与线性体等密度图是用任一网格单元范围内断层/线性体出现的频数来定义的。用邻域分析法计的研究区内围绕每一象元的5×5象元阵列中断层出现的次数。结果图显示出断层/线性体密度。将断层等密度和线性体等密度图进行叠加,合成出一幅描述断裂密度的新图。对盖层断裂密度高值地区进行分析,判明它对区域油气运移和储集的具体作用。
表13-2给出某研究区域模型及其对应的权重,系统据此运行后生成一个新图像。图像的像元值等于各输入的权值求和,将它们进一步分段,便可以表达工作区中油气产出有利性的不同级别,最后圈出高概率产油区。
这种技术方法同样适用于其它矿产勘查、区域成矿预测,工程地质灾害评估与预测等。
GIS技术的引入可能极大改变地质学家的工作模式,使地学工作者面临的对多源地质数据的采集、配准、存储、分析、综合与检索工作,变得形象直观、灵活多样、快速准确,使各种地学模型的生成和发展,在技术上有了主要的支撑系统。
表13-1 原始和派生地质数据
表13-2 模型的输入与数字加权
㈦ 地质灾害论文
范文一:甘肃省城市建设地质灾害防治研究
甘肃省境内泥石流、滑坡发育的基础主要是其特殊的自然条件。陡峭的地形、充足的松散土石和突发性水源是泥石流、滑坡形成的三大条件,另外地震作用也是造成滑坡的因素。甘肃地处黄土高原区,境内主要以黄土为主,而黄土由于结构疏松,孔隙大,渗透性强,具强压缩性和自重湿陷性,垂直节理发育,特别是极为发育的顺坡向卸荷节理,使边坡稳定性降低,易发生滑坡和造成严重的水土流失,大量滑坡、崩塌等重力堆积物受暴雨形成的坡面流及洪水的冲刷,源源不断地为泥石流提供固体物质。 通过计算泥石流、滑坡作用强度和危险度,将城市分为Ⅰ级、Ⅱ级、Ⅲ级和Ⅳ级四个危险等级。经过对甘肃省灾害防治历史和治理现状的研究,提出存在问题,得到泥石流、滑坡灾害的发展趋势,强调防治的可能性和必要性。 根据对城市的分级,危险度高的Ⅰ级和Ⅱ级的城市应采取治理体系为主,预防体系和管理体系为辅的综合控制对策;危险度不高或较低的Ⅲ级和Ⅳ级的城市应采取预防体系与管理体系为主,治理体系为辅的控制对策;对于威胁城市安全的巨型滑坡和规模巨大的泥石流沟则采用躲避对策。 城市泥石流、滑坡防治规划的最基本原则是预防为主,重点治理。对于不同类型的泥石流、滑坡建立不同的治理模...
范文二:分析地理信息系统的开发工具及其在地质灾难探究中的应用进展
地理信息系统在地质灾难探究中的应用进展
目前,国内外利用地理信息系统,主要用于探究国土和城市规划、地籍测量、农作物估产、森林动态监测、水土流失、地下水资源管理〔4〕和矿产资源勘查〔10〕、潜力评价及开发〔11〕等众多领域。GIS在地质灾难探究中的应用大致有以下几个方面摘要:
(1) 地质灾难评价和管理
利用地理信息系统的各种功能,建立地质灾难空间信息管理系统[12,13,14,管理地质灾难调查资料,显示并查询地质灾难的空间分布特征信息,评价地质灾难的危害程度,分析地质灾难和影响因素之间的关系,提出减轻和防治地质灾难的办法,对将来可能发生的地质灾难进行猜测〔15,16〕。戴福初等利用GIS对香港地区的滑坡灾难进行历史滑坡编录,分析滑坡的时空分布特征和动态和静态环境因素之间的相关关系,对滑坡灾难风险进行评价和危险区域划分〔17〕。
(2) 地质灾难的危险度区划评价
由于各种地质因素本身的不确定性,以及地质因素之间相互功能的复杂性,在收集大量的基础地质环境资料前提下,利用GIS对这些基础资料进行有效地处理来提高数据的可靠性,通过选取合适的评价猜测指标〔18〕,运用恰当的数学分析模型〔19,20,21〕,对探究区进行地质灾难危险性等级的划分,从而为地质灾难的管理及防治和预警决策提供依据。
(3) GIS和专家系统的集成应用
GIS和专家系统的集成应用中,GIS所起的功能主要是管理时空数据,进行空间分析;专家系统所起的主要功能是利用专家知识和空间目标的事实推理判定灾难的危险度〔22〕。二者的结合将使专家经验得到推广,减少野外和室内手工作业工作量,使区域地质灾难的动态管理成为可能。
4 结语
(1)地理信息系统技术已经广泛渗透到了多种学科领域,从比较简单的、单一功能的、分散的系统发展到多功能的、共享的综合性信息系统,并向多媒体GIS、智能化、三维、虚拟现实及网络方向发展,新兴的地理信息系统将运用专家系统知识,进行分析、预告和辅助决策。
(2)地理信息系统的开发工具,从专业开发工具的组成结构上,可以归纳为集成式GIS、模块化GIS、组件式GIS和网络GIS等几个主要类别。其中组件式GIS在系统的无缝集成和灵活方面具有优势,代表了GIS系统的发展方向。
(3)地理信息系统在地质灾难探究中的应用方兴未艾,尤其在地质灾难评价和管理、地质灾难的危险度区划评价和GIS和专家系统的集成应用方面进展很快。
以上希望对您有帮助!另外这有个地质灾害论文的网址,可参阅:http://cache..com/c?m=ef&p=9a70d215d9c541fd0be29e2c4a7a&user=
㈧ 举例说明RS,GIS想结合在工程地质中的应用有哪些方面
GIS应用于工程地质,应该主要侧重于其空间分析和三维设计两个方面。
1、空间分析版,这是GIS特有的优势,特别权是针对空间位置的分析,而相关研究主题的空间位置也是工程地质研究的重要内容。
2、三维设计,GIS的另一优势就是良好的可视化表达,工程地质的研究成果可以经由GIS软件予以体现。
至于遥感,在工程地质中的应用主要有以下两个方面:
1、地质调查,利用高光谱遥感技术,可以实现对特定区域的地表岩层进行某些精细的分析,从而为地质研究提供有效的数据支持,减少人力与物力的投入,可以不到现场就可以详细指导当地的信息。
2、地质监测,可以对大范围区域的地质灾害等进行调查与检测……等
对于两者的结合那是显而易见的,GIS与RS不分家,RS是GIS重要的数据元。
㈨ 高一地理关于地质灾害论文范文800_1000字,急用啊
范文一:甘肃省城市建设地质灾害防治研究
甘肃省境内泥石流、滑坡发育的基础主要是其特殊的自然条件。陡峭的地形、充足的松散土石和突发性水源是泥石流、滑坡形成的三大条件,另外地震作用也是造成滑坡的因素。甘肃地处黄土高原区,境内主要以黄土为主,而黄土由于结构疏松,孔隙大,渗透性强,具强压缩性和自重湿陷性,垂直节理发育,特别是极为发育的顺坡向卸荷节理,使边坡稳定性降低,易发生滑坡和造成严重的水土流失,大量滑坡、崩塌等重力堆积物受暴雨形成的坡面流及洪水的冲刷,源源不断地为泥石流提供固体物质。 通过计算泥石流、滑坡作用强度和危险度,将城市分为Ⅰ级、Ⅱ级、Ⅲ级和Ⅳ级四个危险等级。经过对甘肃省灾害防治历史和治理现状的研究,提出存在问题,得到泥石流、滑坡灾害的发展趋势,强调防治的可能性和必要性。 根据对城市的分级,危险度高的Ⅰ级和Ⅱ级的城市应采取治理体系为主,预防体系和管理体系为辅的综合控制对策;危险度不高或较低的Ⅲ级和Ⅳ级的城市应采取预防体系与管理体系为主,治理体系为辅的控制对策;对于威胁城市安全的巨型滑坡和规模巨大的泥石流沟则采用躲避对策。 城市泥石流、滑坡防治规划的最基本原则是预防为主,重点治理。对于不同类型的泥石流、滑坡建立不同的治理模...
范文二:分析地理信息系统的开发工具及其在地质灾难探究中的应用进展
地理信息系统在地质灾难探究中的应用进展
目前,国内外利用地理信息系统,主要用于探究国土和城市规划、地籍测量、农作物估产、森林动态监测、水土流失、地下水资源管理〔4〕和矿产资源勘查〔10〕、潜力评价及开发〔11〕等众多领域。GIS在地质灾难探究中的应用大致有以下几个方面摘要:
(1) 地质灾难评价和管理
利用地理信息系统的各种功能,建立地质灾难空间信息管理系统[12,13,14,管理地质灾难调查资料,显示并查询地质灾难的空间分布特征信息,评价地质灾难的危害程度,分析地质灾难和影响因素之间的关系,提出减轻和防治地质灾难的办法,对将来可能发生的地质灾难进行猜测〔15,16〕。戴福初等利用GIS对香港地区的滑坡灾难进行历史滑坡编录,分析滑坡的时空分布特征和动态和静态环境因素之间的相关关系,对滑坡灾难风险进行评价和危险区域划分〔17〕。
(2) 地质灾难的危险度区划评价
由于各种地质因素本身的不确定性,以及地质因素之间相互功能的复杂性,在收集大量的基础地质环境资料前提下,利用GIS对这些基础资料进行有效地处理来提高数据的可靠性,通过选取合适的评价猜测指标〔18〕,运用恰当的数学分析模型〔19,20,21〕,对探究区进行地质灾难危险性等级的划分,从而为地质灾难的管理及防治和预警决策提供依据。
(3) GIS和专家系统的集成应用
GIS和专家系统的集成应用中,GIS所起的功能主要是管理时空数据,进行空间分析;专家系统所起的主要功能是利用专家知识和空间目标的事实推理判定灾难的危险度〔22〕。二者的结合将使专家经验得到推广,减少野外和室内手工作业工作量,使区域地质灾难的动态管理成为可能。
4 结语
(1)地理信息系统技术已经广泛渗透到了多种学科领域,从比较简单的、单一功能的、分散的系统发展到多功能的、共享的综合性信息系统,并向多媒体GIS、智能化、三维、虚拟现实及网络方向发展,新兴的地理信息系统将运用专家系统知识,进行分析、预告和辅助决策。
(2)地理信息系统的开发工具,从专业开发工具的组成结构上,可以归纳为集成式GIS、模块化GIS、组件式GIS和网络GIS等几个主要类别。其中组件式GIS在系统的无缝集成和灵活方面具有优势,代表了GIS系统的发展方向。
(3)地理信息系统在地质灾难探究中的应用方兴未艾,尤其在地质灾难评价和管理、地质灾难的危险度区划评价和GIS和专家系统的集成应用方面进展很快。
希望对你有帮助哦