2010年地质灾害预测预报情况
1. 年全国地质灾害防治工作情况
国土资源部通报 2011 年第 71 期
党中央、国务院高度重视地质灾害防治工作。今年以来,国务院领导多次做出重要批示,特别是国务院第 157 次常务会议对全面加强地质灾害防治工作作出总体部署。2011 年 6月,国务院印发了 《关于加强地质灾害防治工作的决定》(以下简称 《决定》)。9月,国务院办公厅印发了 《贯彻落实国务院关于加强地质灾害防治工作决定重点工作分工方案》,进一步明确了各地和有关部门的职责任务。各地区、各有关部门认真贯彻落实 《决定》,大力推进防治体系建设,着力加强汛期防范工作,并取得了明显进展。各级国土资源部门在深入学习贯彻落实 《决定》的同时,认真做好汛期地质灾害防治工作,防治体系建设和年度防治工作取得了显著成效。我部在前期工作基础上,结合相关部门和各省 (自治区、直辖市)国土资源部门工作开展情况,对 《决定》贯彻落实和 2011 年地质灾害防治情况进行了认真梳理总结。现将有关情况予以通报。
一、地质灾害基本情况及其特征
截至 2011 年 12月20日,2011 年全国共发生地质灾害 15620 起,其中滑坡11474 起、崩塌 2299 起、泥石流 1380 起、地面塌陷 352 起、地裂缝 86 起、地面沉降 29 起。造成人员伤亡和经济财产损失的地质灾害 117 起,243 人死亡,32 人失踪,137 人受伤,直接经济损失 40 亿元。全国共成功避让地质灾害403 起,避免人员伤亡 3.5 万人,避免直接经济损失 7.2 亿元。与去年同期相比,今年地质灾害发生数量接近一半,死亡失踪人数降至不足十分之一; 与过去 5 年同期平均数相比,发生数量相当,死亡失踪人数降至不足三分之一。今年的地质灾害特点如下:
一是诱发因素以降雨、地震等自然因素为主,累计 13092 起,占总数的 90%。9月份,陕西、四川等省连续出现较强降雨过程,局部地区出现多日强降雨,引发地质灾害 1765 起,造成 72 人死亡、失踪,直接经济财产损失 14 亿元。
二是地质灾害类型以滑坡为主,全国共计发生11474 起,占总数的73%。滑坡规模以中小型居多,在强降雨条件下呈现群发性。如 9月18日,汶川地震影响区的南江县受降雨影响,引发地质灾害 765 起,造成 14 人死亡失踪,多处基础设施受损。
三是地质灾害及其造成的人员伤亡主要发生在中西部山地丘陵区,其中山西、湖北、湖南、广西、四川、云南、陕西等 7 省 (区)共发生 12815 起,造成 227 人死亡失踪,分别占总数的 82%和 83%。
四是主汛期地质灾害多发,从 6月至 10月,全国共发生地质灾害 15072 起,累计造成 217 人死亡失踪,分别占总数的 96%和 79%。
各地通过组织开展排查巡查复查工作,共确认新生地质灾害隐患点 1.9 万处,威胁人员 76.4 万人。对威胁人员和财产安全的隐患点,及时开展了应急处置,并纳入地质灾害群测群防和专业监测体系。
二、防范工作部署早落地实
各级国土资源部门认真做好地质灾害防治的组织、协调、指导和监督工作,把保护人民群众生命财产安全作为地质灾害防治的最高价值准则。
一是部署工作周密及时。2011 年 2月召开年度地质灾害防治趋势预测会商会,分析形势,判断趋势,确定防范重点。3月下发通知,提出总体工作要求。4月召开全国汛期防治工作视频会议,进行全面动员和部署。5月启动地质灾害气象预警预报工作,为社会公众和相关部门提供防灾信息。7月根据防灾总体情况,召开紧急视频会议,进行再动员、再部署、再落实等。今年以来,我部针对降雨、雨雪冰冻、融雪等发出防灾通知 30 余次,各省级国土资源部门共召开地质灾害防治会议129 次,发出通知 份。
二是检查指导突出重点。在汛期防灾关键时期,部领导亲自带队赴汶川、三峡库区、西南山区、西北黄土地区指导检查地质灾害防治工作。2011 年我部共派出50 多个由部领导、司局长带队的工作组,汛期启动了 7 大片区地质灾害防治专家长期驻守 18 个重点省份开展巡回检查。各省级国土资源部门共组织开展督促检查407 次,组织专 业 技术 人员 4.1 万 人 指 导 各 地 开展 地质灾害 隐患 排 查 巡 查 复 查工作。
三是监测预警及时准确。国土资源部与中国气象局联合下发文件,进一步推进地质灾害预警预报服务工作。共制作预警产品 153 份,通过中央电视台、中央人民广播电台、国土资源部门户网站发布,新增国土资源手机报、微博空间等手段,向社会公众及时发布信息。
四是应急处置科学有效。针对突发地质灾害,我部派出 30 个应急工作组,省级国土资源部门派出 3106 个工作组,协助地方政府和有关部门开展地质灾害应急处置和抢险救灾工作,全年没有出现次生地质灾害造成人员伤亡事故。部地质灾害应急管理办公室和应急技术指导中心坚持做好应急值守工作,共 700 多人次参与应急值守,报送有关信息 600 多条。
三、地质灾害防治能力得到显著提升
通过加强群测群防、预警预报、科学研究和教育培训等工作,地质灾害防治能力得到提升。
(一)基层地质灾害防治能力得到加强
一是通过开展以县 (区、市)为对象的群测群防有组织、有经费、有规划等的 “十有县”建设,县级地质灾害防治能力得到显著提高。目前,全国 “十有县”总数达到 1337 个,覆盖 95%以上的地质灾害高、中易发区。
二是专业技术力量不断加强,全国共有地质灾害应急专家 2500 人分布在各省(区、市)指导防治工作,3520 家地质灾害防治资质机构共计 10 多万人承担着地质灾害危险性评估及勘查、设计、施工、监理等工作。今年累计有 4.1 万专业技术人员参与地质灾害排查巡查核查、应急处置宣传培训工作。
三是依托专业防治机构开展防治技术研究。地质灾害监测预警试验基地建设、地震扰动重大滑坡泥石流等地质灾害防范与生态修复、重大地质灾害监测预警及应急救灾关键技术研究、汶川地震带科学钻探等一批科研项目的开展,为地质灾害防灾减灾发挥了重要的科技支撑作用。
四是群众防灾减灾意识普遍提高,通过广泛宣传培训,地质灾害防治知识深入人心,进入千家万户,干部群众防灾减灾意识得到提高,专业技术人员业务水平得到提升。我部全年针对甲级地质灾害防治单位开展防治施工与监理培训班 38 期,共有 300 家单位、8000 多人参加培训。
五是各地加强了群测群防队伍建设,目前,全国群测群防监测员已从前几年的10 万名增加到 35 万名,他们在汛期看守着 20 万处隐患点,不畏艰险、不分昼夜、用心监测、及时预报,在最困难、最危险的环境中执行着最崇高的生命任务。2011年全国成功避让地质灾害 400 多起,避免 3.5 万人伤亡。
(二)综合采取防治措施,有效消除地质灾害威胁
我部积极指导各地在扎实做好监测预警工作的基础上,重点实施工程治理和搬迁避让手段,彻底消除地质灾害隐患威胁,通过开展地质灾害防治新机制建设工作调动各方力量参与地质灾害防治。
一是通过工程措施消除地质灾害隐患。各地通过中央和地方财政资金,共实施2260 处地质灾害治理工程,消除了威胁 87.8 万人的地质灾害隐患,可保护经济财产240 多亿元。部分已完成的防治工程在应对今年汛期地质灾害过程中发挥了重要作用。如 2010 年 8月13日爆发特大山洪泥石流的四川省绵竹市清平乡文家沟,通过实施科学的治理工程,在今年雨情水情比去年还复杂的情况下,成功阻止了泥石流灾害再次发生。
二是通过搬迁避让有效规避地质灾害。各地结合扶贫开发、新农村建设、小城镇建设等开展受威胁群众的搬迁避让工作。今年全国共实施 6438 处 28.1 万人的搬迁避让。福建省将 “造福工程”搬迁避让与地质灾害防治相结合,计划通过两个阶段的努力,实现 13 万受地质灾害威胁群众的搬迁避让,目前已完成第一阶段的搬迁任务。陕西省则结合陕南地区生态移民工程,计划用 5 ~10 年左右时间,将受地质灾害严重威胁的 60 万群众逐步搬迁至安全地带。
三是积极探索地质灾害防治新机制。各地在地质灾害调查评价、监测预警、综合治理、应急救援体系建设,组织机构和责任管理制度创新,技术力量和保险制度引入等方面都进行了积极的探索与实践。广西梧州市积极探索治理与搬迁避让相结合的办法,将地质灾害防治与旧城改造、新农村建设、土地开发利用、市政建设、城市景观改造、城乡增减挂钩相结合,由点及面,化被动防灾为主动防灾,既消除了地质灾害隐患点百姓所受的威胁,又通过建立新的社区让百姓安居乐业。江苏镇江、甘肃兰州、重庆、山西灵石等地政府积极引导、吸引社会技术力量和资金参与地质灾害防治。
四、各地各部门深入贯彻落实 《决定》
《决定》作为新时期地质灾害防治工作的纲领性文件,得到各地党委政府和有关部门的高度重视,贯彻落实工作深入推进。
(一)地方党委政府狠抓落实
各级地方党委政府狠抓 《国务院关于加强地质灾害防治工作的决定》的贯彻落实工作,加大机构、人员和经费保障力度,加强具体防治任务部署,加强演练培训等手段运用。一是从组织机构上,全国已有 24 个省 (区、市)明确地质灾害应急管理机构,27 个省 (区、市)明确地质灾害应急技术指导机构,224 个市及近1000 个县加强机构建设。山东、陕西、甘肃等省已将地质灾害防治工作纳入领导年度考核内容。二是从经费投入上,省级财政累计投入资金 50 多亿元,是 2010 年的 2.1 倍,其中四川、云南、陕西、重庆、广西、山西等省财政大幅加大投入力度。三是措施落实上,各地加紧部署调查工作,广东省提出开展全省山区重点县地质灾害详细调查和威胁 100 人以上及饮用水源地等重大地质灾害隐患点的详细勘查目标。四是应急演练上,2011 年全国共组织开展不同规模地质灾害演练 2563 次,参加人数达到 100 多万人。通过演练示范,险情出现时,地方决策果断,避险路线场所明确,防灾减灾效果明显,对今年因灾死亡失踪人员减少发挥了重要作用。五是培训教育上,各地组织专业技术人员大力开展防治知识宣传与培训。四川省在汛期培训群众 200 多万人,浙江省组织专家深入基层开展 “送一套书、贴一幅画、放一部片、讲一堂课”的地质灾害防治 “四个一”活动,对 10000 多名群测群防监测员开展培训。安徽省开展 “六个一”贯彻学习 《决定》活动,编制 《学习问答30 题》,对 《决定》 进行深入解读和宣传。
(二)各相关部门密切配合
各相关部门全力支持,认真组织开展相关领域内的地灾防治,加大地质灾害防治资金和技术力量投入力度,部门分工协助的防治机制进一步完善。一是中编办积极支持,我部在相关司局和直属事业单位分别加挂了地质灾害应急管理办公室和应急技术指导中心牌子,配备专门管理干部和技术人员。二是财政部进一步加大了特大型地质灾害防治专项资金投入力度,由 2010 年的 14 亿元增加到 25 亿元; 交通运输、铁路系统分别投入资金 16.6 亿元和 10 亿元,开展 6585 公里国省干线公路和铁路沿线山洪地质灾害防治; 民政部、财政部加大地质灾害救灾资金投入。三是发展改革、教育、科技、环境保护、住房城乡建设、交通运输、旅游、能源等部门在制定实施有关规划和工程建设过程,重点加强地质灾害防治和易灾地区生态环境评估和监管,国务院三峡办积极推进三峡后续工作规划地质灾害防治内容的实施。四是水利部先后派出 19 个检查组赴各地督促检查山洪灾害的防御及非工程措施项目建设工作; 气象部门在重点地区建设 1300 个乡镇自动气象站、5000 个暴雨监测站,加强雨情动态监测; 铁道部组织开展铁路沿线的地质灾害隐患重点排查。五是解放军和武警部队积极参加突发地质灾害抢险救援,共出动兵力 10526 人、民兵预备役 11972 人、车辆机械 1420 余台、直升飞机 11 架,圆满完成各项任务,累计转移、解救群众 2.9 万人。
五、精心谋划,扎实做好下一步工作
地质灾害具有隐蔽性、突发性和破坏性,且我国地质地貌复杂,全球极端气候事件频发,各项政策措施的落实还需一段时间,我国地质灾害防治工作面临的形势依然十分严峻。我们将在谋划长远的同时,扎实做好当前工作。
一是继续做好 《决定》的贯彻落实,完善地质灾害防治体系。继续深入贯彻落实 《决定》,积极主动指导、督促各地制定相关贯彻落实意见和重点工作分工方案,将目标、任务、措施落实到责任单位和责任人,确保 《决定》各项政策措施落到实处。配合国办开展 《决定》贯彻实施的督促检查。继续开展以提升县级防治能力为目标的地质灾害群测群防规范化建设,开展 《国家突发地质灾害应急预案》修编和调查评价、防治工程等技术规范编制工作,加强特大型地质灾害防治项目的技术管理和服务工作。
二是编制实施好地质灾害防治规划,加强防治项目的实施。《全国地面沉降防治规划》已上报国务院,《全国地质灾害防治 “十二五”规划》已征求相关省和部门意见,将尽快与发展改革委、财政部联合报国务院,同时我部将积极配合发展改革委、三峡办组织实施好 《全国中小河流治理和病险水库除险加固、山洪地质灾害防御和综合治理总体规划》、《三峡后续工作规划》地质灾害防治内容。
三是加强重点时段重点区域防治,扎实做好明年防治工作。通过会商、动员、检查等部署开展年度汛期地质灾害防治工作,做好预警预报和应急处置。在做好常规性工作的基础上,加大对地震灾区、三峡库区等重点地区地质灾害防治工作的指导力度,指导各地做好地质灾害避险搬迁工作,最大限度地避免和减轻损失,维护人民群众生命安全。
附件: 2011 年各省 (区、市)地质灾害防治情况统计表 (略)
国土资源部
二〇一一年十二月二十八日
2. 地质灾害研究新进展
我国地质灾害研究工作一直是围绕着重大工程和重大建设需要而展开的,并且直到解放后才得以迅速发展。50~60年代,重点开展了西南及西北交通干线和三峡等水利枢纽的地质灾害调查(重点崩滑流),以及上海地面沉降的勘察工作。70年代,上海地面沉降研究在预测和防治方面取得突破性进展,树立了我国地面沉降控制规范。进入80年代以来,我国地质灾害研究得到了空前的发展,并逐步开展了重点地区的地质灾害调查工作,编制了一系列地区性和全国性专门图件;对海城地震、新滩滑坡、元阳滑坡等进行了成功的预报、对东川和宁南泥石流和天津市区地面沉降实施了有效控制。特别是90年代以来,我国政府积极响应“国际减灾十年计划”,地质灾害研究得到进一步重视,开展了如“地震、地质灾害及城市减灾重大技术方法研究”等一批国家及省部级重点科技攻关项目的研究工作。这些都极大地推动了我国地质灾害研究工作的进一步开展。使得我国的地质灾害研究在勘察技术、预测预报水平、减灾防灾手段等方面逐步接近或达到了世界发达国家水平。总结近20年来我国地质灾害研究的成果,比较突出的有以下几个方面:
1.编制了一系列大型地质灾害图件
根据国家经济建设的需求,由原地矿部组织编制了一些全国性大比例尺的地质灾害调查图件,如1991出版的《中国地质灾害类型图》(1:500万)(葛中远主编),1992年出版的《中国地质环境图系》(中国水文地质工程地质勘察院主持编制),1996年出版的《中国分省地质灾害图集》(1∶60万~1∶500万)(段永侯主编)。这些图件从宏观上反映了我国地质灾害类型、区域分布特点及发生规律。是我国目前部署地质灾害勘察研究及制定防灾、减灾、环境保护政策和规划的主要科学依据。作为重要成果,在国内外也得到了广泛交流,在学术界有着重要的影响。
2.地面沉降防治工作取得突破性进展
进入80年代后,我国的地面沉降研究得到了空前的发展,其中以上海、天津的地面沉降研究卓见成效。在动态监测、沉降机理研究、预报模型以及降低地下水开采量和人工回灌等技术方面都取得了显著成绩,特别是在预测预报技术方面,地矿部水文地质工程地质研究所、岩溶地质研究所、上海地矿局和天津地矿局等单位,通过建立拟三维水流和一维地层压密的耦合模型,模拟地下水的水平垂直运动、含水层内外水量交换、弱透水层中水的压力变化以及动态过程中的一维固结压缩。计算评价在最优环境影响状态下,最大安全可采水资源及优化控制调度方案。对含水层在各种采灌条件下的变化规律及地面沉降幅度进行中长期预报。这些技术的研究与应用使我国地面沉降防治水平跨上了一个新的台阶,挤身于世界先进水平之列。
3.地质灾害信息系统建设空前繁荣
随着“3S”技术(地理信息系统、遥感技术和全球定位系统)的发展与成熟,以此为支撑技术的地质灾害信息系统和防灾决策支持系统建设取得长足进展。一大批各具特色的系统软件相继开发出来,使地质灾害的研究上升到一个新的水平。其中以由原地矿部水文地质工程地质研究所开发研制的“地质灾害预测防治智能决策系统”最具代表性,该系统以地质灾害预测防治为目标,将相关的数据库、图型库、模型库和知识库融为一个“四库一体”的耦联整体,实现了四者技术的有机集成,使系统具有空间数据管理、分析处理、空间建模与知识推理的分析功能。可对地质灾害进行时空演化预测、危险性区划、灾害经济评价以及减灾防灾对策选择的任务。在理论和技术上都取得了突破性进展,开创了建设大型地质灾害决策支持系统的先例。
4.地质灾害防治工程领域得到飞速发展
从1994年以来,国家每年投入了5000万元专项基金用于地质灾害治理,从而掀起了地质灾害治理工作的热潮,相继实施了对链子崖危岩体、黄腊石滑坡、豆芽棚滑坡、鸡冠岭崩塌等专项治理工程,形成了一支集勘察、设计、施工为一体的地质工程队伍,同时也使地质灾害防治工程作为专门的工程技术领域逐渐发展起来,形成了一套相对成熟的技术方法,尤其是由中国水文地质工程地质勘察院开发的“地质灾害防治工程设计支持系统”成功地应用于链子崖滑坡治理中,切实起到了灾害治理的示范作用。
5.一些新理论新方法的发展与应用
随着地质灾害研究工作的不断深入,一些新的理论与方法不断涌现,并逐步得到了学术界的认可,比较有代表性的有:
(1)滑坡过程模拟与过程控制理论技术。成都理工学院的黄润秋教授在岩土应力分析的基础上,对滑坡从其孕育、发展演化、激发成灾或防治控制进行全过程的计算机动态模拟。通过将现代数学-力学、非线性科学和计算机图形图像技术结合起来,对滑坡系统的全过程仿真模拟,直观地理性的分析灾害发生影响因素及其强度,再现灾害发生的全过程。从而将滑坡灾害定量化研究向前推进一步。
(2)地质灾害风险性评价理论与方法。在我国将风险性评价引入地质灾害研究工作中是从90年代开始的。到目前为止,地质灾害风险性评价作为一个相对独立的研究领域不断地发展和深化。其基本思想是在评价灾害自然危险性的同时,还考虑地区人口经济密度和抗灾性能等,即灾害区易损性分析,将地质灾害自然属性和社会属性结合起来,综合评价灾区地质灾害发展状况。经研院张梁等以崩塌滑坡、泥石流和岩溶塌陷为典型灾种进行了研究,建立了一套评价指标体系和模型方法,为该领域研究的深入开展提供了范例。
3. 哪一年的大地震被成功预测预报成功
1975年,发生在辽宁海城一营口的7.3级大地震曾经震惊世界,因为这是人类历史上第一专次被成功预报的大地震。属1975年海城大地震的预报是震前6小时发布的,这是世界上唯一一次准确的地震预报。中国地震工作者在地震前准确地作出短期预报和临震预报,从而拯救了众多生命。
4. 什么是地质灾害气象预报
根据崩塌、滑坡、泥石流等突发性地质灾害与降雨密切相关的特点,利用降水预测对地质灾害实施预警预报。江西省从2002年开始开展地质灾害气象预报工作。
地质灾害气象预报
5. 年上半年全国地质灾害灾情及下半年地质灾害趋势预测
国土资源部通报 2011 年第 40 期
2011 年上半年全国地质灾害发生数量大,人员伤亡相对较少,经济损失较严重。6月份地质灾害加重,原因是1 ~5月全国大部分地区偏旱,而6月出现旱涝急转,致使东南、西南、华东地区受灾严重。2011 年下半年防灾形势严峻,7 ~ 9月份是地质灾害的高发期,特别是极端天气事件诱发突发性地质灾害的可能性很大;10 ~ 12月虽然是地质灾害的低发期,仍然会有突发地质灾害。预测下半年地质灾害重灾地区可能主要在东南、中南、西南等地区。汶川地震影响区、三峡库区地质灾害的危险性较高,需要重视。同时应高度重视台风 (热带风暴)带来的强降雨对东南沿海地区的影响。
一、地质灾害灾情
(一)2011 年 1 ~6月总体灾情
2011 年 1 ~ 6月全国共发生地质灾害 10710 起,其中滑坡 8495 起、崩塌 1355起、泥石流608 起、地面塌陷183 起、地裂缝60 起、地面沉降9 起; 造成人员伤亡的地质灾害 50 起,97 人死亡、13 人失踪,49 人受伤; 直接经济损失 9.39 亿元。与去年同期相比,发生数量、造成的死亡失踪人数和直接经济损失均减少 (表 1)。
表 1 2011 年 1 ~6月与去年同期地质灾害基本情况对比表
1 ~ 6月全国共成功预报地质灾害 156 起,避免人员伤亡 4674 人,避免直接经济损失 2.69 亿元。
1 ~ 6月地质灾害分布在 26 个省 (区、市)。按发生数量由多到少依次是湖南、江西和浙江等 (表2); 按造成的人员死亡失踪人数依次由多到少是广西、湖北和山西等 (表3); 按造成的直接经济损失由大到小依次是甘肃、湖南和湖北等 (表 4)。
表 2 2011 年 1 ~6月各省地质灾害发生数量统计表 单位: 起
表 3 2011 年 1 ~6月地质灾害造成死亡失踪人数统计表 单位: 人
表 4 2011 年 1 ~6月地质灾害造成直接经济损失统计表 单位: 万元
(二)6月灾情
6月全国共发生地质灾害 10268 起,其中滑坡 8327 起、崩塌 1208 起、泥石流588 起、地面塌陷 86 起、地裂缝 53 起、地面沉降 6 起; 造成人员伤亡的地质灾害32 起,49 人死亡、10 人失踪、24 人受伤; 直接经济损失 4.22 亿元。与去年同期相比,发生数量、造成的死亡失踪人数和直接经济损失均减少 (表 5)。受灾较重的省份是湖南、湖北、福建、江西、安徽、浙江等。
6月全国共成功预报地质灾害 140 起,避免人员伤亡 3007 人,避免直接经济损失 6369 万元。
表 5 2011 年 6月与去年同期地质灾害基本情况对比表
二、1 ~6月地质灾害特点
(一)多年同期相比人员伤亡最少、经济损失较严重
与 2005 年以来多年同期相比,2011 年 1 ~6月地质灾害发生数量排第二位,低于 2010 年 (19563 起); 因灾造成死亡失踪人数为历年最少 (108 人); 因灾造成直接经济损失排第四位,低于 2010 年 (18.7 亿元)、2006 年 (16.7 亿元)、2005年 (15.7 亿元)。2011 年 1 ~6月,全国地质灾害发生数量大,人员伤亡相对较少,这得力于地方党委、政府高度的重视,采取了各种有效措施落实地质灾害防治责任和加强监测预警等工作,其中地质灾害应急演练起到了重要的作用。
(二)年内相比,1 ~5月灾情偏轻,6月加重
1 ~ 5月全国发 生 地质灾害 442 起、死 亡 失 踪 人数 51 人、直接 经 济 损失51719.8 万元。而 6月发 生 地质灾害 10268 起、死 亡 失 踪 59 人、直接 经 济 损失42229.8 万元,分别占上半年发生数量的 96% 、死亡失踪人数的 54% 和直接经济损失的 45%。原因是 1 ~5月全国大部分地区偏旱,造成地表土体开裂,一旦遇水极易引发地质灾害; 而 6月出现旱涝急转,南方遭遇几次强降雨,致使湖南、湖北、福建、江西、安徽、浙江受灾严重。尤其是湖南,发生地质灾害 8727 起,占当月全国总数的 85%。
三、重大地质灾害实例
(一)2011 年 3月2日,甘肃省临夏州东乡县县城撒尔塔广场发生一起滑坡,滑坡体规模 18 万立方米,造成直接经济损失达 44300 万元。
(二)2011 年 5月9日,桂林市全州县咸水乡洛家村委广坑漕采石场降雨引发大型滑坡,规模 20 万立方米,造成 22 人死亡、1 人受伤、直接经济损失 350 万元。
(三)2011 年 6月10日,湖南省桃江县马迹堂镇月形湾村张公塘组发生滑坡,造成 8 人死亡。
(四)2011 年 6月26日,山西省代县新高乡白峪里村小东沟发生滑坡,规模52200 立方米,造成 9 人死亡,4 人受伤。
四、下半年地质灾害趋势预测
根据地质灾害多年发生规律,7 ~ 9月份是地质灾害的高发期,防灾减灾形势将更加严峻,特别是极端天气事件诱发滑坡、泥石流等突发性地质灾害的可能性很大,需要严加防范群死群伤灾害事件; 10 ~ 12月虽然是地质灾害的低发期,仍要重视做好地质灾害防治工作,不可掉以轻心。遭遇数十年一遇旱灾的南方地区,持续干旱造成岩土体松散开裂,一旦遭遇强降雨,发生崩塌、滑坡和泥石流地质灾害的概率将会明显增加。另外,要十分注意防范水利水电、铁路公路等在建工程以及采矿、削坡建房等人类工程活动引发的地质灾害。
预测下半年地质灾害重灾地区可能主要在四川、云南、贵州、重庆、湖南等省(市)部分山地丘陵区,尤其要注意汶川地震强烈影响区,其次是福建、浙江、江西、安徽、广东、广西、陕西、甘肃和山西等山区。要进一步加强三峡库区由于水位消涨、降雨等因素所引发地质灾害的防范,高度重视台风 (热带风暴)带来的强降雨对东南沿海地区的影响。
国土资源部
二〇一一年七月六日
6. 2010年中国十大地质灾害
根据气象部门预测,2010年中国降水偏多的范围将大于2009年同期。全国23万多处地质灾害隐患点,随时都有发生灾害的可能
7. 年第一季度全国地质灾害灾情及4月地质灾害趋势预测
国土资源部通报 2011 年第 22 期
与去年同期相比,2011 年 3月份全国地质灾害发生数量、造成的死亡失踪人数和直接经济损失均减少。3月份灾害类型以崩塌、滑坡和地面塌陷为主,级别以小型为主,引发因素以降雨、重力作用和冻融等自然作用为主。4月份,地质灾害发生的频次可能较 3月份偏多。多数灾害可能主要发生在中南、西南和华东的局部山区。西北山区由于冰雪融化,引发滑坡、泥石流等地质灾害的危险性大。
一、地质灾害灾情
(一)2011 年 1 ~3月总体灾情
2011 年 1 ~ 3月全国共发生地质灾害 93 起,其中滑坡 26 起、崩塌 30 起、泥石流 2 起、地面塌陷 32 起、地裂缝 2 起、地面沉降 1 起; 造成人员伤亡的地质灾害6起,8 人死亡、7 人受伤; 直接经济损失 4.54 亿元。与去年同期相比,发生数量和造成的死亡失踪人数均减少,但造成的直接经济损失增加 (表 1)。
1 ~ 3月全国共成功预报地质灾害 4 起,避免人员伤亡 617 人,避免直接经济损失 1.8 亿元。
表 1 2011 年 1 ~3月与去年同期地质灾害基本情况对比表
1 ~ 3月地质灾害分布在 20 个省 (区、市)。按发生数量依次是广西、甘肃和湖南等 (表 2); 按造成的人员死亡失踪由多到少依次是广西、云南和甘肃等(表 3); 按造成的直接经济损失由大到小依次是甘肃、湖南和湖北等 (表 4)。
表 2 2011 年 1 ~3月各省地质灾害发生数量统计表 单位: 起
表 3 2011 年 1 ~3月地质灾害造成死亡失踪人数统计表 单位: 人
表 4 2011 年 1 ~3月地质灾害造成直接经济损失统计表 单位: 万元
(二)3月灾情
3月全国共发生地质灾害 54 起,其中滑坡 17 起、崩塌 17 起、泥石流 2 起、地面塌陷 16 起、地裂缝 1 起、地面沉降 1 起; 造成人员伤亡的地质灾害5 起,7 人死亡、6 人受伤; 直接经济损失4.48 亿元。与去年同期相比,发生数量和造成的死亡失踪人数均减少,但造成的直接经济损失增加 (表 5)。主要原因是 3月甘肃发生一起特大型滑坡,直接经济损失严重。
表 5 2011 年 3月与去年同期地质灾害基本情况对比表
3月全国共成功预报地质灾害 1 起,避免人员伤亡 20 人,避免直接经济损失600 万元。
二、1 ~3月份地质灾害特点
(一)多年同期相比人员伤亡最少、经济损失较严重
与 2001 年以来多年同期相比,2011 年 1 ~3月地质灾害发生数量排第七位,低于 2005 年 (121 起)、2006 年 (211 起)、2007 年 (191 起)、2008 年 (3108 起)、2009 年 (180 起)和 2010 年 (299 起); 因灾造成死亡失踪人数为历年最少 (同2009 年); 因灾造成直接经济损失排第三位,低于 2005 年 (5.1 亿元)和 2008 年(5.0 亿元)。
(二)西部地区灾情严重
1 ~ 3月份因地质灾害造成的人员死亡都在西部地区,分别是广西 3 人、云南 3人、甘肃 1 人和新疆 1 人; 3月2日,西部地区的甘肃省临夏州东乡县县城撒尔塔广场发生一起滑坡,滑坡体规模 18 万立方米,造成直接经济损失达 4.4 亿元,占1 ~ 3月份直接经济损失总数的 97% 。
(三)灾害类型以崩塌、滑坡和地面塌陷为主,灾害级别以小型为主
1 ~ 3月份,全国共发生崩塌 30 起,占总数的 32% ; 滑坡 26 起,占总数的28% ; 地面塌陷 32 起,占总数的 34% ; 三类地质灾害占总数的 94% 。灾害级别以小型为主,共 87 起,占总数的 94%。
(四)以自然因素引发为主
全国93 起地质灾害中,自然因素引发的有64 起,占总数的69%; 人为因素引发的有 29 起,占总数的 31%。自然因素主要为降雨、重力作用和冻融等; 人为因素主要为采矿和施工等。
三、4月地质灾害趋势预测
根据地质灾害多年发生规律,4月东南沿海开始进入汛期,地质灾害发生的频次可能较 3月份偏多。多数灾害可能主要发生在中南、西南和华东的局部山区。西北山区由于冰雪融化,引发滑坡、泥石流等地质灾害的危险性大。
国土资源部
二〇一一年四月六日
8. 滑坡、泥石流地质灾害气象预警预报
气象因素是诱发滑坡、泥石流等地质灾害的关键因素,开发基于Web-GIS和实时气象信息的实时预警预报系统,实现地质灾害实时预警预报与网络连接的地质灾害预警预报与减灾防灾体系,对可能遭受的地质灾害进行实时预警预报,及时广泛地发布预警信息,有利于实现科学高效、快速地开展灾害防治,从而最大限度地减少灾害损失,保护人民生命财产安全,变被动防治为主动防治地质灾害。
一、滑坡、泥石流地质灾害气象预警预报的主要依据
区域地质灾害(滑坡、泥石流等)空间预测主要是圈定地质灾害易发区,也就是前面论述的地质灾害危险性评估与区划。在区域地质灾害空间预测的基础上,结合实时的气象动态信息,分析研究滑坡、泥石流等地质灾害的主要诱发因素,研究同一地质环境区域,在不同气象条件下发生地质灾害的统计规律和内在机理,通过确定有效降雨量模型、降雨强度模型、降雨过程模型的临界阀值,建立基于实时动态气象信息的区域地质灾害预警预报时空耦合关系,从而对区域性的滑坡、泥石流等地质灾害进行危险性时空预警预报。
根据研究区域的地质条件、灾害调查情况、气象条件等,划分地质灾害易发区等级,统计已发生滑坡、泥石流等地质灾害与有效降雨量、24小时降雨强度的相关性,确定出不同易发区不同等级的临界降雨量(I、II),作为判别分析的阀值,确定降雨量危险性等级。降雨量小于I级临界降雨量的为低危险性,降雨量介于Ⅰ-Ⅱ级临界降雨量之间的为中危险性,降雨量大于II级临界降雨量的为高危险性。
将各单元的有效降雨量与临界有效降雨量进行对比,确定出各单元的降雨量危险性等级,将降雨量危险性等级和地质灾害易发区等级进行叠加,叠加结果见表3-4和图3-2,对应于4个不同的易发区把地质灾害预警预报等级划分为5级:其中,3级及3级以上为预警预报等级,5级为预警预报区的最高等级,1级和2级为不预警区,不同的预警预报等级采用不同的颜色予以表示。3级预警区是指应加强对灾害点的监测地区;4级预警区是指应密切加强对灾害点监测的地区,采取一定的防范措施;5级预警区是指应全天对灾害点进行监测,直接受害对象尤其是住户和人员在必要时应该采取避让措施。在预警预报中,3级为注意级,4级为预警级,5级为警报级。
表3-4 地质灾害预警区等级划分表
图3-2 区域地质灾害宏观预警构建思路示意图
我国自2003年开展全国地质灾害气象预警预报工作以来,一些专家学者就致力于预警预报模型方法的研究与探索,主要经历了两个阶段。
第一阶段,2003~2006年,采用的是第一代预警方法,即临界雨量判据法。该方法的主要原理是根据中国地貌格局、地质环境特征及其与降雨诱发型崩滑流地质灾害关系统计分析结果,以全国性分水岭、气候带、大地构造单元和区域地质环境条件,进行一级分区;以区域分水岭、历史滑坡泥石流事件分布密度、地形地貌特征、地层岩性、地质构造与新构造运动、年均降雨量分布等,进行二级分区;将全国划分为7个预警大区、74个预警区;并分区开展历史地质灾害点与实况降雨量之间的统计关系,确定各预警区诱发滑坡泥石流灾害的临界雨量,建立预警预报判据模板(图3-3);利用全国地质灾害数据库和县市调查信息系统中的地质灾害样本和中国气象局提供的降雨资料,通过统计分析,确定地质灾害发生前的1日、2日、4日、7日、10日和15日的临界雨量作为判据模板,建立地质灾害气象预警预报模型,开展地质灾害预警预报。
图3-3 预警预报判据模板
第二阶段,即第二代预警方法。2006~2007年,“全国地质灾害气象预警预报技术方法研究”项目设立,开展了全国地质灾害气象预警预报方法升级换代的研究工作。刘传正教授提出了地质灾害区域预警理论的三分法,即隐式统计预报法、显式统计预报法和动力预报法;并提出了显式统计预警方法(称为第二代预警方法)设计思路。该方法改进了第一代预警方法中仅依靠临界过程雨量方法的局限,实现了临界过程降雨量判据与地质环境空间分析相耦合。2007年该项工作取得初步研究成果,经完善后已在2008年全国汛期预警工作中正式使用。
根据地质灾害区域预警原理和显式预警系统设计思路,具体预警模型建立过程如下:
(1)地质灾害预警分区。将全国分为7个预警大区,分区建立预警模型。
(2)地质灾害气象预警信息图层编制。充分考虑地质灾害发生的地质环境基础信息、地质灾害历史发生实况等,共编制预警信息图层30个。
(3)地质灾害潜势度计算。探索一条计算地质灾害潜势度的计算方法,根据历史地质灾害点分布情况,采用不确定系数法计算地质环境CF值、采用项目组创新提出的权重确定法确定权重,从而计算地质灾害潜势度。
(4)统计预警模型建立。以10km×10km的网格进行剖分,将地质灾害潜势度、历史灾害点当日雨量、前期雨量作为输入因子,地质灾害实发情况作为输出因子,采用多元线性回归方法,建立预警指数计算模型,从而确定预警等级。
二、美国旧金山湾滑坡泥石流气象预警系统
目前世界上滑坡泥石流灾害气象预警主要是依据美国旧金山湾滑坡泥石流预警系统提出的临界降雨阀值的方法。该系统在1985年至1995年期间运行了10年,后因种种原因被迫关闭。它是世界上运行时间最长的滑坡泥石流预警系统,其经验值得思考。
Campbell从1969年开始研究洛杉矶滑坡发生机制,1975年提出了建立基于国家气象局(NWS)降雨预报和(前多普勒)雷达影像的洛杉矶泥石流预警系统的设想。Campbell指出,泥石流预报还是可能的,可通过降雨强度和持续时间的监测,并与根据降雨-滑坡发生概率的关系所建立的临界值进行比较,进行泥石流灾害等级的等级预报。一旦超过临界值,就要对居住在山脚下的居民发出预警,撤离危险地,最大程度地减少灾害损失。Campbell提出的泥石流预警系统由以下方面构成:①雨量计观测系统,记录每小时的降雨量;②具有能够识别暴雨地区降雨强度中心的气象编图系统;将降雨数据标绘在地形(坡度)图及相关滑坡影响图上;③实时采集数据和预警管理和通讯网络。
1982年1月初,灾难性暴雨袭击了旧金山湾地区,引发了数以千计的泥石流及其他类型的浅层滑坡。经济损失达数百万美元,25人死亡。尽管该地区的人们得知暴雨预报,但并没有得到任何关于滑坡、泥石流的警报。尽管Campbell提出的建议没有在旧金山湾地区得以实施,但1982年的这场灾难性事件使得建立泥石流预警系统变得十分紧迫和必要。
图3-4 加州La Honda的泥石流降雨临界线
Cannon和Ellen(1985)建立了加州La Honda的泥石流降雨临界线(图3-4)。他们用年均降雨量(MAP)对临界降雨持续时间和临界降雨强度进行了修正(标准化),即将临界降雨强度修正为临界降雨强度/年均降雨量(MAP)。他们建立的滑坡降雨临界值是旧金山湾地区泥石流预警系统的基础。1986年2月旧金山湾地区连降暴雨,美国地质调查局和国家气象局联合启动了泥石流灾害预警系统,通过NWS广播电台系统发布了两次公共预警。这是美国首次发出的泥石流灾害预警。该次暴雨引发了旧金山湾地区数以百计的泥石流,造成1人死亡,财产损失达1000万美元。如果不是预警系统的准确预报,损失将会更加严重。
1986年的泥石流灾害预警是根据Cannon和Ellen(1985)确定的经验降雨临界值发布的。1989年Wilson等人在该经验降雨临界值的基础上,建立了累积降雨量/降雨持续时间关系曲线,对不同的规模和频率的泥石流确定不同的临界值降雨量。据此USGS滑坡工作组进行泥石流灾害预报。
Wilson自1995年一直研究困扰早期滑坡预警系统的泥石流降雨临界值强烈受局部降水条件(地形效应)影响的难题。
如前所述,Cannon(1985)建立的旧金山湾地区的区域泥石流降雨临界值,试图用长期降雨量(MAP)来修正地形效应的影响。MAP是用来描述长期降雨气候条件最常用的参数,可从标准气象图中获得。Cannon建立MAP标准化临界值,是滑坡预警系统的主要技术基础。然而,正如Cannon本人所说,在早期滑坡预警系统运行过程中,发现降雨少的地区ALERT系统的雨量数据会产生“假警报”,反映了MAP标准化会出现低MAP地区的不一致性问题。后来Wilson(1997)将旧金山湾地区的MAP标准化方法应用到南加州和美国太平洋西北部地区,出现了明显的低估或高估降雨临界值的问题。
降雨量作为参数实际上反映了暴雨规模和频率两个综合作用过程。美国太平洋西北部地区降雨量频率高但每次降雨量小,导致年均降雨量大;而南加州地区则降雨频率小但每次降雨量大,结果是年均降雨量小。年均降雨量标准化方法应识别出那些“极端”的降雨事件,即降雨量远远超过那些频率高但降雨量小的暴雨事件。因此,对于估计泥石流降雨临界值来说,单个暴雨的规模要比降雨频率重要得多。
长期的气候作用使斜坡本身达到了一种重力平衡状态,即斜坡入渗与蒸发及地表排水之间达到了平衡。这种长期的平衡作用过程可能包含着无数已知和未知的机制。斜坡土壤的岩土工程性质、地表排水率及水网分布、本土植被都可能对局部气候产生影响。Wilson用日降雨规模—频率分析,重新检查了年均降水量标准化临界值的不一致性。在年均降雨量低的旧金山湾地区,泥石流的降雨临界值高于MAP标准化的预测值。Wilson提出了参考的泥石流降雨临界值,这有益于研究降雨与地表排水之间的相互作用。Wilson的研究表明,5年暴雨重现率可以代表降雨频率与侵蚀率的优化组合关系。对三个具有明显不同降雨气候模式的不同地区(南加州洛杉矶地区、旧金山湾地区、太平洋西北部地区),采集了触发致命泥石流灾害事件的历史雨量数据,建立了(引发广泛泥石流发生)历史上触发大范围泥石流的24小时峰值暴雨降雨量与参考降雨值(5年暴雨重现值)之间的关系曲线(图3-5)。该关系曲线可用来估计泥石流的降雨临界值,与Cannon的MAP标准化降雨临界值相比,特别是可以在更加可靠点的范围内通过插值估计出特定地点(特别是受地形效应影响的山区)的临界值。
图3-5 历史触发大范围泥石流的24小时峰值暴雨降雨量与
尽管旧金山湾地区的滑坡泥石流气象预警系统在1995年关闭了,但自1995年以来没有停止对降雨/泥石流临界值方面的研究。这些研究加深了对降雨、山坡水文条件、长期降雨气象条件和斜坡稳定性之间相互作用的认识,这将为旧金山湾地区乃至世界其他地区的滑坡气象预警工作奠定很好的科学基础。
三、降雨监测与预报
旧金山湾地区滑坡预警系统运行的十年间,当地NWS的天气预报主要依靠1987年2月发射的气象卫星GOE-7(1997年被GOES-10所取代)。每隔30分钟,GOES气象卫星传送覆盖从阿拉斯加湾至夏威夷的北美西海岸云团图像。根据这些图像,当地NWS可以估计出大暴雨的速度、方向和强度。图像中的红外波谱图像还能指示云团的温度,它是估计降雨强度的重要信息。另外,地面气象观测站可获得大气压、风速、温度、降雨数据,与卫星气象数据雨季NWS国家气象中心提供的长期天气趋势预报信息相结合,当地NWS天气预报办公室综合分析这些数据,准备和提供定量天气预报(QPT),一天发布两次加州北部和南部地区未来24小时天气预报。
雨量监测(ALERT)系统能远距离自动采集高强度降雨观测数据,并将数据传送到当地实时天气预报中心。到1995年,旧金山湾地区ALERT系统已建立了60个雨量观测站点(图3-6)。尽管每个站点的建立得到了NWS的支持,但每个站点的设备购买、安装和维护则由其他联邦、州和地方政府机构负责。从1985年到1995年滑坡预警系统运行期间,USGS一直负责维护设在加州Menlo公园的ALERT接收器和数据处理微机系统。
要评估即将到来的暴雨是否会引发泥石流灾害,要考虑两个临界值:①前期累积降雨量(即土壤湿度);②临近暴雨的强度和持续时间的综合分析。为此,USGS滑坡工作组在La Honda研究区安装了浅层测压计,并对土壤进行了监测。如果测压计首先显示出对暴雨的强烈反应,即认为已达到前期临界值。通常冬至后需几个星期的时间才能使土壤湿度超过前期临界值,之后要随时关注暴雨强度和持续时间是否足以触发泥石流灾害。
图3-6 1992年旧金山湾滑坡预警雨量监测系统—ALERT
四、泥石流灾害预警的发布
当暴雨开始时,开始监测降雨强度,估计暴雨前锋到来的速度。根据观测的降雨量,结合当地NWS的定量降雨预测(QPF);与建立的泥石流降雨临界值进行对比分析,确定泥石流灾害的类型和规模。NWS和USGS的工作人员共同参与该阶段的工作,向公众发布三个等级的泥石流灾害预警:即①城市和小河流洪水劝告(urban and small streamsflood advisory);②洪水/泥石流关注(flash-flood/debris-flow watch);③洪水/泥石流警报(flash-flood/debris-flow warning)。在1986年至1995年间,多次发布了不同级别的泥石流灾害预警。
五、小结
滑坡和泥石流灾害的危险性预测主要是通过灾害产生条件分析,预测区域上或某斜坡地段将来产生滑坡泥石流灾害的可能性,圈定出可能产生滑坡泥石流灾害的影响范围及活动强度。滑坡泥石流灾害危险性预测的指标体系结构层次如图3-7所示,根据滑坡泥石流灾害危险性预测的研究对象的差异性,可从三种研究尺度建立滑坡泥石流灾害危险性预测指标体系。
图3-7 地质灾害空间预测指标体系结构层次图
区域性滑坡泥石流灾害危险性预测就是通过分析滑坡泥石流灾害在区域空间分布的聚集性及规律性,圈定出滑坡泥石流灾害相对危险性区域,从而为国土规划、减灾防灾、灾害管理与决策提供依据。不同的预测尺度对应于不同的勘察阶段和研究精度。滑坡泥石流灾害危险性区划对应于可行性研究阶段,要求对拟开发地域工程地质条件的分带规律进行初步综合评价,确定滑坡泥石流灾害作用发生的可能性及敏感性,提交的成果是区域工程地质条件综合分区图和地质灾害预测区划图。
9. 年全国突发性地质灾害趋势预测
国土资源部通报 2011 年第 26 期
为研判全国地质灾害发生趋势,更好地部署防治工作,部组织有关单位开展了全国突发性地质灾害趋势预测,并召开了 “2011 年全国突发性地质灾害趋势预测会商会”。据预测,今年全国地质灾害以滑坡、崩塌、泥石流为主,发生的数量和危害情况可能接近常年,局部地区可能加重。南方大部地区,尤其是西南、中南和东南沿海以及西北部分地区仍然是地质灾害发生和危害的重点地区。地质灾害全年都有发生,5月份至 9月份相对集中,其他时段时有发生。
一、预测依据
(一)地质环境背景
地质环境背景条件研究表明,全国地质灾害易发区主要分布在我国地势的第二级阶梯带和东南山地丘陵区。根据全国地质灾害调查的实际资料和工作经验分析,地质灾害高易发区主要分布在我国地势的第二级阶梯的横断山区、青藏高原东缘区、湘西和云贵高原区、川北陕南地区、川东鄂西中低山区、黄土高原区,以及东南山地丘陵区。行政区划上主要是云南、四川、贵州、西藏、陕西、甘肃、重庆、湖北、湖南、江西、广西、福建、广东、浙江、安徽等省 (区、市)的部分山地丘陵区。
(二)历史灾情
在空间上,地质灾害最严重地区是四川、云南、贵州、湖南、重庆、陕西,其次是广东、福建、山西、广西、江西、甘肃、浙江、安徽等省 (区、市)。据统计,2001 ~2010 年间,地质灾害造成人员伤亡数居于年度全国前 5 位的省 (区、市)依次是四川、云南、贵州、湖南、重庆、陕西、广东、福建、山西、广西、江西和甘肃,10 年间伤亡人数进入全国前5 位的频次分别为四川9 次、云南8 次、贵州7 次、湖南 5 次、重庆和陕西各 4 次、广东、福建和山西均为 3 次、广西 2 次、江西和甘肃各 1 次。
时间上,地质灾害主要集中发生在 5 ~9月。据统计,突发性地质灾害的发生与降雨具有很好的相关性,降雨是诱发地质灾害的主要因素。95% 的地质灾害发生在汛期 (5 ~9月),80%的地质灾害发生在主汛期 (6 ~8月),51% 的地质灾害发生在 7月。因此,汛期是地质灾害的多发期,而主汛期是地质灾害的高发期,以 7月份最为显著,汛期以外的月份地质灾害相对低发。
类型上,地质灾害以滑坡为主,崩塌和泥石流次之。据多年统计,滑坡占总数的 75.5%,崩塌占总数的 19.7%,泥石流占总数的 3.0%,地面塌陷、地裂缝和地面沉降数量相对较少,分别占总数的 1.2%、0.5%和 0.1%。
(三)发展趋势
据推测,2011 全国年地质灾害发生数量可能比 2010 年有所减少。从多年地质灾害发生数量情况看,地质灾害发生数量一般随年份呈波浪式分布。据此推测,2011 年地质灾害发生数量可能比 2010 年有所减少。
(四)气候预测
据气象部门预测,汛期在地质灾害高易发区和较高易发区的云南西部、四川西部、甘肃东部部分地区、青海东南部、西藏中东部、辽宁中南部、安徽东南部、浙江大部、福建南部、江西南部、湖南南部、广东、广西东部、海南等地区降水较常年同期偏多,其中云南西部和西藏东部等地区偏多 2 ~5 成。另外,登陆我国的热带气旋较常年偏多。
(五)地震预测
据地震部门预测,2011 年需要关注南北地震带中、南段和藏东地区以及华北北部地区。
二、地质灾害趋势预测结论
2011 年全国地质灾害以滑坡、崩塌、泥石流为主,发生的数量和危害情况可能接近常年,局部地区可能加重。南方大部地区,尤其是西南、中南和东南沿海以及西北部分地区仍然是地质灾害发生和危害的重点地区。地质灾害全年都有发生,汛期相对集中,其他时段时有发生。
3 ~ 5月,山西、陕西、甘肃和新疆的西北部,尤其是黄土地区,因春季气温回暖、冰雪冻融引发滑坡、泥石流灾害的危险性较大。
5 ~ 9月是滑坡、崩塌、泥石流的主要发生期,尤以 6、7、8月最为严重。重灾地区可能主要分布在四川、云南、贵州、湖南、重庆、陕西、广东、福建、山西、广西、江西、甘肃、浙江、湖北、安徽等省 (区、市)的部分山地丘陵区。
汛期尤其要高度重视汶川地震强烈影响区泥石流隐患。四川、云南、贵州、重庆、陕西、甘肃、山西最需要重视局地强降雨引发的地质灾害。福建、浙江、广东、湖南、广西、江西、湖北等省 (区)地区尤其要注意防范台风暴雨和区域强降雨引发的地质灾害。玉树、盈江地震灾区余震和降雨、三峡库区水位消涨、降雨等因素引发地质灾害的危险性需要重视。
10 ~ 11月,在西南部山区需注意防范异常强降雨引发的滑坡、泥石流灾害。
在川、滇交界地区、藏东地区等地震高危险区,要注意防范地震引发的次生地质灾害。
在山区居民密集区、重大工程区,水利工程区、矿山开采区等由于建房、修路和施工开挖、堆土 (矿渣)、水库蓄水和农田灌溉等人为活动,引发地质灾害仍然有可能加剧。
国土资源部
二〇一一年四月十一日
10. 年国家地质灾害气象预警服务
5.8.1 技术准备
5.8.1.1 工作情况
2008 年度国家级地质灾害气象预警预报服务在 5 月 1 日至 9 月 30 日开展,每日一次。由于汶川地震和台风活动以及强降雨影响,2008 年加强并延续了预警预报值班。5月 13 日以后针对地震灾区加密了预报频次,由每日 1 次增加为 2 ~ 3 次,增加了 60 次。预警预报期也从 9 月 30 日延续到 10 月 4 日( 台风“海高斯”登陆) ,11 月 5 日又增加了 1次,增加了 6 天。
2008 年预警预报值班共 159 天,制作预警预报产品 213 份。在中央电视台发布地质灾害预警预报信息 94 次( 其中 4 级 93 次,5 级 1 次) ,在中央人民广播电台发布 94 次,在中国地质环境信息网上发布 176 次( 3 级以上) ,在国土资源部政府网上发布 94 次。
由于汶川地震区山坡岩土体更加松散破碎、余震不断、强降雨天气频繁出现的情况,加强了地质灾害预警预报工作。主要是加密了预报频次,适度提高了地质灾害预报等级。制作地质灾害预警预报产品的频次从每日 1 次增加到每日 3 次,分别在中央电视台早晨 7 点、中午 12 点和晚上 7 点 30 分气象节目发布,并在中央电视台多个频道、中央人民广播电台随气象节目一起滚动播出,同时在中国地质环境信息网上实时发布。警示当地居民和抢险救灾人员注意防范地震余震和降雨引发的滑坡、崩塌、泥石流等地质灾害; 警示临时居住帐篷和救灾场所的百姓要避开山体斜坡、河流沟口等易发地质灾害的部位,提醒沿山路行驶的车辆和行人要注意山体滑坡、崩塌落石和泥石流。
适当增加地质灾害气象预警预报的频次的工作流程为: 国家气象中心提出,经与中国地质环境监测院会商后联合发布。西太平洋洋面生成( 强) 热带风暴后,若预测可能影响中国大陆,国家气象中心提前告知中国地质环境监测院,以便针对东南沿海的地质灾害气象预警预报做好前期准备工作。
5.8.1.2 预警产品计算
( 1) 集成了两代预警模型
为了便于新旧预警模型并行使用、相互校验,提高预警预报计算结果的精确性,新的预警预报系统软件中将第一代预警模型( 临界雨量模型) 、第二代预警模型( 显式统计预警模型) 集成在同一系统中( 图 5.35) 。
第一代预警模型( 临界雨量模型) : 基于雨量站点的地质灾害预报,预警计算在雨量站点上完成,在雨量站点上生成不同等级的预警等级点。
第二代预警模型( 显式统计预警模型) : 以剖分的网格( 10km ×10km) 为单位,在每个预警网格上计算预警产品值。
图 5.35 两代预警模型集成使用
( 2) 可采用分步式计算与一站式计算两种计算方式
分布式计算主要是分为: 气象数据自动导入-预报产品计算两步进行,便于预警产品计算之前先完成下载雨量、数据导入、数据分布查看等操作( 图 5.36) 。一站式计算: 将数据导入、产品计算从头到尾一步完成,便于日常预警值班的方便快捷。
图 5.36 分步式计算与一站式计算两种计算方式
5.8.1.3 数据管理
( 1) 雨量数据自动下载
当气象部门将前期实况雨量和次日的预报雨量上传到 FTP 地址上后,无论是一站式计算,还是分布式计算方式,预报员使用预警软件时第一步就是直接从 FTP 上下载数据,下载完毕后自动提示,并直接导入软件系统参加计算。
中国地质灾害区域预警方法与应用
( 2) 数据自动备份
根据日常工作需求,软件实现在计算完成后,完成原始雨量数据的自动备份、预警产品结果的自动备份( 图 5.37) 。
图 5.37 数据自动备份
原始雨量数据备份到目录“D: 2008rain701”
Copy ftp: / /129.179.10.68 / c-cma / a-forecast /0701 / 整个文件夹。
预警产品结果数据备份到目录“D: 2008results701”
Copy “data publish ”下的 3 个文件:
gt080701.doc; gt080701.txt; 080701.bmp; 080701.jpg;
Copy “data result ”下的 3 个文件 080701.w l; 080701.w p;
Copy “data station 80701.w t”
5.8.1.4 数据查询
数据查询功能中,除地质背景环境条件查询( 图 5.38,首先在图层管理栏内打开要查询的地质环境条件数据,然后使用“查看属性”来查看相应的地质环境条件) 外,本次软件改进中主要增加了较强大的雨量数据的查询功能。
雨量查询功能主要是基于雨量站点的原始查询、统计查询以及数据导出等功能。通过右键点击“站点查询”,即可得到各雨量站点的信息,主要包括: 实况雨量、累计雨量、14 时雨量、条件查询 4 个选项卡。
图 5.38 地质背景环境条件查询
实况雨量: 查询结果是所选雨量站点的逐日 24h 雨量值( 图 5.39) 。累计雨量查询结果是所选雨量站点的逐日累计雨量,系统设计为累计 7d 的雨量。
图 5.39 雨量查询窗口
14 时雨量: 查询结果是当前日期 8 时至 14 时的 6h 实况雨量、经过计算得到的当前日期 14 时至昨日 14 时的实况雨量。
条件查询: 主要是一些较复杂的定制查询功能和查询结果导出功能。可以通过选择站号、站名、起始日期、终止日期,进行不同时间段各个雨量站点的累计雨量查询( 图5.40) 。
图 5.40 条件查询
5.8.1.5 预警产品修正
地质灾害预警预报产品自动完成后,预报员可根据经验或会商结果对预警产品进行修正。关于预警产品修正依据方面,增加了分省易发区图; 产品背景数据补充县界、县名以及地貌简图。
( 1) 增加了分省( 区、市) 易发区图( 图 5.41)
图 5.41 分省( 区、市) 易发区图
( 2) 修正了产品背景数据( 图 5.42,图 5.43)
图 5.42 中国地貌底图
图 5.43 预警区县界县名
5.8.1.6 软件界面与显示
软件界面作了进一步的完善; 图层显示标准化等,如不同雨量用不同的颜色大小进行标记; 不同预警等级的颜色也给出相应的颜色显示标准。
( 1) 软件界面
从每日预警值班的角度,进一步完善和简化了预警软件界面,图层控制管理窗口使用更加清晰方便( 图 5.44) 。
图 5.44 完善后的软件界面
( 2) 图层显示标准化
不同雨量用不同的颜色大小进行标记。关于当日 8 点、14 点雨量显示的相关约定根据雨量大小( 子图号均为 34) ( 图 5.45) :
图 5.45 8 点实况雨量显示标准化
≥250mm: 深红色( 253) ,RGB 为 151 31 23; 子图宽度和高度均为 60;
100 ~ 250mm: 粉红色( 183) ,RG B 为 255 0 191; 子图宽度和高度均为 50;
50 ~ 100mm: 蓝色( 5) ,RG B 为 0 0 255; 子图宽度和高度均为 40;
25 ~ 50mm: 浅蓝色( 19) ,RG B 为 135 135 255; 子图宽度和高度均为 30;
10 ~ 25mm: 绿色( 90) ,RG B 为 0 175 0; 子图宽度和高度均为 20;
< 10mm: 浅绿色( 7) ,RG B 为 0 255 0; 子图宽度和高度均为 10。
( 3) 预警等级颜色标准化
( RGB,图 5.46)
图 5.46 预警等级颜色标准化
5.8.1.7 矢量化网上发布
将发布的预警产品格式改为矢量化格式,从而实现预警产品查询的方便快捷和精确定位( 可直接查询到县级行政区域) ( 图 5.47) 。根据需要可实现雨量数据的实时显示与查询; 同时,能够满足每日多次预警产品的发布需求。
图 5.47 改进的矢量化网上发布及放大后效果
5.8.2 5 级地质灾害警报区
2008 年汛期,共发布了 1 次 5 级预警预报信息。我们对这次预报的地质灾害发生情况进行了调查。
5.8.2.1 5 级地质灾害预警预报情况
2008 年 7 月 20 日下午,中国地质环境监测院收到中国气象局的天气预报: 未来 24 小时( 7 月 20 日 20: 00 ~7 月 21 日 20: 00) 甘肃南部、四川中部和北部、陕西西南局部、宁夏南部局部等地震影响区,以及吉林东南部、辽宁东部有暴雨( 50mm) 。其中甘肃南部局部、四川中部局部和北部局部,以及吉林东南局部有大暴雨( 100mm) 。
针对气象局降雨预报和预测暴雨地区的地质环境条件,经过与被预警区省级地质灾害预警预报技术单位和气象局会商,我们发布了如下预警预报信息: 今日 20: 00 至明日 20:00,甘肃南部、四川中部和北部、陕西西南局部、宁夏南部局部等地震影响区,以及吉林东南部、辽宁东部局部发生地质灾害可能性较大( 3 级) 。其中,甘肃南部局部、四川中部局部和北部局部等地震重灾区发生地质灾害可能性大或很大( 4 ~5 级) ( 图 5.48) 。
图 5.48 7 月 20 日降雨预报等值线和地质灾害气象预警预报区域
5.8.2.2 地质灾害发生情况与地质环境条件
根据四川、甘肃国土资源厅地质环境处获得反馈信息,7 月 20 日晚至 7 月 22 日期间,四川省东南部发生较大地质灾害 47 处; 甘肃省南部发生较大地质灾害 8 处。
四川省 7 月 20 ~22 日发生的地质灾害主要分布在四川省东部和中南部。在地质环境分区上分别属于盆地东华蓥山平行岭谷地质环境区和峨眉山高中山地质环境区。
盆地东华蓥山平行岭谷地质环境区: 以剥蚀构造地形为主,背斜成山向斜成谷,山高谷深,岭谷相间,山岭海拔 700 ~1700m,间以石灰岩槽状谷地或山间小盆地,山间盆地一般海拔 300 ~500m,相对高差 100m 左右。地形坡度 30° ~35°,背斜山地区较陡。侏罗系分布最广( 达 80%以上) 。地层岩性为泥岩、砂质泥岩、岩屑长石砂岩、粉砂岩不等厚互层组成软硬相间的岩体主要组合。构造呈北东—北北东走向,由一系列平行的狭长不对称箱状背斜组成,断裂少见。区域地壳属间歇性面状抬升,地壳活动较强。区域最大地震震级为 5.75 级,地震基本烈度为Ⅵ-Ⅶ。
峨眉山高中山地质环境区: 以高中山地貌为主,地势由北向南渐增,海拔 1000 ~3700m,切割深度 500 ~1000m,地形坡度15° ~40°,山坡上缓下陡,山顶圆缓,沟谷狭窄。地层包括下古生界的碳酸盐岩、变质岩,以及中生界的砂岩、泥岩和火山喷发的玄武岩等。软硬相间的岩体组合,类型较多,岩层较破碎。构造以南北向的褶皱、断裂为主,兼有北东向、北西向断裂切割,地层错落,岩层破碎,地壳活动较强,地震烈度为Ⅷ度。滑坡、崩塌、泥石流较发育。
甘肃省发生的地质灾害主要分布在陇南山地。该地区属西秦岭山地,地势西高东低,海拔 2500 ~4500m,地形强烈切割,水文网发育,相对高差 1000 ~2000m,属中高山地形。岩土体类型以变质岩岩组、碳酸盐岩岩组为主,碎屑岩类和黄土零星分布。年平均降雨量一般为600mm,7 ~ 9 月 3 个月降雨量占全年的 65% ,多暴雨。植被覆盖率达 30% ~ 46% 。属于滑坡、泥石流中等-高-极高发育地区。
5.8.2.3 预警预报效果分析
7 月 20 日对甘肃南部局部、四川中部局部和北部局部等地震重灾区发布了 4 ~ 5 级的地质灾害预警预报。7 月 21 ~22 日,地质灾害大量发生,实际发生区在四川东南部和甘肃南部。甘肃南部和中部局部的预报是准确的,四川北部没有报准的原因是实际降雨发生了偏移。20 日预报的暴雨中心是南部局部、四川中部局部和北部局部等地震重灾区,而实际暴雨中心却落在了四川东南部和甘肃南部以及陕西西南部( 图 5.49) 。
5.8.3 2008 年预警预报效果分析
本章选取 2008 年 7 月和 8 月的预报情况进行分析。
5.8.3.1 成功预报情况分析
实际计算时,如果当日仅有 1 个预报区,则按 1 个区计算; 如果有多个预报区,则按实际预报区个数计算,3 级、4 级和 5 级区共同参与计算。采用第 3 章 3.7 节建立的计算公式,计算出 2008 年 7,8 月预报准确率( 表 5.11) 。
图 5.49 7 月 21 日预报降雨、实际降雨与地质灾害点分布对比
表 5.11 2008 年 7,8 月预报准确率
表 5.11 列出 7 月共发布 93 个预报区,有 30 个准确预报区,平均预报准确率为32.26% 。8 月共发布 64 个预报区,有 14 个准确预报区,平均预报准确率为 21.88% 。每日预报准确率的变化从 0 ~100%均有,显示地质灾害发生的准确情况具有一定的随机性,同时与降雨量的情况有一定的关系,是一个复杂的过程,造成预报准确率较低。遇到大范围强降雨出现时,预报准确率会有所提高。
5.8.3.2 空报情况分析
实际计算时,如果当日仅有 1 个空报区,则按 1 个区计算; 如果有多个空报区,则按实际个数计算,三级、四级和五级区共同参与计算。空报率和准确率之和为 1。采用第 3 章 3.7建立的计算公式,计算出 2008 年 7,8 月空报率( 表 5.12) 。
表 5.12 2008 年 7,8 月空报率
根据表 5.12 空报率的计算结果,7 月的平均空报率为 67.74%,8 月的平均空报率为78.12% ,空报率较大,主要是因为预报降雨与实际降雨偏差较大所致。
表 5.13 2008 年 7,8 月漏报率
2008 年 7 月 20 日预报降雨和实际降雨情况可以看出,两个预报 100mm 的地区,其中一个降雨量不到10mm,另一个区中最大降雨量仅为40mm,降雨中心完全偏离预报区域,且降雨中心最大降雨量为 73mm,与预报 100mm 相差 27mm( 图 5.50) 。
图 5.50 7 月 20 日预报雨量与实际雨量对比图
5.8.3.3 漏报情况分析
采用第 3 章 3.7 建立的计算公式,计算出 2008 年 7,8 月漏报率( 表 5.13) 。
根据表 5.13 显示的计算结果,7 月的平均漏报率为 66.87% ,8 月的平均漏报率为86.54% ,漏报率较大,主要是因为地质灾害预报是针对比较大的云团或台风等强对流天气引起的地质灾害的预报准确率较高,而对于局地暴雨等天气情况引发的地质灾害预测较低。
5.8.4 暴雨日数与地质灾害
将汛期( 5 ~9 月) 全国暴雨日数与地质灾害点分布叠加( 图 5.51) 。
显示暴雨日数较大的地区集中分布在广东南部、广西南部、湖北东部等地。图 5.52 暴雨日数分段与单位面积地质灾害点统计,灾害点密度较大的区域集中在暴雨日数在 3 ~5 日之间,而在暴雨日数 >10 日的区域地质灾害点密度并不是最大的,即总体上,暴雨日数分布与地质灾害点密度分布对应关系不好。
图 5.51 2008 年 5 ~9 月全国暴雨日数与地质灾害点分布( 台湾省专题资料暂缺)
图 5.52 2008 年 5 ~9 月全国暴雨日数分段与单位面积地质灾害点统计
5.8.5 强降水过程引发地质灾害分析
2008 年汛期( 5 ~ 9 月) 全国共有 8 次强降水过程,在地质灾害多发区引发了大量的崩塌、滑坡、泥石流等地质灾害。
( 1) 2008 年 5 月 25 ~31 日强降水过程
2008 年 5 月 25 ~ 31 日,华南大部,特别是广西、贵州、广东局部发生一次强降水过程,过程降水量达 50 ~200mm。在全国多个省份引发了 365 处重大地质灾害。其中: 湖南 206处,广西 32 处,贵州 17 处等( 图 5.53) 。
图 5.53 2008 年 5 月 25 ~31 日强降水过程与地质灾害点分布( 台湾省专题资料暂缺)
从图5.54降水量分段与单位面积灾害点个数统计来看,过程降水量在50~200mm范围内,地质灾害点密度均较大,特别是过程降水量大于200mm的区域,主要分布在广西东北部、广东中北局部地区,地质灾害点分布更为集中,密度达7.4处/100km2;过程降水量为150~200mm的区域,覆盖了贵州、广西两省(区)交界地区,密度也较大,达2.8处/100km2。从全国统计来看,5月25~31日88.8%的地质灾害点位于累积雨量50~100mm范围内,全国地质灾害点主要是由本次强降水过程引发的。
图5.54 2008年5月25~31日降水量分段与单位面积地质灾害点统计
(2)2008年6月6~19日强降水过程
2008年6月6~19日,在我国的华南大部,特别是广东、广西、江西等地持续出现强降水过程,过程降水量达200~800mm。全国多个省份596处灾害点。其中:江西147处,广西126处,湖南88处,广东55处,浙江33处,云南23处等(图5.55)。
图5.55 2008年6月6日~19日强降水过程与地质灾害点分布(台湾省专题资料暂缺)
从图5.56降水量分段与单位面积灾害点个数统计来看,过程降水量在200~800mm范围内,地质灾害点分布最多,占全国灾害点总数的70.5%。过程降水量大于800mm的区域,主要分布在广东的东南局部,为地质灾害不易发地区,没有灾害点出现;过程降水量400~800mm的区域基本覆盖了广东、广西、江西、浙江、安徽等省(区)的山地(地质灾害高发区),地质灾害分布最为广泛,地质灾害点密度为4.6~6.4处/100km2;过程降水量200~400mm的区域覆盖了云南、重庆、湖南等地,地质灾害分布广泛,灾害点密度为6.4处/100km2。可见,本次大范围地质灾害的发生主要受到此次强降水过程的控制。
图5.56 2008年6月6~19日降水量分段与单位面积地质灾害点统计
(3)2008年7月6~10日强降水过程
2008年7月6~10日,华南大部、贵州东部、江南中西部、江汉东部、江淮西部、黄淮中东部、吉林北部等地出现了贯穿南北的强降水过程,全国多个省份共76处重大灾害点,其中:广东13处,湖北13处,安徽9处,广西2处等。
从图5.57降水量分段与单位面积灾害点个数统计来看,随着过程降水量增大,地质灾害点密度明显呈现增多趋势,特别是过程降水量介于100~300mm的区域,地质灾害分布点密度为0.8处/100km2;过程降水量大于300mm的区域,主要分布在广东的东南局部,为地质灾害不易发地区,没有灾害点出现;过程降水量在0~100mm范围内,也有大量灾害点分布。可见,此次强降水过程分布广泛,除降水中心灾害点个数较多外,在其他降水范围内仍有很多灾害点分布。
图5.57 2008年7月6~10日降水量分段与单位面积地质灾害点统计
(4)2008年7月20~24日强降水过程
2008年7月20~24日,四川盆地、黄淮、江淮等地普降暴雨到大暴雨,过程雨量50~200mm。在多处引发了大量地质灾害,其中四川50处,湖北29处,湖南26处,陕西7处,重庆6处,贵州6处等。
从图5.58降水量分段与单位面积灾害点个数统计来看,灾害点密度最大的区域过程降水量主要介于100~150mm之间,主要分布在四川、湖北、湖南等地质灾害多发区,而在过程降水量更大(>200mm)的区域,灾害点密度反倒相对较小,主要是因为这部分区域主要位于山东、河南、湖北等省份的地质灾害低易发区。可见山区或者说地质灾害多发区的灾害发生,主要受到强降水过程的控制,也即只有强降水过程落在地质灾害多发区时,地质灾害才会大量发生。
(5)2008年7月31日至8月2日强降水过程
2008年7月31日至8月2日,安徽、江苏局地出现强降水过程,累计降雨量50~200mm,局地250~530mm。最大降雨中心位于安徽的东北局部(>300mm),无灾害点发生;次级降雨中心位于安徽南部,为灾害多发区,引发灾害10处。
图5.58 2008年7月20~24日降水量分段与单位面积地质灾害点统计
从图5.59降水量分段与单位面积灾害点个数统计来看,也反映了这一特点,灾害点主要分布在过程降水量100~300mm的区域。在10~100mm覆盖的其他区域,有一些灾害点零星分布。
图5.59 2008年7月31日至8月2日降水量分段与单位面积地质灾害点统计
(6)2008年8月13~17日强降水过程
2008年8月13~17日,长江中上游、江淮地区等地大部分地区出现大到暴雨、局部大暴雨,降雨量普遍在50mm以上,湖北南部和东部、湖南西北部、河南东南部、安徽西部等地有100~200mm,部分地区超过200mm。在湖北、湖南、重庆等地引发大量灾害。其中湖南27处,湖北14处,四川12处,贵州6处,陕西3处,重庆2处。
从图5.60降水量分段与单位面积灾害点个数统计来看,灾害点密度最大的区域主要集中落于降水量大于200mm的区域,因为该区域位于湖南西北局部地区,降水强度的大幅度集中[24h降水量湖南桑植(164.4mm)、通道(113.4mm)、平江(108.0mm)破历史同期记录],引发了大量的群发地质灾害。
(7)2008年8月28~29日强降水过程
2008年8月28~29日,湖北、安徽、重庆等地两天累计雨量一般有50~250mm。在湖北引发了7处,重庆引发了4处地质灾害。
从图5.61降水量分段与单位面积灾害点个数统计来看,灾害点主要集中分布在过程降水量大于50mm的区域,该区域主要位于湖北、湖南北部、重庆大部两日累积雨量基本都达到暴雨级别,降雨强度大,地质灾害频发。
图5.60 2008年8月13~17日降水量分段与单位面积地质灾害点统计
图5.61 2008年8月28~29日降水量分段与单位面积地质灾害点统计
(8)2008年9月22~27日强降水过程
2008年9月22~27日,四川省9个县(市)降了大暴雨;北川县连续5d出现暴雨;彭山和新都2个县(市)日降水量突破9月历史极值。地震灾区部分地方道路中断,山体滑坡和泥石流频发,重大灾害点达40处(图5.62)。地质灾害点密度最大区域位于100~200mm降水量区域,其次为50~100mm区域。
从图5.63降水量分段与单位面积灾害点个数统计来看,灾害点主要集中分布在过程降水量100~200mm的区域,主要位于四川西部南北延伸地带。
5.8.6 台风暴雨引发地质灾害分析
2008年汛期(5~9月)全国共有6次台风登陆我国大陆,带来了丰富强降水,对于崩塌、滑坡、泥石流等地质灾害的发生起到了一定的引发作用。
(1)热带风暴“风神”(6月25~29日)
6号热带风暴“风神”6月25日清晨在深圳登陆。受其影响,广东、福建、广西、江西、湖南等地降大到暴雨,在广东、江西、浙江、广西等省(区)引发了大量的崩塌、滑坡、泥石流地质灾害。
从不同降水量分段的灾害点密度来看,过程降水量在50~400mm之间时,灾害点分布较多,特别是100~200mm、300~400mm过程降水量时,灾害点密度分别达到了1.2处/100km2和1.6处/100km2。而降水量大于400mm的区域主要集中在广东东南沿海局部地区,灾害少发(图5.64)。本时段的地质灾害点主要是由于台风带来的集中降水引发的。
图5.62 2008年9月22~27日强降水过程与地质灾害点分布(台湾省专题资料暂缺)
图5.63 2008年9月22~27日降水量分段与单位面积地质灾害点统计
图5.64 热带风暴“风神”(6月25~29日)诱发灾害点分布统计
(2)热带风暴“海鸥”(7月19~20日)
7号热带风暴“海鸥”7月15日下午在菲律宾以东海面上生成。17日在台湾省宜兰县登陆,18日在福建省霞浦县再次登陆。受其影响,福建、广东、浙江、江西等地相继出现暴雨到大暴雨,在广东、福建两省引发了7处滑坡、崩塌、泥石流等小型灾害(图5.65)。
图5.65 热带风暴“海鸥”(7月19~20日)诱发灾害点分布统计
本次降水过程具有降水面积相对集中的特点,过程降水量大于50mm的区域面积较小,灾害点集中分布在过程降水量100~150mm的局部区域。
(3)热带风暴“凤凰”(7月28日至8月2日)
第8号热带风暴“凤凰”于7月25日下午在西北太平洋洋面上生成,28日早晨在台湾省花莲登陆,同日22时在福建省福清市再次登陆,登陆时为台风强度(中心附近风力12级)。受其影响,浙江东南部、福建中北部等地普降大到暴雨,部分地区大暴雨或特大暴雨;长江口、福建、浙江等地出现8~10级大风,局部达14级。在安徽、福建、广东、江西等省份引发了35处群发型地质灾害。
过程降水量大于300mm的区域主要集中在安徽东部与江苏交界地区,属地质灾害不易发区,无灾害点分布。而过程降水量在100~300mm的区域主要分布在福建、广东、安徽南部等地质灾害多发区,降水集中,地质背景环境条件脆弱,地质灾害大量发生(图5.66)。
图5.66 热带风暴“凤凰”(7月28日至8月2日)诱发灾害点分布统计
(4)强热带风暴“北冕”(8月7~9日)
强热带风暴“北冕”8月6日傍晚在广东省阳西县沿海登陆,登陆时中心附近最大风力有10级;并于7日下午在广西东兴市沿海再次登陆,登陆时中心附近最大风力有8级。受其影响,华南大部以及云南普降大到暴雨,局部降大暴雨或特大暴雨,过程最大降水量超过400mm。引发130处地质灾害,其中:四川50处,湖北29处,湖南26处,陕西7处,重庆6处,贵州6处等。
从过程降水量分段的灾害点密度来看,降水量大于200mm的区域分布在广西南部的局部区域,地质灾害低发。而降水量50~100mm的区域分布在云南东部、广西中部、广东中部等灾害多发区,灾害点密度达1.4处/100km2(图5.67)。
图5.67 强热带风暴“北冕”(8月7~9日)诱发灾害点分布统计
(5)强台风“森拉克”(9月14~16日)
强台风“森拉克”于9月14日凌晨在台湾省宜兰县沿海登陆,登陆时中心附近最大风力为15级(48m/s)。“森拉克”具有发展快、强度强,移动慢、路径异常,正面袭击台湾,影响台湾和东海时间长等特点,降水集中在福建东北沿海、浙江东南沿海局部,无典型的台风引发灾害报告(图5.68)。
图5.68 强台风“森拉克”(9月14~16日)诱发灾害点分布统计
(6)强台风“黑格比”(9月23~27日)
强台风“黑格比”于9月24日晨在广东省电白县沿海登陆,登陆时中心最大风力达到15级(48m/s)。“黑格比”带来的强降水过程与强热带风暴“北冕”相似,地质灾害点密度最大的区域过程降水量介于100~200mm之间,在广东、广西、云南等地引发了大量地质灾害(图5.69)。
图5.69 强台风“黑格比”(9月23~27日)诱发灾害点分布统计
5.8.7 第一代与第二代区域预警系统应用对比
以2007年7~8月和2008年7~8月空间预报准确率核算,前者约为40%,后者约为27%,但后者预警面积仅为前者的四分之一,大大减少了预警区域,等于减少了防灾相应成本。
采用两套系统以2008年5月1~15日实际预警情况开展了对比分析(表5.14)。
表5.14 2008年汛期第一代与第二代区域预警系统应用对比
结论是,第二代预警系统在继承第一代系统临界雨量判别优势的基础上,突出反映了区域地质环境条件,在预警准确度、精细度等多个方面有较大改进。