当前位置:首页 » 地质工程 » 地质灾害监测设备标志

地质灾害监测设备标志

发布时间: 2021-02-21 22:24:53

『壹』 防震减灾术语,图形符号与标志有哪些

3.1 地震
3.1.1 地震 earthquake
大地震动。包括天然地震(构造地震、火山地震)、诱发地震(矿山冒顶、水库蓄水等引发的地震)和人工地震(爆破、核爆炸、物体坠落等产生的地震)。一般指天然地震中的构造地震。
3.1.2 震源 seismic source
产生地震的源。
3.1.3 震级 magnitude
对地震大小的相对量度。(GB 17740-1999中的2.1)
3.1.4 地震烈度 seismic intensity
地震引起的地面震动及其影响的强弱程度。 (GB/T17742-1999中的2.1)
3.1.5 地震波 seismic wave
地震时从震源发出、向四周传播的波。
3.1.6 震中 epicentre
震源在地面上的投影。
3.1.7 极震区 meizoseismal area
一次地震破坏或影响最重的区域。
3.1.8 宏观震中 macro-epicentre
极震区的几何中心。
3.1.9 震源距 hypocentral distance
地震震源至某一指定点的距离。
3.1.10 震中距 epicentral distance
地震震中至某一指定点的地面距离。(GB 17740-1999中的2.6)
3.1.11 (宏观)震中烈度 (macro) epicentral intensity
极震区的地震烈度。
3.1.12 无感地震 feltless earthquake
震中附近的人不能感觉到的地震。
注:一般震级在3级以下,震中烈度在Ⅲ度以下。
3.1.13 有感地震 felt earthquake
震中附近的人能够感觉到的地震。
注:一般震级在3级以上,震中烈度在Ⅲ度以上。
3.1.14 极微震 ultra-microearthquake
震级<1级的地震。
3.1.15 微震 microearthquake
1级≤震级<3级的地震。
3.1.16 小[地]震 small earthquake
3级≤震级<5级的地震。
3.1.17 中[等]地震 moderate earthquake
5级≤震级<7级的地震。
3.1.18 大[地]震 large earthquake
震级≥7级的地震。
3.1.19 特大地震 great earthquake
8级和8级以上的大地震。
3.1.20 破坏性地震 destructive earthquake
造成人员伤亡和经济损失的地震。(《中华人民共和国防震减灾法》中第二十六条)
3.1.21 严重破坏性地震 severely destructive earthquake
造成严重的人员伤亡和财产损失,使灾区丧失或部分丧失自我恢复能力,需要国家采取相应行动的地震。(《中华人民共和国防震减灾法》中第三十条)
3.1.22 近震 near earthquake
震中距在1000km~1400km以下的地震。
3.1.23 远震 teleseism
震中距在1000km~1400km以上的地震。
3.1.24 地方震 local earthquake
震中距在100km以内的近震。
3.1.25 地震活动性 seismicity
一定时间、空间范围内发生的地震在强度、频度、时间和空间等方面的分布规律和特征。
3.2 地震监测预报
3.2.1 地震前兆 earthquake precursor
地震前出现的与该地震孕育和发生相关联的现象。
3.2.2 地震观测 earthquake observation
对地震或地震前兆进行观察与测量。
3.2.3 地震监测` earthquake monitoring
对地震发生及与地震发生有关的现象进行监视与观测。
3.2.4 地震预测 earthquake prediction
对未来地震的发生时间、地点和震级进行估计和推测。
3.2.5 临震预测 imminent earthquake prediction
对10日内将要发生地震的时间、地点、震级的预测。
3.2.6 地震重点监视防御区 key area for earthquake surveillance and
protection
未来一定时间内,可能发生破坏性地震或可能受破坏性地震影响造成严重地震灾害损失,需要加强防震减灾工作的区域。
3.2.7 地震重点危险区 critical earthquake risk area
未来一年或稍长时间内可能发生5级以上地震的区域。
3.2.8 震情 earthquake situation
有关地震活动和地震影响的情况。
3.2.9 震情会商 earthquake situation consultation
对震情进行分析与研究的专门会议。
3.2.10 地震预报 earthquake forecast
向社会公告可能发生地震的时域、地域、震级范围等信息的行为。
3.2.11 地震长期预报 long-term earthquake forecast
对未来10年内可能发生破坏性地震的地域的预报。
3.2.12 地震中期预报 intermediate-term earthquake forecast
对未来一二年内可能发生破坏性地震的地域和强度的预报。
3.2.13 地震短期预报 short-term earthquake forecast
对3个月内将要发生地震的时间、地点、震级的预报。
3.2.14 临震预报 imminent earthquake forecast
对10日内将要发生地震的时间、地点、震级的预报。
3.2.15 震后地震趋势判定 evaluation of post-earthquake trend
对社会产生影响的地震发生后,对地震影响地区近期内地震活动形势发展的分析结果。
3.2.16 地震速报 rapid earthquake information report
对已发生地震时间、地点、震级等的快速测报。
3.2.17 地震台[站] seismic station
地震观测点或开展地震观测和地震科学研究的基层机构。
3.2.18 地震台阵 seismic array
为提高地震信号的信噪比,由电缆线或无线通信线路将若干分布在地面上的地震仪器与同一记录中心连接起来、采用专门技术进行信号处理的地震观测系统。
3.2.19 地震遥测台网 telemetered seismic network
由4个以上分散布局的地震台和一个通过电信遥测技术收集并处理各台记录信号的管理中心组成的地震观测系统。
3.2.20 地震监测台网 earthquake monitoring network
由若干地震台组成的地震观测系统。
3.2.21 地震监测设施 facility for earthquake monitoring
开展地震监测的设备及有关设施的统称。
3.2.22 地震观测环境 environmental for seismicity observation
保障地震监测设施不受干扰、能够正常发挥工作效能的地震台、地震观测场地的周围环境。
3.2.23 流动观测 mobile observation
某研究任务或震情工作需要开展的地震观测。
3.2.24 强震观测 strong motion observation
记录地震动和工程结构的地震反应的地震观测。
3.2.25 地震谣言 earthquake rumor
没有事实根据或缺乏科学依据的地震消息。
3.3 地震灾害预防
3.3.1 地震灾害 earthquake disaster
地震造成的人员伤亡、财产损失、环境和社会功能的破坏。
3.3.2 地震原生灾害 primary earthquake disaster
地震直接造成的灾害。
3.3.3 地震次生灾害 secondary disaster of earthquake
地震造成工程结构和自然环境破坏而引发的灾害。如火灾、爆炸、瘟疫、有毒有害物质污染以及水灾、泥石流和滑坡等对居民生产和生活区的破坏。
3.3.4 地震次生灾害源 source of secondary disaster of earthquake
产生地震次生灾害的设施和环境。如燃气管道、弹药库、化学药品库、水库、陡坡等。
3.3.5 地震对策 earthquake countermeasure
防御和减轻地震灾害的策略。
3.3.6 地震灾害预测 earthquake disaster prediction
对未来地震可能造成的灾害做出估计。
3.3.7 地震灾害预防 earthquake disaster prevention
避免和减轻地震灾害的防御性工作。
3.3.8 防震减灾 protection against and mitigation earthquake disasters
防御和减轻地震灾害。
3.3.9 重大建设工程 major construction project
对社会有重大价值或者有重大影响的工程。主要指地震发生后,一旦遭到破坏会造成重大社会影响和国民经济重大损失的建设工程。
3.3.10 地震基本烈度 basic intensity
一个地区在未来一定时期内、一定场地条件和超越概率水平下可能遭遇的地震烈度。例如,1990年颁布的《中国地震烈度区划图》定义地震基本烈度为:50年期限内,一般场地条件下,可能遭遇超越概率为10%的地震烈度。
3.3.11 地震[基本]烈度复核 checking of basic seismic intensity
采用最新基础资料和研究成果,对全国地震烈度区划图给出的某地地震基本烈度进行核实或修正。
3.3.12 地震区划 seismic zoning
以地震烈度、地震动参数为指标,将国土可能遭受地震影响的危险程度划分成若干区域。
3.3.13 抗震设防要求 requirement for fortification against earthquake
建设工程抗御地震破坏的准则和在一定风险水准下抗震设计采用的地震烈度或地震动参数。
3.3.14 地震危险性分析 seismic hazard analysis
用确定性方法或概率计算方法给出工程场地或某一区域在未来一定时间内可能遭遇的地震烈度或地震动参数值。
3.3.15 地震安全性评价 seismic safety evaluation
根据对建设工程场地和场地周围的地震活动与地震地质环境的分析,按照工程设防的风险水准,给出与工程抗震设防要求相应的地震烈度和地震动参数,以及场地的地震地质灾害预测结果。
3.3.16 抗震性能鉴定 evaluation of earthquake resistant capability
检查现有工程的设计、施工质量和现状,按规定的抗震设防要求,对其在地震作用下的安全性进行评估。(JGJ/T 97-1995中的2.1.5)
3.3.17 抗震加固措施 strengthening measure for earthquake resistance
为使现有建筑达到规定的抗震设防要求所采取的增强强度、提高延性、加强整体性和改善传力途径等措施。
3.3.18 抗震设计 earthquake resistant design
对地震区的工程结构进行的一种专业设计。一般包括概念设计、结构抗震计算和抗震构造措施三个方面。(JGJ/T 97-1995中的5.1.1)
3.3.19 抗震设计规范 earthquake resistant design code
建设工程达到抗震设防要求所遵循的原则和具体技术性规定。
3.4 地震应急
3.4.1 地震应急 earthquake emergency response
破坏性地震发生前所做的各种应急准备以及地震发生后采取的紧急应急行动。
3.4.2 地震应急预案 emergency response plan scenario for destructive earthquake
防止和减轻未来地震灾害的地震应急方案。
3.4.3 地震应急指挥机构 earthquake emergency response administration
指挥和组织地震应急工作的临时行政机构。
3.4.4 地震紧急应急措施 urgent measure for earthquake emergency
严重破坏性地震发生后在地震灾区采取的法律、法规规定的紧急行政措施。
3.4.5 地震避难场所 earthquake shelter
破坏性地震发生后设置居民临时生活区或疏散人员的安全场所。
3.5 震后救灾与重建
3.5.1 地震灾情 earthquake disaster affection
地震造成的人员伤亡、经济损失以及对社会的影响等情况。
3.5.2 地震灾区 earthquake stricken area
地震发生后,人民生命财产遭受损失、经济建设遭到破坏的地区。
3.5.3 地震烈度评定 rating of seismic intensity
据受地震影响地区的宏观和微观地震资料,确定该地区的地震烈度。
3.5.4 地震灾害评估 earthquake disaster assessment
对地震造成的灾害的程度做出评定与估计。
3.5.5 地震救助技术 rescue technology for earthquake hazard
用于震前应急防御和震后抢险救助的各种技术的总称。
3.5.6 震后救援 post-earthquake relief
对地震灾区采取的救援行动。
3.5.7 震后恢复与重建 post-earthquake recovery and reconstruction
使地震灾区的生产、生活和社会功能恢复基本正常以及对地震破坏的建(构)筑物、公共设施的修复与建设。
3.5.8 地震遗迹 earthquake remains
地震留下的痕迹。包括震毁、震损或地震影响区域内完好的建筑物、构筑物及地震活动产生的地质、地形、地貌变动的痕迹等。
3.5.9 地震遗址 earthquake relic
地震遗迹所在的地方。
3.5.10 地震保险 earthquake insurance
补偿地震灾害损失的一个保险险种。

『贰』 地质灾害的测试设备包括哪些

很多上图书馆吧孩纸

『叁』 地质灾害调查监测

完成抄全国1∶1万工程地质调查1127平方千米,1∶5万工程地质调查6530平方千米,1∶5万灾害地质勘查2200平方千米。各地成功避让各类地质灾害920起,安全转移37926人,避免财产损失5.5亿元。地质灾害造成的死亡和失踪人数同比减少12%,直接经济损失减少42.7%。

长江三角洲地区全面建成地面沉降监测与控制体系,初步建立地面沉降主动防治和科学管理的决策机制。重庆巫山、奉节建立了具国际先进水平的地质灾害实时监测预警示范站,为三峡工程库区等国家重大工程建设区地质灾害的监测预警提供了技术支撑。建立以专业的地质灾害监测和群测群防相结合的雅安地质灾害监测预警示范区和以区域地质灾害监测为基础的江西省地质灾害气象预警系统。西南山区城市、东南台风暴雨型、西北黄土地质灾害监测预警示范工作取得良好进展。“万村培训行动”成效明显,云南昭通成功预报盐津滑坡,避免2011人伤亡;四川达州成功预报青宁乡岩门村滑坡,避免2251人伤亡。

『肆』 监测地质灾害需要用到哪些仪器

地质灾害监测方法地质灾害的监测方法可用简易监测和仪器监测。重要危险回隐患点应答采用仪器监测。
地质灾害监测方法主要有卫星与遥感监测;地面、地下、水面、水下直接观测与仪器台网监测。矿山之星地质灾害监测仪器包含传感器、接收机等。

『伍』 什么是地质灾害监测预警

地质灾害来源于自然和人为地质作用对地质环境的灾难性破坏,主要包括崩塌内、滑坡、泥石流、地面塌陷和地裂容缝等。我国是世界上地质灾害频发的地区之一,近年来,关于滑坡、泥石流类灾害的研究是行业研究的重点。地质灾害的防治常常因为工作的分散,造成标准化程度较差,资源共享较难的问题。

『陆』 地质灾害监测有哪些注意事项

《地质灾害防治条例》主要确立了如下三项原则:
一是预防为主、避版让与治理相结合,全权面规划、突出重点的原则;
二是自然因素造成的地质灾害,由各级人民政府负责治理;人为因素引发的地质灾害,谁引发、谁治理的原则;
三是地质灾害防治的“统一管理,分工协作”的原则;国务院国土资源主管部门负责全国地质灾害防治的组织、协调、指导和监管工作。国务院其他有关部门按照各自职责负责有关的地质灾害防治工作。
随着地质灾害信息化建设,地质灾害监测及预警体系(威海晶合)也逐渐建立起来。国务院在关于加强地质灾害防治工作的决定中,提出“到2020年要全面建成地质灾害调查评价体系、监测预警体系、防治体系和应急体系”的地质灾害防治目标。

『柒』 为什么要进行地质灾害监测

地质灾害是当前世界最严重的自然灾害之一。每年因为地质灾害造成的人员伤亡和财产损失都是所有灾害中最严重的。进行地质灾害监测,预先进行人群疏散,是减少人员伤亡和财产损失的唯一有效方法。

『捌』 地质灾害应急设备有哪些

地灾应急装备比较先进,包括数码摄像机、数码照相机、电子罗盘、望远镜、手持GPS、激光测距仪等多种调查监测装备,在这些应急设备中,有两大类值得我们去关注。望远镜和激光测距仪。

『玖』 地质灾害监测的地质灾害监测概述

学科:自然灾害与防治
词目:地质灾害监测
英文:geological disaster monitoring
释文:运用各种技术和方法,测量、监视地质灾害活动以及各种诱发因素动态变化的工作。它是预测预报地质灾害的重要依据,因此是减灾防灾的重要内容。其中心环节是通过直接观察和仪器测量记录地质灾害发牛前各种前兆现象的变化过程和地质灾害发生后的活动过程。此外,地质灾害监测还包括:对影响地质灾害形成与发展的各种动力因素的观测。如降水、,气温等气象观测;水位、流量等陆地水文观测;潮位、海浪等海洋水文观测;地应力、地温、地形变、断层位移和地下水位、地下水水化学成分等地质、水文地质观测等。地质灾害监测方法主要有卫星与遥感监测;地面、地下、水面、水下直接观测与仪器台网监测。不同地质灾害的监测方法和监测的有效程度不同,总的看来,地质灾害监测水平差距还比较大,远不能满足防灾减灾要求。今后地质灾害监测的发展趋向是:全面提高监测能力,丰富监测内容,提高信息处理和综合分析能力;在加强专业监测的同时,在灾害多发区建立群测群防体系,大力推进社会化监测工作;把地质灾害监测同其他一些自然灾害以及环境监测有机地结合起来,形成广泛的综合监测网络。

『拾』 地质灾害监测方法技术现状与发展趋势

【摘要】20世纪末期以来,监测理论和技术方法有长足发展,常规技术方法趋于成熟,设备精度、设备性能已具较高水平,并开发了部分高精度(微米级位移识别率)、自计、遥测、自动传输的监测设施。未来,将充分综合运用光学、电学、信息学、计算机和通信等技术(诸如光纤技术—BOTDR、时域反射技术—TDR、激光扫描技术、核磁共振技术、NUMIS、GPS技术、合成孔径干涉雷达技术—InSAR及互联网通讯技术等),进一步开发经济适用、有效可行的地质灾害监测新技术,提高精度、准确性和及时性,最大程度地减小地质灾害造成的损失。

【关键词】地质灾害监测技术方法新技术优化集成

20世纪80年代以来,我国地质灾害时空分布特点呈现新的变化。随着人类工程活动越来越强,人为地质灾害日趋严重,规模、数量和分布范围呈增加趋势;人口密集、经济发达地区地质灾害造成的损失越来越大。崩塌、滑坡和泥石流等突发性地质灾害发生频度和造成的损失不断加大,地面沉降、海水入侵等缓慢性地质灾害的范围逐渐增加。据相关统计资料显示,1995~2002年,地质灾害共造成9000多人失踪或死亡,突发性地质灾害共造成直接经济损失524亿元,缓慢性地质灾害造成直接经济损失590亿元,间接经济损失2700亿元。地质灾害已经成为严重制约我国经济发展的重要因素之一。

为了摸清我国地质灾害的分布情况,我国系统地开展了地质灾害调查工作,先后出台了《地质灾害防治管理办法》和《地质灾害防治条例》,明确指出:防治地质灾害,实行“以人为本,防治结合,统筹规划,突出重点,分期实施,逐步到位”的方针。并于2003年4月启动了全国性地质气象预报。对已经查明的地质灾害体,特别是对生产建设、人民生命财产安全构成严重威胁的地质灾害,若能运用适当、有效、经济可行的监测措施,作出科学的监测预报,则可最大程度地减小灾害损失。

滑坡监测在不同条件、不同时期其作用不同,总的来说有以下几个方面:

(1)通过综合分析多种监测方法的监测数据,确定地质灾害稳定状态及发展趋势,及时作出预测,防止或减轻灾害损失。

(2)研究导致灾害体变形破坏的主导因素、作用机理,为防治工程设计提供依据。

(3)在防治工程施工过程中,监测、分析灾害体变形发展趋势及工程施工的扰动,保障施工安全。

(4)施工结束后,进行工程效果监测。

(5)综合利用长观监测资料,分析灾害体变形破坏机制和规律,检验在防治工程设计中所采用的理论模型及岩土体性质指标值的准确性,对已有的监测预报理论及模型进行验证改进,改善、提高监测预测预报技术方法。

1地质灾害监测技术综述

地质灾害监测的主要任务为监测地质灾害时空域演变信息(包括形变、地球物理场、化学场)、诱发因素等,最大程度获取连续的空间变形数据,应用于地质灾害的稳定性评价、预测预报和防治工程效果评估。

地质灾害监测是集地质灾害形成机理、监测仪器、时空技术和预测预报技术为一体的综合技术。地质灾害的形成机理是开展地质灾害监测工作的基础;监测仪器是开展工作的手段;更为重要的是只有充分利用时空技术,才能有效发挥地质监测的作用;预测预报是开展地质灾害监测的最终目的。

崩塌、滑坡、泥石流等突发性地质灾害,具有爆发周期短、威胁性及破坏性显著、成因复杂等特点,因此,当前地质灾害的监测技术方法的研究和应用多是围绕突发性地质灾害进行的。1.1监测方法

监测方法按监测参数的类型分为四大类:即变形、物理与化学场、地下水和诱发因素监测(见表1)。

表1主要地质灾害监测方法一览表

1.1.1 变形监测

主要包括以测量位移形变信息为主的监测方法,如地表相对位移监测、地表绝对位移监测(大地测量、GPS测量等)、深部位移监测。该类技术目前较为成熟,精度较高,常作为常规监测技术用于地质灾害监测。由于获得的是灾害体位移形变的直观信息,特别是位移形变信息,往往成为预测预报的主要依据之一。

1.1.2物理与化学场监测

监测灾害体物理场、化学场等场变化信息的监测技术方法主要有应力监测、地声监测、放射性元素(氡气、汞气)测量、地球化学方法以及地脉动测量等。目前多用于监测滑坡等地质灾害体所含放射性元素(铀、镭)衰变产物(如氡气)浓度、化学元素及其物理场的变化。地质灾害体的物理、化学场发生变化,往往同灾害体的变形破坏联系密切,相对于位移变形,具有超前性。

1.1.3地下水监测

地下水监测主要是以监测地质灾害地下水活动、富含特征、水质特征为主的监测方法。如地下水位(或地下水压力)监测、孔隙水压力监测和地下水水质监测等。大部分地质灾害的形成、发展均与灾害体内部或周围的地下水活动关系密切,同时在灾害生成的过程中,地下水的本身特征也相应发生变化。

1.1.4诱发因素监测

诱发因素类主要包括以监测地质灾害诱发因素为主的监测技术方法,如气象监测、地下水动态监测、地震监测、人类工程活动等。降水、地下水活动是地质灾害的主要诱发因素;降雨量的大小、时空分布特征是评价区域性地质灾害(特别是崩、滑、流三大地质灾害的判别)的主要判别指标之一;人类工程活动是现代地质灾害的主要诱发因素之一,因此地质灾害诱发因素监测是地质灾害监测技术的重要组成部分。

1.2监测仪器

1.2.1按从监测仪器同灾害体的相对空间关系分为接触类和非接触类

(1)接触类:是指必须安装于灾害体现场或进行现场施测的监测仪器系列。如滑坡地表或深部位移监测、物理和化学场监测等。该类仪器所获得的信息多为灾害体细部信息,信息量丰富。

(2)非接触类:是指于现场安装简易标志或直接于灾害体外围施测的监测仪器系列。该类监测方法多以获得灾害体地表的绝对变形信息为主,易采用网式施测;特别是突发性地质灾害的临灾前后,具有安全、快捷等特点。如激光微位移监测、测量机器人、遥感雷达监测等。

1.2.2按监测组织方式分为简易监测、仪表监测、控制网监测、自动遥测

(1)简易监测:采用简易的量测工具(皮尺、钢尺、卡尺)对灾害体地表的裂缝等部位进行监测。

(2)仪表监测:采用机测或电测仪表(安装、埋设传感器)对滑坡进行地表及深部的位移、应力、地声、水位、水压、含水量等信息监测。

(3)控制网监测:在滑坡变形破坏区及周边稳定地带,布设大地测量或GPS卫星定位测量控制点网,进行滑坡绝对位移三维监测。

(4)自动遥测:利用有线和无线传输技术,对仪表监测所得信息进行远距离遥控自动采集、传输,可实现全天候不间断监测。

2地质灾害监测方法技术现状

地质灾害监测技术是集多门技术学科为一体的综合技术应用,主要发展于20世纪末期。伴随着电子技术、计算机技术、信息技术和空间技术发展,国内外地质灾害调查与监测方法和相关理论得到长足发展,主要表现在:

(1)常规监测方法技术趋于成熟,设备精度、设备性能都具有很高水平。目前地质灾害的位移监测方法均可以进行毫米级监测,高精度位移监测方法可以识别0.1mm的位移变形。

(2)监测方法多样化、三维立体化。由于采用了多种有效方法结合对比校核以及从空中、地面到灾害体深部的立体化监测网络,使得综合判别能力加强,促进了地质灾害评价、预测能力的提高。

(3)其他领域的先进技术逐渐向地质灾害监测领域进行渗透。随着高新技术的发展和应用的深入,卫星遥感、航空遥感等空间技术的精度逐渐提高,一些高精度物探(如电法、核磁共振等技术)的发展,使得地质灾害的勘查技术与监测技术趋于融合,通过技术上的处理、提升,该类技术逐渐适用于区域性的地质灾害和单体灾害的监测工作。

“八五”以来,我国在地质灾害监测技术研究方面取得了丰硕的成果,并积累了丰富的经验,使我国的地质灾害监测预警水平得到很大程度的提高;但是还存在一定的局限性,主要表现在:

(1)地质灾害监测技术、仪器设施多种多样,应用重复性高,受适用程度、精度、设施集成化程度、自动化程度和造价等因素的制约,常造成设备资源浪费,效果不明显。

(2)所取得的研究成果多侧重于某一工程或某一应用角度,在地质灾害成灾机理、诱发因素研究的基础上,对各种监测技术方法优化集成的研究程度较低。

(3)监测仪器设施的研究开发、数据分析理论同相关地质灾害目标参数定性、定量关系的研究程度不足,造成监测数据的解释、分析出现较大的误差。

因此,要提高地质灾害预警技术水平,必须在地质灾害研究同开发监测技术方法相结合的基础上,进行地质灾害监测优化集成方案的研究。

3地质灾害监测技术方法发展趋势

3.1高精度、自动化、实时化的发展趋势

光学、电学、信息学及计算机技术和通信技术的发展,给地质灾害监测仪器的研究开发带来勃勃生机;能够监测的信息种类和监测手段将越来越丰富,同时某些监测方法的监测精度、采集信息的直观性和操作简便性有所提高;充分利用现代通讯技术提高远距离监测数据信息传输的速度、准确性、安全性和自动化程度;同时提高科技含量,降低成本,为地质灾害的经济型监测打下基础。

监测预测预报信息的公众化和政府化。随着互联网技术的发展普及,以及国家政府的地质灾害管理职能的加强,灾害信息将通过互联网进行实时发布,公众可通过互联网了解地质灾害信息,学习地质灾害的防灾减灾知识;各级政府职能部门可通过所发布信息,了解灾情的发展,及时做出决策。

3.2新技术方法的开发与应用

3.2.1调查与监测技术方法的融合

随着计算机的高速发展,地球物理勘探方法的数据采集、信号处理和资料处理能力大幅度提高,可以实现高分辨率、高采样技术的应用;地球物理技术将向二维、三维采集系统发展;通过加大测试频次,实现时间序列的地质灾害监测。

3.2.2 智能传感器的发展

集多种功能于一体、低造价的地质灾害监测智能传感技术的研究与开发,将逐渐改变传统的点线式空间布设模式;由于可以采用网式布设模式,且每个单元均可以采集多种信息,最终可以实现近似连续的三维地质灾害信息采集。

3.3新技术新方法

3.3.1光纤技术(BOTDR)

光导纤维监测技术又称布里渊散射光时域光纤监测技术(BOTDR),是国际上20世纪70年代后期才迅速发展起来的一种现代化监测技术,在航空、航天领域中已显示了其有效性。在土木、交通、地质工程及地质灾害防治等领域的应用才刚刚开始,并受到各发达国家研究机构的普遍重视,发展前景十分广阔。

通过合理的光纤敷设,可以监测整个灾害体(特别是滑坡)的应变信息。

3.3.2时间域反射技术(TDR)

时间域反射测试技术(Time Domain Reflectometry)是一种电子测量技术。许多年来,一直被用于各种物体形态特征的测量和空间定位。早在20世纪30年代,美国的研究人员开始运用时间域反射测试技术检测通讯电缆的通断情况。在80年代初期,国外的研究人员将时间域反射测试技术用于监测地下煤层和岩层的变形位移等。90年代中期,美国的研究人员将时间域反射测试技术开始用于滑坡等地质灾害变形监测的研究,针对岩石和土体滑坡曾经做过许多的试验研究,国内研究人员已经开始该方法的研究工作,并已经在三峡库区投入试验应用阶段,同时开展了与之相关的定量数据分析理论研究。

所埋设电缆即是传感器,又可传输测试信号;该方法相对于深部位移钻孔倾斜仪监测具有安装简单、使用安全和经济实用等特点。

3.3.3激光扫描技术

该技术在欧美等发达国家应用较早,我国近期开始逐渐引进。主要是用于建筑工程变形监测以及实景再现,随着扫描距离的加大,逐渐向地质灾害调查和监测方向发展。

该技术通过激光束扫描目标体表面,获得含有三维空间坐标信息的点云数据,精度较高。应用于地质灾害监测,可以进行灾害体测图工作,其点云数据可以作为地质灾害建模、地质灾害监测的基础数据。

3.3.4核磁共振技术(NUMIS)

核磁共振技术是国际上较为先进的一种用来直接找水的地球物理新方法。它应用核磁感应系统,通过从小到大地改变激发电流脉冲的幅值和持续时间,探测由浅到深的含水层的赋存状态。我国于近期开始引进和研究,目前已经在三峡库区的部分滑坡体进行了应用试验,效果较好。

应用于地质灾害监测,可以确定地下是否存在地下水、含水层位置以及每一含水层的含水量和平均孔隙度,进而可以获知如滑坡面的位置、深度、分布范围等信息,从而对滑坡体进行稳定性评价,并对滑坡体的治理提出科学依据。

3.3.5合成孔径干涉雷达技术(InSAR)

运用合成孔径雷达干涉及其差分技术(InSAR及D-InSAR)进行地面微位移监测,是20世纪90年代逐渐发展起来的新方法。该技术主要用于地形测量(建立数字化高程)、地面形变监测(如地震形变、地面沉降、活动构造、滑坡和冰川运动监测)及火山活动等方面。

同传统地质灾害监测方法相比,具有如下特点:

(1)覆盖范围大;

(2)不需要建立监测网;

(3)空间分辨率高,可以获得某一地区连续的地表形变信息;

(4)可以监测或识别出潜在或未知的地面形变信息;

(5)全天候,不受云层及昼夜影响。

但由于系统本身因素以及地面植被、湿度及大气条件变化的影响,精度及其适用性还不能满足高精度地质灾害监测。

为了克服该技术在地面形变监测方面的不足,并提高其精度,国内外技术人员先后引入了永久散射点(PS)的技术和GPS定位技术,使InSAR技术在城市及岩石出露较好地区地面形变监测精度大大提高,在一定的条件下精度可达到毫米级。永久散射(PS)技术通过选取一定时期内表现出稳定干涉行为的孤立点,克服了许多妨碍传统雷达干涉技术的分辨率、空间及时间上基线限制等问题。

随着卫星雷达系统资源的改进和发展,以及相应数据处理软件的提高,该技术在地质灾害监测领域的应用将趋于成熟。

3.4地质灾害监测技术的优化集成

3.4.1问题的提出

(1)监测方法的适应性。对于各种监测方法所使用的监测仪器设施,均有各自的应用方向和使用技术要求;针对不同地质灾害灾种、类型,其使用技术要求(包括测点布设模式、安装使用技术要求等)不同。

(2)地质灾害不同的发展阶段。对于崩塌、滑坡等突发性地质灾害,不同发展阶段所适用的监测方法和仪器设施各异,监测数据采集周期频度不同。

(3)监测参数与监测部位。实践证明,一方面,不同的监测参数(地表位移、深部位移、应力、地下水动态、地声等)在不同类型的灾害体监测中具有不同程度的表现优势;另一方面,同一灾害体不同部位的监测参数随时间变化趋势特点并不相同,即存在反映灾害体关键部位特征的监测点,又存在仅反映局部单元(不具有明显的代表性,甚至是孤立的)特征的监测点。因此,监测要素(监测参数、监测部位)的优化选择,是整个监测设计工作的基础。

(4)自动化程度。决定于设备的集成度、控制模式、数据标准化程度和信息发布方式。

(5)经济效益。决定于地质灾害的规模、危害程度、监测技术组合、设备选型等因素。

3.4.2设计原则

地质灾害监测技术优化集成方案遵循以下原则:

(1)监测技术优化原则:针对某一类型地质灾害,确定优势监测要素,进行监测内容、监测方法优化组合,使监测工作高效、实用。

(2)经济最优原则:首先,不过于追求高、精、尖的监测技术,而应选择发展最为成熟、应用程度较高的监测技术;其次,对于危害程度较大的大型地质灾害体,可选择专业化程度较高的监测技术方法,由专业人员进行操作、维护,对于危害程度低,规模小的灾害体,可选择操作简单、结果直观的宏观监测技术,由群测群防级人员进行操作。

3.4.3最终目标

根据不同种类地质灾害和不同类型地质灾害的物质组成、动力成因类型、变形破坏特征、外形特征、发育阶段等因素,研究适用于不同类型地质灾害的监测要素(监测参数、监测点位的集合)、监测方法、监测点网的时空布置模式、监测技术要求,建立典型地质灾害监测的优化集成方案。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864