当前位置:首页 » 地质工程 » 河南地质灾害预警

河南地质灾害预警

发布时间: 2021-02-26 04:11:14

『壹』 年国家地质灾害气象预警服务

5.8.1 技术准备

5.8.1.1 工作情况

2008 年度国家级地质灾害气象预警预报服务在 5 月 1 日至 9 月 30 日开展,每日一次。由于汶川地震和台风活动以及强降雨影响,2008 年加强并延续了预警预报值班。5月 13 日以后针对地震灾区加密了预报频次,由每日 1 次增加为 2 ~ 3 次,增加了 60 次。预警预报期也从 9 月 30 日延续到 10 月 4 日( 台风“海高斯”登陆) ,11 月 5 日又增加了 1次,增加了 6 天。

2008 年预警预报值班共 159 天,制作预警预报产品 213 份。在中央电视台发布地质灾害预警预报信息 94 次( 其中 4 级 93 次,5 级 1 次) ,在中央人民广播电台发布 94 次,在中国地质环境信息网上发布 176 次( 3 级以上) ,在国土资源部政府网上发布 94 次。

由于汶川地震区山坡岩土体更加松散破碎、余震不断、强降雨天气频繁出现的情况,加强了地质灾害预警预报工作。主要是加密了预报频次,适度提高了地质灾害预报等级。制作地质灾害预警预报产品的频次从每日 1 次增加到每日 3 次,分别在中央电视台早晨 7 点、中午 12 点和晚上 7 点 30 分气象节目发布,并在中央电视台多个频道、中央人民广播电台随气象节目一起滚动播出,同时在中国地质环境信息网上实时发布。警示当地居民和抢险救灾人员注意防范地震余震和降雨引发的滑坡、崩塌、泥石流等地质灾害; 警示临时居住帐篷和救灾场所的百姓要避开山体斜坡、河流沟口等易发地质灾害的部位,提醒沿山路行驶的车辆和行人要注意山体滑坡、崩塌落石和泥石流。

适当增加地质灾害气象预警预报的频次的工作流程为: 国家气象中心提出,经与中国地质环境监测院会商后联合发布。西太平洋洋面生成( 强) 热带风暴后,若预测可能影响中国大陆,国家气象中心提前告知中国地质环境监测院,以便针对东南沿海的地质灾害气象预警预报做好前期准备工作。

5.8.1.2 预警产品计算

( 1) 集成了两代预警模型

为了便于新旧预警模型并行使用、相互校验,提高预警预报计算结果的精确性,新的预警预报系统软件中将第一代预警模型( 临界雨量模型) 、第二代预警模型( 显式统计预警模型) 集成在同一系统中( 图 5.35) 。

第一代预警模型( 临界雨量模型) : 基于雨量站点的地质灾害预报,预警计算在雨量站点上完成,在雨量站点上生成不同等级的预警等级点。

第二代预警模型( 显式统计预警模型) : 以剖分的网格( 10km ×10km) 为单位,在每个预警网格上计算预警产品值。

图 5.35 两代预警模型集成使用

( 2) 可采用分步式计算与一站式计算两种计算方式

分布式计算主要是分为: 气象数据自动导入-预报产品计算两步进行,便于预警产品计算之前先完成下载雨量、数据导入、数据分布查看等操作( 图 5.36) 。一站式计算: 将数据导入、产品计算从头到尾一步完成,便于日常预警值班的方便快捷。

图 5.36 分步式计算与一站式计算两种计算方式

5.8.1.3 数据管理

( 1) 雨量数据自动下载

当气象部门将前期实况雨量和次日的预报雨量上传到 FTP 地址上后,无论是一站式计算,还是分布式计算方式,预报员使用预警软件时第一步就是直接从 FTP 上下载数据,下载完毕后自动提示,并直接导入软件系统参加计算。

中国地质灾害区域预警方法与应用

( 2) 数据自动备份

根据日常工作需求,软件实现在计算完成后,完成原始雨量数据的自动备份、预警产品结果的自动备份( 图 5.37) 。

图 5.37 数据自动备份

原始雨量数据备份到目录“D: 2008rain701”

Copy ftp: / /129.179.10.68 / c-cma / a-forecast /0701 / 整个文件夹。

预警产品结果数据备份到目录“D: 2008results701”

Copy “data publish ”下的 3 个文件:

gt080701.doc; gt080701.txt; 080701.bmp; 080701.jpg;

Copy “data result ”下的 3 个文件 080701.w l; 080701.w p;

Copy “data station 80701.w t”

5.8.1.4 数据查询

数据查询功能中,除地质背景环境条件查询( 图 5.38,首先在图层管理栏内打开要查询的地质环境条件数据,然后使用“查看属性”来查看相应的地质环境条件) 外,本次软件改进中主要增加了较强大的雨量数据的查询功能。

雨量查询功能主要是基于雨量站点的原始查询、统计查询以及数据导出等功能。通过右键点击“站点查询”,即可得到各雨量站点的信息,主要包括: 实况雨量、累计雨量、14 时雨量、条件查询 4 个选项卡。

图 5.38 地质背景环境条件查询

实况雨量: 查询结果是所选雨量站点的逐日 24h 雨量值( 图 5.39) 。累计雨量查询结果是所选雨量站点的逐日累计雨量,系统设计为累计 7d 的雨量。

图 5.39 雨量查询窗口

14 时雨量: 查询结果是当前日期 8 时至 14 时的 6h 实况雨量、经过计算得到的当前日期 14 时至昨日 14 时的实况雨量。

条件查询: 主要是一些较复杂的定制查询功能和查询结果导出功能。可以通过选择站号、站名、起始日期、终止日期,进行不同时间段各个雨量站点的累计雨量查询( 图5.40) 。

图 5.40 条件查询

5.8.1.5 预警产品修正

地质灾害预警预报产品自动完成后,预报员可根据经验或会商结果对预警产品进行修正。关于预警产品修正依据方面,增加了分省易发区图; 产品背景数据补充县界、县名以及地貌简图。

( 1) 增加了分省( 区、市) 易发区图( 图 5.41)

图 5.41 分省( 区、市) 易发区图

( 2) 修正了产品背景数据( 图 5.42,图 5.43)

图 5.42 中国地貌底图

图 5.43 预警区县界县名

5.8.1.6 软件界面与显示

软件界面作了进一步的完善; 图层显示标准化等,如不同雨量用不同的颜色大小进行标记; 不同预警等级的颜色也给出相应的颜色显示标准。

( 1) 软件界面

从每日预警值班的角度,进一步完善和简化了预警软件界面,图层控制管理窗口使用更加清晰方便( 图 5.44) 。

图 5.44 完善后的软件界面

( 2) 图层显示标准化

不同雨量用不同的颜色大小进行标记。关于当日 8 点、14 点雨量显示的相关约定根据雨量大小( 子图号均为 34) ( 图 5.45) :

图 5.45 8 点实况雨量显示标准化

≥250mm: 深红色( 253) ,RGB 为 151 31 23; 子图宽度和高度均为 60;

100 ~ 250mm: 粉红色( 183) ,RG B 为 255 0 191; 子图宽度和高度均为 50;

50 ~ 100mm: 蓝色( 5) ,RG B 为 0 0 255; 子图宽度和高度均为 40;

25 ~ 50mm: 浅蓝色( 19) ,RG B 为 135 135 255; 子图宽度和高度均为 30;

10 ~ 25mm: 绿色( 90) ,RG B 为 0 175 0; 子图宽度和高度均为 20;

< 10mm: 浅绿色( 7) ,RG B 为 0 255 0; 子图宽度和高度均为 10。

( 3) 预警等级颜色标准化

( RGB,图 5.46)

图 5.46 预警等级颜色标准化

5.8.1.7 矢量化网上发布

将发布的预警产品格式改为矢量化格式,从而实现预警产品查询的方便快捷和精确定位( 可直接查询到县级行政区域) ( 图 5.47) 。根据需要可实现雨量数据的实时显示与查询; 同时,能够满足每日多次预警产品的发布需求。

图 5.47 改进的矢量化网上发布及放大后效果

5.8.2 5 级地质灾害警报区

2008 年汛期,共发布了 1 次 5 级预警预报信息。我们对这次预报的地质灾害发生情况进行了调查。

5.8.2.1 5 级地质灾害预警预报情况

2008 年 7 月 20 日下午,中国地质环境监测院收到中国气象局的天气预报: 未来 24 小时( 7 月 20 日 20: 00 ~7 月 21 日 20: 00) 甘肃南部、四川中部和北部、陕西西南局部、宁夏南部局部等地震影响区,以及吉林东南部、辽宁东部有暴雨( 50mm) 。其中甘肃南部局部、四川中部局部和北部局部,以及吉林东南局部有大暴雨( 100mm) 。

针对气象局降雨预报和预测暴雨地区的地质环境条件,经过与被预警区省级地质灾害预警预报技术单位和气象局会商,我们发布了如下预警预报信息: 今日 20: 00 至明日 20:00,甘肃南部、四川中部和北部、陕西西南局部、宁夏南部局部等地震影响区,以及吉林东南部、辽宁东部局部发生地质灾害可能性较大( 3 级) 。其中,甘肃南部局部、四川中部局部和北部局部等地震重灾区发生地质灾害可能性大或很大( 4 ~5 级) ( 图 5.48) 。

图 5.48 7 月 20 日降雨预报等值线和地质灾害气象预警预报区域

5.8.2.2 地质灾害发生情况与地质环境条件

根据四川、甘肃国土资源厅地质环境处获得反馈信息,7 月 20 日晚至 7 月 22 日期间,四川省东南部发生较大地质灾害 47 处; 甘肃省南部发生较大地质灾害 8 处。

四川省 7 月 20 ~22 日发生的地质灾害主要分布在四川省东部和中南部。在地质环境分区上分别属于盆地东华蓥山平行岭谷地质环境区和峨眉山高中山地质环境区。

盆地东华蓥山平行岭谷地质环境区: 以剥蚀构造地形为主,背斜成山向斜成谷,山高谷深,岭谷相间,山岭海拔 700 ~1700m,间以石灰岩槽状谷地或山间小盆地,山间盆地一般海拔 300 ~500m,相对高差 100m 左右。地形坡度 30° ~35°,背斜山地区较陡。侏罗系分布最广( 达 80%以上) 。地层岩性为泥岩、砂质泥岩、岩屑长石砂岩、粉砂岩不等厚互层组成软硬相间的岩体主要组合。构造呈北东—北北东走向,由一系列平行的狭长不对称箱状背斜组成,断裂少见。区域地壳属间歇性面状抬升,地壳活动较强。区域最大地震震级为 5.75 级,地震基本烈度为Ⅵ-Ⅶ。

峨眉山高中山地质环境区: 以高中山地貌为主,地势由北向南渐增,海拔 1000 ~3700m,切割深度 500 ~1000m,地形坡度15° ~40°,山坡上缓下陡,山顶圆缓,沟谷狭窄。地层包括下古生界的碳酸盐岩、变质岩,以及中生界的砂岩、泥岩和火山喷发的玄武岩等。软硬相间的岩体组合,类型较多,岩层较破碎。构造以南北向的褶皱、断裂为主,兼有北东向、北西向断裂切割,地层错落,岩层破碎,地壳活动较强,地震烈度为Ⅷ度。滑坡、崩塌、泥石流较发育。

甘肃省发生的地质灾害主要分布在陇南山地。该地区属西秦岭山地,地势西高东低,海拔 2500 ~4500m,地形强烈切割,水文网发育,相对高差 1000 ~2000m,属中高山地形。岩土体类型以变质岩岩组、碳酸盐岩岩组为主,碎屑岩类和黄土零星分布。年平均降雨量一般为600mm,7 ~ 9 月 3 个月降雨量占全年的 65% ,多暴雨。植被覆盖率达 30% ~ 46% 。属于滑坡、泥石流中等-高-极高发育地区。

5.8.2.3 预警预报效果分析

7 月 20 日对甘肃南部局部、四川中部局部和北部局部等地震重灾区发布了 4 ~ 5 级的地质灾害预警预报。7 月 21 ~22 日,地质灾害大量发生,实际发生区在四川东南部和甘肃南部。甘肃南部和中部局部的预报是准确的,四川北部没有报准的原因是实际降雨发生了偏移。20 日预报的暴雨中心是南部局部、四川中部局部和北部局部等地震重灾区,而实际暴雨中心却落在了四川东南部和甘肃南部以及陕西西南部( 图 5.49) 。

5.8.3 2008 年预警预报效果分析

本章选取 2008 年 7 月和 8 月的预报情况进行分析。

5.8.3.1 成功预报情况分析

实际计算时,如果当日仅有 1 个预报区,则按 1 个区计算; 如果有多个预报区,则按实际预报区个数计算,3 级、4 级和 5 级区共同参与计算。采用第 3 章 3.7 节建立的计算公式,计算出 2008 年 7,8 月预报准确率( 表 5.11) 。

图 5.49 7 月 21 日预报降雨、实际降雨与地质灾害点分布对比

表 5.11 2008 年 7,8 月预报准确率

表 5.11 列出 7 月共发布 93 个预报区,有 30 个准确预报区,平均预报准确率为32.26% 。8 月共发布 64 个预报区,有 14 个准确预报区,平均预报准确率为 21.88% 。每日预报准确率的变化从 0 ~100%均有,显示地质灾害发生的准确情况具有一定的随机性,同时与降雨量的情况有一定的关系,是一个复杂的过程,造成预报准确率较低。遇到大范围强降雨出现时,预报准确率会有所提高。

5.8.3.2 空报情况分析

实际计算时,如果当日仅有 1 个空报区,则按 1 个区计算; 如果有多个空报区,则按实际个数计算,三级、四级和五级区共同参与计算。空报率和准确率之和为 1。采用第 3 章 3.7建立的计算公式,计算出 2008 年 7,8 月空报率( 表 5.12) 。

表 5.12 2008 年 7,8 月空报率

根据表 5.12 空报率的计算结果,7 月的平均空报率为 67.74%,8 月的平均空报率为78.12% ,空报率较大,主要是因为预报降雨与实际降雨偏差较大所致。

表 5.13 2008 年 7,8 月漏报率

2008 年 7 月 20 日预报降雨和实际降雨情况可以看出,两个预报 100mm 的地区,其中一个降雨量不到10mm,另一个区中最大降雨量仅为40mm,降雨中心完全偏离预报区域,且降雨中心最大降雨量为 73mm,与预报 100mm 相差 27mm( 图 5.50) 。

图 5.50 7 月 20 日预报雨量与实际雨量对比图

5.8.3.3 漏报情况分析

采用第 3 章 3.7 建立的计算公式,计算出 2008 年 7,8 月漏报率( 表 5.13) 。

根据表 5.13 显示的计算结果,7 月的平均漏报率为 66.87% ,8 月的平均漏报率为86.54% ,漏报率较大,主要是因为地质灾害预报是针对比较大的云团或台风等强对流天气引起的地质灾害的预报准确率较高,而对于局地暴雨等天气情况引发的地质灾害预测较低。

5.8.4 暴雨日数与地质灾害

将汛期( 5 ~9 月) 全国暴雨日数与地质灾害点分布叠加( 图 5.51) 。

显示暴雨日数较大的地区集中分布在广东南部、广西南部、湖北东部等地。图 5.52 暴雨日数分段与单位面积地质灾害点统计,灾害点密度较大的区域集中在暴雨日数在 3 ~5 日之间,而在暴雨日数 >10 日的区域地质灾害点密度并不是最大的,即总体上,暴雨日数分布与地质灾害点密度分布对应关系不好。

图 5.51 2008 年 5 ~9 月全国暴雨日数与地质灾害点分布( 台湾省专题资料暂缺)

图 5.52 2008 年 5 ~9 月全国暴雨日数分段与单位面积地质灾害点统计

5.8.5 强降水过程引发地质灾害分析

2008 年汛期( 5 ~ 9 月) 全国共有 8 次强降水过程,在地质灾害多发区引发了大量的崩塌、滑坡、泥石流等地质灾害。

( 1) 2008 年 5 月 25 ~31 日强降水过程

2008 年 5 月 25 ~ 31 日,华南大部,特别是广西、贵州、广东局部发生一次强降水过程,过程降水量达 50 ~200mm。在全国多个省份引发了 365 处重大地质灾害。其中: 湖南 206处,广西 32 处,贵州 17 处等( 图 5.53) 。

图 5.53 2008 年 5 月 25 ~31 日强降水过程与地质灾害点分布( 台湾省专题资料暂缺)

从图5.54降水量分段与单位面积灾害点个数统计来看,过程降水量在50~200mm范围内,地质灾害点密度均较大,特别是过程降水量大于200mm的区域,主要分布在广西东北部、广东中北局部地区,地质灾害点分布更为集中,密度达7.4处/100km2;过程降水量为150~200mm的区域,覆盖了贵州、广西两省(区)交界地区,密度也较大,达2.8处/100km2。从全国统计来看,5月25~31日88.8%的地质灾害点位于累积雨量50~100mm范围内,全国地质灾害点主要是由本次强降水过程引发的。

图5.54 2008年5月25~31日降水量分段与单位面积地质灾害点统计

(2)2008年6月6~19日强降水过程

2008年6月6~19日,在我国的华南大部,特别是广东、广西、江西等地持续出现强降水过程,过程降水量达200~800mm。全国多个省份596处灾害点。其中:江西147处,广西126处,湖南88处,广东55处,浙江33处,云南23处等(图5.55)。

图5.55 2008年6月6日~19日强降水过程与地质灾害点分布(台湾省专题资料暂缺)

从图5.56降水量分段与单位面积灾害点个数统计来看,过程降水量在200~800mm范围内,地质灾害点分布最多,占全国灾害点总数的70.5%。过程降水量大于800mm的区域,主要分布在广东的东南局部,为地质灾害不易发地区,没有灾害点出现;过程降水量400~800mm的区域基本覆盖了广东、广西、江西、浙江、安徽等省(区)的山地(地质灾害高发区),地质灾害分布最为广泛,地质灾害点密度为4.6~6.4处/100km2;过程降水量200~400mm的区域覆盖了云南、重庆、湖南等地,地质灾害分布广泛,灾害点密度为6.4处/100km2。可见,本次大范围地质灾害的发生主要受到此次强降水过程的控制。

图5.56 2008年6月6~19日降水量分段与单位面积地质灾害点统计

(3)2008年7月6~10日强降水过程

2008年7月6~10日,华南大部、贵州东部、江南中西部、江汉东部、江淮西部、黄淮中东部、吉林北部等地出现了贯穿南北的强降水过程,全国多个省份共76处重大灾害点,其中:广东13处,湖北13处,安徽9处,广西2处等。

从图5.57降水量分段与单位面积灾害点个数统计来看,随着过程降水量增大,地质灾害点密度明显呈现增多趋势,特别是过程降水量介于100~300mm的区域,地质灾害分布点密度为0.8处/100km2;过程降水量大于300mm的区域,主要分布在广东的东南局部,为地质灾害不易发地区,没有灾害点出现;过程降水量在0~100mm范围内,也有大量灾害点分布。可见,此次强降水过程分布广泛,除降水中心灾害点个数较多外,在其他降水范围内仍有很多灾害点分布。

图5.57 2008年7月6~10日降水量分段与单位面积地质灾害点统计

(4)2008年7月20~24日强降水过程

2008年7月20~24日,四川盆地、黄淮、江淮等地普降暴雨到大暴雨,过程雨量50~200mm。在多处引发了大量地质灾害,其中四川50处,湖北29处,湖南26处,陕西7处,重庆6处,贵州6处等。

从图5.58降水量分段与单位面积灾害点个数统计来看,灾害点密度最大的区域过程降水量主要介于100~150mm之间,主要分布在四川、湖北、湖南等地质灾害多发区,而在过程降水量更大(>200mm)的区域,灾害点密度反倒相对较小,主要是因为这部分区域主要位于山东、河南、湖北等省份的地质灾害低易发区。可见山区或者说地质灾害多发区的灾害发生,主要受到强降水过程的控制,也即只有强降水过程落在地质灾害多发区时,地质灾害才会大量发生。

(5)2008年7月31日至8月2日强降水过程

2008年7月31日至8月2日,安徽、江苏局地出现强降水过程,累计降雨量50~200mm,局地250~530mm。最大降雨中心位于安徽的东北局部(>300mm),无灾害点发生;次级降雨中心位于安徽南部,为灾害多发区,引发灾害10处。

图5.58 2008年7月20~24日降水量分段与单位面积地质灾害点统计

从图5.59降水量分段与单位面积灾害点个数统计来看,也反映了这一特点,灾害点主要分布在过程降水量100~300mm的区域。在10~100mm覆盖的其他区域,有一些灾害点零星分布。

图5.59 2008年7月31日至8月2日降水量分段与单位面积地质灾害点统计

(6)2008年8月13~17日强降水过程

2008年8月13~17日,长江中上游、江淮地区等地大部分地区出现大到暴雨、局部大暴雨,降雨量普遍在50mm以上,湖北南部和东部、湖南西北部、河南东南部、安徽西部等地有100~200mm,部分地区超过200mm。在湖北、湖南、重庆等地引发大量灾害。其中湖南27处,湖北14处,四川12处,贵州6处,陕西3处,重庆2处。

从图5.60降水量分段与单位面积灾害点个数统计来看,灾害点密度最大的区域主要集中落于降水量大于200mm的区域,因为该区域位于湖南西北局部地区,降水强度的大幅度集中[24h降水量湖南桑植(164.4mm)、通道(113.4mm)、平江(108.0mm)破历史同期记录],引发了大量的群发地质灾害。

(7)2008年8月28~29日强降水过程

2008年8月28~29日,湖北、安徽、重庆等地两天累计雨量一般有50~250mm。在湖北引发了7处,重庆引发了4处地质灾害。

从图5.61降水量分段与单位面积灾害点个数统计来看,灾害点主要集中分布在过程降水量大于50mm的区域,该区域主要位于湖北、湖南北部、重庆大部两日累积雨量基本都达到暴雨级别,降雨强度大,地质灾害频发。

图5.60 2008年8月13~17日降水量分段与单位面积地质灾害点统计

图5.61 2008年8月28~29日降水量分段与单位面积地质灾害点统计

(8)2008年9月22~27日强降水过程

2008年9月22~27日,四川省9个县(市)降了大暴雨;北川县连续5d出现暴雨;彭山和新都2个县(市)日降水量突破9月历史极值。地震灾区部分地方道路中断,山体滑坡和泥石流频发,重大灾害点达40处(图5.62)。地质灾害点密度最大区域位于100~200mm降水量区域,其次为50~100mm区域。

从图5.63降水量分段与单位面积灾害点个数统计来看,灾害点主要集中分布在过程降水量100~200mm的区域,主要位于四川西部南北延伸地带。

5.8.6 台风暴雨引发地质灾害分析

2008年汛期(5~9月)全国共有6次台风登陆我国大陆,带来了丰富强降水,对于崩塌、滑坡、泥石流等地质灾害的发生起到了一定的引发作用。

(1)热带风暴“风神”(6月25~29日)

6号热带风暴“风神”6月25日清晨在深圳登陆。受其影响,广东、福建、广西、江西、湖南等地降大到暴雨,在广东、江西、浙江、广西等省(区)引发了大量的崩塌、滑坡、泥石流地质灾害。

从不同降水量分段的灾害点密度来看,过程降水量在50~400mm之间时,灾害点分布较多,特别是100~200mm、300~400mm过程降水量时,灾害点密度分别达到了1.2处/100km2和1.6处/100km2。而降水量大于400mm的区域主要集中在广东东南沿海局部地区,灾害少发(图5.64)。本时段的地质灾害点主要是由于台风带来的集中降水引发的。

图5.62 2008年9月22~27日强降水过程与地质灾害点分布(台湾省专题资料暂缺)

图5.63 2008年9月22~27日降水量分段与单位面积地质灾害点统计

图5.64 热带风暴“风神”(6月25~29日)诱发灾害点分布统计

(2)热带风暴“海鸥”(7月19~20日)

7号热带风暴“海鸥”7月15日下午在菲律宾以东海面上生成。17日在台湾省宜兰县登陆,18日在福建省霞浦县再次登陆。受其影响,福建、广东、浙江、江西等地相继出现暴雨到大暴雨,在广东、福建两省引发了7处滑坡、崩塌、泥石流等小型灾害(图5.65)。

图5.65 热带风暴“海鸥”(7月19~20日)诱发灾害点分布统计

本次降水过程具有降水面积相对集中的特点,过程降水量大于50mm的区域面积较小,灾害点集中分布在过程降水量100~150mm的局部区域。

(3)热带风暴“凤凰”(7月28日至8月2日)

第8号热带风暴“凤凰”于7月25日下午在西北太平洋洋面上生成,28日早晨在台湾省花莲登陆,同日22时在福建省福清市再次登陆,登陆时为台风强度(中心附近风力12级)。受其影响,浙江东南部、福建中北部等地普降大到暴雨,部分地区大暴雨或特大暴雨;长江口、福建、浙江等地出现8~10级大风,局部达14级。在安徽、福建、广东、江西等省份引发了35处群发型地质灾害。

过程降水量大于300mm的区域主要集中在安徽东部与江苏交界地区,属地质灾害不易发区,无灾害点分布。而过程降水量在100~300mm的区域主要分布在福建、广东、安徽南部等地质灾害多发区,降水集中,地质背景环境条件脆弱,地质灾害大量发生(图5.66)。

图5.66 热带风暴“凤凰”(7月28日至8月2日)诱发灾害点分布统计

(4)强热带风暴“北冕”(8月7~9日)

强热带风暴“北冕”8月6日傍晚在广东省阳西县沿海登陆,登陆时中心附近最大风力有10级;并于7日下午在广西东兴市沿海再次登陆,登陆时中心附近最大风力有8级。受其影响,华南大部以及云南普降大到暴雨,局部降大暴雨或特大暴雨,过程最大降水量超过400mm。引发130处地质灾害,其中:四川50处,湖北29处,湖南26处,陕西7处,重庆6处,贵州6处等。

从过程降水量分段的灾害点密度来看,降水量大于200mm的区域分布在广西南部的局部区域,地质灾害低发。而降水量50~100mm的区域分布在云南东部、广西中部、广东中部等灾害多发区,灾害点密度达1.4处/100km2(图5.67)。

图5.67 强热带风暴“北冕”(8月7~9日)诱发灾害点分布统计

(5)强台风“森拉克”(9月14~16日)

强台风“森拉克”于9月14日凌晨在台湾省宜兰县沿海登陆,登陆时中心附近最大风力为15级(48m/s)。“森拉克”具有发展快、强度强,移动慢、路径异常,正面袭击台湾,影响台湾和东海时间长等特点,降水集中在福建东北沿海、浙江东南沿海局部,无典型的台风引发灾害报告(图5.68)。

图5.68 强台风“森拉克”(9月14~16日)诱发灾害点分布统计

(6)强台风“黑格比”(9月23~27日)

强台风“黑格比”于9月24日晨在广东省电白县沿海登陆,登陆时中心最大风力达到15级(48m/s)。“黑格比”带来的强降水过程与强热带风暴“北冕”相似,地质灾害点密度最大的区域过程降水量介于100~200mm之间,在广东、广西、云南等地引发了大量地质灾害(图5.69)。

图5.69 强台风“黑格比”(9月23~27日)诱发灾害点分布统计

5.8.7 第一代与第二代区域预警系统应用对比

以2007年7~8月和2008年7~8月空间预报准确率核算,前者约为40%,后者约为27%,但后者预警面积仅为前者的四分之一,大大减少了预警区域,等于减少了防灾相应成本。

采用两套系统以2008年5月1~15日实际预警情况开展了对比分析(表5.14)。

表5.14 2008年汛期第一代与第二代区域预警系统应用对比

结论是,第二代预警系统在继承第一代系统临界雨量判别优势的基础上,突出反映了区域地质环境条件,在预警准确度、精细度等多个方面有较大改进。

『贰』 河南最多发生什么自然灾害

河南地处中原,是平原地带,一般不会发生大的自然灾害,解放以前由于地处黄河流域经常发生洪涝灾害:全地区有大小26座水库相继崩堤垮坝,9县1镇东西150公里,南北75公里范围内一片汪洋。400多万群众被洪水围困,10多万群众死亡,30多万头大牲畜漂没,300多万间房屋倒塌,直接经济损失34·97亿元,相当于建专区以来十几年财政收入的总和。 板桥水库大坝,位于多灾贫困的河南驻马店地区,三门峡水库大坝之东南,是大跃进的产物,工程质量粗劣,又无正常维护,至灾害发生时,17个泄洪闸只有五座能开启。1975年8月初,一场台风引发了当地历史上千年一遇的特大暴雨。河南泌阳县境内汝河上游的板桥水库水位暴涨,水库管理人员在没有得到上级命令的情况下,不敢大量排水泄洪,而外地区石漫滩水库的大量洪水急骤流入板桥水库,加快了板桥水库水位暴涨的速度。 地质灾害通常不会发生但河南地区也有相对的地质灾害频发区:河南地质灾害主要涉及南部地区。河南南部市县乡镇有哪些?主要包括:信阳市、驻马店市、南阳市;确山县、泌阳县、桐柏县、正阳县、息县、汉川县、光山县、新县、商城县、汉川县、固始县、淮滨县;郭家河乡、戴咀乡、八里畈乡、达权店乡、雷堂乡、吴河乡。 通常而言河南大部分地区通常发生的自然灾害是暴雨引起的内涝和泥石流灾害! 但是不排除地震灾害的发生,而且一旦发生地震所引起的灾害成都将是不可估计的,因为在平原地区地震灾害的破坏力比盆地丘陵地区将强上数倍或数十倍!

『叁』 河南省宝泉抽水蓄能电站地质灾害调查评价及防治措施

李莲花

(河南省地质矿产勘查开发局第一水文地质工程地质队,新乡,453002)

摘要河南省宝泉抽水蓄能电站为国家级重要建设项目,地处中山区,地质灾害比较发育,存在崩塌、滑坡、泥石流等地质灾害,文章对场地各种地质灾害的分布、特征进行了分析论述,对其危险性进行了评估,并对地质灾害提出了相应的防治措施。

关键词地质灾害调查危险性防治措施宝泉抽水蓄能电站

河南省宝泉抽水蓄能电站位于河南省辉县市峪河上的宝泉水库一带。抽水蓄能电站装机容量为1200MW,年发电量20.1亿kW·h,年抽水耗电量为26.42亿kW·h,属日调节纯抽水蓄能电站,综合效率0.76。电站建成后,将以500kV一级电压两回路出线接入新乡500kV变电站,承担河南电力系统削峰填谷、事故备用、调频等任务。为国家级重要建设项目。电站由上水库、下水库、引水发电系统及附属设施组成。

河南省宝泉抽水蓄能电站建设场地地处中山区,地质灾害比较发育,地形起伏较大,地质构造复杂,岩性岩相不稳定,人类工程活动较强烈,地质环境条件复杂。本次工作采用资料收集、野外地质灾害调查和综合分析相结合的方法,本文对场地各种地质灾害的分布、特征进行了分析论述,对其地质灾害危险性进行了评估,并对地质灾害提出了相应的防治措施。

1地质灾害类型及特征

经野外地质灾害综合调查,河南省宝泉抽水蓄能电站建设场地现状条件下存在崩塌、滑坡、泥石流等地质灾害,其分布、特征如下:

1.1崩塌

评估区内崩塌体分布密集,主要分布于库岸岸边及山前陡壁,其成因和分布明显受地形地貌、岩性和构造条件控制,主要崩塌类型有灰岩崩塌、石英砂岩崩塌。

(1)灰岩崩塌:

主要分布在寒武系下统毛庄组(

)灰岩及寒武系中统张夏组(

)灰岩陡崖处。

分布于高程770~820m之间的毛庄组(

)灰岩及在高程900m以上的张夏组(

)灰岩,中至厚层状结构,岩性坚硬,性脆,岩体风化、卸荷裂隙发育,致使局部岩体离开母岩形成危岩,危岩分布较普遍,稳定性较差,在重力、地震、降水等因素作用下,危岩体失稳,崩塌滚落至山坡和沟谷,形成崩塌灾害。崩塌体形态多为不规则状,且规模大小不一,体积多为3.0~135m3

(2)石英砂岩崩塌:

主要分布在中元古界汝阳群浅变质石英砂岩形成的陡崖处。

在地形上,中元古界汝阳群浅变质石英砂岩(

)形成近160m高的陡壁,使岩体临空,在构造节理及风化、卸荷节理的作用下,使局部岩体形成危岩,危岩体分布较普遍,加之岩体中粉砂质页岩较软夹层的存在,导致危岩体稳定性较差,在重力、地震、降水等因素作用下,发生失稳,坠落于山坡、坡脚、沟谷等,形成崩塌灾害。该类崩塌一般以下列两种形成出现:一种是后缘裂隙上下贯通,底部软弱夹层形成岩腔,引发坠落式崩塌;另一种是后缘裂隙宽大,危岩体沿软弱夹层滑动,形成滑移式崩塌。崩塌体形态多为矩形,规模大小不一,体积一般为6~350m3,最大为22×104m3

1.2滑坡

龟山滑坡为区内主要的滑坡,位于电站下水库左岸160m的直壁陡崖上并向电站下水库临空,滑向即为下水库,直接危胁电站安全。其特征叙述如下:

1.范围

滑坡体南及西南界为峪河,东界以馒头组、毛庄组、徐庄组中发育的挠曲为界,西及西北界为沟谷。龟山滑坡体东西长550~800m,南北向宽260~350m,滑坡体最大厚度为210m,平均厚度约110m,体积为2100万m3。属巨型滑坡。

2.滑体

滑坡体地层组成从西向东依次为寒武系下统馒头组(

)、毛庄组(

)、寒武系中统馒徐庄组(

)、张夏组(

)地层,并以张夏组(

)灰岩、白云岩为主,滑坡体表层大部分已呈胶结状态,内部一般较完整,基本保持原岩结构,滑体底界面平整、光滑,为摩擦镜面,镜面上镶嵌有滑带中的角砾岩,并发育有擦痕、擦沟。

3.滑带

滑带为寒武系下统馒头组第一段(

)底部泥灰岩,滑带底滑带厚度0~15m。滑带岩性由角砾、泥、泥灰岩屑碎组成。角砾大小混杂,呈次棱角—棱角状,泥质或钙质胶结。在滑面高程652~736m区域,处于水位变动带。

4.滑床

滑床主体为中元古界汝阳群(

)浅变质石英砂岩。

5.运动特征

运动方向:滑体总体向西或南西西滑动;

滑动距离:前缘滑体滑距可达510m,后缘滑体滑距达250m;

滑动时间:根据滑带物质测年资料,滑体年龄14万~21万年,由此判断滑体形成于中晚更新世。

6.滑体形成演化过程

龟山滑坡体的形成演化过程大致可分为3阶段。

第一阶段:正常岩层受断层、裂隙切割和河流的侵蚀,形成与周围岩层分离的块状岩体,在峪河及宝泉沟处具有高陡边坡和有效临空面;

第二阶段:在地壳运动和地震力的作用下,分离的块状岩体沿较弱的

泥灰岩向临空方向滑动;

第三阶段:滑体滑动后,进一步经受地质构造运动、河流的侵蚀、风化及人为等因素的影响,形成了现状地貌。

1.3泥石流

评估区泥石流沟谷有东沟和寺沟,其特征分述如下:

1.东沟泥石流

东沟为峪河左岸支流,位于宝泉村东。上游三面环山、一面出口,河谷呈“V”字型,下游河谷呈“U”字型。沟谷汇水面积6km2,沟长约4km,谷坡坡度30°~40°,沟谷纵坡降为4%~10%,。以上地形地貌条件有利于泥石流的形成。

东沟河谷覆盖层为坡洪积物组成,其岩性主要为碎石、块石及壤土,呈松散或半胶结状。覆盖层在谷底厚度0~15m,在谷坡厚度0~6m。据调查、测算,碎屑固体物储量约90×104m3,为泥石流的形成提供了物源条件。

东沟地形地貌条件、碎屑固体物源条件具备,沟谷植被发育较好,在暴雨作用下,易形成泥石流,据调查,泥石流规模属小型。

2.寺沟泥石流

寺沟为峪河左岸支流,位于宝泉村北,上游三面环山,一面出口,河谷呈“V”字型。沟谷集水面积2km2,沟长约2km,谷坡坡度30°,沟谷纵坡降为13%。以上地形地貌条件也有利于泥石流的形成。

寺沟河谷覆盖层为坡洪积物组成,其岩性主要为碎石、块石及壤土,呈松散或半胶结状。覆盖层在谷底厚度0~13m,在谷坡厚度0~5m。据调查、测算,碎屑固体物储量约30×104m3,为泥石流的形成提供了物源条件。

寺沟地形地貌条件、碎屑固体物源条件具备,植被发育较好,在暴雨作用下,易形成泥石流,据调查,泥石流规模属小型。

2地质灾害危险性评估

2.1崩塌灾害

场地崩塌灾害,主要发生在灰岩、浅变质石英砂岩形成的陡崖。崩塌体堆积于沟谷谷坡地带。现状条件下,处于稳定状态,危险性小。工程施工过程中,在施工扰动或爆破震动等诱发因素作用下,危岩易发生失稳,形成崩塌地质灾害,危险性为中等;也可能影响原崩塌体的稳定性,使其再次失稳发生崩塌灾害,危险性为中等;也可能改变原有边坡的稳定状态,形成崩塌,危险性为中等。

2.2滑坡灾害

根据《河南省宝泉抽水蓄能电站龟山滑坡体稳定性分析专题报告》,对龟山滑坡的危险性作如下评估。从定性分析看:

(1)滑体表面及部分滑带物质已胶结,且未发现贯穿整个滑体的较新切割面;

(2)滑体形成于中晚更新世;

(3)在14万~21万年的地质历史过程中,龟山滑坡体已经历了无数次古地震的考验。

从定量分析看:在自然状态下,滑体的的整体稳定系数为1.27~1.53。

因此,龟山滑坡体处于稳定状态,且未造成损失,其危险性小。

但是,河南省宝泉抽水蓄能电站上水库蓄水将影响龟山滑坡体的稳定性。上水库蓄水水位为758~790m,而龟山滑坡体底滑面高程在630~800m之间,且大部分底滑面处于上水库蓄水水位以下。上水库距龟山滑坡较近(约1.4km),上水库蓄水后,龟山滑坡体底滑面将在库水长期浸润和径流作用下,降低滑坡体的稳定性。另外,在工程施工爆破震动等因素作用下,也将影响滑坡体的稳定性。根据《河南省宝泉抽水蓄能电站龟山滑坡体稳定性分析专题报告》,龟山滑坡体在天然状态下,稳定系数为1.27~1.53,滑坡体处于稳定状态,但在7度以上地震烈度条件下,当地震系数k=0.12时,其稳定系数为0.92~1.10,稳定系数略小,滑坡体处于极限平衡或不稳定状态。直接威胁下水库工程安全,危险性较大。

2.3泥石流灾害

1.东沟泥石流的危险性

现状条件下,东沟地形地貌条件、碎屑固体物源条件具备,植被发育较好,在暴雨作用下,易形成泥石流,易发程度属中等。据资料记载和访问,较大的一次泥石流发生在1996年夏季,暴雨期间发生泥石流,冲毁了少量农田,未造成其它损失,危害小。故东沟泥石流灾害的危险性为小级。

工程建设诱发、加剧泥石流的可能性,主要原因表现在以下两个方面:一是工程建设局部改变了沟谷覆盖层的天然稳定状态,增大了固体物源运移的可能;二是工程建设产生的大量弃渣将会成为泥石流形成的潜在物源。

东沟,上水库区工程规模较大,开挖山坡和弃渣规模也较大,为东沟泥石流提供了较丰富的松散物源,故上水库区工程建设有加剧泥石流灾害的可能性,危险性为中等。

2.寺沟泥石流的危险性

寺沟地形地貌条件、碎屑固体物源条件具备,植被发育较好,在暴雨作用下,易形成泥石流,易发程度属轻度。据调查,寺沟泥石流规模小,多年未造成居民生命财产损失,危害小。故寺沟泥石流灾害的危险性为小级。

在寺沟无工程建设,因此工程建设对寺沟泥石流无影响,危险性小。

3防治措施

地质灾害防治,应贯彻“以防为主,防治结合”的方针,达到保护地质环境,避免或减少地质灾害损失的目的。针对评估区存在的崩塌、滑坡、泥石流等地质灾害,分别提出相应防治措施和建议。

3.1对崩塌灾害的防治措施

应对库岸危害较大的危岩清除或加固。

在崩塌分布的地段,在工程施工开挖时,应按有关规范要求严格施工,避免引发边坡失稳,造成崩塌灾害。必要时应采取避让措施。

水库蓄水工程引发的库岸失稳造成的崩塌,应按照有关规范采取相应的防护措施,避免崩塌灾害的发生。

3.2对滑坡灾害的防治措施

在工程施工开挖时,应按有关规范要求严格施工,避免引发边坡失稳,造成滑坡灾害。

针对水库蓄水工程引发的库岸失稳造成的滑坡,应按照有关规范采取相应的防护措施,避免滑坡灾害的发生。

针对龟山滑坡的特点,结合工程、地形、地层岩性等特点,宜采取开挖卸载的防治措施,以提高滑坡在地震条件下的稳定性,其开挖石料可用作电站水库坝体的填筑料,开挖卸载方式采取等高程从上而下逐层开挖方案,以避免诱发滑坡失稳。此防治措施既保证了龟山滑坡的稳定性,又提供了电站水库坝体的填筑料,是一个科学安全又经济的滑坡防治措施。根据《河南宝泉抽水蓄能电站可行性研究补充报告》,有实验验证滑坡体从原高程900m开挖卸载至高程800m时,处于稳定状态。

3.3对泥石流灾害的防治措施

工程施工将产生大量的弃渣,弃渣场的位置要合理,弃渣场的建设应按相关规范采取相应的工程措施,以防止诱发东沟和峪河泥石流的产生。

对东沟泥石流、寺沟泥石流,应建立拦砂坝和扩大植被覆盖率等措施,以避免泥石流灾害的发生。对泥石流影响范围内的宝泉村,建议搬迁,以避免人民生命财产的损失。

『肆』 河南发布红色地质灾害预警是不是地震

地震

(自然来现象)
编辑
地震又称自地动、地振动,是地壳快速释放能量过程中造成振动,期间会产生地震波的一种自然现象。地球上板块与板块之间相互挤压碰撞,造成板块边沿及板块内部产生错动和破裂,是引起地震的主要原因[1] 。
须用地震仪才能记录下来;不同类型的地震仪能记录不同强度、不同远近的地震。世界上运转着数以千计的各种地震仪器日夜监测着地震的动向。[3]

当前的科技水平尚无法预测地震的到来,未来相当长的一段时间内,地震也是无法预测的。所谓成功预测地震的例子,基本都是巧合。对于地震,我们更应该做的是提高建筑抗震等级、做好防御,而不是预测地震。[4]

『伍』 河南局部地区17,18号会有地质灾害4级什么意思地震

咱也是河南的,我安阳的,不知道会怎么样 很担心吧 建议你 准备点吃喝物品,应该不会有事的

『陆』 河南省地质环境与地质灾害调查与监测

通过对郑州市铝土矿来区资源开发利用与源环境遥感调查、洛阳市正村煤田影响评价生态遥感调查、永城市薛湖煤田影响评价生态遥感调查等项目的开展,较好地发挥了卫星遥感在地质环境与地质灾害调查与监测方面的应用。项目通过对自然规律的认识与延拓应用相结合,从自然现象发生的必然性入手,利用自然法则来治理优化环境,终止或延缓灾害链条的发生、发展过程。

『柒』 近期河南地质灾害

云台山佳雨农家为您解答:

云台山全是石头山,不会发生泥石流和山体滑坡。绝对安全!

祝你们旅途愉快!

『捌』 河南省国土资源厅关于加强地质灾害危险性评估工作的通知哪里可以下载

他们有个官网可以去那里 泽匠

『玖』 地质灾害信息系统

整理集成全国地质环境与地质灾害调查、监测和研究成果,编制全国地质灾害气象预警预报信息图层30个,建立全国地质灾害气象预警预报信息系统。

5.2.1 信息图层编制原则

在地质灾害气象预警信息图层编制过程中,充分考虑到影响地质灾害发生的各种地质环境背景条件因子、历史地质灾害点分布、社会经济条件、人类工程设施等因素。依据如下几个原则:

1)全面性。将目前能够收集到的影响地质灾害发生的各种因素,尽可能地考虑全面,至于每种因素的影响贡献大小在权重计算部分考虑。

2)时效性。每个信息图层的编制中,尽可能以最新最翔实的数据资料为基础,从而保证对最新资料信息和研究成果的及时利用和更新。

3)适用性。收集到的数据资料,根据全国地质灾害气象预警预报的具体工作实际需要,进行相应的改编处理。

4)最大可能使用数据。全国地质灾害气象预警预报的基本比例尺定位为1∶100万,一些关键的图层数据,如地理底图、地质底图、土地利用底图均可达到1∶100万的比例尺需求,但部分信息图层无法达到1∶100万的比例尺,本项目本着最大可能使用数据的原则,暂且采用小比例尺的图层直接投影变换代替,以后工作中再逐步更新。

5.2.2 信息图层概况

信息图层的投影参数如下:

比例尺:1∶100万

投影类型:亚尔博斯等积圆锥投影坐标系;坐标单位:mm

第一标准纬度:25°00༼″;第二标准纬度:47°00༼″

中央子午线经度:105°00༼″;投影原点纬度:0°00༼″

地质灾害气象预警预报信息图层基本情况见表5.1。

5.2.3 信息图层说明

各信息图层编制按照各因子的分布特点进行分级。

5.2.3.1 年均雨量

全国年均雨量分为11个级别,各级别年均雨量分段:<50mm,50~100mm,100~200mm,200~400mm,400~600mm,600~800mm,800~1000mm,1000~1200mm,1200~1600mm,1600~2000mm,>2000mm。

5.2.3.2 年均气温

根据《中国自然地理图集》(2004),将全国年均气温分为9个级别,各级别年均气温分段如下:<-4℃,-4~0℃,0~4℃,4~8℃,8~12℃,12~16℃,16~20℃,20~24℃,>24℃。

5.2.3.3 年蒸发量

根据《地下水资源与环境图集》(2004),将全国年蒸发量分为10个级别,各级别分段如下:<500mm,500~600mm,600~800mm,800~1000mm,1000~1200mm,1200~1400mm,1400~1600mm,1600~2000mm,2000~2400mm,>2400mm。

表5.1 全国地质灾害气象预警预报信息图层简表

5.2.3.4 年干燥度

干燥度,又称干燥指数或干燥因子。描述气候干燥程度的指数,与湿润系数互为倒数,一般用水分的可能消耗量与收入量的比值表示。它是表征一个地区干湿程度的指标。

根据《地下水资源与环境图集》(2004),将全国年干燥度分为12个级别,各级别分段如下:<0.5,0.5~0.75,0.75~1.0,1.0~1.5,1.5~2.0,2.0~3.0,3.0~5.0,5.0~10,10~25,25~50,50~100,>100。

5.2.3.5 地震烈度

采用第三代《中国地震烈度区划图》(1990),将全国地震烈度按5级区划:Ⅴ度区、Ⅵ度区、Ⅶ度区、Ⅷ度区、Ⅸ度区。

5.2.3.6 历史地震点

来源于科学数据共享工程,中国地震局共享数据网,近年来(1999年1月1日至2006年11月2日)的已发地震点数据,共203个。

5.2.3.7 地层岩性

根据“中国地质科学院地质研究所,1∶100万地质图”重新进行编制划分。

(1)划分原则

地质灾害的产生与地层岩性关系密切。地层岩性是地质灾害形成的内在因素,对地质灾害的产生起着主导和控制作用,岩性及其组合特征的控制作用决定着地质灾害的区域分布。从沿海向内陆,地层岩石由火成岩为主变为变质岩、碎屑岩相间分布,进而变为碳酸盐岩、碎屑岩、变质岩相间分布。

斜坡岩土体的性质及其结构是形成滑坡、崩塌的物质基础。一般易形成滑坡、崩塌的岩体,大都是碎屑岩、软弱的片状变质岩,岩性多为泥岩、页岩、板岩、含碳酸盐类软弱岩层、泥化层、构造破碎岩层。这些软弱岩层经水的软化作用后,抗剪强度降低,容易出现软弱滑动面,形成崩滑体。

黏性土滑坡在四川分布密集,在中南、闽、浙、晋西、陕南、河南等地也较密集,在长江中下游、东北等地也有一定分布;半成岩类粘土岩滑坡在青海、甘肃、川滇地带、山西几个断陷盆地中分布密集;黄土滑坡在黄河中游、青海等省较密集;泥岩、千枚岩、砂质板岩形成的滑坡在湖南、湖北、西藏、云南、四川、甘肃等地十分发育。

泥石流主要发育在变质岩区和黄土区,火成岩区和碎屑岩地区次之,碳酸盐岩地区泥石流相对不发育。

根据全国地质灾害发育的普遍规律并结合不同地区地质灾害发育的特殊性,主要考虑以下几个方面的原则划分地质灾害敏感性岩组。

1)地层岩性与地质灾害分布的关系;

2)地层岩性的成因、物质组成与空间分布特征;

3)地层岩性的时代;

4)岩土体(不同时代地层)的工程地质性质;

5)水岩相互作用的敏感性;

6)1∶100万中国地质图的精度。

(2)划分方案

根据地质灾害发育的普遍规律以及地层岩性对地质灾害的敏感程度,将地质灾害敏感性岩组划分为10种类型。敏感性指数值越高,则相应的岩组对地质灾害的发生也越敏感。

Ⅰ类:主要为水体、粉砂质食盐、食盐壳、盐碱壳、风积物砂等区域,这些区域不会发生滑坡、崩塌、泥石流等地质灾害。

Ⅱ类:主要是火成岩类。岩性为闪长岩、石英闪长岩、辉长岩、花岗岩、辉绿岩等,岩性坚硬,力学强度大,是很好的地基和建筑材料。

Ⅲ类:主要是火成岩类。岩性为钾长花岗岩、二长花岗岩、碱长花岗岩、片麻状花岗岩、斜长花岗岩、紫苏花岗岩、正长岩、石英正长岩、煌斑岩、白岗岩、花岗闪长岩、英云闪长岩、辉石闪长岩、辉长闪长岩、花岗斑岩、英安斑岩、辉绿岩、橄榄岩、橄榄辉绿岩、玄武岩、橄榄玄武岩、苦橄玄武岩、石英二长岩、石英二长斑岩、辉石岩、角闪正长岩、闪长玢岩、英安玢岩、辉绿玢岩、苦橄玢岩、安山玢岩、超基性岩、安山岩、碱性岩、英安岩、粗面岩、科马提岩、云辉二长岩、白榴岩、霓霞岩、碎斑熔岩、细碧岩、石英钠长斑岩、霏细斑岩、辉长苏长岩等,岩性坚硬,力学强度较大。

Ⅳ类:主要是变质岩类和部分火成岩及沉积岩。岩性为白云质灰岩、灰岩、白云岩、黑云母花岗岩、白云母花岗岩、黑云斜长花岗岩、二云母花岗岩、流纹岩、变粒岩、片麻岩、角闪岩、砂砾岩、砾岩、变质橄榄辉长岩、糜棱岩、蛇纹岩、大理岩、珍珠岩、硅质岩、蛇绿岩、浅粒岩、岩溶角砾岩、铝铁岩系、黑云角闪闪长岩、斑状云母橄榄岩、榴辉岩、黑云母霞石白榴岩、霏细岩等,岩性较坚硬,力学强度较大。

Ⅴ类:主要是沉积岩类。岩性为页岩、夹页岩、火山碎屑岩、生物碎屑岩、片岩、千枚岩、板岩、砂岩、粉砂岩、碳酸盐岩、凝灰岩、糜棱岩等,半坚硬岩组,力学强度较低,易风化,遇水软化,是地质灾害较易发生的地层。

Ⅵ类:主要是沉积岩类。岩性为泥岩、钙质泥岩、泥灰岩、夹泥岩、粘土岩、泥页岩、煤系、泥质粉砂岩、冰碛泥砾岩等,半坚硬岩组,力学强度低,遇水泥化,是地质灾害容易发生的地层。

Ⅶ类:岩性为黄土、黄土状土,黄土的地层年代为Q1p,Q2p,渗透性弱、抗剪强度高。

Ⅷ类:主要为冲海积物、海积物、冲湖积、湖积、沼泽堆积、石英斑岩风化层、花岗斑岩风化层等松散层。

Ⅸ类:主要是冲积物、冲洪积物、洪冲积物、残坡积物、坡冲积物、冰碛物、苦橄玄武岩风化层、辉绿岩风化层、花岗岩风化层、冰积物等松散堆积物,是产生地质灾害的主要物源。

Ⅹ类:岩性为黄土,地层年代为Q3p,Qh,疏松、大孔隙,垂直节理发育,渗透性强、抗剪强度低、具湿陷性(表5.2)。

5.2.3.8 断裂分布

根据“中国地质科学院地质研究所,1∶100万地质图”编制。考虑到网格单元的大小和断层断裂的影响范围,计算时采用网格区内断层断裂的密度进行计算。

5.2.3.9 第四系成因时代

根据1∶250万第四纪地质图编制,将第四系的成因时代分为7类:N2-Q1p,Q,Qp,Q1p,Q2p,Q3p,Qh。

5.2.3.10 岩土体类型

来源于1∶400万岩土体类型图,将岩土体类型分为7类:火成岩、变质岩、碎屑岩、碳酸盐岩、砂质土、黄土、其他土。

5.2.3.11 第四系成因类型

根据1∶250万第四纪地质图编制,将第四系成因类型分为19类:冰碛、冰水沉积、冰水-洪积、冰水-湖积、洪积、残积、残坡积、冲积、冲积-洪积、冲积-湖积、寒冻风化残坡积、红土化残积、黄土堆积、风积、湖积、坡积、岩溶化残坡积、火山堆积、海陆交互相及海相堆积。

表5.2 中国工程地质岩组划分表

5.2.3.12 水文地质类型

将水文地质类型分为5大类、18亚类:

1)松散沉积孔隙水(滨河平原冲海积层孔隙水、堆积平原冲洪积层孔隙水、黄土高原黄土层孔隙水、内陆盆地冲洪积层孔隙水、沙漠风积沙丘孔隙水、山间盆地冲积层孔隙水);

2)基岩裂隙水(丘陵高原碎屑岩裂隙水、熔岩孔隙裂隙水、山地丘陵岩浆岩裂隙水、山地变质岩裂隙水);

3)多年冻土冻结层上水(高纬度山地基岩冻结层上水、中低纬度高原基岩冻结层上水、中低纬度高原松散沉积冻结层上水);

4)碳酸盐岩裂隙溶洞水(峰丛峰林裂隙溶洞水、岩溶丘陵裂隙溶洞水、岩溶山地裂隙溶洞水);

5)其他(湖泊、雪被)。

5.2.3.13 海拔高度

从1∶100万地理地貌底图中提取,将海拔高程分为6类:极高海拔(>6000m)、高海拔(4000~6000m)、中高海拔(2000~4000m)、中海拔(1000~2000m)、低海拔(<1000m)、其他(非山地丘陵)。

5.2.3.14 起伏程度

从1∶100万地理地貌底图中提取,将地形起伏分为6类:极大起伏(>2500m)、大起伏(1000~2500m)、中起伏(500~1000m)、小起伏(200~500m)、丘陵(<200m)、其他(非山地丘陵)。

5.2.3.15 地貌类型

从1∶100万地理地貌底图中提取,并重新归类,将地貌类型分为11类:山地、黄土梁峁、黄土台塬、黄土塬、风蚀地貌、台地、平原、冲积扇平原、低河漫滩、现代冰川、湖泊。

5.2.3.16 土壤侵蚀

根据“中国土壤侵蚀图”,将土壤侵蚀类型及侵蚀强度分为3大类、15亚类:

1)水力侵蚀(剧烈侵蚀、极强度侵蚀、强度侵蚀、中度侵蚀、轻度侵蚀、无明显侵蚀、微度侵蚀);

2)冻融侵蚀及冰川侵蚀(强度侵蚀、中度侵蚀、轻度侵蚀、微度侵蚀);

3)风力侵蚀(极强度侵蚀、强度侵蚀、中度侵蚀、轻度侵蚀)。

5.2.3.17 水系

从1∶100万地理底图中提取的线形河流。实际计算时,采用网格单元内水系密度参加计算。

5.2.3.18 植被

从1∶100万地理地貌底图中提取,将植被覆盖分为6类:红树林滩、森林、经济林与竹林、灌木林、草地、其他。

5.2.3.19 土地利用

根据“1∶100万土地利用类型图”编制,将土地利用类型分为6大类、13亚类。分别是:①耕地(水田、旱地);②林地(有林地、灌木林、疏林地、其他林地);③草地(高覆盖度草地、中覆盖度草地、低覆盖度草地);④水域;⑤城乡工矿居民用地(城镇用地、农村居民点、其他建设用地);⑥未利用土地。

5.2.3.20 公路

从1∶100万地理底图中提取的线形公路,又分为5类,即高速公路、主要公路、一般公路、大路、小路。实际计算时,采用网格单元内所有公路密度参加计算。

5.2.3.21 铁路

从1∶100万地理底图中提取的线形铁路,补充青藏铁路线路。实际计算时,采用网格单元内铁路密度参加计算。

5.2.3.22 矿山点

全国矿山调查点共11万多个。

5.2.3.23 分县人口密度

根据2003年人口普查数据,分县计算人口密度,分为5类:>750,450~750,150~450,50~150,<50。单位:人/km2

5.2.3.24 水坝分布

从1∶100万地理底图中提取,水坝工程点共885个。

5.2.3.25 塔庙宇文化要素分布

从1∶100万地理底图中提取,包括塔、庙宇和其他文化设施,计193个点。

5.2.3.26 灾害点—滑坡

2005年以前的数据来源于700个县市调查数据,2004~2007年数据来源于地质灾害气象预警收集的较大的滑坡灾害点数据。合计45917个点。随着更新的数据成果,将继续更新。

5.2.3.27 灾害点—泥石流

2005年以前的数据来源于700个县市调查数据,2004~2007年数据来源于地质灾害气象预警收集的较大的泥石流灾害点数据。合计9253个点。随着更新的数据成果,下一步将继续更新。

5.2.3.28 灾害点—崩塌

2005年以前的数据来源于700个县市调查数据,2004~2007年数据来源于地质灾害气象预警收集的较大的崩塌灾害点数据。合计13094个点。随着更新的数据成果,下一步将继续更新。

5.2.3.29 地震动参数

根据“中国地震动参数图GB18306-2001”,分为7个级别:≥0.40,0.30,0.20,0.15,0.10,0.05,<0.05。单位:g。

5.2.3.30 中国第四纪岩性图

根据1∶250万第四纪地质图编制,将第四系岩性分为11类:

砾质土;砂质土;黏质土;黄土类土;盐类为主;砾质土、黄土类土;黏质土、砂质土、砾质土;砂质土、黏质土;黏质土、砾质土;砂质土、砾质土。

『拾』 河南省地质环境监测院

河南省地质灾害预警预报会商室

五、主要监测成果和服务

2003年,河南省国土资源厅和省气象局联合开展了河南省地质灾害气象预报预警工作。2008年,通过河南卫视发布三级以上地质灾害预报预警信息34次,并通过电话、传真、手机短信等方式通知到基层国土资源管理部门和地质灾害监测防治责任人,为各级政府和社会各界提供了更具时效性的地质灾害预防信息;全省建立汛期地质灾害群测群防点983个,有效地防止了因地质灾害造成的人员伤亡和财产损失,防灾减灾效果显著。

河南省30多年的地下水监测,积累了长期系列资料,每年取得监测数据近10万组。依据监测资料每年编制《地下水监测报告》、《地下水水情通报》、《地下水水情预报》等10余份。监测资料为地下水资源开发利用、地下水环境保护和生态环境建设提供了可靠的基础资料;通过地下水环境监测,为城市规划、工农业发展和地方政府宏观决策提供了依据。

2006年,随着河南省区域地下水监测网优化及自动化建设项目的实施,进一步优化和完善了地下水环境监测网络,提高了监测工作的科技水平,对加快全省经济发展有重要意义。

2006年,由中国地质环境监测院下达“河南省的国家级单孔多层地下水示范监测井建设研究项目”,在深度(350m)、监测数量(4层)和材料(PVC-U管)等方面填补了国内该技术领域的空白,具有广泛的示范作用,为国家地下水监测工程的实施提供了参考依据。

六、法制建设

1.1998年颁布实施了《河南省地质灾害防治管理办法》(河南省人民政府令第45号)。

2.2002年发布并组织实施了《河南省地质灾害防治规划(2001—2010年)》。

3.2006年编制并实施了《河南省矿山环境保护与治理规划(2006—2015年)》。

4.2007年编制完成了《河南省地下水污染防治规划》。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864