山西省地质灾害信息网
A. 山西省地质灾害趋势预测
张毅刘瑾王平波
(山西省地质环境监测中心,太原,030024)
摘要本文分析了山西省由自然因素形成的地质灾害和人为活动引发的地质灾害状况。针对水动力条件的改变是影响自然地质灾害变化的重要因素出发,根据未来13年降水量的变化预测了自然地质灾害的发展趋势;按照矿产资源开发总体规划、公路交通发展规划和水资源开发利用规划等预测了工程活动引发的滑坡崩塌、泥石流、地面塌陷、地裂缝、地面沉降等灾害发展趋势。
关键词地质灾害趋势预测山西
地质灾害是指各种与地质作用有关的危害,它给人民生命和财产造成了损害。地质灾害从其形成的动力条件可分为自然地质灾害与人为活动引发的地质灾害两大类。山西地处高原,地形高差大,地质条件复杂,降水量集中,形成崩塌、滑坡、泥石流、地裂缝等地质灾害动力条件充分,属自然地质灾害易发区,历史上自然地质灾害具有点多面广的特点。山西是一个矿业开发大省,随着采矿深度和广度的增大,全省由采矿引起的地裂缝、地面塌陷、崩塌、滑坡、泥石流等人为地质灾害频繁发生,造成的经济损失与人员伤亡十分严重。另外,山西铁路、公路的修建,重要城市附近地下水的集中超量开采,也在一定程度上诱发了崩塌、滑坡、地裂缝、地面沉降等人为地质灾害的发生。据不完全统计,20世纪80年代以来山西各类地质灾害造成的直接经济损失达数10亿元,死亡人数超过2000人,受潜在地质灾害威胁的人员和财产数量惊人。近几年,虽然山西省有关部门在自然与人为地质灾害防治方面做了大量工作,取得了一定成效,但由于省内地质灾害种类多,分布广,各种地质灾害的成因机制、成灾规律、分布现状尚未完全查清,地质灾害依然是影响山西人民生命财产安全和阻碍省内国民经济发展的重要因素。控制和减轻地质灾害已经成为山西省面临的一个重要现实问题。有效保护和合理开发利用地质环境,防治地质灾害刻不容缓。
山西省地质灾害从灾害形成的动力条件来看,可分为自然因素形成的地质灾害与人为活动引发的地质灾害两大类。在地质环境条件相同的情况下,致灾动力条件的变化是决定自然地质灾害变化趋势的决定性因素,而人类工程活动及其产生的废弃物的堆放则是人为地质灾害发展变化的决定性因素。下面据此对全省自然与人为地质灾害的发展趋势作定性预测。
1山西自然地质灾害趋势预测
山西自然地质作用形成的灾害主要包括崩塌、滑坡、泥石流、构造型地裂缝、黄土湿陷型地裂缝等。从自然地质灾害造成的经济损失与人员伤亡情况来看,崩塌、滑坡、泥石流是主要的致灾体,其次是构造型地裂缝。因黄土湿陷型地裂缝造成的经济损失相对较小,且没有人员伤亡的记载。
自然地质灾害的形成都必须具备一定的地形地貌条件、地层岩性条件、地质构造条件与水动力条件。在上述条件中,对于自然地质灾害较为发育的任一地区,地形地貌、地层岩性、地质构造条件都是地质灾害产生的基础条件,其变化是缓慢的,只有水动力条件随降水强度的不同而发生变化。因此,水动力条件的变化对自然地质灾害的发展趋势起着十分重要的作用。
山西省自然地质灾害的研究表明,泥石流、滑坡、崩塌与降水量有着非常显著的正相关关系,连绵细雨过后突降暴雨或连续多年降水量偏大的年份,最易诱发这些地质灾害的发生;黄土湿陷型地裂缝与降水量也有着明显的正相关关系,大雨过后最易出现这些地质灾害。以原平市为例,在2001年进行的地质灾害调查与区划工作中,查出该区20世纪90年代共发生滑坡地质灾害8起,这8起滑坡地质灾害的形成时间集中分布在1995年(2起)与1996年(6起)的6、7、8月间。查阅原平市历年降水量资料,其多年(1954~2000年)平均降水量为436mm,1990~2000年降水量为250~700mm,而1995~1996年降水量为600~700mm,较多年平均降水量大多在250mm以上,为90年代的最大值。在这两年中,其6、7、8月降水量分别达到了120mm、250mm、290mm左右,较其他年份的月降水量大1倍以上。连续两年充沛的集中降水,导致了该区滑坡地质灾害的频繁发生。太原市1996年8月4日发生的特大泥石流地质灾害,也是在其上游太原西山、古交矿区遭遇百年不遇特大暴雨的条件下形成的。
山西位于大陆东岸的内陆。外缘有山脉环绕,因而受到海风的影响,形成较强的大陆性气候。同时由于受内蒙古冬季冷气团的袭击,北部比较寒冷,由此形成了山西冬季长而寒冷干燥且降水少,夏季短而炎热多雨,春季日温差大,风沙多且干旱严重,秋季短而天气温和的气候特点。山西省气候类型属于温带大陆性气候,四季变化明显,南北差异大,全省多年平均降水量为400~650mm之间。在全年总降水量中,春季占15%~20%,夏季占50%~75%,秋季占15%~30%,冬季占2%~3%。每年的7~9月份降水量高度集中。全省年降水量的分布有由东南向西北递减,山区大于盆地20%的特点。山西省降水量年际变化较大,常有连年少雨干旱现象,降水量有10~13年丰枯变化周期。山西上世纪90年代到目前降水量属偏枯年份,较80年代降水量减少约2.8%。进入21世纪以后,随着近十几年降水量偏枯周期的结束,在未来的13年中,山西将进入降水量偏丰周期,降水量会较前十几年有明显增大的趋势。在降水量增大,水动力条件增强等因素影响下,山西今后13年自然地质灾害的发生频率会随降水量的变化而逐渐增大。但由于近几年山西省加大了地质灾害的宣传力度和防治力度,地质灾害受灾区和隐患区人民群众的防灾减灾意识明显增强,虽然自然地质灾害的发生频率会逐渐增大,但由自然地质灾害造成的经济损失与人员伤亡会得到有效控制。
2山西人为地质灾害趋势预测
山西省人类工程活动诱发的崩塌、滑坡、泥石流、采空地裂缝、采空地面塌陷等灾害,主要活动包括矿山开采、修路切坡、建筑切坡等。在工矿企业密集分布区、城市居民密集居住区因过量抽取地下水,会诱发地面沉降、水位下降型地裂缝等人为地质灾害。从人为地质灾害造成的经济损失与人员伤亡情况来看,采空地裂缝、采空地面塌陷、采动滑坡、采动崩塌是主要的致灾体,过量抽取地下水诱发的地面沉降、地裂缝造成的经济损失也较大。而修路切坡、建筑切坡诱发的崩塌、滑坡等地质灾害造成的经济损失与人员伤亡相对较小。
人类工程活动诱发的人为地质灾害的种类、强度与当时国民经济发展水平、国家产业政策密切相关。在经济发展水平较低的20世纪70、80年代,山西中小矿山遍布,县乡级公路及国家一、二级公路的修建蓬勃开展,人类工程活动诱发的崩塌、滑坡、地裂缝、地面塌陷、泥石流等地质灾害具有点多面广,发生频率高,累计损失大等特点。进入90年代以后,公路建设进入高速公路时代。由于高速公路建设对选址、勘察、设计、施工、地质灾害防治等方面的要求较高,使得因修路切坡造成的地质灾害明显减少。目前,山西省尚无因修建高速公路诱发人为崩滑或高速公路受到人为地质灾害破坏的记载。山西省以煤矿为主的矿山开采在20世纪90年代以后进入了规范发展的时期。行政主管部门关停并毁了一大批违法小煤矿,使山西矿业秩序得到了根本好转。由私挖滥采、越界开采造成的地面塌陷、房屋损毁等人为地质灾害得到明显控制,以开采煤矿为主的矿山地质灾害由治理前的突发性、随意性转为在人们控制与预测范围内规律性的发生。由矿山开采诱发的人为地质灾害造成的损失明显减轻。
根据山西省公路交通发展规划与矿产资源总体规划,在今后13年的规划期内,山西公路交通建设仍以高速公路的建设为主,预计由修建高速公路诱发的人为地质灾害轻微,远小于低级别公路修建时诱发的人为地质灾害。
从矿产资源总体规划来看,山西省2005年近期规划目标主要为:矿产资源开发利用总量得到有效控制,煤炭开采总量控制在3.0亿t左右;矿业结构和布局得到调整、优化,煤炭工业通过由数量型向质量效益型转变、由生产初级产品为主向综合开发利用为主转变来提高整体素质,巩固煤炭工业基地地位,组建三大煤炭集团公司;继续关闭非法开采、矿井回采率低、威胁大矿安全、不具备安全生产条件、破坏生态环境和污染严重的小煤矿,使全省煤炭矿山缩减到3000个以内;调整矿山规模结构,形成以大、中型矿山为骨干,大中小协调发展的格局;矿产资源开发利用方式初步实现由粗放型向集约型转变,利用效率明显提高,乱采滥挖、破坏性开采基本消除;新建矿山开采规模与矿床储量规模基本适应,煤炭资源矿井回采率明显提高;矿山生态环境状况得到初步改善,矿山环境监督管理得到加强,不再新建对生态环境具有不可恢复利用的破坏性影响的矿产资源开采项目,开采矿产资源实行地质灾害防治保证金制度,矿山次生地质灾害发生率明显下降,矿山“三废”治理率明显提高,矿山生态环境恢复治理率达到20%,新增矿山土地复垦面积1.5万公顷。全省2010年远景目标为:矿产资源勘查、开发领域改革开放力度进一步加大,矿产资源利用方式和管理方式初步实现根本转变,基本形成适应社会主义市场经济要求的、具有竞争力的、以规模经营为主干的新型矿业经济体系。矿产资源开发利用结构和布局得到进一步调整和改善,资源利用效率进一步提高,矿产资源开发与生态环境保护协调发展,矿业生态环境进一步改善。从上述近期与远景规划目标来看,山西省矿业开发在保持总量基本不变的原则下,将逐步实现以大代小,形成以“大集团”规模经营为主干的新型矿业经济体系,并保持矿业开发与环境保护的协调发展。同时,山西省矿产资源总体规划中,还根据相应的法律法规、相关规划、维护国家战略利益、遵循自然规律和经济规律等原则,将山西省矿产资源进行了规划分区,共划分为鼓励开采区、限制开采区、禁止开采区和保护开采区四类。从矿业布局来看,随着大同、阳泉、汾西、太原西山等主要矿区煤炭资源的逐渐枯竭,沁水煤田北翼的寿阳、河东煤田的柳林、保德、河曲、偏关等地已成为山西煤炭大军开辟的第二战场,在这些地区正在陆续建设一批一期工程年产量即达60万~300万t的大中型矿井,有些矿井规划年产量达900万t(山西鲁能河曲电煤开发有限公司上榆泉—大塔矿区)。可以预见,随着这些大中型矿井的陆续投产,上述地区地质环境条件会急剧恶化,采煤诱发的地裂缝、地面塌陷、采动崩塌、采动滑坡、水资源破坏等人为地质灾害会大量发生。因此,规划期内,山西省除原有大同、朔州、轩岗、太原西山、阳泉、汾西、孝义、霍州、潞安、长治、晋城等已采区(有些已近采空)因采煤造成的地质灾害逐渐加重外,上述新采区将来也会诱发许多地质灾害。山西省由采矿诱发的人为地质灾害有加重的趋势。但由于这些大矿有着严密的生产规划与环境保护规划,其诱发的人为地质灾害都是矿山生产过程中不可避免的地质灾害,具有预见性与规划性,造成的损失相对较小。
随着采矿业的持续快速发展,山西省采矿废弃物的排放量逐年增加,堆放点越来越多。根据山西省部分地区《矿山尾矿、固体废料、土地复垦、地质环境保护调查整治报告》,山西省部分地区矿山尾矿及固体废料排放量如下(表1)、(表2):
表1山西省部分矿山尾矿排放量统计表
表2山西省主要矿区固体废弃物排放量表
另外,受国家煤炭产业政策及西部大开发政策驱动,近几年山西省新建了大批一期工程规模即达600~1200MW的大型火力发电厂,每个火力发电厂的灰渣年排放量达35万~70万m3,按全省已有和在建火力发电厂数量估算,全省火力发电厂年排灰渣总量在1000万m3以上。这些矿山尾矿、固体废料及电厂灰渣数量巨大,分布面广,且多分布在山区沟谷中,构成了山西省泥石流地质灾害的重要物源。在较大暴雨条件下,这些物质极易被冲出沟谷,形成泥石流地质灾害。因此,规划期内,山西遭受人类工程活动诱发的泥石流地质灾害破坏的危险性呈增高趋势。
根据调查,太原市娄烦县境内的尖山铁矿、朔州市的平朔露天矿、运城市的中条山有色金属公司、太原西山矿区、太原东山采石场等地在规划期内都有可能发生人为因素诱发的泥石流地质灾害。这些泥石流地质灾害一旦发生,造成的经济损失与人员伤亡将会十分严重。
山西因过量抽取地下水诱发的地面沉降、地裂缝等人为地质灾害主要分布在人口密集、工矿企业集中的大中城市,如太原、大同、临汾、榆次等地。其中以太原市地面沉降发生的时间最早,成灾范围及下沉量最大,造成的经济损失最大。太原市地面沉降因过量抽取地下水引发,地面沉降范围与深浅层地下水降落漏斗范围具有很好的吻合关系。地面沉降灾害一旦形成,在现有经济技术条件下难以恢复,只能以控制沉降范围与下沉量为主要防治目标。根据山西省水利部门规划,引黄工程南干线和太原市黄河水源供水工程的设计供水能力是依据现状太原供水区的缺水量和地下水超采量这两部分水量之和,再加上城市发展所增加的需水量确定的。因此,在引黄工程新水源通水的同时,太原市将根据不同地下水单元超采情况,关闭部分地下水开采井,以扭转供水区地下水超采局面,实现良性循环,满足生态环境与地下水资源的可持续发展,并保证引黄工程长期稳定运营。目前准备实施的调控方案为:2003年引黄供水后,重点取水户年开采量将由27335万m3减少为18407万m3,压缩地下水开采量8803万m3/a,占超采量的82%,其中盆地孔隙水4952万m3,岩溶水3743万m3。加上分散取水户的调控,届时太原市地下水的超采形势将得到有效控制,基本实现地下水采补平衡。到2005年引黄供水量增至80万m3/d时,再压缩开采量4309万m3/a,调控区地下水将得到恢复性涵养,进入良性循环状态。引黄北干线的大同市朔州市黄河水开始供水后,地下水保护方案与太原近似。在另一个超采严重的地区—运城地区,则结合禹门口、尊村提黄工程和浪店水源工程的建成、配套、供水,压缩区内工业、农业的地下水开采量0.8亿m3/a,占该区超采量的56%,替代以黄河水。因此,规划期内,山西以太原市、大同市为主的大城市的地面沉降灾害会得到控制,但中小城市随着城市化水平提高,工农业快速发展,用水量剧增,有可能使原有的地面沉降灾害加重或出现新的小范围地面沉降与地裂缝地质灾害。
B. 山西省地质环境监测中心
全国地质环境监测能力建设
一、地质环境监测机构基本情况
山西省的地质环境监测机构由山西省地质环境监测中心(隶属山西省国土资源厅)、12个市(队)级监测中心(站)(其中6个隶属市国土资源局,6个隶属地勘局各队)组成,从业人员共计159人,其中,专业技术人员113人(高级职称者39人,中级职称者33人,初级职称者41人),其他人员46人(见表)。
山西省地质环境监测中心原名山西省地矿局环境地质总站,经原地质矿产部批准成立于1987年,隶属山西省地质矿产局。2000年12月划归山西省国土资源厅,更名为山西省地质环境监测中心。2001年山西省机构编制委员会核准山西省地质环境监测中心为山西省国土资源厅直属全额预算管理事业单位。主要职责是:承担编制地质环境保护规划、地质遗迹保护与合理利用规划、地质灾害防治规划的具体事务;具体实施地质环境监测规划、计划;承担全省地质环境监测数据和资料的汇总、分析及处理;承担全省地质环境与重大地质灾害的监测、调研和评价,以及重大地质灾害治理工程的技术服务。
市级监测站的主要职责是负责本辖区区域地质环境监测网的建设、运行和维护管理,进行地质灾害预报预警,以及全省和市级地质环境监测、地质灾害防治等相关调查和综合研究。
山西省地质环境监测机构及队伍现状
全国地质环境监测能力建设
山西省地质环境信息网
(二)地质环境信息网建设
山西地质环境信息网自2008年7月开通至今,一直安全运行,共发布信息286条,网络浏览已达1.2万多人次。地质灾害气象预报预警启动以来,三级以上预报产品,均通过网站发布,扩大了受众面,提高了发布质量。除此以外,网站还为宣传地质环境政策法规、树立政府形象、扩大社会影响起到了积极作用。
(三)地质环境数据库建设和数据管理
目前,山西省地质环境监测中心已建地下水动态监测数据库、地质灾害调查数据库、重点城市地面沉降和地裂缝调查监测数据库、地质灾害群测群防管理信息系统。各数据库、系统较完善,数据管理情况正常。
五、主要监测成果和服务
2004年6月,山西省国土资源厅和气象局联合开展了山西省地质灾害气象预报预警工作,2004~2008年,通过山西卫视发布三级以上地质灾害预报54次,为各级政府和社会各界提供了更具时效性的地质灾害预防信息,防灾减灾效果显著。
2004年开始,每年在全面分析整理全省地质灾害、地下水环境、矿山地质环境、地质遗迹和地质公园建设与保护、矿泉水及地热开发利用、地质环境法律法规建设等资料的基础上,按年度完成《山西省××年度地质环境公报》的编制工作,并向社会发布。
2005年开始实施的山西地面沉降与地裂缝调查项目,取得了太原市地面沉降和大同市地裂缝序列的监测资料,为城市规划、建设及管理,以及社会公众信息需求提供了较好服务。
六、法制建设
1.2000年9月27日,山西省第九届人大常委会第十八次会议通过《山西省地质灾害防治条例》。
2.2005年发布并组织实施《山西省地质灾害防治规划(2003—2015年)》。
3.2006年国土资源部审查通过了《山西省矿山环境保护与治理规划(2006—2015年)》。
C. 山西省地质灾害危害现状及经济损失分析
王润福张毅刘丽萍叶小玲
(山西省地质环境监测中心,太原,030024)
摘要本文通过对全省32个县(市)已进行过地质灾害调查与区别工作资料的统计分析,总结出32个县(市)发生崩塌、滑坡、泥石流、地裂缝、地面塌陷等灾害状况,各类地质灾害已造成256人死亡,经济损失93684.0万元。其中采矿形成的地裂缝、地面塌陷灾害造成的经济损失占各类灾害总经济损失的76.6%,是山西受灾造成经济损失最大的主要灾种。依据已调查县(市)经济损失核数为基础,采用条件相同类似比拟法,推算全省未进行调查县(市)的地质灾害经济损失约为154475.1万元。全省总计地质灾害造成的经济损失约为248169.1万元。
关键词地质灾害危害现状经济损失山西
地质灾害是指各种与地质作用有关的危害,它给人民生命和财产安全造成了损害。地质灾害从其形成的动力条件可分为自然因素形成的地质灾害与人为活动引发的地质灾害两大类。山西地处高原,地形高差大,地质条件复杂,降水量集中,形成崩塌、滑坡、泥石流、地裂缝等地质灾害动力条件充分,属自然地质灾害易发区,历史上自然地质灾害具有点多面广的特点。山西是一个矿业开发大省,随着采矿深度和广度的增大,全省由采矿引起的地裂缝、地面塌陷、崩塌、滑坡、泥石流等人为地质灾害频繁发生,造成的经济损失与人员伤亡十分严重。另外,山西铁路、公路的建设,重要城市附近地下水的集中超量开采,也在一定程度上诱发了崩塌、滑坡、地裂缝、地面沉降等人为地质灾害的发生。据不完全统计,20世纪80年代以来山西各类地质灾害造成的直接经济损失达数10亿元,死亡人数超过2000人,受潜在地质灾害威胁的人员和财产数量惊人。近几年,虽然山西省有关部门在自然与人为地质灾害防治方面做了大量工作,取得了一定成效,但由于省内地质灾害种类多,分布广,各种地质灾害的成因机制、成灾规律、分布现状尚未完全查清,地质灾害依然是影响山西人民生命财产安全和阻碍省内国民经济发展的重要因素。控制和减轻地质灾害已经成为山西省面临的一个重要现实问题。有效保护和合理开发利用地质环境,防治地质灾害刻不容缓。
山西省虽然地质灾害种类多、分布广、危害大,造成的经济损失与人员伤亡十分严重,但由于全省各县市地质灾害研究程度不同及对地质灾害认识程度上的差异,全省地质灾害危害现状及经济损失情况一直沿用20世纪90年代估算的数字,目前尚无全省性的分县市地质灾害危害现状及经济损失资料。从2000年开始进行的全省县(市)地质灾害调查与区划工作,要求对各县(市)地质灾害危害现状及经济损失进行调查与计算,这些工作中的相关资料,可作为全省地质灾害危害现状及经济损失统计的基础资料。
从全省已进行过县(市)地质灾害调查与区划工作的32个县(市)地质灾害调查统计情况来看(表1、表2、表3),这32个县(市)共发生崩塌地质灾害365起,其中人为造成的崩塌地质灾害238起,占总数的65.2%,自然形成的崩塌地质灾害127起,占总数的34.8%,各类崩塌地质灾害造成的经济损失为1485.1万元,占各类地质灾害造成总经济损失的1.6%;发生滑坡地质灾害584起,其中人为造成的滑坡地质灾害289起,占总数的49.5%,自然形成的滑坡地质灾害295起,占总数的50.5%,各类滑坡地质灾害造成的经济损失为12019.2万元,占各类地质灾害造成总经济损失的12.8%;发生泥石流地质灾害218起,其中自然形成的泥石流地质灾害167起,占总数的76.6%,人为造成的泥石流地质灾害51起,占总数的23.4%,各类泥石流地质灾害造成的经济损失为8427.1万元,占各类地质灾害造成经济损失的9.0%;发生地裂缝地质灾害1137起,其中地下采空型地裂缝1132起,占总数的99.6%,构造型地裂缝5起,占总数的0.4%,各类地裂缝造成的经济损失为38645.7万元,占各类地质灾害造成经济损失的41.2%;发生地面塌陷地质灾害662起,均为地下采空型地面塌陷,造成的经济损失为33117.3万元,占各类地质灾害经济损失的35.4%。从上述统计结果来看,采矿形成的地裂缝、地面塌陷等人为地质灾害是山西省最主要的地质灾害类型,其造成的经济损失占到了各类地质灾害造成的总经济损失的76.6%;滑坡与泥石流是仅次于前两者的地质灾害类型,其造成的经济损失占到了各类地质灾害造成的总经济损失的21.8%;崩塌地质灾害造成的经济损失相对较小。上述32个县(市)各类地质灾害共造成93684.0万元的经济损失,并造成256人死亡。
表1山西省县(市)地质灾害调查与区划工作灾害点统计表
表2山西省县(市)地质灾害经济损失调查统计表(以致灾体统计)
表3山西省县(市)地质灾害经济损失调查统计表(以受灾体统计)
在全省32个已进行过地质灾害调查与区划的县(市)所遭受的93694.0万元地质灾害经济损失中,房屋建筑损失38015.8万元,占经济损失总数的40.6%;耕地损失29493.7万元,占经济损失总数的31.5%;公路损失6223.9万元,占经济损失总数的6.6%;地下水资源损失8099.3万元,占经济损失总数的8.6%;水利设施损失6926.9万元,占经济损失总数的7.4%;铁路损失4120.0万元,占经济损失总数的4.4%;水库坍岸损失813.9万元,占经济损失总数的0.9%。从上述统计情况来看,房屋与耕地是山西省各类地质灾害的主要受灾体,二者遭受的损失占地质灾害总经济损失的72.1%;地下水资源损失、水利设施破坏是仅次于前两者的受灾体,二者遭受的损失占地质灾害总经济损失的16.0%;公路与铁路遭受的损失相对较轻。
以全省已经进行地质灾害调查与区划的县市经济损失模数为基础,将全省未进行地质灾害调查与区划的县市根据地质灾害发育分布情况、经济发展情况、人类工程活动情况、矿业分布及开采情况、地形地貌及地质环境条件情况等与已进行地质灾害调查与区划的县市进行类比,得出全省未进行地质灾害调查与区划的县市的地质灾害经济损失模数及总的损失情况列于表4,由该表可概算出全省未进行地质灾害调查与区划的县、市因地质灾害造成的经济损失约为154475.1万元。与前面已进行地质灾害调查与区划的县、市的地质灾害经济损失相加后,全省因地质灾害造成的经济损失约为248169.1万元。
表4全省未进行地质灾害调查与区划的县、市经济损失类比表
续表
D. 山西省能做地质灾害房屋评估公司有哪些
中国冶金地质总结第三地质勘查院能吧!
E. 中国地质灾害信息您好!咨询哪个网
中国地质灾害信息人可以给他下载一个中国地质灾害信息网,就可以查询到你们广东的地址灾害情况了,非常的准确
F. 请问怎么才能得到一个省份历年来的地质灾害数据呀做论文要用,有没大神做类似课题。国土官网都找过了
应该要到当地的相关部门官方网站去看看有没有统计资料。
G. 山西省孝义市地质灾害治理 获取国家资金补贴
孝义市西辛庄镇煤矿地质环境治理项目概况
西辛庄镇位于我市西南部山区,距市区35公里,全镇有36个村、1.6万人,面积75平方公里。该镇由于煤矿多年开采,诱发潜存着诸多地质环境灾害,严重威胁着群众生命财产安全。为彻底解决灾害隐患,2009年经财政部、国土资源部以财建2009[856]号文件批准立项,启动实施了西辛庄镇煤矿地质环境治理项目。
项目总投资28.76亿元,资金来源主要由国家财政补助4700万元,利用废弃资源收益7.5亿元,通过新增土地增值收益12亿元,市财政自筹等方式解决。
项目区涉及西辛庄镇23个村、3295户、1万余人,治理总面积13.25平方公里。项目区内主要灾害类型有土地裂缝、采空区塌陷、山体滑坡崩塌、残煤自燃、煤矸石压占土地、房屋裂缝等地质灾害和地下水渗漏、水土流失、环境污染、地形地貌破坏等次生灾害。其中:一是土地裂缝950处、影响面积13.25平方公里,受威胁村庄23个;二是采空区塌陷808处、影响面积11.38平方公里,受威胁村庄23个;三是山体滑坡崩塌55处、占地面积0.603平方公里,受威胁村庄21个;四是残煤自燃51处、影响面积3—5平方公里,浓重的有毒有害气体严重损害项目区内10个村庄、7000余群众的身心健康;五是煤矸石堆总方量约103万立方米,压占和破坏土地约1平方公里,涉及村庄13个。特别是,地质灾害造成的威胁还在进一步蔓延,项目区内有1.1万亩耕地无法耕种,6000余亩林地遭到破坏,3000余名群众受山体蠕滑、崩塌等安全隐患的威胁,4359间房屋出现不同程度裂缝,公路毁损78处30余公里,水资源流失3.3亿立方,水生态环境几近毁灭,全镇1.6万余人饮用水到了十分困难的地步。
项目区灾害治理主要采取浅层平整、削坡卸载、开挖碾压、移除清理矸石弃渣等方式。同时,实施移民搬迁,在该镇范围内建设三个新农村集中居住小区,按每人40平方米、每平方米2500元的标准配置建设;在市区新建一个商住一体化的宜居小区,按每人30平方米、每平方米3000元的标准配置建设,并配置商业门市。
H. 地质灾害信息系统
整理集成全国地质环境与地质灾害调查、监测和研究成果,编制全国地质灾害气象预警预报信息图层30个,建立全国地质灾害气象预警预报信息系统。
5.2.1 信息图层编制原则
在地质灾害气象预警信息图层编制过程中,充分考虑到影响地质灾害发生的各种地质环境背景条件因子、历史地质灾害点分布、社会经济条件、人类工程设施等因素。依据如下几个原则:
1)全面性。将目前能够收集到的影响地质灾害发生的各种因素,尽可能地考虑全面,至于每种因素的影响贡献大小在权重计算部分考虑。
2)时效性。每个信息图层的编制中,尽可能以最新最翔实的数据资料为基础,从而保证对最新资料信息和研究成果的及时利用和更新。
3)适用性。收集到的数据资料,根据全国地质灾害气象预警预报的具体工作实际需要,进行相应的改编处理。
4)最大可能使用数据。全国地质灾害气象预警预报的基本比例尺定位为1∶100万,一些关键的图层数据,如地理底图、地质底图、土地利用底图均可达到1∶100万的比例尺需求,但部分信息图层无法达到1∶100万的比例尺,本项目本着最大可能使用数据的原则,暂且采用小比例尺的图层直接投影变换代替,以后工作中再逐步更新。
5.2.2 信息图层概况
信息图层的投影参数如下:
比例尺:1∶100万
投影类型:亚尔博斯等积圆锥投影坐标系;坐标单位:mm
第一标准纬度:25°00༼″;第二标准纬度:47°00༼″
中央子午线经度:105°00༼″;投影原点纬度:0°00༼″
地质灾害气象预警预报信息图层基本情况见表5.1。
5.2.3 信息图层说明
各信息图层编制按照各因子的分布特点进行分级。
5.2.3.1 年均雨量
全国年均雨量分为11个级别,各级别年均雨量分段:<50mm,50~100mm,100~200mm,200~400mm,400~600mm,600~800mm,800~1000mm,1000~1200mm,1200~1600mm,1600~2000mm,>2000mm。
5.2.3.2 年均气温
根据《中国自然地理图集》(2004),将全国年均气温分为9个级别,各级别年均气温分段如下:<-4℃,-4~0℃,0~4℃,4~8℃,8~12℃,12~16℃,16~20℃,20~24℃,>24℃。
5.2.3.3 年蒸发量
根据《地下水资源与环境图集》(2004),将全国年蒸发量分为10个级别,各级别分段如下:<500mm,500~600mm,600~800mm,800~1000mm,1000~1200mm,1200~1400mm,1400~1600mm,1600~2000mm,2000~2400mm,>2400mm。
表5.1 全国地质灾害气象预警预报信息图层简表
5.2.3.4 年干燥度
干燥度,又称干燥指数或干燥因子。描述气候干燥程度的指数,与湿润系数互为倒数,一般用水分的可能消耗量与收入量的比值表示。它是表征一个地区干湿程度的指标。
根据《地下水资源与环境图集》(2004),将全国年干燥度分为12个级别,各级别分段如下:<0.5,0.5~0.75,0.75~1.0,1.0~1.5,1.5~2.0,2.0~3.0,3.0~5.0,5.0~10,10~25,25~50,50~100,>100。
5.2.3.5 地震烈度
采用第三代《中国地震烈度区划图》(1990),将全国地震烈度按5级区划:Ⅴ度区、Ⅵ度区、Ⅶ度区、Ⅷ度区、Ⅸ度区。
5.2.3.6 历史地震点
来源于科学数据共享工程,中国地震局共享数据网,近年来(1999年1月1日至2006年11月2日)的已发地震点数据,共203个。
5.2.3.7 地层岩性
根据“中国地质科学院地质研究所,1∶100万地质图”重新进行编制划分。
(1)划分原则
地质灾害的产生与地层岩性关系密切。地层岩性是地质灾害形成的内在因素,对地质灾害的产生起着主导和控制作用,岩性及其组合特征的控制作用决定着地质灾害的区域分布。从沿海向内陆,地层岩石由火成岩为主变为变质岩、碎屑岩相间分布,进而变为碳酸盐岩、碎屑岩、变质岩相间分布。
斜坡岩土体的性质及其结构是形成滑坡、崩塌的物质基础。一般易形成滑坡、崩塌的岩体,大都是碎屑岩、软弱的片状变质岩,岩性多为泥岩、页岩、板岩、含碳酸盐类软弱岩层、泥化层、构造破碎岩层。这些软弱岩层经水的软化作用后,抗剪强度降低,容易出现软弱滑动面,形成崩滑体。
黏性土滑坡在四川分布密集,在中南、闽、浙、晋西、陕南、河南等地也较密集,在长江中下游、东北等地也有一定分布;半成岩类粘土岩滑坡在青海、甘肃、川滇地带、山西几个断陷盆地中分布密集;黄土滑坡在黄河中游、青海等省较密集;泥岩、千枚岩、砂质板岩形成的滑坡在湖南、湖北、西藏、云南、四川、甘肃等地十分发育。
泥石流主要发育在变质岩区和黄土区,火成岩区和碎屑岩地区次之,碳酸盐岩地区泥石流相对不发育。
根据全国地质灾害发育的普遍规律并结合不同地区地质灾害发育的特殊性,主要考虑以下几个方面的原则划分地质灾害敏感性岩组。
1)地层岩性与地质灾害分布的关系;
2)地层岩性的成因、物质组成与空间分布特征;
3)地层岩性的时代;
4)岩土体(不同时代地层)的工程地质性质;
5)水岩相互作用的敏感性;
6)1∶100万中国地质图的精度。
(2)划分方案
根据地质灾害发育的普遍规律以及地层岩性对地质灾害的敏感程度,将地质灾害敏感性岩组划分为10种类型。敏感性指数值越高,则相应的岩组对地质灾害的发生也越敏感。
Ⅰ类:主要为水体、粉砂质食盐、食盐壳、盐碱壳、风积物砂等区域,这些区域不会发生滑坡、崩塌、泥石流等地质灾害。
Ⅱ类:主要是火成岩类。岩性为闪长岩、石英闪长岩、辉长岩、花岗岩、辉绿岩等,岩性坚硬,力学强度大,是很好的地基和建筑材料。
Ⅲ类:主要是火成岩类。岩性为钾长花岗岩、二长花岗岩、碱长花岗岩、片麻状花岗岩、斜长花岗岩、紫苏花岗岩、正长岩、石英正长岩、煌斑岩、白岗岩、花岗闪长岩、英云闪长岩、辉石闪长岩、辉长闪长岩、花岗斑岩、英安斑岩、辉绿岩、橄榄岩、橄榄辉绿岩、玄武岩、橄榄玄武岩、苦橄玄武岩、石英二长岩、石英二长斑岩、辉石岩、角闪正长岩、闪长玢岩、英安玢岩、辉绿玢岩、苦橄玢岩、安山玢岩、超基性岩、安山岩、碱性岩、英安岩、粗面岩、科马提岩、云辉二长岩、白榴岩、霓霞岩、碎斑熔岩、细碧岩、石英钠长斑岩、霏细斑岩、辉长苏长岩等,岩性坚硬,力学强度较大。
Ⅳ类:主要是变质岩类和部分火成岩及沉积岩。岩性为白云质灰岩、灰岩、白云岩、黑云母花岗岩、白云母花岗岩、黑云斜长花岗岩、二云母花岗岩、流纹岩、变粒岩、片麻岩、角闪岩、砂砾岩、砾岩、变质橄榄辉长岩、糜棱岩、蛇纹岩、大理岩、珍珠岩、硅质岩、蛇绿岩、浅粒岩、岩溶角砾岩、铝铁岩系、黑云角闪闪长岩、斑状云母橄榄岩、榴辉岩、黑云母霞石白榴岩、霏细岩等,岩性较坚硬,力学强度较大。
Ⅴ类:主要是沉积岩类。岩性为页岩、夹页岩、火山碎屑岩、生物碎屑岩、片岩、千枚岩、板岩、砂岩、粉砂岩、碳酸盐岩、凝灰岩、糜棱岩等,半坚硬岩组,力学强度较低,易风化,遇水软化,是地质灾害较易发生的地层。
Ⅵ类:主要是沉积岩类。岩性为泥岩、钙质泥岩、泥灰岩、夹泥岩、粘土岩、泥页岩、煤系、泥质粉砂岩、冰碛泥砾岩等,半坚硬岩组,力学强度低,遇水泥化,是地质灾害容易发生的地层。
Ⅶ类:岩性为黄土、黄土状土,黄土的地层年代为Q1p,Q2p,渗透性弱、抗剪强度高。
Ⅷ类:主要为冲海积物、海积物、冲湖积、湖积、沼泽堆积、石英斑岩风化层、花岗斑岩风化层等松散层。
Ⅸ类:主要是冲积物、冲洪积物、洪冲积物、残坡积物、坡冲积物、冰碛物、苦橄玄武岩风化层、辉绿岩风化层、花岗岩风化层、冰积物等松散堆积物,是产生地质灾害的主要物源。
Ⅹ类:岩性为黄土,地层年代为Q3p,Qh,疏松、大孔隙,垂直节理发育,渗透性强、抗剪强度低、具湿陷性(表5.2)。
5.2.3.8 断裂分布
根据“中国地质科学院地质研究所,1∶100万地质图”编制。考虑到网格单元的大小和断层断裂的影响范围,计算时采用网格区内断层断裂的密度进行计算。
5.2.3.9 第四系成因时代
根据1∶250万第四纪地质图编制,将第四系的成因时代分为7类:N2-Q1p,Q,Qp,Q1p,Q2p,Q3p,Qh。
5.2.3.10 岩土体类型
来源于1∶400万岩土体类型图,将岩土体类型分为7类:火成岩、变质岩、碎屑岩、碳酸盐岩、砂质土、黄土、其他土。
5.2.3.11 第四系成因类型
根据1∶250万第四纪地质图编制,将第四系成因类型分为19类:冰碛、冰水沉积、冰水-洪积、冰水-湖积、洪积、残积、残坡积、冲积、冲积-洪积、冲积-湖积、寒冻风化残坡积、红土化残积、黄土堆积、风积、湖积、坡积、岩溶化残坡积、火山堆积、海陆交互相及海相堆积。
表5.2 中国工程地质岩组划分表
5.2.3.12 水文地质类型
将水文地质类型分为5大类、18亚类:
1)松散沉积孔隙水(滨河平原冲海积层孔隙水、堆积平原冲洪积层孔隙水、黄土高原黄土层孔隙水、内陆盆地冲洪积层孔隙水、沙漠风积沙丘孔隙水、山间盆地冲积层孔隙水);
2)基岩裂隙水(丘陵高原碎屑岩裂隙水、熔岩孔隙裂隙水、山地丘陵岩浆岩裂隙水、山地变质岩裂隙水);
3)多年冻土冻结层上水(高纬度山地基岩冻结层上水、中低纬度高原基岩冻结层上水、中低纬度高原松散沉积冻结层上水);
4)碳酸盐岩裂隙溶洞水(峰丛峰林裂隙溶洞水、岩溶丘陵裂隙溶洞水、岩溶山地裂隙溶洞水);
5)其他(湖泊、雪被)。
5.2.3.13 海拔高度
从1∶100万地理地貌底图中提取,将海拔高程分为6类:极高海拔(>6000m)、高海拔(4000~6000m)、中高海拔(2000~4000m)、中海拔(1000~2000m)、低海拔(<1000m)、其他(非山地丘陵)。
5.2.3.14 起伏程度
从1∶100万地理地貌底图中提取,将地形起伏分为6类:极大起伏(>2500m)、大起伏(1000~2500m)、中起伏(500~1000m)、小起伏(200~500m)、丘陵(<200m)、其他(非山地丘陵)。
5.2.3.15 地貌类型
从1∶100万地理地貌底图中提取,并重新归类,将地貌类型分为11类:山地、黄土梁峁、黄土台塬、黄土塬、风蚀地貌、台地、平原、冲积扇平原、低河漫滩、现代冰川、湖泊。
5.2.3.16 土壤侵蚀
根据“中国土壤侵蚀图”,将土壤侵蚀类型及侵蚀强度分为3大类、15亚类:
1)水力侵蚀(剧烈侵蚀、极强度侵蚀、强度侵蚀、中度侵蚀、轻度侵蚀、无明显侵蚀、微度侵蚀);
2)冻融侵蚀及冰川侵蚀(强度侵蚀、中度侵蚀、轻度侵蚀、微度侵蚀);
3)风力侵蚀(极强度侵蚀、强度侵蚀、中度侵蚀、轻度侵蚀)。
5.2.3.17 水系
从1∶100万地理底图中提取的线形河流。实际计算时,采用网格单元内水系密度参加计算。
5.2.3.18 植被
从1∶100万地理地貌底图中提取,将植被覆盖分为6类:红树林滩、森林、经济林与竹林、灌木林、草地、其他。
5.2.3.19 土地利用
根据“1∶100万土地利用类型图”编制,将土地利用类型分为6大类、13亚类。分别是:①耕地(水田、旱地);②林地(有林地、灌木林、疏林地、其他林地);③草地(高覆盖度草地、中覆盖度草地、低覆盖度草地);④水域;⑤城乡工矿居民用地(城镇用地、农村居民点、其他建设用地);⑥未利用土地。
5.2.3.20 公路
从1∶100万地理底图中提取的线形公路,又分为5类,即高速公路、主要公路、一般公路、大路、小路。实际计算时,采用网格单元内所有公路密度参加计算。
5.2.3.21 铁路
从1∶100万地理底图中提取的线形铁路,补充青藏铁路线路。实际计算时,采用网格单元内铁路密度参加计算。
5.2.3.22 矿山点
全国矿山调查点共11万多个。
5.2.3.23 分县人口密度
根据2003年人口普查数据,分县计算人口密度,分为5类:>750,450~750,150~450,50~150,<50。单位:人/km2。
5.2.3.24 水坝分布
从1∶100万地理底图中提取,水坝工程点共885个。
5.2.3.25 塔庙宇文化要素分布
从1∶100万地理底图中提取,包括塔、庙宇和其他文化设施,计193个点。
5.2.3.26 灾害点—滑坡
2005年以前的数据来源于700个县市调查数据,2004~2007年数据来源于地质灾害气象预警收集的较大的滑坡灾害点数据。合计45917个点。随着更新的数据成果,将继续更新。
5.2.3.27 灾害点—泥石流
2005年以前的数据来源于700个县市调查数据,2004~2007年数据来源于地质灾害气象预警收集的较大的泥石流灾害点数据。合计9253个点。随着更新的数据成果,下一步将继续更新。
5.2.3.28 灾害点—崩塌
2005年以前的数据来源于700个县市调查数据,2004~2007年数据来源于地质灾害气象预警收集的较大的崩塌灾害点数据。合计13094个点。随着更新的数据成果,下一步将继续更新。
5.2.3.29 地震动参数
根据“中国地震动参数图GB18306-2001”,分为7个级别:≥0.40,0.30,0.20,0.15,0.10,0.05,<0.05。单位:g。
5.2.3.30 中国第四纪岩性图
根据1∶250万第四纪地质图编制,将第四系岩性分为11类:
砾质土;砂质土;黏质土;黄土类土;盐类为主;砾质土、黄土类土;黏质土、砂质土、砾质土;砂质土、黏质土;黏质土、砾质土;砂质土、砾质土。
I. 山西省多发生什么地质灾害(是崩塌,,为什么山体滑坡不对)
山西位于黄土高原,黄土直立性好,容易崩塌,不易滑坡。