岩质边坡可能存在的工程地质问题
① 冲积平原区可能存在的地质问题有哪些
在工程地质特征上,卵石、砾石及密实砂层的承载波力较高,作为建筑物地基是比版较稳权定的。细砂具有不太大的压缩性,饱和进边坡不稳定。至于淤泥、泥炭和松软的黏性土,如作为地基,则建筑物会发生较大的沉降,而且沉降的完成需要很长的时间。总的来说,生轭湖及河滩地带因含松软的淤泥及黏性土,工程性质差。但河漫滩上升为阶地后因干燥脱水,则工程性质能够改善,一 愈老的阶地工程性质愈好。
山区河谷冲积土:山区冲积物透水性很大,抗剪强度高,实际上是不可压缩的,是建筑物的良好地基。
山前平原冲积洪积物:沉积物有分带性,近山处为冲积和部分洪积成因的粗碎屑物组成,向平原低地逐渐变为砾砂、砂以至黏性土。因此,山前平原的工程地质条件也随分带岩性的不同而变化。越往平原低处,工程地质条件越差。
② 工程地质问题的工程地质问题
工程地质问题是指已有的工程地质条件在工程建筑和运行期间会产生一些新的变化和发展,构成威胁影响工程建筑安全的地质问题称为工程地质问题。由于工程地质条件复杂多变,不同类型的工程对工程地质条件的要求又不尽相同,所以工程地质问题是多种多样的。就土木工程而言,主要的工程地质问题包括:
(1) 地基稳定性问题:是工业与民用建筑工程常遇到的主要工程地质问题,它包括强度和变形两个方面。此外岩溶、土洞等不良地质作用和现象都会影响地基稳定。铁路、公路等工程建筑则会遇到路基稳定性问题。
(2) 斜坡稳定性问题:自然界的天然斜坡是经受长期地表地质作用达到相对协调平衡的产物,人类工程活动尤其是道路工程需开挖和填筑人工边坡(路堑、路堤、堤坝、基坑等),斜坡稳定对防止地质灾害发生及保证地基稳定十分重要。斜坡地层岩性、地质构造特征是影响其稳定性的物质基础,风化作用、地应力、地震、地表水、和地下水等对斜坡软弱结构面作用往往破环斜坡稳定,而地形地貌和气候条件是影响其稳定的重要因素。
(3) 洞室围岩稳定性问题:地下洞室被包围于岩土体介质(围岩)中,在洞室开挖和建设过程中破坏了地下岩体原始平衡条件,便会出现一系列不稳定现象,常遇到围岩塌方、地下水涌水等。一般在工程建设规划和选址时要进行区域稳定性评价,研究地质体在地质历史中受力状况和变形过程,做好山体稳定性评价,研究岩体结构特性,预测岩体变形破坏规律,进行岩体稳定性评价以及考虑建筑物和岩体结构的相互作用。这些都是防止工程失误和事故,保证洞室围岩稳定所必需的工作。
(4) 区域稳定性问题:地震、震陷和液化以及活断层对工程稳定性的影响,自1976年唐山地震后越来越引起土木工程界的注意。对于大型水电工程、地下工程以及建筑群密布的城市地区,区域稳定性问题应该是需要首先论证的问题。
(5)一般工程施工前,先由勘察设计院对地质进行勘察。
③ 冲积平原区可能存在的地质问题有哪些
在工程地质特征上,卵石、砾石及密实砂层的承载波力较高,作为建筑物地基是比较稳定版的.细砂具有不太大的权压缩性,饱和进边坡不稳定.至于淤泥、泥炭和松软的黏性土,如作为地基,则建筑物会发生较大的沉降,而且沉降的完成需要很长的时间.总的来说,生轭湖及河滩地带因含松软的淤泥及黏性土,工程性质差.但河漫滩上升为阶地后因干燥脱水,则工程性质能够改善,一 愈老的阶地工程性质愈好.
山区河谷冲积土:山区冲积物透水性很大,抗剪强度高,实际上是不可压缩的,是建筑物的良好地基.
山前平原冲积洪积物:沉积物有分带性,近山处为冲积和部分洪积成因的粗碎屑物组成,向平原低地逐渐变为砾砂、砂以至黏性土.因此,山前平原的工程地质条件也随分带岩性的不同而变化.越往平原低处,工程地质条件越差.
④ 岩溶地区的主要工程地质问题是什么
主要工程地质问题有三类:渗漏问题;地基稳定性问题;地下洞室稳定和突然涌专水、涌泥问题。
研究属意义:岩溶地区有许多可以利用的有利条件,如地下蕴藏丰富的喀斯特水资源;地下洞穴中富集石油、天然气、砂矿及矿泉资源;各种奇特的地貌现象常是很好的旅游资源;喀斯特洞穴曾是人类祖先的栖居地,蕴藏着宝贵的考古资源。但是,岩溶也带来许多问题,如喀斯特山区耕地少、地表水少,洼地易积水成灾;采矿、地下开挖工程会遇到喀斯特涌水;地面工程建设中会遇到工程地基的地面塌陷、水库漏水和喀斯特气爆水库地震、坝基溶蚀引起溃坝等,这对工农业建设是不利因素。总之,对岩溶地区工程地质研究有利于人们合理开发利用自然资源、尽量保证工程安全等。
⑤ 常见的工程地质问题有哪些
风化、破碎岩层。风化一般在地基表层,可以挖除。破碎岩层有的较浅,可以挖除。有的埋藏较深,如断层破碎带,可以用水泥浆灌浆加固或防渗;风化、破碎处于边坡影响稳定的,可根据情况采用喷混凝土或挂网喷混凝土罩面,必要时配合注浆和锚杆加固。
断层、泥化软弱夹层。对充填胶结差,影响承载力或抗渗要求的断层,浅埋的尽可能清除回填,深埋的注水泥浆处理;浅埋的泥化夹层可能影响承载能力,尽可能清除回填,深埋的一般不影响承载能力。断层、泥化软弱夹层可能是基础或边坡的滑动控制面。
松散、软弱土层。对不满足承载力要求的松散土层,如砂和砂砾石地层等,可挖除,也可采用固结灌浆、预制桩或灌注桩、地下连续墙或沉井等加固;对不满足抗渗要求的,可灌水泥浆或水泥黏土浆,或地下连续墙防渗;对于影响边坡稳定的,可喷射混凝土或用土钉支护。
滑坡体。斜坡内可能沿滑动面下滑的岩体称为滑坡体。滑坡发生往往与水有很大关系,渗水降低滑坡体尤其是滑动控制面的摩擦系数和黏聚力,要注重在滑坡体上方修筑截水设施,在滑坡体下方筑好排水设施。防止滑坡,经过论证可以在滑坡体的上部刷方减重,未经论证不要轻易扰动滑坡体。
地下水发育地层。当地下水发育影响到边坡或围岩稳定时,要及时采用洞、井、沟等措施导水、排水,降低地下水位。
对结构面不利交汇切割和岩体软弱破碎的地下工程围岩,地下工程开挖后,要及时采用支撑、支护和衬砌。支撑多采用柱体、钢管排架、钢筋或型钢拱架,拱架的间距根据围岩破碎的程度决定。
岩溶与土洞。当建筑工程不可能避开时,可挖除洞内软弱充填物后回填石料或混凝土。不方便挖填的,可采用长梁式、桁架式基础或大平板等方案跨越洞顶,也可对岩溶进行裂隙钻孔注浆,对土洞进行顶板打孔充砂、砂砾,或做桩基处理。
⑥ 含软弱夹层的岩层地区如何布置工程建筑,可能存在的工程地质问题有哪些
(1)抄 褶皱核部岩层由于受水平挤袭压作用,产生许多裂隙,直接影响到的完整性和强度,在石灰岩地区还往往岩溶较为发育。所以在核部布置各种建筑工程,如厂房,路桥,堤坝,必须注意岩层的坍落,漏水及涌水问题
(2) 在褶皱翼部布置工程时,如果开挖坡的走向近于平行岩层走向,且边坡倾向于岩层
倾向一致,边坡角大于岩层倾角,则容易造成顺层滑动现象
(3) 对于隧道等埋藏地下工程,一般布置在褶皱的翼部。因为隧道通过均一岩层有利稳
定,而背斜顶部岩层受张力作用可能坍落,向斜核部则是储水较丰富的地方。
⑦ 常见工程地质有哪些问题与防治
工程地质问题是指已有的工程地质条件在工程建筑和运行期间会产生一些新的变化和发展,构成威胁影响工程建筑安全的地质问题称为工程地质问题。由于工程地质条件复杂多变,不同类型的工程对工程地质条件的要求又不尽相同,所以工程地质问题是多种多样的。就土木工程而言,主要的工程地质问题包括:(1) 地基稳定性问题:是工业与民用建筑工程常遇到的主要工程地质问题,它包括强度和变形两个方面。此外岩溶、土洞等不良地质作用和现象都会影响地基稳定。铁路、公路等工程建筑则会遇到路基稳定性问题。(2) 斜坡稳定性问题:自然界的天然斜坡是经受长期地表地质作用达到相对协调平衡的产物,人类工程活动尤其是道路工程需开挖和填筑人工边坡(路堑、路堤、堤坝、基坑等),斜坡稳定对防止地质灾害发生及保证地基稳定十分重要。斜坡地层岩性、地质构造特征是影响其稳定性的物质基础,风化作用、地应力、地震、地表水、和地下水等对斜坡软弱结构面作用往往破环斜坡稳定,而地形地貌和气候条件是影响其稳定的重要因素。(3) 洞室围岩稳定性问题:地下洞室被包围于岩土体介质(围岩)中,在洞室开挖和建设过程中破坏了地下岩体原始平衡条件,便会出现一系列不稳定现象,常遇到围岩塌方、地下水涌水等。一般在工程建设规划和选址时要进行区域稳定性评价,研究地质体在地质历史中受力状况和变形过程,做好山体稳定性评价,研究岩体结构特性,预测岩体变形破坏规律,进行岩体稳定性评价以及考虑建筑物和岩体结构的相互作用。这些都是防止工程失误和事故,保证洞室围岩稳定所必需的工作。(4) 区域稳定性问题:地震、震陷和液化以及活断层对工程稳定性的影响,自1976年唐山地震后越来越引起土木工程界的注意。对于大型水电工程、地下工程以及建筑群密布的城市地区,区域稳定性问题应该是需要首先论证的问题。
⑧ 工程地质问题 试述岩石产状对工程边坡稳定的影响及其在工程中的应对
边坡的稳定受岩石产状的影响,主要有如下几个方面:
I)岩体结构因素:在岩体强度及稳定性分析中,结构面被认为是特别重要的因素,结构面强度比岩体本身的强度低很多。由于软弱结构面的存在,岩体的整体强度大大降低,这增大了岩体的变形性能和流变性质以及加深了岩体的不均匀性、各向异性和非连续性等。大量的边坡工程失事证明,一个或多个结构面组合.边界的剪切滑移、张拉破裂和错动变形是造成边坡岩体失稳的主要原因。从边坡稳定性考虑,应特别研究岩体结构面的成因类型、规模、连续性及间距、起伏度及粗糙度、表面结合状态及充填物、产状及其与边坡临空面的关系等。
2)结构面的抗剪强度:结构面的抗剪强度是影响和计算边坡稳定的重要参数。对它的测定和选用应仔细研究,并考虑其与潜在破坏条件相协调。
应对措施,据潘院士所说,主要有以下几个步骤:
第一层次:通过地勘工作基本摸清岩体中的节理裂隙、断层破碎带、剪切错动带……(统称为结构面)的产状和分布,以及这些结构面上的物理力学特性,测定相应的参数。这是以后一切工作的基础。这一层次工作十分困难,不仅因为需很大的工作量和资金,更由于天然岩体的复杂性和勘探手段的局限,我们不可能“完全”查清情况,只能取得间断的几个数据,从而其结论不可能是定量和确定性的,更多是宏观上的判断、评价和估计,数据则带有统计(概率)和随机的性质。这也是岩石力学问题不可能像某些结构分析那样能给出较确定答案的原因。
第二层次:综合分析上述资料,将岩体概化为一个可以进行数学处理的模型(数学物理模型)。这个模型不仅要能基本上反映所研究岩体的各种边界条件(例如存在的各种结构面),而且要确定岩体在各种因素作用下的所有反应(应力、应变、变形、包括流变、开裂、扩展、屈服、破坏、崩坍……
),也就是要确定岩体的“本构定律”,和许多参数、判据,才能分析。显然,任何模型都只能是岩体的近似模拟。初期,岩体常被概化为非线性的连续体,后来逐渐发展为不连续体。
第三层次:对以上模型作数学分析,给出成果,提出措施,进行反馈。我国通过七•五、八•五攻关,结合李家峡、二滩、漫湾、三峡、小浪底等工程的实践,在以上三个层次都取得了成绩,有些达到国际先进水平。
⑨ 平原地区可能存在的工程地质问题有哪些,及处理措施
以粉质粘土,砂,卵砾石为主要地层.
查明各岩土层物理力学性质,厚度,埋深等,提供设计参数.
不良地质现象主要有暗塘暗浜,牛轭湖等.