当前位置:首页 » 地质工程 » 地质灾害排查信息化

地质灾害排查信息化

发布时间: 2021-02-23 14:12:45

㈠ 如何做好汛前地质灾害隐患排查

1)在本年度地质灾来害防治方案编制源前完成辖区地质灾害排查,确定地质灾害隐患点(区),落实汛期各项地质灾害防灾责任和制度,为编制年度地质灾害防治方案提供基础依据。

2)排查灾种主要包括自然因素或者人为活动引发的已对人民生命和财产安全造成威胁的山体滑坡、崩塌、泥石流、地面塌陷等。

3)对出现地质灾害前兆,可能造成人员伤亡或财产损失的区域和地段,县级人民政府应当及时划定地质灾害危险区,在地质灾害危险区的边界设置明显警示标志。

4)排查结束后,及时编制地质灾害排查报告,并将报告主要内容通报当地人民政府以及相关部门,报告主要内容包括:

Ⅰ)地质灾害隐患点(区)位置;

Ⅱ)危害对象及范围;

Ⅲ)地质灾害类型、规模及基本特征;

Ⅳ)地质灾害引发因素及发展趋势;

Ⅴ)已采取的防治措施;

Ⅵ)防治工作建议。

㈡ 全国地质灾害防治信息系统建设的目标和原则

11.3.1 目标

(1)总体目标

在地质灾害防治工作中全面开展信息系统建设。通过建立支持地质灾害防治的完整数据体系,形成一体化综合数据中心,提供数据快速响应和多目标应用系统,建立支持地质灾害防治工作全过程的综合一体化动态评价及预警平台,促进地质灾害调查评价、规划、管理、防治的科学化与现代化,为全社会提供方便快捷的信息服务,充分发挥地质灾害防治在国家社会经济发展中的基础性、公益性和战略性作用,使地质灾害防治工作更好地适应我国可持续发展的需要。

(2)近期(2010年)目标

1)完成中小比例尺基础数据库建设,实现所有地质灾害动态数据的快速更新,数字化信息的积累取得显著进展,形成支持地质灾害防治的基础数据体系和动态数据更新体系。

2)基本建成地质灾害区域评价及预警预报的决策支持系统,最大限度地保证地质灾害防治决策和预警信息的准确、高速传输。

3)建立以遥感和地理信息系统技术为基础的地质灾害调查及监测数据采集系统,在地质灾害多发区及重点地区,实现地质灾害监测和调查数据的快速更新。

4)在地质灾害防治工作中推广应用信息技术,在地质灾害调查和监测工作中基本实现野外调查数字化采集和自动监测,对重点地质灾害的监测信息实现自动传输。

5)实现地质灾害防治管理的信息化,促进地质灾害防治管理水平的提高。

6)建成以网络技术为基础的国家、省及重点地质灾害防治区的三级数据传输系统,支持地质灾害调查数据共享和动态数据的快速传输。

7)在国土资源信息化标准体系的基础上,基本完成地质灾害防治信息化标准建设,形成较为完整的标准体系,全面支持地质灾害防治数据的综合管理、信息共享和多目标应用服务。

8)在地质灾害调查队伍中广泛普及信息技术知识,培养出一批既懂信息技术,又有地质灾害防治专业知识的复合型人才,初步建成高素质的信息化建设队伍。

(3)远期(2020年)目标

在已有信息化建设的基础上,通过不断完善和提高信息化在地质灾害防治工作中的能力,全面建成支持地质灾害防治的综合数据中心;建立支持地质灾害防治数据采集和维护的数据传输系统;建立以地质灾害防治为最终目标的信息服务和应用系统;建立支持数据传输、信息交换和共享的网络支撑体系;建立地质灾害防治信息化标准支撑体系。通过实现地质灾害防治工作全过程信息化,促使信息技术的创新能力明显提高,完成各级地质灾害防治信息系统建设,建成结构完整、技术先进、高速、大容量的信息交换网络;建立数据良性更新机制;完善地质灾害防治管理信息系统并实现系统的整体集成,形成具有区域评价、预警预报等多种分析预测决策支持功能的信息综合服务体系。

11.3.2 系统建设原则

根据国家社会经济发展的需求和地质灾害防治的目标和任务,遵循国家及国土资源信息化规划的总方针、总任务,确定地质灾害防治信息系统建设的总体原则是:

1)统筹部署、统一规划、分级分步实施,系统的建设应在国土资源信息化建设、地质环境信息化建设的总体规划指导下进行,要与地质环境信息化建设相协调,从全局的观点来设计和规划系统建设,保证整个系统运行的协调性;

2)充分考虑地质灾害防治现状与特点,在注重应用技术和系统的实用性、易用性的前提下,尽可能跟上信息技术的发展,采用先进的信息技术手段,保证系统的先进性、可持续性;

3)系统建设要依托地质灾害防治工作体系,要服从地质灾害防治工作的业务流程,要为地质灾害防治工作提供有效的服务和技术支持。

㈢ 以地质灾害调查为基础以信息化成果为依托为社会经济发展保驾护航

中国地质环境监测院

在“有效防治地质灾害,保护人民生命财产安全,服务经济社会发展”的总体目标之下,国土资源部、中国地质调查局从20世纪90年代初开始,在全国受地质灾害威胁严重地区,相继部署开展了2020个山区丘陵县(市)的地质灾害调查工作,调查面积约834万平方千米。

遵循“以人为本、直接服务、紧密结合、宣传普及”的原则,对城镇、厂矿、村庄、风景名胜区、重要交通干线和重要工程设施分布区的滑坡、崩塌、泥石流、地面塌陷、地裂缝、地面沉降等地质灾害进行了调查,初步查明了地质灾害及隐患点近24万处,了解了地质灾害的发育分布现状,基本摸清了地质灾害家底,划定了地质灾害易发区,制定了地质灾害防治规划,形成了比较完善的“国家—省—县”一体化的数据信息管理系统,协助地方政府建立了地质灾害群测群防监测网络,为社会经济发展做出了贡献,取得了显著的成效。

一、调查工作全面,为地质灾害防治工作提供强有力的支撑

1.为地方政府防灾减灾奠定坚实基础

通过地质灾害调查工作,结合调查区的具体条件,明确了地质灾害防治原则、防治目标、防治重点和防治措施,为地方政府在社会发展和经济建设过程中能够做到合理利用土地、主动防范地质灾害奠定了坚实的基础。

2.为编制相关规划提供重要的科学依据

调查成果真实反映了当前地质灾害的情况,为编制全国山洪地质灾害防治规划、地质灾害防治“十二五”规划等国家重大规划及省、市、县的相关规划提供了重要的科学依据。

在每年的地质灾害气象预报预警和地质灾害趋势预测工作中,地质灾害调查成果直接应用其中,进一步提高了预报预警的准确度,从而为国家合理部署地质灾害防治工作,节约成本,扩大成效提供了重要的依据。

3.为重大地质灾害应急事件提供技术支持

地质灾害调查成果为重大灾害应急工作提供了技术保障。在2008年“5·12”汶川地震、2010年“8·8”舟曲特大型泥石流等重大灾害突然袭来时,调查成果被及时送到应急调查前线、应急指挥部和相关部门,这对于及时掌握灾区地质环境状况、准确判断地质灾害复发可能性提供了重要依据,从而为第一时间营救人员和挽回财产损失创造了条件。

二、调查工作深入群众,提高广大民众防灾减灾意识

地质灾害调查工作是在一线开展的,通过与当地干部群众的接触、交流,通过不断地宣传地质灾害防治知识,广大人民群众对地质灾害防治工作的认识逐步提高,防灾意识和自测、自报、自救的防御能力得到了加强,从而在一定程度上避免了人员的伤亡和财产的损失,地质灾害防治工作取得了瞩目的成效。

三、调查成果共享,及时有效地服务于国家防灾减灾

地质灾害调查成果的共享,在服务经济社会的道路上又向前迈进了一大步。2010年6月,为民政部的防灾减灾政策制定提供了重要信息;2007年11月,为交通部提供的调查资料、评价成果等,使得该部对相关高速公路周边的地质环境条件、地质灾害情况能够全面掌握,及时作出防范措施,充分保障了行驶车辆和过往人员的安全。

㈣ 我国地质灾害防治工作信息化的回顾

信息化工作在地质灾害防治领域得到了比较广泛地应用,主要是基于空间数据库的地理信息系统,既包括了地理信息系统的通用功能,同时提供了基于地质灾害专业应用的特殊功能,如钻孔数据综合管理,地下水资源、环境、灾害评价系统,空间信息虚拟三维可视化系统,以及基于网络的空间信息发布系统等。这些功能的开发,大大提高了地质灾害信息应用的潜力,为今后进一步的信息开发奠定了基础,并逐步形成了比较成熟的空间数据库建设方法、工作流程、文档编录和成果表达方法,具备了信息系统建设的综合能力。通过信息化技术的广泛应用,不仅促进了地质灾害防治工作的进展,而且为今后更好地开展地质灾害信息系统建设奠定了坚实的基础。

11.2.1 主要成果

(1)数据库建设初见成效,数据资源积累程度逐步提高

近几年随着计算机技术的不断发展,水工环地质信息化工作已经从单一的数据库建设和简单的软件开发,逐步过渡到建立适用于地质专业领域进行多元数据处理和分析的空间数据库建设和地理信息系统建设。目前已经在全国范围内逐步开展了1∶500万~1∶600万的各类水工环地质专题信息空间数据库建设、1∶50万~1∶100万的分省地质环境空间数据库建设、1∶5万全国重点城市和经济区地质环境综合空间数据库的建立工作,以及1∶20万水文地质图空间数据库、地质灾害调查数据库、矿山环境地质调查数据库和地下水动态监测数据库等的建设工作。

一大批与地质灾害防治工作相关的基础性地质数据库已经建立或正在建设,为地质灾害防治的信息化工作提供了基础性地质数据的坚实基础,如:1∶500万、1∶250万、1∶50万、1∶20万、1∶5万数字地质图空间数据,1∶20万水文地质空间数据,1∶600万水文地质、环境地质、工程地质空间数据,全国矿产地数据,全国重砂数据,全国同位素地质测年数据,全国1∶20万~1∶500万区域地球化学数据(39~45个元素),全国1∶20万~1∶100万区域重力调查数据,全国1∶20万~1∶100万航空磁测数据,全国航空电磁数据,全国航空放射性数据,航空遥感影像数据、全国地质工作程度数据,全国矿产储量数据。

(2)各类应用系统在地质灾害防治工作中得到应用

随着各类环境地质工作项目的开展,与之配套的信息化工作也在逐步深入地进行。正在建设的信息系统有:全国县(市)地质灾害调查数据库系统,全国区域环境地质调查数据库系统,地质环境监测数据库系统,全国矿山环境地质调查信息系统等。在应用系统开发方面,利用各类基础软件和工具开发了适用于不同目的的各类系统,如:三峡库区地质灾害预警分析系统,区域地质环境评价系统和多种专项系统,环境地质调查野外数据采集系统,首都地区地下水与环境调查评价信息系统,长江三角洲地区地下水资源和地质灾害调查评价数据库与信息系统等。这些系统的开发和建立,大大提高了信息技术在水工环地质专业领域的应用水平,从某种程度上说,极大地促进了水工环地质工作的发展。遥感技术也在部分重点地区得到了初步应用。

(3)网络建设基础框架已经形成

在网络系统建设方面,建成了与国际互联网直接连接的中国地质环境信息网站,初步形成了水工环数据中心的总体框架,对水工环地质领域的信息化工作,起到了有力的基础支撑作用。

(4)信息标准化工作开始走上正轨

为配合信息化工作的开展,已经新编或修订了相关的“信息化工作指南”和“数字化标准”,主要包括:《地下水资源数据交换格式标准》、《水文地质钻孔数据交换格式标准》、《区域水文地质调查空间数据库建设工作指南》、《区域环境地质调查空间数据库建设工作指南》、《地质环境监测数据库格式标准》、《县(市)地质灾害调查数据库格式标准》、《水工环空间数据库图例标准》等。这些文件的推出,为水工环信息化工作的开展奠定了基础,促进了水工环信息标准化的进程。

11.2.2 存在的主要问题

(1)数据库建设分散,基础数据的信息化积累程度仍待进一步提高

与信息技术处于先进地位的国家相比,我国的数据库系统建设在规模和技术手段上均有一定的差距,尤其是在数据集成和管理方面,先进国家的地学空间信息与其他信息一起,已经进入到大型分布式GIS系统与Internet网络上的应用,实现了空间信息的集成管理和信息共享,而在我国的地学领域则起步较晚,没有集中统一的数据管理体系和一体化综合应用模式。

(2)标准化进程缓慢,宣传贯彻力度不够

我国的信息标准化工作尽管已经具有一定的基础,但是仍然没有形成一个完整的水工环地质信息标准化体系。涉及地质灾害防治领域的信息化标准尤为匮乏,在地质灾害领域尚没有统一完善的数据模型和数据应用规则。已有的各项标准是在不同的历史条件下和不同的项目中制定的,无法满足今天全国性地质灾害防治工作对地质信息进行综合、集成管理的需求。实现信息综合、共享的关键技术标准依然落后。信息化建设的标准没有完全融入整个地质灾害防治工作的过程中。

(3)数据传输网络不健全

目前,用于地质灾害防治的信息传输网络不够健全,尚未形成覆盖全国的地质灾害防治数据传输网络,地质灾害监测数据的自动传输也未得到普遍应用,因此地质灾害的灾情信息、应急调查信息以及预警预报信息无法快速传递,使地质灾害防治工作在一定程度上受到制约。

(4)信息获取渠道不顺

信息化建设和各类地质项目的实施明显脱节,信息化建设经常处于滞后状态,更无法使信息化工作在地质工作全过程中发挥积极促进作用。

(5)低水平重复性工作多

由于信息化人才缺乏,在很多信息化建设项目中无法进行统一规划和部署,信息复用技术也难于很好地应用,造成很多低水平的重复建设、重复开发,无法形成足以满足地质灾害防治工作需要的专业应用系统。

㈤ 全国地质灾害监测预警体系建设的主要任务

全国地质灾害监测预警体系建设的总体规划如图7.1所示。

7.3.1 国家、省、市、县级地质灾害监测预警站网建设

县级以上国土资源行政主管部门建立地质灾害监测预警体系,会同建设、水利、交通等部门承担地质灾害监测任务,负责业务技术管理,并可受政府委托行使部分地质灾害监测管理职能,发布地质灾害监测预警信息。地质灾害监测机构是公益性事业单位。

(1)国家级地质灾害监测站

国家级地质灾害监测站负责全国性地质灾害专业监测网、信息网的建设与运行工作,并承担国家级地质环境监测任务;承担全国地质灾害预警预报和相关的调查研究工作;拟编全国地质灾害监测规划、计划、工作规范和技术标准;开展科技交流与合作,研究和推广新技术、新方法;承担全国地质灾害监测数据、成果报告的汇总、分析、处理和综合研究,为政府决策部门和社会公众提供信息服务;负责对省(区、市)级地质灾害监测业务的指导、协调和技术服务。

(3)地质灾害监测预警研究试验区

针对我国突发性地质灾害具有区域性、同时性、突然性、暴发性和危害大等特点,结合国土整治规划和资源能源开发,在代表性地区开展地质灾害监测预警示范。在试验区建立自动遥测雨量观测站网,逐步建立试验区滑坡、崩塌和泥石流区域爆发的降雨临界值,为突发性灾害的区域预警提供依据。同时,在试验区开展降雨期斜坡岩土体渗流观测,研究降雨诱发滑坡、崩塌和泥石流的机理。

2010年前,进一步完善和建设三峡库区立体式监测预警示范区。完成三峡库区滑坡、崩塌、泥石流灾害的立体监测网建设,在库区60处地质灾害点实现监测数据的自动采集、实时传输和自动分析;完善库区20个县级监测点建设;完成1∶1万航摄飞行;建立全库区的遥感(RS)监测系统,完成全球定位系统(GPS)控制网、基准网建设。

2010年以前重点在重庆市区、北京市、甘肃兰州市、陕西安康市、四川雅安、云南新平、云南东川、浙江金华市、江西宜春市等地区开展突发性地质灾害监测预警试验研究。

(4)地面沉降和地裂缝监测网

1)国家级地面沉降监测网选址原则:①跨省区的地面沉降灾害区域;②有一定的监测工作和设施基础;③地方政府有积极性,并提供配套资金;④具有较为完善的法规和管理体系。

2)工作部署:2010年之前,重点开展长江三角洲、华北平原、关中平原、淮北平原和松嫩平原地面沉降和地裂缝监测网的建设;2010年以后逐步开展汾河谷地、辽河盆地、珠江三角洲以及全国其他主要城市地面沉降和地裂缝的调查及监测网的建设。

长江三角洲地面沉降和地裂缝监测网包括上海市全部,江苏的苏锡常地区、南通地区和盐城地区南部的三个县(市),浙江的杭嘉湖平原,控制面积近5万km2

华北平原地面沉降和地裂缝监测网包括北京、天津市的平原区,河北省的环渤海平原区和山东的鲁西北平原,控制面积5万多km2

关中平原和汾河谷地地面沉降和地裂缝监测网的覆盖范围自六盘山南麓的宝鸡,沿渭河向东,经西安到风陵渡转向北东,沿汾河经临汾、太原到大同,宽近100km,长近1000km,包括渭河盆地、运城盆地、临汾盆地、太原盆地、大同盆地等,涉及近50个(县)市。

7.3.3 群测群防体系建设

突发性地质灾害群测群防网主要针对地质灾害较严重的山区农村,以县为单位,在专业队伍指导下,建立由当地政府领导下的县、乡、村三级群测群防体系。在各级地方政府的组织和领导下,充分发挥各级监测站的技术优势,提高群众的防灾意识和参与程度,完善监测预报制度,到2010年,建成1400个县(市)突发性地质灾害易发区的群测群防网络体系。

(1)群众监测网络建设

1)监测点选定原则:①危险性大、稳定性差、成灾概率高,会造成严重灾情的地质灾害隐患体;②对集镇、村庄、工矿及重要居民点人民生命安全构成威胁的地质灾害隐患体;③一旦发生将会造成严重经济损失的地质灾害隐患体;④威胁公路、铁路、航道等重要生命线工程的地质灾害隐患体;⑤威胁重大基础建设工程的地质灾害隐患体。

2)监测点的建设:根据上述原则确定需要监测的地质灾害隐患点后,由专业调查组及时向当地政府提出监测方案,同时协助搞好监测点的建设工作。①监测范围的确定:除对地质灾害隐患点和不稳定斜坡本身的变形迹象进行监测外,还应把该灾害点威胁的对象和可能成灾的范围,纳入监测范围。②监测方法与要求:对当前不宜进行治理或暂时不能进行治理的隐患点,危害大的应建立简易监测点,同时要对宏观地面变形、滑坡体内的微地貌、地表植物和建筑物标志等进行观察。以定期巡测和汛期强化监测相结合的方式进行。定期巡测一般为半月或每月一次,汛期强化监测将根据降雨强度,每天或24小时值班监测。③监测点的设置:简易监测点一般采用设桩、设砂浆贴片和固定标尺,对滑坡体地面裂缝相对位移进行监测,对危害大的隐患点,如有条件也可用视准线法测量监测点的位移。

3)监测网点的管理与运行:①监测责任落实到具体的单位与个人。被监测的地质灾害隐患点所在的乡(镇)、村和有关单位为监测责任人,在其领导下,成立监测组,监测组由受危害、威胁的居民点或有关单位的群测人员组成。②建立岗位责任制,县、乡(镇)、村应逐级签订责任书。调查过程中,采取多种方式进行宣传与培训,教会监测责任人、监测组成员和群众,如何监测、如何判断灾害可能发生的各种迹象和灾情速报及有关应急防灾救灾的方法。③信息反馈与处理。县(市)国土资源主管行政部门负责监测资料与信息反馈的收集汇总,上报到市(地、州)国土资源行政部门(或地质环境监测站)进行综合整理与分析,省国土资源厅地质环境处(或省地质环境总站)将上报的资料与信息录入省地质灾害空间数据库,进行趋势分析,同时对下一步监测工作提出指导性意见。④预测有重大险情发生时,当地政府和有关单位应立即采取应急防灾减灾措施,同时应立即报告省、市、县政府和国土资源主管部门,派出专业人员赴现场协助监测和指导防灾救灾。⑤建立地质灾害速报制度,按国土资发[1998]15号文附件执行。

4)资料的收集与监测数据的整理:①监测数据包括地质灾害点基本资料、动态变化数据、灾情等。②所有监测数据均应以数字化形式储存在信息系统中,同时,必须以纸介质形式备份保存。③监测点必须进行简易定量监测,并须整理成有关曲线、图表等。应编制有关月报、季报和年报,同时,对今后灾害发展趋势进行预测。④监测数据应按有关程序逐级汇交。

(2)群专结合的预报预警系统建设

1)县(市)国土资源行政主管部门归口管理和指导群众监测网络,负责监测资料与信息反馈的收集汇总。

2)县(市)国土资源行政主管部门的地质环境职能部门应根据气象、水文预报和监测资料进行综合分析,预测地质灾害危险点,并及时向有关乡(镇)、村和矿山及负有对重要设施管理的有关部门发出预警通知。

3)县(市)国土资源行政主管部门负责组织各乡(镇)、矿山、重要设施主管部门编制汛期地质灾害防灾预案。编制全县(市)汛期地质灾害防灾预案,并负责组织实施。

4)县(市)国土资源行政主管部门负责组织地质灾害防治科普宣传活动和基层干部培训工作。

7.3.4 地质灾害监测预警信息网建设

地质灾害监测预警与防治数据是国家与地方进行地质灾害防治,保障社会与经济建设的重要信息,具有数量大、更新快、用途广等特点。通过信息网的建设,实现数据的采集、存储、分析和发布,切实做到为政府、研究人员和社会提供所需的地质灾害信息,为国家经济建设宏观决策提供基础的科学依据。

到2010年,在完善中国地质灾害信息网与各省地质灾害信息网及部分地(市)地质灾害信息网的同时,建成集地质灾害监测、地下水环境监测等为一体的全国地质灾害监测信息系统,实现地质灾害监测数据的自动采集、传输、存储、数据管理、查询、应用和信息实时发布系统。

到2020年,以科学技术为先导,不断完善全国地质灾害监测信息系统,结合气象、水文、地震等相关因素,建成多专业领域、多信息处理技术的信息系统;全面提升我国地质灾害监测信息水平,满足社会和民众对地质灾害信息的需求,实现远程会商、应急指挥等重要决策功能。

地质灾害监测预警信息系统建设依托于各级地质灾害监测机构,具有统一要求、统一流程、分级管理等特点,是一个与现代计算机技术紧密结合的系统工程。本书在第11章(全国地质灾害防治信息系统建设规划研究)全面讨论了包括地质灾害监测预警信息系统在内的整个地质灾害防治信息系统的建设问题,本节不再赘述。

7.3.5 突发性重大地质灾害应急反应机制建设与远程会商应急指挥系统建设

(1)应急反应机制建设

从现在(2004年)起,国家、各省(区、市)要组建以省国土资源行政主管部门为指挥中心,以地质环境监测总站(院、中心)为主体,地(市、州)、县(市、区)国土资源行政主管部门和地方专业队伍协同作战的地质灾害监测预警应急反应系统。

1)应急反应系统要配置必备的应急设备,每年汛前对防灾预案中地质灾害隐患点的主要县(市)进行险情巡查,重点检查防灾减灾措施、群测群防网络、监测责任制是否落实到位,并对主要灾害隐患点进行险情巡查,汛中加强监测,汛后进行复查。

2)发现险情和接到险情报告能在最短的时间内赶到现场,进行险情鉴定,同时能够及时对灾害进行动态监测、分析,预测灾害发展趋势,根据灾害成因、类型、规模、影响范围和发展趋势,划定灾害危险区,设置危险区警示标志,确定预警信号和撤离路线,组织危险区内人员和重要财产撤离,情况危急时,强制组织避灾疏散。

3)接到特大型和大型地质灾害隐患临灾报告,指挥部办公室会同相关部门,迅速组织应急调查组赶赴现场,调查、核实险情,提出应急抢险措施建议。

(2)突发性重大地质灾害远程会商与应急指挥系统建设

随着国家经济建设规模的日益扩大和人民生活水平的不断提高,地质灾害造成的损失日趋突出,地质灾害的防治工作必须针对重大地质灾害及时作出反应,提出科学的决策意见,及时指挥应急处理工作。

突发性重大地质灾害远程会商及应急指挥系统,是针对突发重大地质灾害的预报和应急指挥,在建立地质灾害综合数据库的基础上,构建连接国务院国土资源主管部门、地质灾害数据中心与重点地质灾害发生区的远程会商和应急指挥网络化多媒体环境及地质灾害应急数据传输环境,形成一套信息化的地质灾害远程会商和应急指挥工作流程。

其主要工作内容如下:

1)对重大地质灾害预报和应急指挥相关的信息进行提取、加工、整理、集成与分析,建立地质灾害综合数据库。信息内容包括地理、地质背景数据;气象分析数据;地质灾害调查与监测数据;地质灾害情况资料;救灾条件信息等。

2)建立地质灾害信息发布平台。开发和建设重大地质灾害信息预报与应急指挥相关的动态信息发布系统、空间信息提取与发布系统、多媒体信息发布系统。

3)构建地质灾害远程会商和应急指挥的网络和多媒体运行环境。包括多点、多级视频会议系统、大屏幕显示系统及有关音像、电话系统;国家与重点地质灾害区域之间的网络信息传输系统;构建地质灾害重点区域应急调查数据快速传输环境。

4)研究与制定形成一套地质灾害远程会商和应急指挥系统工作规范。分析地质灾害远程会商和应急指挥工作的特点,提出地质灾害远程会商和应急指挥系统工作的模式,建立一套相关的工作规范。

㈥ 年度三峡库区地质灾害防治工作情况

(2014年1月14日)

2013年,中国地质环境监测院三峡地质灾害监测中心(三峡库区地质灾害防治工作指挥部,以下简称“三峡中心”)深入贯彻落实党的十八大、十八届三中全会精神,在国土资源部地质环境司(地质灾害应急管理办公室)、三峡库区地质灾害防治工作领导小组办公室、中国地质环境监测院(地质灾害应急技术指导中心)的正确领导下,紧紧围绕三峡库区地质灾害防治这一中心工作,坚持对上支撑、横向指导,坚持长远防治能力建设、日常监测应急指导两手抓,有序推进各项工作。三峡中心全体同志齐心协力,认真履职,圆满完成了项目管理、监测预警、应急处置等重点工作,实施了能力建设、队伍建设、制度建设等基础工作,取得了良好的成效。全年三峡库区未发生地质灾害造成人员死亡失踪,连续11年保持库区地灾无伤亡的良好局面。同时,对以往工作进行了梳理,初步确定了2014年重点工作。

一、强化业务支撑,指导落实防治措施

三峡中心认真履行库区地灾防治专门技术机构的支撑、指导职能,全面落实司、院的工作部署,加强调查研究、协调联络和监督检查,确保防治目标科学合理、防治措施落到实处。

(一)组织开展防治趋势预测,明确年度防治任务。在部组织下开展了库区地灾防治趋势会商工作,会同两省市国土部门对2013年三峡库区滑坡、库岸崩塌等灾害发生趋势进行了研判,指导库区市县对全年防治工作趋势做了深入研判,进一步明确了防治重点。

(二)做好行政管理支撑保障,督促落实防治要求。协助地质环境司做好姜大明部长巡库工作以及在此期间召开的库区地灾防治工作会商会,提前准备了丰富的技术资料。会后,与部应急中心、重庆市局和湖北省厅共同完成了巡库检查工作。

(三)多次组织全面巡查排查,指导强化防治措施。6月,组织开展了第二轮库区地质灾害防治检查指导工作。7月,配合部派出的2个工作组分别赴两省市开展第三轮检查指导工作。派员参加了国务院三峡办175米试验性蓄水水位消落期巡库工作和2013年三峡工程试验性蓄水安全巡查。

(四)指导开展地灾隐患排查,全面掌握隐患情况。指导两省市按照部要求,在汛前开展全面排查,在重要时点巡查。组织专业技术人员对排查成果资料进行了整理,入库26个区县10821处(段)再排查数据1.6万条。在长江三峡水利枢纽工程竣工环境保护验收调查中使用了这些成果。

(五)积极承担规范编制任务,推动提升工程质量。参加了地灾防治行业标准规范框架体系、目录和实施方案的起草工作,作为牵头单位组织开展地质灾害信息系统、监测、施工、监理、综合管理等类型共24项标准规范的编制工作,并作为主编单位承担其中21项的编制工作。

二、强化项目管理,全面完成工作任务

按照三峡后续工作总体规划要求,如期完成了后续地灾治理年度项目实施方案组织编制、项目审核,完成了三期治理工程竣工验收等工作。

(一)顺利完成三期地灾治理工程质量国家级行政验收。协助地质环境司、领导小组办公室组织了三期地灾治理工程竣工国家级行政验收,包括国家级工程竣工初步验收和最终验收鉴定书等资料汇编整理,行政验收意见起草,重大地灾治理工程现场检查组织等。

(二)完成二、三期治理工程档案归档与信息化成果验收。根据峡库区二期三期治理工程档案及信息化终验成果意见,验收通过重庆库区22个区县中18个。达到汇交标准并已办理成果资料移交的区县有6个。按照年度计划推进治理工程信息化验收,建立了工程数据库。

(三)完成三峡库区三期地质灾害防治科学研究成果验收。组织专家完成了三峡库区地灾防治科学研究项目共七个专题20个课题和监测预警工程专业监测的“滑坡预报模型和预报判据建立项目”验收。

(四)有序推进后续工作防治项目组织实施。一是完成地灾防治项目初步设计。二是组织专家完成地灾防治项目初步设计技术审查。三是编制完成地灾防治2013年实施方案,配合部向国务院三峡办报送方案。

三、强化监测预警,有效避免人员伤亡

坚持群专结合的工作格局,在帮助指导地方落实群测群防措施的基础上,对重要隐患进行专业监测,辅以地灾气象预警预报信息服务,使近库区隐患周边60万人的生命安全得到了保障,2013年库区地灾继续保持零伤亡。

(一)加强专业监测网络建设。完成了200多处专业监测的复测与验收,收集分析225处滑坡监测资料,预警滑坡14次。开展了122个滑坡预报模型研究。召开了专业监测工作会,建立数据采集和传输系统,采集入库信息约12万条。

(二)指导群专结合的监测工作。在汛前下发了关于加强库区地灾监测预警工作的通知,召开库区地灾防治工作会议,指导两省市构建和完善监测预警体系。汇总分析每月群测群防监测资料,制作科普宣传片1部,出版宣传画册一本。

(三)加强气象预警预报。充分利用气象等部门资源,实现了库区降雨诱发地灾精细化预报,形成系列预报产品,有效服务于库区。在2013年底地灾气象预警预报现场会,汇报展示了库区地灾气象预警预报平台,效果良好。

(四)完成地质环境公报。完成了三峡工程生态与环境监测公报——《三峡工程生态与环境监测系统蓝皮书》(2012年)涉及的地质环境专项报告,宣传了库区地灾防治成效,为有关方面提供了可靠的地质环境信息。

四、强化应急处置,提高应急工作效率

三峡中心高度认识应急工作的重要性,紧密联系环境司、地调局、监测院,保持高度的责任感和政治敏感性,认真谨慎做好突发灾情险情和舆情的处置工作。

(一)加强应急值守,及时报送防治信息。严格执行全年24小时应急值守制度和应急调查处置制度,与两省市、26个县区建立了通畅的信息传送渠道。全年上报信息50多次,中办国办采用6篇次,部采用19次,及时报告了防治工作成效、防治工作进展等。

(二)完善指挥系统,确保应急工作效率。完成了应急会商视频会议系统维修升级及其与应急指挥系统的集成。完善应急监测指挥车和应急通信平台,升级了视频会议系统,实施15次应急演练和野外训练,编写10期应急演练报告,时刻为应急提供稳定可靠的设备保障和熟练的技术支撑。

(三)及时启动响应,指导开展应急处置。共组织开展了重庆武隆巷口镇木林危岩、鸭江镇白果树滑坡、白马镇二台坪泥石流、羊角场镇庆口危岩,云阳县外郎小学滑坡等近10起地灾应急调查,提出了险情应急处置建议。3名专业技术人员被聘为部地灾应急专家,按要求报送专家工作情况。

五、强化能力建设,努力提升防治水平

从基地建设、科学研究、科普宣教、信息化建设等着手,软硬结合,全面提升三峡中心的防治技术能力,树立三峡库区地灾防治技术排头兵的良好形象。

(一)地灾防治科学研究成绩突出,防灾认识不断深入。一是建立了地灾预报模型判据。二是全面展开三峡工程环保验收的地质环境影响专题调查工作。三是启动三峡水库日降幅对防治工程影响调查评价研究。四是编制完成滑坡泥石流监测技术标准,提交了初步研究成果。

(二)全面建成地灾防治信息系统,信息服务显著提升。完成了年度中心计算机网络系统和两省市、区县地质环境监测站计算机广域网系统维护等工作,保证了网络系统、视频会议系统、卫星传输系统和专线网络的正常工作,为防治工作正常开展提供了稳定的网络服务。

(三)推进监测试验示范基地建设,示范作用逐步增强。基本完成了基地大楼改造工程施工,构建了气象监测网、地灾气象预报预警平台建设,完成了滑坡预报模型与判据试用验证评估,监测预警示范作用进一步增强,试验基地的硬件设施条件将得到进一步改善。

(四)系统整理地质灾害成果资料,规范档案资料管理。整理地灾工作成果资料5000余册,完成档案立卷1000盒,电子文档上传服务器,实现办公资料共享查阅,并建立了成果资料收交、借阅、发送程序,建立了档案台帐,进一步规范了档案资料管理。

(五)积极申报国土资源科普基地,拓宽科普宣传渠道。成功申报第三批国土资源科普基地,获部命名科研实验类国土资源科普基地。按要求编制了科普工作规划计划,加强科普能力建设。编制了《百年圆梦——三峡库区地质灾害防治工程史诗画册》,彰显防治工作成就。

六、强化队伍建设,积极提升管理能力

三峡中心着力打造一支思想过硬、业务精通、作风扎实的高素质人才队伍,着力建设一个制度完善、责任明确、奖惩分明的高效率管理体系。

(一)加强队伍建设,规范技术管理。引进技术人员3名,通过实施“给压力,挑担子”工程,提高队伍整体素质,安排12人次参加部、院培训。加强了技术质量管理,基本实现了技术业务管理制度化。

(二)推行目标管理,完成防治任务。按照院要求,围绕三峡库区地灾防治中心工作,推行了目标管理,统筹兼顾,保证重点,完成了年度防治任务。

(三)强化安全生产,严防事故发生。贯彻安全生产责任制,全年车辆安全行驶,安全生产实现零事故的目标。加强保密工作监督和检查,整改隐患,没有发生泄密事件。

(四)规范经济管理,强化资产管理。以预算管理为核心,逐步规范预算管理和经济活动等,使经济管理与业务管理协调推进。

(五)加强党建和文明创建,促进中心工作。深入学习贯彻党的十八大、十八届三中全会精神,坚决落实院党的群众路线教育实践活动实施方案,被院党委授予“先进基层党组织”称号。编制了2013年工会工作计划和活动安排,大力推进文明创建活动,促进了中心工作上新台阶。

七、把握工作要点,为三峡做出新贡献

2014年,三峡中心将紧密结合部关于全国地灾防治工作的总体部署和库区防治工作的具体要求,继续保持高度警惕,戒骄戒躁,兢兢业业做好库区地灾防治工作。

(一)工作思路。一是不断加强三峡库区地灾防治后续规划项目实施的协调、指导、监督和检查,认真履行职能,支撑部、局、院工作。二是进一步推进三峡库区地灾监测预警实验基地建设,继续推进三峡库区地灾监测预警体系建设,培养人才,改善基地条件,系统总结三峡库区地灾防治技术,在试验研究、技术培训和推广应用等方面建成全国地灾防治试验示范创新基地。三是建立和完善三峡库区地灾防治信息中心,支持防治管理和决策。

(二)工作重点。一是年初开展趋势分析,形势研判,确定防范重点地区,明确主要防治措施,配合部做好工作部署。二是配合部开展巡库指导工作,在汛期、大范围强降雨、175米蓄水等期间,组织专家开展巡查指导,督促地方加强防治措施。三是督促指导两省市提前完成2014年开展项目的前期工作,做好年度防治实施方案的编制报送。四是指导地方实施好防治工程,保持专业监测和群测群防体系高效运行。五是加强应急值守,及时启动应急响应,指导地方政府做好突发灾情险情的应急处置。六是完成三峡工程竣工验收涉及地灾的各项工作,按时提交防治工程验收报告。

中国地质环境监测院三峡地质灾害监测中心(指挥部)

2014年1月14日

㈦ 地质灾害预警系统研发

3.1.1 总体思路

3.1.1.1 基本认识

中国地域广大,地质环境类型复杂多样,斜坡岩土体含水状态与滑坡泥石流事件发生的对应关系是复杂的,滑坡泥石流事件与降雨过程的关系具有离散性。因此,尽可能细化预警区域的划分,对每个预警区的斜坡坡角、坡积层工程地质特征、植被类型和人类活动方式进行系统研究,得出特定环境地质条件(地层岩性、地质结构、地貌形态、地表植被和人类工程经济活动等)下引发地质灾害的大气降雨量临界值,作为地质灾害区域预警判据是可行的。

3.1.1.2 预警对象与预警重点区

降雨引发的区域突发性群发型地质灾害:崩塌、滑坡、泥石流等。

预警重点区是:

1)威胁山区的乡镇、居民点,且无力搬迁的地区;

2)威胁重要工程如桥梁、水坝和电站等地区;

3)威胁线状工程如公路、铁路、输油(气)管线和输电线路以及水上交通线等地区;

4)重要经济区(发达经济区、工矿区和农业区等);

5)重要自然保护区、自然景观和人文景观地区;

6)区域生态地质环境脆弱,且又必须开发的地区。

3.1.1.3 预警类型

突发性地质灾害气象预警可分为时间预警和空间预警两种类型。

空间预警是比较明确地划定在一定条件下(如根据长期气象预报),一定时间段内地质灾害将要发生的地域或地点,主要适用于群发型;

时间预警是在空间预警的基础上,针对某一具体地域或地点(单体),给出地质灾害在某一时段内或某一时刻将要发生的可能性大小,主要适用于单体如大型滑坡,并有群测群防网络或专业监测网络相配合。

空间预警是减轻区域性、全局性地质灾害的有效手段。空间预警是基于地质灾害的主要控制因素(如地层岩性、地质结构、地貌形态、地层突变等)和引发因素(如降雨、地震、冰雪消融、人为活动)开展工作,控制因素是基本条件,引发因素在不同地区或同一地区的不同地段常常表现出极大差异。

3.1.1.4 预警等级

根据《国土资源部和中国气象局关于联合开展地质灾害气象预报预警工作协议》,地质灾害气象预报预警分为5个等级:

1级,可能性很小;

2级,可能性较小;

3级,可能性较大;

4级,可能性大;

5级,可能性很大;

国家层次发布地质灾害预警按以下考虑:

1~2级不发布预报,用绿色和蓝色表示;

3级发布预报,用黄色表示;

4级发布预警,用橙色表示;

5级发布警报,用红色表示。

3.1.1.5 预警时段与地域

预报预警时段是当日20时至次日20时。

预报预警地域是中华人民共和国领土范围,暂不包括香港特别行政区、澳门特别行政区和台湾省。

3.1.1.6 技术路线

1)把全国划分为若干预警区域。

2)确定预警判据。对每个预警区的历史滑坡、泥石流事件和降雨过程的相关性进行统计分析,分别建立每个预警区的地质灾害事件与临界过程降雨量的统计关系图,确定滑坡泥石流事件在一定区域暴发的不同降雨过程临界值(低值、高值),作为预警判据。

3)判定发生地质灾害的可能性。接收到国家气象中心发来的前期实际降雨量和次日预报降雨量数据后,对每个预警区叠加分析,根据判据图初步判定发生地质灾害的可能性。

4)判定预报预警等级。对判定发生地质灾害可能性较大或以上等级的地区,结合该预警区降雨量、地质环境、生态环境和人类活动方式、强度等指标进行综合判断,从而对次日的降雨过程引发地质灾害的空间分布进行预报或警报。

5)制作地质灾害预警产品。

6)发送预警产品。将预警产品报请有关领导签发后,发送国家气象中心。

7)发布预警产品。国家气象中心收到预警产品后,以国土资源部和中国气象局的名义在中央电视台播出。同时,地质灾害预警结果在中国地质环境网站上进行发布。

8)发布预警后,预警人员跟踪校验预警效果,总结提高预警准确率。

3.1.2 科学依据

根据1990~2002年对突发性地质灾害的分类统计,发现持续降雨引发者占总发生量的65%,其中,局地暴雨引发者约占总发生量的43%,占持续降雨引发者总量的66%。也就是说,约2/3的突发性地质灾害是由于大气降雨直接引发的或是与气象因素相关的,地质灾害气象预警工作是有科学依据的。

3.1.2.1 气象因素引发地质灾害的特点

1)区域性:一般在数百至数千平方公里内出现;单条泥石流的流域面积:≤0.6km2者11.9%;0.6~10km2者61.6%;10~50km2者22.4%。

2)群发性:崩塌、滑坡、泥石流等在某一区域多灾种呈群体出现。

3)同时性:巨大灾难在数十分钟—数小时内先后或同时出现。

4)暴发性:滑坡、特别是泥石流的发生具有突然暴发性,宏观上完好的坡体突然滑塌或“奔流”;当地人称为“涡旋炮”或“山扒皮”。如陕西省紫阳县同一地点伤亡人员最多的联合乡鱼泉村7组(瞬间造成37人遇难)是5个“涡旋炮”同时击中的结果。

5)后续性:大型滑坡一般出现在降雨过程后期,甚至降雨结束后数天。

6)成灾大:造成重大人员伤亡和各种财产损失。

3.1.2.2 气象因素引发地质灾害的成因

1)区域性持续降雨或暴雨使松散堆积层达到过饱和状态。

2)成灾地区地形陡峻,坡形变化复杂,坡度25°~70°。

3)地质上具备二元结构,上为松散堆积层,下为坚硬基岩,容易在二者的接触处形成强大渗流带。

4)松散堆积层厚度1~10m,一般1~4m。

5)一般植被覆盖率较高,在强烈暴雨持续作用下起到滞水作用。

6)居民防灾意识薄弱,房屋结构简易,抗灾强度低。房屋大多建在溪沟出山口地段,属于泥石流的流通路径。调查发现,虽然滑坡、泥石流灾害具有暴发性,但多数地点仍有数小时至数分钟的躲避时间,因防灾基本知识缺乏,以致有的村民在抢运财物过程中丧生。

7)对大型滑坡滞后于降雨过程的机理缺乏科学认识。

3.1.2.3 来自统计学的认识

地质灾害具有自然和社会的双重属性。理论研究与科学实践均证明,地质灾害具有可区划性、可监测预警性。

1)分析发现,滑坡的发生在过程降雨量和降雨强度两项参数中,存在着一个临界值,当一次降雨的过程降雨量或降雨强度达到或超过此临界值时,泥石流和滑坡等地质灾害即成群出现。

2)不同地区具体一条沟谷的泥石流始发雨量区间为10~300mm,差异之大反映了地质条件、气候条件等的差异。

3)在降雨过程的中后期或局地单点暴雨达到临界值时出现突发性群发型泥石流、滑坡等地质灾害,滑坡以小型者居多。

4)大型滑坡常在降雨过程后期或雨后数天内出现。

3.1.2.4 区域地质灾害的时空分布

据20世纪90年代的调查,我国泥石流的时空分布频率具有以下特点:

(1)泥石流频率与地貌

3500m以上的高山占9%;1000~3500m的中山占56%;小于1000m的低山占15%;黄土高原区占11%。

(2)泥石流频率与工程地质岩组

变质岩区占43%;碎屑岩区占32%;黄土区占11%;岩浆岩区占9%;碳酸盐岩区占7%。

(3)泥石流发生频率与年平均降雨量(mm/a)

<400区域占10%;400~600区域占16%;600~800区域占18%;800~1000区域占24%;1000~1400区域占22%;>1400区域占10%

(4)泥石流暴发时间(月份)分布频率

5月:9%;6月:18%;7月:34%;8月:24%;9月:10%

上述统计说明,泥石流主要分布在中低山地区;多出现在易于风化破碎的岩土分布区;年均降雨量过高或过低都不会暴发泥石流;发生时间主要出现在每年的6~8月。

3.1.3 中国地质灾害气象预警区划

基于我国地质灾害类型分布、全国气候区划和滑坡泥石流与区域降雨关系的各类研究文献,编制中国地质灾害气象预警区划图。

3.1.3.1 资料依据

基于气象因素的《中国地质灾害气象预警区划图(1∶500万)》的编制主要依据以下资料:

1)中国泥石流及其灾害危险区划图(1∶600万),

中国科学院成都山地灾害与环境研究所,1991

2)中国滑坡灾害分布图(1∶600万),

中国科学院成都山地灾害与环境研究所,1991

3)中国地质灾害类型图(1∶500万),

地质矿产部成都水文地质工程地质中心,1991

4)中国泥石流灾害图(1∶600万),

地质矿产部成都水文地质工程地质中心,1992

5)中国滑坡崩塌类型及分布图(1∶600万),

地质矿产部环境地质研究所,1992

6)中国特殊类土及危害图(1∶600万),

中国地质科学院水文地质工程地质研究所,1992

7)中国地形图(立体,1∶600万),地图科学研究所,1999

8)中华人民共和国气候图集,气象出版社,2002

9)区域降雨资料与滑坡、泥石流关系的各类文献

3.1.3.2 预警区划分原则

根据研究需要,在此提出斜坡划分原理:

1)滑坡和泥石流是在斜坡地区发生的;

2)区域分水岭的两坡气象降雨条件和生态环境是不同的;

3)我国的最大斜坡是帕米尔高原—东海大陆架的多级多层次斜坡;

4)区域斜坡可分为三类:一类是分水岭到海滨,如后界燕山—鲁儿虎山,左界辽河,右界永定河/海河和前界渤海圈闭的区域;二类如大别山—淮河—黄河圈闭的区域;三类如四川盆地周缘区域。

一级区以全国性分水岭或雪线为界,考虑长时间周期、大空间尺度的气候区划和地质地貌环境条件;

二级区主要以重大水系、区域分水岭、区域气候、历史滑坡泥石流事件分布密度、地质环境条件、斜坡表层岩土性质和年均降雨量分布。

3.1.3.3 预警区域划分

本研究立足全国范围,暂时提出两级区划,共划分7个一级预警区,28个二级预警区,可以满足初步工作要求(图3.1)。

(1)预警区的地质灾害特征

A东北山地平原区

A1三江地区

图3.1 中国地质灾害气象预警区划图(28个区)(台湾省专题资料暂缺)

佳木斯/牡丹江地区,气象因素引发地质灾害微弱。

A2东北平原

桦甸/敦化地区以及大兴安岭东麓,气象因素引发地质灾害较弱。

B大华北地区

B1辽南地区

辽东半岛地区(千山),气象因素引发地质灾害较严重。

B2京承地区

北京北部和河北承德地区,气象因素引发地质灾害严重。

B3晋冀地区

太行山东麓地区,气象因素引发地质灾害较严重。

B4山东丘陵

泰山和胶东地区,气象因素引发地质灾害在小范围较严重。

B5豫西地区

灵宝/许昌之间和伏牛山北麓地区,气象因素引发地质灾害较严重—轻微。

B6皖苏地区

大别山北麓和张八岭地区,气象因素引发地质灾害较严重—轻微。

B7江浙地区

临安/嵊州地区,气象因素引发地质灾害在小范围较严重。

C中南山地丘陵区

C1闽浙地区

武夷山/九连山以东地区,气象因素引发小规模地质灾害严重。

C2江西地区

九岭山和赣南地区,气象因素引发小规模地质灾害严重。

C3豫鄂地区

南阳、神农架、大洪山和大别山南麓地区,气象因素引发地质灾害较严重。

C4湖南地区

湘西和湘南(雪峰山)地区,气象因素引发地质灾害严重。

C5桂粤地区

桂西和两广北部地区,气象因素引发小规模地质灾害严重。

D西南中高山区

D1陕南地区

秦岭南麓和大巴山北麓地区,气象因素引发地质灾害严重。

D2四川盆地

成都平原外的其他地区,气象因素引发地质灾害严重。

D3黔渝地区

黔北和重庆地区,气象因素引发地质灾害严重。

D4滇南地区

滇南和黔南部分地区,气象因素引发地质灾害严重。

D5川滇地区

川西、滇西和滇中地区,气象因素(含高山融水)引发地质灾害极严重。

E黄土高原区

E1吕梁地区

大同—太原—临汾一线地区,气象因素引发地质灾害较严重—轻微。

E2陕北地区

陕北黄土高原地区,气象因素引发地质灾害严重。

E3陇西地区

陇西和海东地区,气象因素引发地质灾害极严重。

F北方干旱沙漠区

F1内蒙古东部地区

气象因素引发地质灾害轻微。

F2阿拉善地区

祁连山北麓、玉门/武威地区,气象因素(高山融水)引发地质灾害较严重。

F3南疆地区

天山南麓、阿尔金山北麓气象因素(高山融水)引发地质灾害较严重。

F4北疆地区

天山北麓气象因素(暴雨和高山融水)引发地质灾害严重。

G青藏高原区

G1藏北地区

气象因素引发地质灾害轻微。

G2藏南地区

雅鲁藏布江及支流流域气象因素(暴雨和高山融水)引发地质灾害较严重;藏东南

暴雨引发地质灾害严重。

(2)一级区域界线标志

A/F大兴安岭—七老图山

漠河—凤水山(1398)—古利牙山(1394)—太平岭(1712)—兴安岭(1397)—巴代艾来(1540)—罕山(1936)—黄岗梁(2029)—七老图山

A/B云雾山—长白山

小五台山(2882)—赤城—云雾山(2047)—七老图山—阜新—铁岭—莫日红山(1013)—白头山

B/E太行山—中条山

小五台山(2882)—恒山(2017)—北台顶(3058)—阳曲山(2059)—历山(2322)—华山(2160)

E/F毛毛山—靖边—东胜—小五台

海晏—仙密大山(4354)—毛毛山(4070)—景泰—定边—靖边—榆林—东胜—丰镇—小五台山(2882)

EB/DC秦岭—伏牛山—大别山—括苍山

海晏—龙羊峡—同仁—鸟鼠山(2609)—武山南—凤县—太白山(3767)—首阳山(2720)—秦岭—华山(2160)—全宝山(2094)—老君山(2192)—太白顶(1140)—鸡公山(744)—霍山(1774)—安庆—九华山(1342)—黄山(1873)—桐庐—括苍山(1382)—北雁荡山(1057)

F/G阿尔金山—祁连山

公格尔山(7649)—慕士塔格山(7509)—赛图拉—慕士山(6638)—乌孜塔格(6250)—九个达坂山(6303)—阿卡腾能山(4642)—阿尔金山(5798)—大雪山(5483)—祁连山(5547)—冷龙岭(4849)—毛毛山(4070)

C/D老君山—梵净山—岑王老山

老君山(2192)—武当山(1612)—大神农架(3053)—建始—来凤(>1000)—酉阳—梵净山(2494)—佛顶山(1835)—雷公山(2179)—岑王老山(2062)—富宁

D/G九寨沟—察隅

武山—九寨沟—雪宝顶(5588)—马尔康—炉霍—新龙—巴塘—察隅

(3)二级区域界线

A1/A2小兴安岭—张广才岭—白头山

呼玛—大黑顶山(1047)—平顶山(1429)—大青山(944)—大秃顶子山(1690)—大石头(1194)—甑峰山(1677)—白头山

B1/B2下辽河

B2/B3永定河—海河

B3/B4黄河

B4/B5黄河故道

B5/B6淮河—黄河故道

B6/B7长江

C1/C2武夷山—九连山

黄山(1873)—玉京峰(1817)—黄岗山(2158)—白石峰(1858)—木马山(1328)—九连山(1248)—龙门

C2/C34霍山—幕阜山—罗霄山脉

霍山(1774)—九江—九宫山(1543)—幕阜山(1596)—连云山(1600)—武功山(1918)—井冈山—八面山(2042)—石坑埪(1902)

C3/C4长江

C124/C5南岭山脉

雷公山(2179)—猫儿山(2142)—韭菜岭(2009)—石坑埪(1902)—雪山嶂(1379)—龙门—飞云顶(1282)—莲花山(1336)—神泉港

D1/D23米仓山—大巴山

九顶山(4984)—广元—米仓山—大巴山—大神农架(3053)

D2/D3长江—重庆—华蓥山—万源北

D123/D5夹金山—大凉山

雪宝顶(5588)—九顶山(4984)—二郎山(3437)—贡嘎山(7556)—铧头尖(4791)—大凉山(3962)—长江—五莲峰(2561)—陆家大营(2854)

D3/D4苗岭山脉

陆家大营(2854)—黄果树瀑布—惠水—雷公山(2179)

D4/D5乌蒙山—哀牢山—高黎贡山

陆家大营(2854)—黎山(2678)—马龙—玉溪—哀牢山(3166)—猫头山(3306)—高黎贡山—(3374)—尖高山(3302)

E1/E2吕梁山脉

岱海—管涔山—荷叶坪(2784)—黑茶山(2203)—关帝山(2831)—禹门口

E2/E3屈吴山—六盘山脉

景泰—屈吴山(2858)—六盘山(2928)—太白(2819)

F1/F2

古尔班乌兰井—呼和巴什格(2364)—贺兰山(3556)—香山

F2/F3

马鬃山(2583)—大雪山(5483)

F3/F4天山山脉

托木尔峰(7443)—比依克山(7443)—天格尔峰(4562)—博格达峰(5445)—巴里坤山—托木尔提(4886)

G1/G2冈底斯山—念青唐古拉山脉

扎西岗—冈仁波齐峰(6656)—冷布冈日(7095)—念青唐古拉峰(7111)—嘉黎—洛隆—邦达—巴塘。

3.1.4 地质灾害气象预警判据研究

3.1.4.1 判据确定原则与资料依据

根据有限研究积累和历史经验,滑坡、泥石流的发生不但与当日激发降雨量有关,而且与前期过程降雨量关系密切,本项研究选定1d,2d,4d,7d,10d和15d过程降雨量等6个数据进行统计分析,期望对一个地区气象因素引发滑坡、泥石流地质灾害的原因与临界雨量判据的确定具有全面认识。

本次研究的资料依据主要有两方面:

1)中国地质环境监测院建立的全国地质灾害调查数据库中气象因素引发的历史滑坡泥石流灾害数据(999个);

2)国家气象中心根据中国地质环境监测院提供的滑坡、泥石流数据,整理提供了731个相关站点15d内历史降雨量数据。

3.1.4.2 预警区的临界降雨量判据研究

(1)不同降雨过程代表数据的选定

中国气象局系统对日降雨量(Q)的预报是按当日20时到次日20时计算,而滑坡、泥石流事件可能发生在此24h的任一时段。

若灾害事件在接近24时发生,则基本可对应1d(即当日)过程降雨量;若灾害事件在次日0时以后的夜间发生,则对应前一日(2d)过程降雨量更符合实际。因此,本项研究选定的数据代表时段(日:24h)是:

1d过程降雨量:0≤Q1≤1

2d过程降雨量:1≤Q2≤2

4d过程降雨量:3≤Q4≤4

7d过程降雨量:6≤Q7≤7

10d过程降雨量:9≤Q10≤10

15d过程降雨量:14≤Q15≤15

(2)临界过程降雨量预警判据图的建立

根据滑坡泥石流与降雨关系的研究,制作滑坡泥石流与不同时段临界降雨量关系散点图,发现散点集中成带分布,其上界可用β线表示,下界可用α线表示。因此,利用1d,2d,4d,7d,10d和15d等过程降雨量,可以建立地质灾害预警判据模式图(图3.2)。

图中横轴是时间(1~15d),纵轴是相应的过程降雨量(mm)。我们规定,α线和β线为两条滑坡、泥石流发生的临界降雨量线,α线以下的A区为不预报区(1,2级,可能性小、较小),α~β线之间的B区为地质灾害预报区(3,4级,可能性较大、大),β线以上的C区为地质灾害警报区(5级,可能性很大)。

(3)预警区临界降雨判据图研究

在28个气象预警区中,18个预警区可以形成完整的滑坡、泥石流发生的临界降雨预警判据图(上限值β线、下限值α线);10个预警区因缺乏资料尚不能形成判据图,其中,A1,B5,F1和G24个区完全缺数据;B4,B6,E1,E2,F3和F46个区数据不全(只能形成α线或β线,甚至散点)。这10个区主要为滑坡、泥石流不发育区或人口稀疏地区,暂时对全国的预警工作效果影响不大。

图3.2 预报判据模板图

代表性数据及曲线举例

A2东北平原

中国地质灾害区域预警方法与应用

*3个样本。

A2气象预警区判据图

B1辽南地区

中国地质灾害区域预警方法与应用

*9个样本。

B1气象预警区判据图

C1闽浙地区

中国地质灾害区域预警方法与应用

*50个样本。

C1气象预警区判据图

D1陕南地区

中国地质灾害区域预警方法与应用

*45个样本。

D1气象预警区判据图

D5川滇地区

中国地质灾害区域预警方法与应用

*60个样本。

D5气象预警区判据图

E3陇西地区

中国地质灾害区域预警方法与应用

*50个样本。

E3气象预警区判据图

F2阿拉善地区

中国地质灾害区域预警方法与应用

*8个样本。

F2气象预警区判据图

G1藏北地区

中国地质灾害区域预警方法与应用

*15个样本。

G1气象预警区判据图

3.1.4.3 预警判据校正

为了提高预警精度,依据以下资料对预警区判据图进行了校正:

1)中国大陆滑坡、泥石流与降雨关系的各类科技文献;

2)历年中国地质灾害公报;

3)部分省(区、市)的地质灾害年报;

4)全国县(市)地质灾害调查区划成果资料(主要是福建省);

5)重点地区地质灾害专项研究报告等。

检索发现有13个预警区具有部分滑坡、泥石流与临界过程降雨量研究资料,有15个预警区暂未收集到或完全缺乏研究资料。

13个具备部分研究资料的预警区分别整理成图、表,可供确定相应预警区预警级别时参考,或与预警判据图配合使用。

以C1区为例,见下表(图3.3):

图3.3 C1区地质灾害点分布与临界降雨量统计关系

3.1.5 预警尺度精度评价

3.1.5.1 预警尺度

(1)空间预警尺度

图面表示3000km2(基于1∶500万~1∶600万地质灾害预警区划图)。

(2)时间预警尺度

地灾预警与气象预警时间尺度同步。

3.1.5.2 预警精度评价

1)取决于气象预报精度。目前全国性的气象预报精度尚不高,特别是对引发泥石流影响明显的局地单点暴雨的预报有待加强。

2)雨量站点代表性精度。地质灾害气象预警判据图依赖于气象站点经(纬)度和地质灾害发生点的经(纬)度(距离)的接近程度。

本次资料地质灾害灾情点的经(纬)度与相邻气象站点的经(纬)度之差在0.3°~1.0°之内,也即相差40~50km,反映在平面上即存在约2000km2的误差。

3)地质环境-气象因素耦合机制的研究精度。地形坡度、植被、岩土类型、含水状态、地表入渗和产流等的研究尚很薄弱。

4)人类活动方式、强度与斜坡变形破坏模式尚缺乏科学界定。

3.1.6 地质灾害预警产品制作与发布

3.1.6.1 预警产品制作、签批与发布

1)国家气象中心提供全国每次降雨过程的天气预报资料,每天16:00通过适当方式(E-mail)发送前期实际降雨量和次日预报降雨量数据;

2)中国地质环境监测院接到降雨量数据后,根据此数据和预警判据图对各预警区发生地质灾害的等级进行逐个分析和判定;

3)专家会商、分析判定预报预警结果,根据会商后的结果,做出空间预警,在预警图上划出预报或警报区,此称预警产品;

4)领导审定、签批预警产品;

5)经签批的预警产品于当天16:30通过适当方式(E-mail)发回国家气象中心;

6)国家气象中心接收预警产品,并和天气预报产品统一制作,配音;

7)中央电视台在当天晚上19:30新闻联播后播出地质灾害气象预报或警报及等级;

8)预报或警报地区的有关省级地质环境监测总站应在预警发出24h至48h内,向中国地质环境监测院反馈预警效果校验结果;

9)中国地质环境监测院分析研究预警效果校验结果,改进预警判据,逐步提高预警精度。

3.1.6.2 预警产品发布形式

(1)中央电视台发布播出

预警产品署名:国土资源部

中国气象局

模拟预报词:

今天晚上到明天白天,××地区发生地质灾害的可能性较大,请注意防范。

(2)中国地质环境信息网站发布

主要供专业人士和政府管理部门参考,跟踪研究预警效果,讨论研究预警方法与对策。

设计制作了地质灾害气象预警预报专用“符号”(图3.4)。

图3.4 地质灾害气象预报预警专用“符号”

从2005年开始,在中央电视台发布地质灾害气象预警预报信息图片时,同时配发崩塌、滑坡和泥石流动画,增强了地质灾害预警信息的视觉冲击力,也提高了地质灾害气象预报预警的社会影响力。

3.1.7 地质灾害预警软件系统

3.1.7.1 基于C语言的预警预报软件

2004~2006年,模型采用第一代临界雨量判据法,基于C语言的预警预报软件。具备自动生成降雨等值线、雨量站点上自动计算预报等级、查看雨量站点雨量等功能(图3.5)。缺点是无法自动成区、不具备GIS图层操作功能。

图3.5 基于C语言的第1套预警软件Predmap抓图

3.1.7.2 基于ArcGIS开发了第2套预警预报软件

2007年,基于ArcGIS开发了第2套预警预报软件,模型仍采用第一代临界雨量判据法(图3.6)。主要改进在于将软件系统升级为基于GIS开发,且实现预警区的自动圈闭。缺点是ArcGIS软件庞大,软件操作、升级等方面不便。

图3.6 基于ArcGIS的第2套预警软件抓图

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864