乌江流域地质灾害调查
⑴ 贵州省已完成地质灾害详查的地方有哪些
1:5万详查已完成了乌江流域贵州段的全部吧
⑵ 乌江流域矿产资源开发带来的影响
有利影响:把资源优势转化为经济优势,促进经济发展;带动就业,带动相关产业发展专;增加居民收入属,促进城市化进程。
不利影响:破坏生态环境,造成水体、土壤和大气的污染;植被减少,水土流失,生态环境恶化,生物多样性减少等。
⑶ 简述乌江流域的自然地理环境特征 分析乌江水能梯级开发的优势条件
(第一问)乌江源头在云贵高原,注入四川盆地,地形落差大,水流快(2分)。流经地区多石灰岩内,流水容侵蚀作用复杂,河谷地形奇特(2分)。在局部河段河流石块、泥沙沉积,阻挡河道,形成险滩(2分)。由于强烈的流水侵蚀,沿途多V形谷,河道狭窄,河岸陡峻。(2分)
(第二问)优点:水量大;落差大;(2分)水能充足;(2分)峡谷地形,建设水库工程量小; (2分)靠近能源消费市场(四川盆地)(2分);调整能源结构,节能减排需要。(2分)(任答4点得8分)
⑷ 地质灾害调查与预警
一、部署重点
开展我国西南山区、黄土高原、湘鄂桂山区等主要地质灾害高易发区地质灾害详细调查,建立典型地质灾害监测预警区;完善长江三角洲、华北平原和汾渭盆地地面沉降监测网,开展珠江三角洲、东北平原等地区地面沉降调查,开展京沪、大同—西安等高速铁路沿线地面沉降与地裂缝详细调查。
二、部署建议
(一)全国地质灾害调查监测综合评价
1.工作现状
完成了全国1:50万以地质灾害为主的环境地质调查与综合研究,完成了700个县(市)的县市地质灾害调查成果集成,正在开展1640个县(市)的县市地质灾害调查成果集成。2005年起,开展1:5万地质灾害详细调查数据库建设及成果初步梳理工作。开展地质灾害气象预警技术方法研究,逐步提高我国区域地质灾害预警预报技术水平。
但随着详细调查与监测预警示范的大规模铺开,需要进一步进行数据的整理、分析与综合集成,并在研究基础上编制满足国家层面需求的系列图系。
2.工作目标
总体目标:整合地质灾害详细调查成果,分析地质灾害发育分布规律,划定地质灾害易发区,搭建综合研究技术平台和信息化平台,建立全国地质灾害数据库。整合监测预警示范区成果,研究监测预警网络建设模式,形成全国地质灾害监测预警信息平台。完善地质灾害调查与监测技术规程与技术要求,综合研究并编制满足国家需要的地质灾害系列图系。
“十二五”期间:建立地质灾害调查与地质灾害监测预警成果集成体系。总结地质灾害调查成果,开展区域地质灾害易发区综合评价和易发程度区划。总结地质灾害监测预警示范区建设成果,搭建地质灾害监测预警信息平台。
“十三五”期间:完善地质灾害调查与地质灾害监测预警成果集成体系。进一步总结地质灾害调查成果,形成全国和省级地质灾害易发区综合评价和易发程度区划。系统总结地质灾害调查与地质灾害监测成果,形成全国地质灾害早期预警区划。
3.工作任务
完成全国1:5万地质灾害调查与典型预警示范区建设成果的汇总、集成与综合研究。搭建1:5万地质灾害调查综合研究技术平台和信息化平台,建立全国地质灾害数据库。搭建全国地质灾害监测预警信息平台,完善早期预警产品发布体系。总结修订《崩塌、滑坡、泥石流1:50000调查规范》,完成全国地质灾害早期预警区划,编制全国及分省地质灾害与地质灾害早期预警综合图系。
“十二五”期间:对西北黄土高原区、西南山区、湘鄂桂山区、东南沿海地区地质灾害高易发区1:5万地质灾害调查成果进行集成,建立1:5万地质灾害调查信息化成果技术要求;完成11个地质灾害监测预警示范区成果综合研究,搭建全国地质灾害监测预警信息平台,初步建立全国地质灾害早期预警区划。
“十三五”期间:完成西北黄土高原区、西南山区、湘鄂桂山区、东南沿海地区地质灾害高、中易发区1:5万地质灾害调查成果集成,完善1:5万地质灾害调查信息化成果技术要求。完成全国30个地质灾害监测预警示范区成果综合研究,形成建立全国地质灾害早期预警区划。编制完成全国及分省地质灾害与地质灾害早期预警综合图系。
(二)西北黄土高原区1:5万地质灾害调查
1.工作现状
完成了以省(区、市)为单元的西北省区1:50万以地质灾害为主的环境地质调查、263个县的1:10万山区丘陵县地质灾害调查。2005年起,在46个县近10万平方千米范围内开展了1:5万地质灾害调查。
通过开展1:5万地质灾害调查,基本摸清了调查区地质灾害分布和发育规律,有力地支持了完善地质灾害防治规划和各项减灾防灾工作。根据县市地质灾害调查成果,在西北黄土高原区及秦巴山区中,仍有处于地质灾害高、中易发区的191个县近54万平方千米需要尽快开展1:5万地质灾害调查工作。
2.工作目标
以遥感解译、地面调查、测绘和工程勘查为主要手段,以县(区)级行政区划为基本单元,开展西北黄土高原区及秦巴山区20万平方千米(191个县)的1:5万地质灾害调查,基本查明区内地质灾害及其隐患的分布、形成的地质环境条件和发育特征,并对其危害程度进行评价,圈定地质灾害易发区和危险区,建立地质灾害信息预警系统,建立健全群专结合的监测网络,为减灾防灾提供基础地质依据。
“十二五”期间:开展西北地质灾害高易发区1:5万地质灾害调查,基本查清区内地质灾害分布发育规律,逐步建立地质灾害风险控制管理工作体系。
“十三五”期间:继续开展地质灾害高、中易发区1:5万地质灾害调查,查清区内地质灾害分布发育规律,形成西北地区地质灾害易发区区划和重点区域地质灾害风险管理区划,显著提高我国地质灾害防治水平。
3.工作任务
开展西北地区地质灾害中、高易发区1:5万地质灾害调查;完善地质灾害易发性和危险性区划;健全完善地质灾害群测群防体系,建立地质灾害空间数据库。
在已经圈定的地质灾害易发区内,以县为单位采用点、线、面结合,重点和一般调查结合的方式开展1:5万地质灾害调查工作。2015年前优先开展地质灾害高易发区及经济损失较大地区调查,基本覆盖人员伤亡及财产损失主要地区。2020年前,逐步推进,最终完成西北地区高、中易发区调查。在调查基础上,完善地质灾害易发性和危险性区划,健全完善地质灾害群测群防体系,探索建立地质灾害风险评价与风险控制管理工作体系。
“十二五”期间:开展西北黄土高原区地质灾害高易发区1:5万地质灾害调查。
“十三五”期间:继续开展西北黄土高原区地质灾害高、中易发区1:5万地质灾害调查。
(三)西南山区1:5万地质灾害调查
1.工作现状
完成了以省(区、市)为单元的西南山区1:50万以地质灾害为主的环境地质调查、423个县的1:10万山区丘陵县地质灾害调查。2005年起,在29个县(近10万平方千米)开展了1:5万地质灾害调查。
通过开展1:5万地质灾害调查,基本摸清了调查区地质灾害分布和发育规律,有力支持并完善了地质灾害防治规划和各项减灾防灾工作。根据县市地质灾害调查成果,在西南山区,仍有处于地质灾害高、中易发区的190个县近75万平方千米需要尽快开展地质灾害详细调查工作。
2.工作目标
总体目标:以遥感解译、地面调查、测绘和工程勘查为主要手段,以县(区)级行政区划为基本单元,开展西南山区、藏东地区75万平方千米,1:5万地质灾害调查,基本查明区内地质灾害及其隐患的分布、形成的地质环境条件和发育特征,并对其危害程度进行评价,圈定地质灾害易发区和危险区,建立地质灾害信息预警系统,建立健全群专结合的监测网络,为减灾防灾提供基础地质依据。
“十二五”期间:开展西南川滇山区、藏东地区等地质灾害高易发区1:5万地质灾害调查,基本查清区内地质灾害分布发育规律,逐步建立地质灾害风险控制管理工作体系。
“十三五”期间:继续开展西南川滇山区、藏东地区地质灾害高、中易发区1:5万地质灾害调查,查清区内地质灾害分布发育规律,形成全国地质灾害易发区区划和重点区域地质灾害风险管理区划。显著提高我国地质灾害防治水平。
3.工作任务
开展西南川滇山区、藏东地区滑坡、崩塌、泥石流等突发性地质灾害中、高易发区1:5万地质灾害调查;健全完善覆盖地质灾害中、高易发区的群测群防网络,完善地质灾害易发性和危险性区划。建立地质灾害空间数据库。
在已经圈定的地质灾害易发区内,以县为单位采用点、线、面结合,重点和一般调查结合的方式开展1:5万地质灾害调查工作。2015年前优先开展地质灾害高易发区及经济损失较大地区调查,基本覆盖人员伤亡及财产损失主要地区。2020年前,逐步推进,最终完成西南山区高、中易发区调查。在调查基础上,建立完善群测群防体系,完善地质灾害易发性和危险性区划,探索建立区域风险评价与风险控制管理工作体系。
“十二五”期间:开展西南山区高易发区1:5万地质灾害调查工作。
“十三五”期间:继续开展西南山区高、中易发区1:5万地质灾害调查工作。
(四)湘鄂桂山区地质灾害详细调查
1.工作现状
完成了以省(区、市)为单元的1:50万以地质灾害为主的环境地质调查、287个县的1:10万山区丘陵县地质灾害调查。2005年起,在14个县近4万平方千米范围内开展了1:5万地质灾害调查。
通过开展1:5万地质灾害调查,基本摸清了调查区地质灾害分布和发育规律,有力地支持了完善地质灾害防治规划和各项减灾防灾工作。根据县市地质灾害调查成果,在湘鄂桂山区,仍有处于地质灾害高、中易发区的82个县近20万平方千米需要尽快开展1:5万地质灾害详细调查工作。
2.工作目标
总体目标:以遥感解译、地面调查、测绘和工程勘查为主要手段,以县(区)级行政区划为基本单元,开展西南山区、藏东地区1:5万地质灾害调查,基本查明区内地质灾害及其隐患的分布、形成的地质环境条件和发育特征,并对其危害程度进行评价,圈定地质灾害易发区和危险区,建立地质灾害信息预警系统,建立健全群专结合的监测网络,为减灾防灾提供基础地质依据。
“十二五”期间:完成湘鄂桂山地丘陵区20个县(市)1:5万地质灾害调查,基本查明区内地质灾害及其隐患的分布、形成的地质环境条件和发育特征,并对其危害程度进行评价,为制定防灾规划和减灾提供技术支撑。
“十三五”期间:全面完成湘鄂桂山地丘陵区40个县(市)1:5万地质灾害调查,基本查明区内地质灾害及其隐患的分布、形成的地质环境条件和发育特征,并对其危害程度进行评价,为制定防灾规划和减灾提供技术支撑。
3.工作任务
开展湘鄂黔山地区滑坡、崩塌、泥石流等突发性地质灾害中、高易发区1:5万地质灾害调查;健全完善覆盖地质灾害中、高易发区的群测群防网络,完善地质灾害易发性和危险性区划。建立地质灾害空间数据库。
在已经圈定的地质灾害易发区内,以县为单位采用点、线、面结合,重点和一般调查结合的方式开展地质灾害1:5万调查工作。2015年前优先开展地质灾害高易发区及经济损失较大地区调查,基本覆盖人员伤亡及财产损失主要地区。2020年前,逐步推进,最终完成湘鄂黔山地区高、中易发区调查。在调查基础上,建立完善群测群防体系,完善地质灾害易发性和危险性区划,探索建立区域风险评价与风险控制管理工作体系。
“十二五”期间:开展高易发区1:5万地质灾害调查。
“十三五”期间:继续开展高、中易发区1:5万地质灾害调查。
(五)东南沿海山区1:5万地质灾害调查
调查区主要包括浙江、福建、安徽、江西四省常年遭受台风袭击的地质灾害高风险区及中低山丘陵区,总面积约12万平方千米。该区域人口密度高、经济发达,地质条件复杂,台风和降雨频繁,地质灾害影响严重。
1.工作现状
完成了以省(区、市)为单元的1:50万以地质灾害为主的环境地质调查,以县(市)为单元的1:10万丘陵山区地质灾害调查约271个县(市),浙江省开展了小流域1:1万地质灾害调查。初步查明了崩塌、滑坡、泥石流等突发性地质灾害分布情况、发育特征、发育强度及其形成条件和发生规律,对地质灾害发生的环境地质条件和发展趋势进行了区划及预测评价,调查成果及时为重点县(市)及区域地质灾害防治提供了技术支撑。
虽然浙江开展小流域1:1万地质灾害调查调查,尚未系统开展1:5万地质灾害调查,缺少区域1:5万地质灾害调查资料,目前地质灾害防治依靠的是以往1:10万县市地质调查资料,地质灾害防灾工作能力和水平亟待提升。
2.工作目标
总体目标:全面完成地质灾害高、中易发区1:5万地质灾害调查工作,查明崩塌、滑坡、泥石流等突发性地质灾害分布情况、发育特征、发育强度及其形成条件和发生规律,对地质灾害发生的环境地质条件和发展趋势进行了区划及预测评价,调查成果及时为重点县(市)及区域地质灾害防治提供了技术支撑。
“十二五”期间:完成地质灾害高易发区1:5万地质灾害调查工作,选择25处重大地质灾害高易发区开展风险管理。
“十三五”期间:完成地质灾害中易发区1:5万地质灾害调查工作,选择15处重大地质灾害中易发区开展风险管理。
3.工作任务
以保护人民生命财产和生存环境、保障重大建设工程、重要矿山、国家级或省级旅游景区建设为目标,开展1:5万地质灾害调查,基本查明地质灾害发育及危害现状、形成条件和形成机理,进行地质灾害危险性评价和风险评估;开展区域地质灾害监测预警网络建设,建立典型区地质灾害监测预警示范;开展重大地质灾害调查与风险管理选区及评估;建立区域地质灾害数据共享平台。
(六)汶川地震地质灾害调查评价
1.工作现状
开展了工作区在内的青藏高原东南缘的地壳变形、断裂运动、地震活动研究、活动断裂和古地震研究、区内区域地壳稳定性研究及一系列的深部地球物理探测研究。从1991年到2006年已在青藏高原东部及邻区开展了十多年地壳形变监测。震后完成了地震灾区地质灾害应急调查、详细调查及对重大灾害体的勘察。
但震后地质环境、地应力场及位移场均发生了较大变化,需尽快完成调查。震后地震灾区地质灾害应急调查、详细调查及对重大灾害体的勘察资料亟待整理。灾后恢复重建迫切需要区域稳定性评价及地质灾害防治区划。与地震及地震地质灾害相关的关键科学问题亟待解决。
2.工作目标
总体目标:以汶川地震为契机,全面开展龙门山地区地震与地质灾害详细调查工作,结合综合地球物理勘查,摸清龙门山断裂带主要特征;系统总结工作区现代构造运动的地质灾害效应规律及地质灾害链形成机理;揭示龙门山及邻近构造带未来地震活动趋势;了解龙门山及邻近构造带的地震工程地质条件;开展区域地壳稳定性和重要场地工程地质稳定性评价;为龙门山地震重灾区恢复重建及邻区重要工程规划提供地质依据;建设地震地质灾害信息系统,为地震灾区防灾减灾和重建规划服务。
“十二五”期间:完成龙门山地区地震地质灾害调查,确定汶川地震发震断裂和同震断裂的地表变形特征,确定活动断裂深部结构,初步完成青藏高原东缘地壳形变和斜坡动力响应综合监测及汶川地震灾区地脉动测试,建立极震区滑坡形成机理模式及汶川地震区工程岩体稳定性评价与地质灾害填图技术方法,完成地质灾害相应成果建设,为汶川地震灾后重建提供相关地震地质灾害资料和必要的技术支撑。
“十三五”期间:深入研究地震地质灾害链的形成机理和演化过程,开展区域地壳稳定性评价,总结提升各种地震地质灾害调查、监测和评价的技术水平,并促进相关技术方法的推广应用。
3.工作任务
在广泛收集利用前期已有相关地质研究资料的基础上,利用遥感解译与野外地面调查、深部探测相结合,线路地质调查与重点地段大比例尺填图调查相结合,新构造运动特征定性分析与断裂活动时域及强度定量测试分析相结合,内动力与外动力地质作用调查相结合,物理仿真模拟与数值模拟相结合,对工作区活动断裂特别是发震断裂及其灾害效应进行定量—半定量评价;基于青藏高原东缘地壳形变和斜坡动力响应综合监测,以及对地震动力与地质灾害相关性的多方位综合调查和研究(模拟试验、常规和非常规岩土工程特性试验等),分析龙门山及邻近构造带未来新构造运动趋势及其灾害效应,开展汶川地震地质灾害关键科学问题的深入研究,力图在典型地震地质灾害的成灾机理和评价技术方面有所突破。
“十二五”期间:开展汶川地震灾区以滑坡、崩塌、泥石流灾害为主要内容的1:5万地质灾害调查与测绘;进行龙门山及邻近构造带地震工程地质调查评价;开展龙门山及邻近构造带活动断裂调查;开展区域地壳稳定性综合评价;在龙门山及其邻近地区开展综合地球物理探测,取得地震活动带较详细的岩石圈结构模型;在青藏高原东缘开展系统的高精度GPS测量与监测,重点开展对龙门山断裂带、鲜水河—安宁河—小江断裂带及其附近区域的监测。
开展川西地区地震地质及区域构造稳定性研究,研究更加符合斜坡地震动响应客观实际的地震动稳定性评价方法;通过大型振动台试验,揭示不同地震波下边坡的动力响应规律;通过开展汶川地震灾区地脉动测试及研究分析,提升对地震及余震有关的地质灾害问题更深层次的研究;在先期地震灾区地质灾害隐患巡排查工作的基础上,建立地震滑坡稳定性评价及失稳概率的定量评价模型,对地震滑坡危险程度进行分级,并对其危险性进行分区,形成地震滑坡灾害编图的一套技术方法体系。
“十三五”期间:地震灾区地质灾害调查和研究成果进行综合分析研究。
(七)西部复杂山体地质灾害成灾模式与风险评价
1.工作现状
西部地区复杂山体区已开展过不同程度的调查工作。其中包括基础性的1:20万区域地质图和1:20万水文地质图,及部分区域完成了1:5万地质填图。专业性的包括以省(区、市)为单元的1:50万以地质灾害为主的环境地质调查、1:10万山区丘陵县地质灾害调查。2005年起,部分地区开展了1:5万地质灾害调查。
但由于西部大型山体滑坡成因复杂,只依靠地表普查很难认清成灾模式,更难以掌握灾害的多米诺效应。如武隆鸡尾山滑坡,前期工作已将滑坡区圈定为危险区,但调查成果并没能对滑坡破坏机理与成灾模式作出正确的判断。武隆鸡尾山滑坡、宣汉天台乡滑坡、冯店垮梁子滑坡多起灾难性滑坡灾害的发生,表明在西部山区复杂斜坡地带,存在隐蔽性极高、突发性强、成因机理复杂、灾害隐患极大的特殊类型滑坡。这些滑坡成灾机理、致灾模式亟待研究。
2.工作目标
总体目标:以西部复杂山体为研究对象,依托已有调查成果,全面开展西部复杂山体成灾机理研究。开展地质灾害成灾模式调查、成灾条件与机理研究、致灾模式与机理研究、重大灾害防治对策研究。初步摸清西部地区地质灾害成因机制,建立西部复杂山体灾害识辨方法、完善灾害评价体系、提出区划防治建议,为主动防灾服务。
“十二五”期间:完成乌江流域、清江流域、三峡库区等西南山区复杂山体滑坡和黄土地区灌溉型滑坡、秦巴山区浅表层滑坡的形成机理和成灾模式研究;完成西部复杂山体特大地震滑坡的致灾范围预测研究;完成复杂山体滑坡的快速加固技术及复杂山体滑坡的遥感早期识别技术研究;建立融合重大地质灾害识别、稳定性判定、致灾模式判别、监测防治措施的防灾体系。
“十三五”期间:深入研究复杂山体地质灾害链的形成机理和演化过程,完善融合重大地质灾害识别、稳定性判定、致灾模式判别、监测防治措施的防灾体系,总结提升各种地质灾害调查、评价、监测和防治的技术,并促进相关技术方法的推广应用。
3.工作任务
“十二五”期间:在重大地质灾害易发的乌江流域、清江流域、三峡库区、西部山区、秦巴山区和黄土地区选择有代表性的滑坡,通过调查、勘察及试验,深入研究这些地区滑坡形成原因、运动机理及致灾模式,完善灾害发育特征认识,构建主动防灾体系。
通过对西部复杂山体地震滑坡三维物理模拟、多种三维数值模拟、变形破坏过程分析以及滑坡动力学分析等分析手段,对滑坡的影响范围进行深入探讨。开展微型组合抗滑桩、土工合成挡墙、快速注浆、预制格构等地质灾害快速加固技术的研究,并开展快速加固技术应用示范及加固效果监测分析,开展遥感早期识别技术研究等关键问题研究,提升主动防灾能力。
“十三五”期间:开展西部复杂山体地质灾害成灾模式与风险评价综合研究。
(八)典型地质灾害监测预警与示范推广
1.工作现状
完成了长江三峡库区滑坡等地质灾害GPS控制监测网建设。初步建立四川雅安、重庆巫山、云南哀牢山等8个代表不同突发性地质灾害类型的监测预警示范区。解决了地质灾害实时监测、实时传输、预警产品快速发布等多项关键技术。2003年开始,开展了全国和省级尺度的汛期地质灾害气象预警,取得了良好的效果。研制了三维激光微位移监测系统、滑坡微震自动连续观测系统、滑坡监测多媒体网络远程监控技术、FBG滑坡监测解调设备、地质灾害光导监测仪等多项技术与设备。研制了适用于地质灾害群测群防的系列仪器,已推广20万套,并在“5·12”抗震救灾工作中发挥了重要作用。
健全监测预警网络,形成覆盖我国主要灾害类型的国家级地质灾害监测工程示范区,进一步开发实用监测预警设备是下一步工作的重点。
2.工作目标
建立30个国家级地质灾害监测工程示范区,对地质灾害高风险区的重点区域实施专业监控,不断提高预测预警水平,推动区域地质灾害监测工作,为全国地质灾害综合预警提供依据。研制系列监测预警仪器和防治技术设备,不断完善突发性地质灾害监测数据采集、传输与分析管理技术,为突发性地质灾害监测和减灾防灾提供技术支持。
“十二五”期间:完成11个典型地质灾害监测预警示范区建设,建立区内有效的地质灾害预警系统。
“十三五”期间:全面完成地质灾害高易发区30个典型区域国家级专业监测工程示范区建设。
3.工作任务
以地质构造背景、气候条件和地质灾害发育规律为基础,选择典型地质灾害区域建设地质灾害监测预警示范区,研究探索不同地质灾害区地质灾害监测预警技术工作方法,为减灾防灾提供技术支持。根据1:5万地质灾害调查成果,优先考虑有代表性、工作基础较好、示范作用明显的区域开展工作。协助地方开展全国山地丘陵区县(市)地质灾害群测群防早期预警能力建设。
在地质灾害高易发区30个典型区域建立国家级专业监测工程示范区,完善监测内容、建立监测网络。开展全国山地丘陵区县(市)地质灾害群测群防早期预警能力建设,为已经确认的5万余处群测群防地质灾害隐患点,安装自动监测报警仪器。
开展简易监测仪器研发与示范、实时监测新技术研究与示范、监测技术平台建设。
“十二五”期间:在突发性地质灾害高易发区,根据不同地质灾害类型,选择建设完善燕山山地滑坡泥石流监测预警区、辽东南中低山泥石流区等11个典型区域地质灾害监测预警区。
建设区域地质灾害群测群防网络,对2万处隐患点进行简易仪器自动观测。
“十三五”期间:继续加强突发性地质灾害高易发区专业监测示范工程建设,完成长白山崩塌滑坡、天山谷地降雨—融雪型滑坡泥石流等19个区域突发性地质灾害监测预警区建设。
建设区域地质灾害群测群防网络,对1万处隐患点进行简易仪器自动观测。
(九)全国地面沉降调查与监测
1.工作现状
初步完成长江三角洲地区、华北平原、汾渭盆地等重点地区地面沉降和地裂缝调查10万平方千米,基本查明该地区发生的地质背景和地面沉降分布规律,基本建立以基岩标、分层标和GPS、水准测量为主的区域地面沉降立体监测网络,在上海、江苏和北京地面监测站,实现了监测数据自动采集、传输,初步建成地面沉降地理信息系统,为制定科学的地面沉降防治措施打下了良好的基础。
存在问题主要包括:地面沉降发展的趋势加剧,防治任务艰巨;地面沉降调查工作程度不平衡;监测网络需要进一步完善,监测技术有待进一步提升;重大工程面临地面沉降的威胁。
2.工作目标
建成平面以GPS监测和水准测量为主,垂向以分层标、基岩标及地下水监测为主,以及空间遥感观测技术(In SAR)监测为主的地面沉降立体综合监测体系,实现对地面沉降的有效监控。
“十二五”期间:完成我国所有地面沉降区、城市及重要交通干线地面沉降调查。在主要地面沉降区建成平面以GPS监测和水准测量为主,垂向以分层标、基岩标及地下水监测为主,以及空间遥感观测技术(In SAR)监测为主的地面沉降立体综合监测体系,基本实现对主要沉降区地面沉降的有效监控。
“十三五”期间:在所有地面沉降区建成平面以GPS监测和水准测量为主,垂向以分层标、基岩标及地下水监测为主,以及空间遥感观测技术(In SAR)监测为主的地面沉降综合监测体系,实现对所有地面沉降区地面沉降的有效监控。完成所有地面沉降区地面沉降风险管理与区划,为制定科学的地面沉降防治措施打下坚实的基础。
3.工作任务
利用In SAR等现代化监测技术,完善长江三角洲、华北平原、汾渭盆地地面沉降监测网,并继续进行监测;开展珠江三角洲、东北平原等地面沉降工作空白区地面沉降调查,建立地面沉降监测网络;和铁道部、交通部等部门密切合作开展重大工程区地面沉降调查与监测;结合区域地质环境背景和区域经济发展布局,开展地面沉降灾害风险评估,制定分区地面沉降控制目标和管理措施。
“十二五”期间:开展安徽阜阳、松嫩平原、珠江三角洲、江汉—洞庭湖平原等一般地面沉降区1:10万的地面沉降调查5000平方千米;继续对长三角、华北平原、汾渭盆地等主要沉降区进行地面沉降监测。
长江三角洲地区:开展江浙两省沿海平原等以往工作较薄弱地区包括淮安、扬州、泰州、南通、绍兴、台州地区的1:25万地面沉降灾害调查,重点城市1:5万地面沉降灾害调查。
华北平原:对前期工作薄弱的地区开展1:5万地面沉降调查工作;基本覆盖以开采地下水为主要水源的平原地区。
汾渭盆地:开展汾渭盆地陕西咸阳、渭南和榆次、临汾及运城等重点城市的地面沉降地裂缝灾害调查。
继续对长三角、华北平原、汾渭盆地等主要沉降区进行地面沉降监测与风险管理。
“十三五”期间:重要地面沉降区监测。
长江三角洲地区:完善地面沉降监测网络,每年定期开展In SAR地面沉降监测。
华北平原:完善地面沉降监测网络,每年定期开展In SAR地面沉降监测。
汾渭盆地:完善地面沉降地裂缝监测网络,每年定期开展山西地面沉降监测。每年定期开展In SAR地面沉降监测。
一般沉降区地面沉降监测。即安徽阜阳、松嫩平原、珠江三角洲、江汉—洞庭湖平原等一般地面沉降区地面沉降In SAR监测。
重大工程地面沉降调查与监测。主要开展涉及华北平原、汾渭盆地和长三角地区三个地面沉降防治规划区的主要高速铁路建设项目的地面沉降灾害防治工作,包括:全线位于汾渭盆地的大同—西安高速铁路、跨华北平原和长三角地区的京沪高速铁路。
⑸ 乌江流域地形特征并分析成因
地形以高原山地和丘陵为主,地势起伏大,总体西南高东北低。
成因,云贵高原,喀斯特地貌,流水侵蚀作用强烈。
⑹ 乌江流域经过哪些县份
乌江流域横贯贵州西部、中部和东北部及重庆东部。其范围包括贵州、云南、四内川、湖北四省12个地区容。其中有贵州的威宁、赫章、水城、纳雍、六枝、安顺、普定、平坝、织金、清镇、毕节、大方、黔西、南明、云岩、乌当、花溪、白云、修文、金沙、息烽、遵义县、开阳、瓮安、湄潭、余庆、风冈、石阡、思南、印江、德江、沿河、龙里、贵定、福泉、施秉、镇远、务川、正安、道真、绥阳、松桃。重庆的酉阳、石柱、彭水、武陵、涪陵、黔江、南川。湖北省的咸丰、利川、恩施以及云南省镇雄等共55个县市辖区。
⑺ 描述乌江流域的地形特征并分析成因
乌江干流全长1037公里,流域面积8.79万平方公里。发源地是贵州省威宁县香炉山花鱼洞,六冲河汇口内以上为容上游,汇口至思南为中游,思南以下为下游,在重庆市涪陵注人长江。较大支流有六冲河、猫跳河、清水江、湘江、洪渡河、芙蓉江、唐岩河等15条,天然落差2 123.5米,年均流量1 650立方米/秒。流域内年均径流深600毫米,但年内分配不均,汛期5~9月占全年径流量的80%。
乌江处于我国第二阶梯和第三阶梯交界处,水系呈羽状分布,流域地势西南高,东北低,由于地势高差大,切割强,自然景观垂直变化明显。以流急、滩多、谷狭而闻名于世,号称“天险”。
⑻ 乌江流域的地形特征极其原因
乌江,长江上游支流,长江上游右岸支流。又称黔江。发源于贵州省境威宁县香炉山花鱼洞,流经黔北及渝东南,在重庆市涪陵区注入长江,干流全长1037公里,流域面积8.792万平方公里。六冲河汇口以上为上游,汇口至思南为中游,思南以下为下游。
乌江水系呈羽状分布,流域地势西南高,东北低,流域内喀斯特发育。地形以高原、山原、中山及低山丘陵为主。由于地势高差大,切割强,自然景观垂直变化明显。以流急、滩多、谷狭而闻名于世,号称“天险”。
乌江水能蕴藏丰富,全流域水能蕴藏量1042.59万千瓦,乌江渡电站坝是中国喀斯特地区已建成的最大高坝。乌江流域为贵州主要工农业分布区,居住有汉、彝、苗、布依、回等民族。盛产粮、油、烤烟、茶、生漆、油桐、乌柏及天麻、杜仲、党参等药材,煤、硅石、铁、磷、铝、锰、铅、锌、锑等矿产丰富。乌江自古以来为川黔航运要道,1989年在乌江天险江界河渡口兴建的特大跨度桥梁,是贵州省桥梁中最壮观的一座。
乌江 - 支流
乌江较大支流有六冲河、猫跳河、湘江、清水江、洪渡河、芙蓉江、濯河、郁江、大溪河等,还有数百条溪沟涧川汇入,呈羽状水系。流域属亚热带季风气候区,气候温和,雨量充沛,年平均气温13~18℃。
乌江 - 乌江源头
乌江有南北两源,南源三岔河,北源六冲河,习惯上以南源三岔河为乌江干流。
南源
三岔河发源于贵州西部高原乌蒙山脉东麓,威宁县盐仓镇营硐村石缸洞,海拔2260米。河源从石缸洞里涌出一股清泉,形成一条溪流。
石缸洞距威宁县城约15公里,洞子呈不规则形状,面积约三四平方米,潭深米许,泉水清冽透底。约小碗粗的一股泉水汩汩流出石缸洞后,涌流500米,没于布满鹅卵石的河床,滴水不见。该洞有一口千万年不断的泉眼,涌出的泉水形成小溪,一路集合大小支流,汇成乌江。
北源
乌江北源位于赫章县辅处乡。
⑼ 乌江流域地形特征
乌江干流全长1037公里,流域面积8.79万平方公里。六冲河汇口以上为上游,内汇口至容思南为中游,思南以下为下游。较大支流有六冲河、猫跳河、清水江、湘江、洪渡河、芙蓉江、唐岩河等15条,天然落差2 123.5米,年均流量1 650立方米/秒。流域内年均径流深600毫米,但年内分配不均,汛期5~9月占全年径流量的80%。乌江水系呈羽状分布,流域地势西南高,东北低,由于地势高差大,切割强,自然景观垂直变化明显。以流急、滩多、谷狭而闻名于世,号称“天险”。
⑽ 国土资源部新构造运动与地质灾害重点实验室
(一)实验室简介
国土资源部新构造运动与地质灾害重点实验室于年9月30日得到国土资源部正式批复成立,其前身为中国地质科学院地壳变形与地质灾害重点实验室。重点实验室主要从事5个领域的科学研究:新构造运动及其引发的地质灾害与地质环境过程研究,地应力监测技术与地质灾害预测评价技术方法研究,中国大陆主要活动构造带地应力测量及其构造应力场研究,国家重大工程、重大城市和重要经济区带的地壳稳定性和地质环境安全研究。
图46 退化与废弃地遥感信息提取和监控信息系统开发及其应用研究技术流程
(二)2013年度重要科研成果
1. “汶川地震地质灾害调查评价”入选地质学会十大地质科技进展
入选地质学会十大地质科技进展的“汶川地震地质灾害调查评价”项目是由中国地质科学院地质力学研究所、中国地质环境监测院等单位共同承担完成的。殷跃平、张永双研究团队紧密围绕汶川地震地质灾害等重大科学问题和关键技术,在理论、方法和技术方面取得了多项创新性成果,特别是集成创新地面测绘、综合物探和InSAR技术,修正了强震区逆冲型工程活动断裂和地震破裂带安全避让公式;首次开展了斜坡地震动特征监测和地脉动特征测试,获得了山体斜坡地震动放大规律,提出了竖向地震力对峡谷区山体稳定性的放大效应;建立了基于天空地一体化应急调查技术的汶川地震灾后快速编图与评估方法,以及地震滑坡-碎屑流的成灾机理和震后高位泥石流早期识别的特征指标,为制定行业标准提供了理论支撑。项目成果集成出版了《汶川地震工程地质与地质灾害》一书,在“5·12”汶川地震发生5周年到来之际,由科学出版社出版发行。本书对汶川8.0级地震区的地震工程地质和地质灾害进行了系统研究,涉及汶川地震区域地质构造、地震工程地质、斜坡地震动监测与试验方法、地震地质灾害等关键科学问题(图47)。
图47 《汶川地震工程地质与地质灾害》
2.《泛亚铁路云南大理至瑞丽沿线基础地质与主要工程地质问题》出版
“泛亚铁路云南大理至瑞丽沿线地质构造综合研究”项目组及时对计划项目成果进行了综合集成,编著完成了《泛亚铁路云南大理至瑞丽沿线基础地质与主要工程地质问题》专著并出版发行(图48)。
被誉为“钢铁丝绸之路”的云南大理-瑞丽铁路(简称“大瑞铁路”)全长约336km,是连接中国大陆与东南亚各国的泛亚铁路网中的咽喉工程。但由于铁路需要穿越水文网密度大,且山高谷深的横断山脉南段,因此,桥隧工程将占整个线路的70%左右,尤其是隧道工程的最大长度与埋深都大大超出了已有铁路工程,建设难度极大,亟须扎实可靠的高精度基础地质与工程地质资料支撑,并为铁路选线和设计提供科学决策依据。
图48 《泛亚铁路云南大理至瑞丽沿线基础地质与主要工程地质问题》
为主动配合和服务于国家重大工程建设,尽快打通我国西南地区中缅国际铁路通道。在中国地质调查局基础地质部的精心部署下,由地质力学研究所和成都地质调查中心共同组织实施的“云南大理至瑞丽基础地质综合调查”计划项目,及时完成了沿线22个图幅的1:5万基础地质调查工作和铁路优选线两侧各2k m廊带区的1:2.5万基础地质和工程综合调查任务。为更好地将基础地质工作服务于国家重大工程应用,专著综合了铁路沿线最新的1:2.5万综合地质调查资料,以及新构造和活动构造研究等成果,全面介绍了滇西横断山南段大理至瑞丽地区,包括:岩石地层与地质构造、主要岩土体与特殊岩性体、水文地质、地热活动、新构造运动与活动断层和地震活动等工程地质条件,并在此基础上,进一步梳理总结了铁路沿线各主要工程地段的工程地质环境及特征,全面剖析了在施工建设中主要面临的九大重要工程地质问题,包括:外动力地质灾害、岩溶作用导致的工程地质问题、特殊岩性体(主要包括二叠纪“破灰岩”和上新世“软岩”)的工程地质问题、顺层问题、活动断裂与强震活动、高温热害、岩爆与软岩大变形、隧道涌水突泥和弃渣环境问题等,确定了不同类型工程地质问题最易发生的地段,并提出了防范建议。另外,重点分析总结了影响该区地壳稳定性的主要区域活动断裂带的晚第四纪活动及其未来大地震危险性,并结合历史强震资料重新确定了铁路沿线的大于等于Ⅸ度的高地震烈度区。最后针对高黎贡山越岭段超长超深铁路隧道的围岩稳定性,结合岩石力学测试分析资料和原地地应力测量结果,分别开展了二维和三维数值模拟研究,对隧道工程的围岩稳定性进行了综合评价,并圈定了隧道的强岩爆区和软岩大变形区。
专著资料翔实,将基础地质工作成果与工程应用紧密结合,因此,对进一步深入认识滇西横断山地区的工程地质环境具有重要参考价值,对于相邻地区的重大工程建设也可起到重要借鉴作用,并且相关研究成果可供从事区域地质、工程地质、活断层与地震地质、地质灾害、数值模拟和岩土工程等多方面的科研技术人员参考。
3.重大工程扰动区特大滑坡灾害防治技术研究取得初步进展
2013年是“十二五”国家科技支撑课题“重大工程扰动区特大滑坡灾害防治技术研究与示范”执行的第二个年度,也是课题攻关关键的年度,在关键科技问题、技术方法和示范基地研究取得阶段性成果,主要包括下列5方面:跟踪对比分析国内外工程滑坡防治进展,初步建立灾难性工程滑坡数据库格架;初步探索研究工程滑坡防治3个关键科技问题;工程滑坡机理实验及模拟研究有所进展;工程滑坡快速防治关键技术方法研究和示范基地建设初见成效,相关研究成果以学术论文的形式在“地质通报”出版专辑(图49),相关的发明及技术专利正在申请受理过程中。
图49 《工程滑坡防治成果专辑》
4. “新型压磁应力测量与监测系统研制”取得重要成果
吴满路研究员负责的“原地应力测试技术方法试验研究”项目自2008年实施以来,一直致力于试验应用研究,在地应力测量及监测台站建设、监测仪器研制、专利及人才培养等方面取得了一系列成果。
压磁法地应力测量及监测一直是地质力学所的特色和优势科研方向。“原地应力测试技术方法试验研究”团队以压磁应力测量与监测技术方法为主要研究对象,完成了对压磁法地应力测量和监测仪器结构的全面改造升级,同时,研发的三分量压磁应力解除系统在孔深213m处成功地获得了有效应力数据,是同类技术方法中达到的世界最深的地应力测量;研制的新型四分量压磁应力监测系统已在青藏高原东南缘、龙门山断裂带、河北紫荆关等地应力测量及监测实验基地,首都圈、郯庐断裂带、东南沿海海岸带等地壳稳定性评价及活动断裂监测中得到了大量应用,在相关地区建立的地应力综合监测站成功捕捉项目执行期间强烈地震前后应力变化的信息,丰富了应力实测数据和大量应力监测数据。
新型压磁应力测量与监测系统获得的数据成果已经或即将公开发表。项目研发的“无线深井地应力绝对测量压磁传感器”和“深井地应力监测压磁传感器定向及自控加载安装系统”获得了2项国家实用新型专利授权,为中国地壳探测计划提供了必要的关键技术储备。
5.获芦山地震发震构造与次生地质灾害致灾特征研究初步成果
2013年4月20日,四川省芦山县发生了里氏7.0级地震。根据国土资源部统一部署和地质力学研究所的安排,重点实验室完成了地震地质和地质灾害应急排查,并将初步研究认识发表在《地质学报》(英文版)上。
初步认识之一的Seismogenic Structure of the April 20,2013,Lushan Ms7 Earthquake in Sichuan(《四川芦山2013年4月20日Ms7.0地震发震构造初步研究》),通过高分辨率遥感图像解译、主余震分布、震源机制解释等综合分析认为,芦山地震震中位于芦山县太平镇和双石镇之间,震源深度13~14km,震中最大烈度达IX级。野外调查发现,尽管震中区房屋建筑损坏较严重,但这次地震没有产生明显的地表破裂构造,仅见少量的地裂缝和喷砂冒水现象。芦山地震是龙门山断裂带西南段一次独立的破裂事件,属于逆冲型地震。科研人员从新构造和活动构造角度,通过将精确定位的主震和余震震中投影在地形图、遥感影像图上,得出了芦山地震余震的分布特征,阐述了双石-大川断裂特征型地震特点,推断芦山地震与龙门山构造带底部滑脱带(13~19km)断坡构造活动有关。同时对未来强震发展趋势进行了分析:虽然这次地震使这条断裂的应变能得到释放,但地应力监测结果指示该断裂带的应力释放尚不完全,未来地震发生的可能性尚值得进一步关注。
初步认识之二的Geohazards Inced by the Lushan Ms7.0 Earthquake in Sichuan Province,Southwest China:Typical Examples,Types and Distributional Characteristics(《四川芦山Ms7.0级地震地质灾害基本特征》),基于遥感解译和野外调查结果,简要论述了地震诱发的崩塌、滑坡、碎屑流和砂土液化等次生地质灾害的发育特征及其危害,地震地质灾害主要受控于强震触发作用、陡峻的地形地貌、地形放大效应以及软弱的岩性和强烈的风化卸荷作用;研究表明,地质灾害的发育分布规律主要体现在震中效应和地貌效应明显、活动断裂上盘效应不显著,断裂端点效应较明显,与岩性和岩体结构的关系较密切。芦山地震诱发的地质灾害以及地震对山体造成的损伤存在隐蔽性,在灾后重建中应引起重视。
6.乌江流域重大地质灾害研究新进展
“重庆地区地质灾害成灾机理与防治研究”项目负责人为李滨副研究员,参加单位有长安大学、重庆市地质矿产勘查开发局107地质队、中国地质环境监测院、重庆市地质环境监测总站。项目完成了乌江流域复杂地貌环境下三维激光扫描技术和机载激光雷达扫描技术在地质灾害调查与监测中的应用,通过覆盖研究区域DEM、SAR等多种数据,结合InSAR和GNSS监测结果,形成一套适合于乌江流域复杂地质环境下大范围识别地质灾害形变的理论方法。此外,在特大型地质灾害特征识别和地质模型分析基础上,项目组结合室内力学试验,通过数学模拟和物理模型试验,提出了岩溶、采矿等因素影响下,特大型层状滑坡的变形机理和失稳模式,并提出了稳定性评价方法和灾害发生后崩滑体的运动特征分析模型,该套分析方法及结果可在西南岩溶地区进行推广应用(图50,图51)。
图50 InSAR技术在区域地质灾害调查中的应用
图51 鸡尾山滑坡累计形变图(184天)
7.首都圈地区关键构造部位地应力监测新成果
(1)初步揭示了邢台—唐山主要发震构造带北端迁安及其外围地区现今构造活动性及其灾害效应,认为华北平原地质构造以块断结构为主要特征,构造体系走向多为NNE向,以压扭性断裂为主,现今活动性显著,5级以上地震活动通常沿NNE、NE和NWW向断裂带分布,特别是不同方向断裂带的交会部位(图52)。
(2)探讨分析了唐山—滦县—昌黎一带现今地应力环境变化特征及其地震地质研究意义。河北昌黎地应力实时监测台站地应力监测结果表明,日本9.0级大地震所诱发的华北地区产生同震位移,区域构造作用表现为近EW向拉张作用,最大水平主压应力为近南北方向。而2012年6月6日以来,华北地区表现为近EW向主要为构造挤压作用,最大水平主压应力为近EW方向,说明区域构造应力作用恢复到日本9.0级大地震之前华北地区最大水平主应力方向,并且在区域构造应力作用方向转换的过程中会导致地震的发生(如2012年5月28日和29日及6月18日在唐山及其周围地区还分别发生了4.8级、3.2级和4.0级地震)(图53)。
图52 迁安市陈官营村地应力测量与监测钻孔区域构造地质图
图53 河北昌黎地应力实时监测台站监测结果