地质灾害详细调查信息系统
㈠ 地质灾害详细调查录入系统 用ACCESS MDB文件导入的,统一编号居然导入之后和导入之前的统一编号不一致。
这个可能需要根据代码去判断问题了。最好有附件。
㈡ 地质灾害信息系统
整理集成全国地质环境与地质灾害调查、监测和研究成果,编制全国地质灾害气象预警预报信息图层30个,建立全国地质灾害气象预警预报信息系统。
5.2.1 信息图层编制原则
在地质灾害气象预警信息图层编制过程中,充分考虑到影响地质灾害发生的各种地质环境背景条件因子、历史地质灾害点分布、社会经济条件、人类工程设施等因素。依据如下几个原则:
1)全面性。将目前能够收集到的影响地质灾害发生的各种因素,尽可能地考虑全面,至于每种因素的影响贡献大小在权重计算部分考虑。
2)时效性。每个信息图层的编制中,尽可能以最新最翔实的数据资料为基础,从而保证对最新资料信息和研究成果的及时利用和更新。
3)适用性。收集到的数据资料,根据全国地质灾害气象预警预报的具体工作实际需要,进行相应的改编处理。
4)最大可能使用数据。全国地质灾害气象预警预报的基本比例尺定位为1∶100万,一些关键的图层数据,如地理底图、地质底图、土地利用底图均可达到1∶100万的比例尺需求,但部分信息图层无法达到1∶100万的比例尺,本项目本着最大可能使用数据的原则,暂且采用小比例尺的图层直接投影变换代替,以后工作中再逐步更新。
5.2.2 信息图层概况
信息图层的投影参数如下:
比例尺:1∶100万
投影类型:亚尔博斯等积圆锥投影坐标系;坐标单位:mm
第一标准纬度:25°00༼″;第二标准纬度:47°00༼″
中央子午线经度:105°00༼″;投影原点纬度:0°00༼″
地质灾害气象预警预报信息图层基本情况见表5.1。
5.2.3 信息图层说明
各信息图层编制按照各因子的分布特点进行分级。
5.2.3.1 年均雨量
全国年均雨量分为11个级别,各级别年均雨量分段:<50mm,50~100mm,100~200mm,200~400mm,400~600mm,600~800mm,800~1000mm,1000~1200mm,1200~1600mm,1600~2000mm,>2000mm。
5.2.3.2 年均气温
根据《中国自然地理图集》(2004),将全国年均气温分为9个级别,各级别年均气温分段如下:<-4℃,-4~0℃,0~4℃,4~8℃,8~12℃,12~16℃,16~20℃,20~24℃,>24℃。
5.2.3.3 年蒸发量
根据《地下水资源与环境图集》(2004),将全国年蒸发量分为10个级别,各级别分段如下:<500mm,500~600mm,600~800mm,800~1000mm,1000~1200mm,1200~1400mm,1400~1600mm,1600~2000mm,2000~2400mm,>2400mm。
表5.1 全国地质灾害气象预警预报信息图层简表
5.2.3.4 年干燥度
干燥度,又称干燥指数或干燥因子。描述气候干燥程度的指数,与湿润系数互为倒数,一般用水分的可能消耗量与收入量的比值表示。它是表征一个地区干湿程度的指标。
根据《地下水资源与环境图集》(2004),将全国年干燥度分为12个级别,各级别分段如下:<0.5,0.5~0.75,0.75~1.0,1.0~1.5,1.5~2.0,2.0~3.0,3.0~5.0,5.0~10,10~25,25~50,50~100,>100。
5.2.3.5 地震烈度
采用第三代《中国地震烈度区划图》(1990),将全国地震烈度按5级区划:Ⅴ度区、Ⅵ度区、Ⅶ度区、Ⅷ度区、Ⅸ度区。
5.2.3.6 历史地震点
来源于科学数据共享工程,中国地震局共享数据网,近年来(1999年1月1日至2006年11月2日)的已发地震点数据,共203个。
5.2.3.7 地层岩性
根据“中国地质科学院地质研究所,1∶100万地质图”重新进行编制划分。
(1)划分原则
地质灾害的产生与地层岩性关系密切。地层岩性是地质灾害形成的内在因素,对地质灾害的产生起着主导和控制作用,岩性及其组合特征的控制作用决定着地质灾害的区域分布。从沿海向内陆,地层岩石由火成岩为主变为变质岩、碎屑岩相间分布,进而变为碳酸盐岩、碎屑岩、变质岩相间分布。
斜坡岩土体的性质及其结构是形成滑坡、崩塌的物质基础。一般易形成滑坡、崩塌的岩体,大都是碎屑岩、软弱的片状变质岩,岩性多为泥岩、页岩、板岩、含碳酸盐类软弱岩层、泥化层、构造破碎岩层。这些软弱岩层经水的软化作用后,抗剪强度降低,容易出现软弱滑动面,形成崩滑体。
黏性土滑坡在四川分布密集,在中南、闽、浙、晋西、陕南、河南等地也较密集,在长江中下游、东北等地也有一定分布;半成岩类粘土岩滑坡在青海、甘肃、川滇地带、山西几个断陷盆地中分布密集;黄土滑坡在黄河中游、青海等省较密集;泥岩、千枚岩、砂质板岩形成的滑坡在湖南、湖北、西藏、云南、四川、甘肃等地十分发育。
泥石流主要发育在变质岩区和黄土区,火成岩区和碎屑岩地区次之,碳酸盐岩地区泥石流相对不发育。
根据全国地质灾害发育的普遍规律并结合不同地区地质灾害发育的特殊性,主要考虑以下几个方面的原则划分地质灾害敏感性岩组。
1)地层岩性与地质灾害分布的关系;
2)地层岩性的成因、物质组成与空间分布特征;
3)地层岩性的时代;
4)岩土体(不同时代地层)的工程地质性质;
5)水岩相互作用的敏感性;
6)1∶100万中国地质图的精度。
(2)划分方案
根据地质灾害发育的普遍规律以及地层岩性对地质灾害的敏感程度,将地质灾害敏感性岩组划分为10种类型。敏感性指数值越高,则相应的岩组对地质灾害的发生也越敏感。
Ⅰ类:主要为水体、粉砂质食盐、食盐壳、盐碱壳、风积物砂等区域,这些区域不会发生滑坡、崩塌、泥石流等地质灾害。
Ⅱ类:主要是火成岩类。岩性为闪长岩、石英闪长岩、辉长岩、花岗岩、辉绿岩等,岩性坚硬,力学强度大,是很好的地基和建筑材料。
Ⅲ类:主要是火成岩类。岩性为钾长花岗岩、二长花岗岩、碱长花岗岩、片麻状花岗岩、斜长花岗岩、紫苏花岗岩、正长岩、石英正长岩、煌斑岩、白岗岩、花岗闪长岩、英云闪长岩、辉石闪长岩、辉长闪长岩、花岗斑岩、英安斑岩、辉绿岩、橄榄岩、橄榄辉绿岩、玄武岩、橄榄玄武岩、苦橄玄武岩、石英二长岩、石英二长斑岩、辉石岩、角闪正长岩、闪长玢岩、英安玢岩、辉绿玢岩、苦橄玢岩、安山玢岩、超基性岩、安山岩、碱性岩、英安岩、粗面岩、科马提岩、云辉二长岩、白榴岩、霓霞岩、碎斑熔岩、细碧岩、石英钠长斑岩、霏细斑岩、辉长苏长岩等,岩性坚硬,力学强度较大。
Ⅳ类:主要是变质岩类和部分火成岩及沉积岩。岩性为白云质灰岩、灰岩、白云岩、黑云母花岗岩、白云母花岗岩、黑云斜长花岗岩、二云母花岗岩、流纹岩、变粒岩、片麻岩、角闪岩、砂砾岩、砾岩、变质橄榄辉长岩、糜棱岩、蛇纹岩、大理岩、珍珠岩、硅质岩、蛇绿岩、浅粒岩、岩溶角砾岩、铝铁岩系、黑云角闪闪长岩、斑状云母橄榄岩、榴辉岩、黑云母霞石白榴岩、霏细岩等,岩性较坚硬,力学强度较大。
Ⅴ类:主要是沉积岩类。岩性为页岩、夹页岩、火山碎屑岩、生物碎屑岩、片岩、千枚岩、板岩、砂岩、粉砂岩、碳酸盐岩、凝灰岩、糜棱岩等,半坚硬岩组,力学强度较低,易风化,遇水软化,是地质灾害较易发生的地层。
Ⅵ类:主要是沉积岩类。岩性为泥岩、钙质泥岩、泥灰岩、夹泥岩、粘土岩、泥页岩、煤系、泥质粉砂岩、冰碛泥砾岩等,半坚硬岩组,力学强度低,遇水泥化,是地质灾害容易发生的地层。
Ⅶ类:岩性为黄土、黄土状土,黄土的地层年代为Q1p,Q2p,渗透性弱、抗剪强度高。
Ⅷ类:主要为冲海积物、海积物、冲湖积、湖积、沼泽堆积、石英斑岩风化层、花岗斑岩风化层等松散层。
Ⅸ类:主要是冲积物、冲洪积物、洪冲积物、残坡积物、坡冲积物、冰碛物、苦橄玄武岩风化层、辉绿岩风化层、花岗岩风化层、冰积物等松散堆积物,是产生地质灾害的主要物源。
Ⅹ类:岩性为黄土,地层年代为Q3p,Qh,疏松、大孔隙,垂直节理发育,渗透性强、抗剪强度低、具湿陷性(表5.2)。
5.2.3.8 断裂分布
根据“中国地质科学院地质研究所,1∶100万地质图”编制。考虑到网格单元的大小和断层断裂的影响范围,计算时采用网格区内断层断裂的密度进行计算。
5.2.3.9 第四系成因时代
根据1∶250万第四纪地质图编制,将第四系的成因时代分为7类:N2-Q1p,Q,Qp,Q1p,Q2p,Q3p,Qh。
5.2.3.10 岩土体类型
来源于1∶400万岩土体类型图,将岩土体类型分为7类:火成岩、变质岩、碎屑岩、碳酸盐岩、砂质土、黄土、其他土。
5.2.3.11 第四系成因类型
根据1∶250万第四纪地质图编制,将第四系成因类型分为19类:冰碛、冰水沉积、冰水-洪积、冰水-湖积、洪积、残积、残坡积、冲积、冲积-洪积、冲积-湖积、寒冻风化残坡积、红土化残积、黄土堆积、风积、湖积、坡积、岩溶化残坡积、火山堆积、海陆交互相及海相堆积。
表5.2 中国工程地质岩组划分表
5.2.3.12 水文地质类型
将水文地质类型分为5大类、18亚类:
1)松散沉积孔隙水(滨河平原冲海积层孔隙水、堆积平原冲洪积层孔隙水、黄土高原黄土层孔隙水、内陆盆地冲洪积层孔隙水、沙漠风积沙丘孔隙水、山间盆地冲积层孔隙水);
2)基岩裂隙水(丘陵高原碎屑岩裂隙水、熔岩孔隙裂隙水、山地丘陵岩浆岩裂隙水、山地变质岩裂隙水);
3)多年冻土冻结层上水(高纬度山地基岩冻结层上水、中低纬度高原基岩冻结层上水、中低纬度高原松散沉积冻结层上水);
4)碳酸盐岩裂隙溶洞水(峰丛峰林裂隙溶洞水、岩溶丘陵裂隙溶洞水、岩溶山地裂隙溶洞水);
5)其他(湖泊、雪被)。
5.2.3.13 海拔高度
从1∶100万地理地貌底图中提取,将海拔高程分为6类:极高海拔(>6000m)、高海拔(4000~6000m)、中高海拔(2000~4000m)、中海拔(1000~2000m)、低海拔(<1000m)、其他(非山地丘陵)。
5.2.3.14 起伏程度
从1∶100万地理地貌底图中提取,将地形起伏分为6类:极大起伏(>2500m)、大起伏(1000~2500m)、中起伏(500~1000m)、小起伏(200~500m)、丘陵(<200m)、其他(非山地丘陵)。
5.2.3.15 地貌类型
从1∶100万地理地貌底图中提取,并重新归类,将地貌类型分为11类:山地、黄土梁峁、黄土台塬、黄土塬、风蚀地貌、台地、平原、冲积扇平原、低河漫滩、现代冰川、湖泊。
5.2.3.16 土壤侵蚀
根据“中国土壤侵蚀图”,将土壤侵蚀类型及侵蚀强度分为3大类、15亚类:
1)水力侵蚀(剧烈侵蚀、极强度侵蚀、强度侵蚀、中度侵蚀、轻度侵蚀、无明显侵蚀、微度侵蚀);
2)冻融侵蚀及冰川侵蚀(强度侵蚀、中度侵蚀、轻度侵蚀、微度侵蚀);
3)风力侵蚀(极强度侵蚀、强度侵蚀、中度侵蚀、轻度侵蚀)。
5.2.3.17 水系
从1∶100万地理底图中提取的线形河流。实际计算时,采用网格单元内水系密度参加计算。
5.2.3.18 植被
从1∶100万地理地貌底图中提取,将植被覆盖分为6类:红树林滩、森林、经济林与竹林、灌木林、草地、其他。
5.2.3.19 土地利用
根据“1∶100万土地利用类型图”编制,将土地利用类型分为6大类、13亚类。分别是:①耕地(水田、旱地);②林地(有林地、灌木林、疏林地、其他林地);③草地(高覆盖度草地、中覆盖度草地、低覆盖度草地);④水域;⑤城乡工矿居民用地(城镇用地、农村居民点、其他建设用地);⑥未利用土地。
5.2.3.20 公路
从1∶100万地理底图中提取的线形公路,又分为5类,即高速公路、主要公路、一般公路、大路、小路。实际计算时,采用网格单元内所有公路密度参加计算。
5.2.3.21 铁路
从1∶100万地理底图中提取的线形铁路,补充青藏铁路线路。实际计算时,采用网格单元内铁路密度参加计算。
5.2.3.22 矿山点
全国矿山调查点共11万多个。
5.2.3.23 分县人口密度
根据2003年人口普查数据,分县计算人口密度,分为5类:>750,450~750,150~450,50~150,<50。单位:人/km2。
5.2.3.24 水坝分布
从1∶100万地理底图中提取,水坝工程点共885个。
5.2.3.25 塔庙宇文化要素分布
从1∶100万地理底图中提取,包括塔、庙宇和其他文化设施,计193个点。
5.2.3.26 灾害点—滑坡
2005年以前的数据来源于700个县市调查数据,2004~2007年数据来源于地质灾害气象预警收集的较大的滑坡灾害点数据。合计45917个点。随着更新的数据成果,将继续更新。
5.2.3.27 灾害点—泥石流
2005年以前的数据来源于700个县市调查数据,2004~2007年数据来源于地质灾害气象预警收集的较大的泥石流灾害点数据。合计9253个点。随着更新的数据成果,下一步将继续更新。
5.2.3.28 灾害点—崩塌
2005年以前的数据来源于700个县市调查数据,2004~2007年数据来源于地质灾害气象预警收集的较大的崩塌灾害点数据。合计13094个点。随着更新的数据成果,下一步将继续更新。
5.2.3.29 地震动参数
根据“中国地震动参数图GB18306-2001”,分为7个级别:≥0.40,0.30,0.20,0.15,0.10,0.05,<0.05。单位:g。
5.2.3.30 中国第四纪岩性图
根据1∶250万第四纪地质图编制,将第四系岩性分为11类:
砾质土;砂质土;黏质土;黄土类土;盐类为主;砾质土、黄土类土;黏质土、砂质土、砾质土;砂质土、黏质土;黏质土、砾质土;砂质土、砾质土。
㈢ 地质灾害管理信息系统
地质灾害管理信息系统是进行灾害管理的重要手段。它是在广泛收集和整理研究区已有的地质灾害调查、勘查、防治信息,社会经济环境状况,统计信息等资料的基础上,形成为决策提供服务的数据库系统。该系统具有信息录入功能、检索查询功能和打印输出功能等模块。
一、系统结构设计
(一)运行环境
1.硬件环境
IBM-PC/XT、AT486以上微机,至少一个高密软驱动及一个硬盘,VGA以上显示方式。
输出设备为各种型号打印机。
2.软件环境
DOS环境:6.2以上DOS版本。
汉字环境:25行汉字操作系统,如UCDOS、XSDOS或其它汉字图形卡。
(二)系统结构
1.系统界面
启动DZPX后,屏幕上出现系统界面。
2.菜单
在主窗口的顶层,主要由信息录入、检索查询、项目管理、代码标准、打印输出等五项主菜单构成(图10-1)。在每个主菜单,有各自的下拉式菜单。本系统的功能均通过这些菜单完成。
3.下拉菜单的主要内容
信息录入:信息录入、信息修改、信息恢复。
检索查询:普查查询、勘查查询、防治查询、当年查询、环境查询、统计查询。
项目管理:项目录入、文档录入、项目修改、文档修改、项目查询、文档查询。
图10-1地质灾害管理信息系统菜单框图
代码标准:代码录入、代码修改、代码查询。
打印输出:专用表、汇总表、任意表。
(三)系统功能
DZPX系统的功能设计应当与地质灾害的管理需要紧密结合,经设计人员与管理部门的多次蹉商,拟定系统功能如下。
1.功能框架设计
地质灾害管理信息系统的几大模块为一个整体,其基本结构如图10-2:
图10-2地质灾害管理信息系统结构图
2.系统功能
(1)信息录入功能它主要包括信息录入、信息修改和信息恢复三个功能模块。
①信息录入模块本系统将地质灾害普查信息、勘查信息、防治信息、当年地质灾害发生信息、重要地灾点评价信息、重要地灾区域评价信息、社会经济环境状况信息和地灾统计、地灾分布数统计、地灾灾种分布统计、地灾分级数统计、地灾频次统计、地灾项目数统计、地灾项目类型统计、地灾项目灾种统计共八种统计信息录入,需要录入的管理数据还有地灾项目管理数据、地灾文档管理数据、图例代码、图形代码、信息代码等数据库。
②信息修改模块在对以上信息录入的数据进行检查时,若发现录入的信息有误或需追加一些内容,可用此模块根据屏幕对数据进行操作。
③信息恢复模块为保证数据存贮的安全性,该系统对数据实行备份和恢复操作。
a.数据备份可以对数据库逐个备份或成批备份。
b.数据恢复将备份文件恢复到指定数据库中,指定数据库将被覆盖。
(2)检索查询功能可以进行单笔记录查询和多笔记录同屏查询。查询条件可以是单一条件也可以是复合条件。
(3)打印输出功能系统提供了两种数据输出方式:
①屏幕显示输出屏幕显示输出是数据输出的一种最基本的形式,为用户提供随机查询和浏览查询两种方式。
②报表打印输出数据信息的打印输出按预先设计好的报表格式输出。
二、数据库设计
地质灾害管理信息数据库建库的主要目的是为地质灾害的管理提供基础资料。所以,在数据库的设计过程中要充分考虑系统对信息资源的要求。
(一)地质灾害管理的数据信息
在进行地质灾害宏观管理、预测防治的研究中,需要大量的信息数据作决策支持。下面按地质灾害的管理、预测、防治来分析所需要的数据信息资料,将信息源共分为七大类:
1.行政区划资料
包括所在省(市)的城市规划(居民用地、工矿用地、交通用地等)、社会经济概况(工农业经济、人口、国民总产值等)资料。
2.地质背景资料
包括地质灾害体的物质成分、结构、构造、地层等方面的基础地质资料。
3.气象资料
指气象观测站观测的年平均降水、年平均温度、气候类型等气象资料。
4.水文地质资料
包括河流的水文观测资料、地下水类型及水位随季节的变化特征,为地质灾害防治研究过程中水的优化管理提供基础数据。
5.各灾种的地质资料
指发生的为何种灾害;灾害体形态、估算面积、体积、范围及其成因;灾害发生后如何处理、稳定性分析、适宜性评价及防治建议等资料。
6.各种统计资料
包括:①全国、各省地质灾害数量的统计;②灾种分布(种类、面积、体积、数量等)统计;③灾害分级数量统计(大中、一般灾害的比例);④全国、各省地灾发生频次的统计(发生次数,所占比例);⑤全国、各省所立项目数统计;⑥全国普查、勘查、防治项目费用及所占比例的统计;⑦各灾种项目费及所占比例的统计。
7.项目、文档资料
(二)地质灾害数据库的建立
在确定系统数据信息源基础之上,我们本着反映地质灾害属性(自然属性、社会属性)、时间(历史灾害、正在发生和尚未发生灾害)、空间(点或区域性灾害)、灾害防治工作流程(普查-勘查-防治)几个方面特征的设计原则,建立如下17个灾害体数据库。即:①地质灾害普查信息数据库;②地质灾害勘查信息数据库;③地质灾害防治信息数据库;④当年地质灾害发生信息数据库;⑤重要地质灾害点评价信息数据库;⑥重要地质灾害区域评价信息数据库;⑦社会经济环境状况信息数据库;⑧地质灾害统计数据库;⑨地质灾害分布统计数据库;⑩地质灾害灾种分布统计数据库;⑩地质灾害分级数统计数据库;(12)地质灾害频次统计数据库;⑩地质灾害项目数统计数据库;⑩地质灾害项目类型统计数据库;⑩地质灾害项目灾种统计数据库;⑩地质灾害项目管理数据库;(17)地质灾害文档管理数据库。
除上述数据库外,根据数据库系统的需要,还建立了信息代码、图形代码、图例代码等数据库。
(三)地质灾害数据库的结构
在反复酝酿,不断修改的基础上,以尽量简单,减少库中多余数据,方便数据检索为原则,给出了20个数据库的库结构,包括有字段名称、字段类型、字段宽度、小数位数等内容。各数据库结构一方面要与实际相结合,合理地确定各字段名称、字段类型、字段宽度、小数位数;更为重要的是,设计各库结构时必须反映出该数据库为方便实用于灾害管理所必须包括的字段内容。从这两个方面出发,我们确定出各数据库的结构。限于篇幅,仅以地质灾害普查数据库为例(表10-5)。
表10-5地质灾害普查数据库数据结构设计表
三、系统实现
利用雅奇MIS Ver 3.0及Fox25B FOR DOS(中文版)实现上述功能设计和数据库设计。按照设计,通过多级下拉菜单分次实现各功能,各数据也按预先设定内容及格式建立。在此基础上,我们录入了部分实际资料进行系统测试。
四、应用示范研究
在建立地质灾害信息数据库的基础上,我们以重庆市为实例,进行了初步的应用。录入了五个数据库的信息资料。
(一)地质灾害普查信息数据库
在这个库中,根据调查所填的卡片,对重庆市各区县所发生的共计86个灾害的灾害种类、形态、估算面积、估算体积、地质背景、灾体成因、规划情况、稳定性分析、适宜性评价及建议措施等信息进行了摘录、整理。
(二)地质灾害勘查信息数据库
本库根据重庆醪糟坪滑坡的勘查录入了勘查范围及面积、形态,灾害面积、体积、稳定性评价和防治措施。
(三)地质灾害防治信息数据库
在本数据库中,摘录了四川重庆醪糟坪泥石流、滑坡群的防治原则及防治方案,防治效果论证,以及防治所带来的经济效益和环境效益分析。
(四)社会经济环境状况信息数据库
根据重庆95年统计年鉴,对重庆市共计20个区县的国民经济、社会发展情况资料进行了整理,录入了重庆市各区县的自然地理情况,土地、耕地面积、居民、工矿、交通用地、人口、人口密度、企业数及工农业总产值、固定资产投资等信息数据。
(五)地质灾害统计信息数据库
根据对重庆市各区县灾害的统计卡片,记录了重庆各区县所发生的地质灾害共计627处。统计了地质灾害的灾害类型、面积、体积、主要特征、稳定性及建筑适宜性。
以上几个数据库基本上覆盖了运用该系统进行灾害管理的主要内容。在此基础上,我们对系统功能进行了全方位的测试,认为该系统具备以下几个特点:①针对地质灾害管理的需要,设计出合理而充实的数据库系统;②各数据库结合当今地质灾害调查的实际情况,结构设计合理;③系统功能完备,运行流畅,基本能满足地质灾害管理的需要;④整系统界面具备较好的用户友好性。
㈣ 全国地质灾害防治信息系统建设的目标和原则
11.3.1 目标
(1)总体目标
在地质灾害防治工作中全面开展信息系统建设。通过建立支持地质灾害防治的完整数据体系,形成一体化综合数据中心,提供数据快速响应和多目标应用系统,建立支持地质灾害防治工作全过程的综合一体化动态评价及预警平台,促进地质灾害调查评价、规划、管理、防治的科学化与现代化,为全社会提供方便快捷的信息服务,充分发挥地质灾害防治在国家社会经济发展中的基础性、公益性和战略性作用,使地质灾害防治工作更好地适应我国可持续发展的需要。
(2)近期(2010年)目标
1)完成中小比例尺基础数据库建设,实现所有地质灾害动态数据的快速更新,数字化信息的积累取得显著进展,形成支持地质灾害防治的基础数据体系和动态数据更新体系。
2)基本建成地质灾害区域评价及预警预报的决策支持系统,最大限度地保证地质灾害防治决策和预警信息的准确、高速传输。
3)建立以遥感和地理信息系统技术为基础的地质灾害调查及监测数据采集系统,在地质灾害多发区及重点地区,实现地质灾害监测和调查数据的快速更新。
4)在地质灾害防治工作中推广应用信息技术,在地质灾害调查和监测工作中基本实现野外调查数字化采集和自动监测,对重点地质灾害的监测信息实现自动传输。
5)实现地质灾害防治管理的信息化,促进地质灾害防治管理水平的提高。
6)建成以网络技术为基础的国家、省及重点地质灾害防治区的三级数据传输系统,支持地质灾害调查数据共享和动态数据的快速传输。
7)在国土资源信息化标准体系的基础上,基本完成地质灾害防治信息化标准建设,形成较为完整的标准体系,全面支持地质灾害防治数据的综合管理、信息共享和多目标应用服务。
8)在地质灾害调查队伍中广泛普及信息技术知识,培养出一批既懂信息技术,又有地质灾害防治专业知识的复合型人才,初步建成高素质的信息化建设队伍。
(3)远期(2020年)目标
在已有信息化建设的基础上,通过不断完善和提高信息化在地质灾害防治工作中的能力,全面建成支持地质灾害防治的综合数据中心;建立支持地质灾害防治数据采集和维护的数据传输系统;建立以地质灾害防治为最终目标的信息服务和应用系统;建立支持数据传输、信息交换和共享的网络支撑体系;建立地质灾害防治信息化标准支撑体系。通过实现地质灾害防治工作全过程信息化,促使信息技术的创新能力明显提高,完成各级地质灾害防治信息系统建设,建成结构完整、技术先进、高速、大容量的信息交换网络;建立数据良性更新机制;完善地质灾害防治管理信息系统并实现系统的整体集成,形成具有区域评价、预警预报等多种分析预测决策支持功能的信息综合服务体系。
11.3.2 系统建设原则
根据国家社会经济发展的需求和地质灾害防治的目标和任务,遵循国家及国土资源信息化规划的总方针、总任务,确定地质灾害防治信息系统建设的总体原则是:
1)统筹部署、统一规划、分级分步实施,系统的建设应在国土资源信息化建设、地质环境信息化建设的总体规划指导下进行,要与地质环境信息化建设相协调,从全局的观点来设计和规划系统建设,保证整个系统运行的协调性;
2)充分考虑地质灾害防治现状与特点,在注重应用技术和系统的实用性、易用性的前提下,尽可能跟上信息技术的发展,采用先进的信息技术手段,保证系统的先进性、可持续性;
3)系统建设要依托地质灾害防治工作体系,要服从地质灾害防治工作的业务流程,要为地质灾害防治工作提供有效的服务和技术支持。
㈤ 地质灾害勘查地球物理信息管理系统的建立
9.3.1地球物理信息管理系统建立的基本原则和要求
9.3.1.1基本原则
建立地球物理信息管理系统应遵循以下基本原则:
(1)系统的完备性:主要指系统功能齐全、完备。通常而言,应具有数据采集、编辑、管理、处理、查询、绘图、分析、输出的功能。
(2)系统的先进性:系统的先进性主要指软件的先进性即选择好的开发工具及基础平台。
(3)系统的标准化:系统的标准化一是图式、图例要符合现有的国家标准和行业规范,二是指结合项目需求,定义数据库结构和规范数据项编码。
(4)系统的可靠性:系统的可靠性是指系统运行的安全性和数据精度的可靠性。
9.3.1.2地球物理信息管理系统的设计要求和步骤
(1)设计要求:地质灾害勘查地球物理信息管理系统属应用型地理信息系统,是出于对地球物理勘查综合数据的管理、物探成果显示与空间分析的目的而建立的,系统的设计应主要侧重于:①需求分析;②总体结构描述;③软硬件配置、包括选择合适的工具型GIS软件;④数据来源、信息分类、规范、标准和内容的确定;③数据库结构设计;⑥系统功能设计;⑦用户界面设计;⑧数据标准化和数据质量保证等。
(2)建立步骤:和其他应用型地理信息系统一样,地球物理信息管理系统的建设按开发时间序列化分为四个阶段:需求分析阶段、系统设计阶段、系统实施和系统运行和维护阶段。相应每一个阶段,都会形成一定的文档资料,以保证系统开发的成功,并最经济的花费人力物力投资,便于系统运行和维护。
9.3.2地球物理信息管理系统的设计
9.3.2.1系统建立的需求分析
需求分析是在对用户进行深入调查的基础上进行的,是地球物理信息管理系统设计的基础,主要任务是通过用户调查收集相关信息,将得到的信息进行分类整理,得到对系统粗略的描述和可行性论证材料。
地球物理信息管理系统的需求分析主要包含以下几个方面。
(1)用户情况调查:通过对地质灾害防治、管理等部门的工作内容、地质灾害信息来源及资料管理方式、资料使用状况等方面的调查研究,指出现行工作状况在工作效率、费用支出等方面存在的问题,同时明确用户的需求及用户数量。
(2)明确系统的目标、任务和主要功能:在用户调查的基础上,确定地质灾害勘查地球物理信息管理系统的服务对象,系统建设的目的、任务及系统的主要功能。
(3)系统可行性研究:可行性研究是在需求分析和明确目的任务的基础上进行的。可行性研究内容分为理论上的可行性研究、技术上的可行性研究和经济、社会效益分析。
a.理论上分析地球物理信息管理系统涉及两个方面的内容,一是工具型GIS平台提供的数据结构与地球物理数据的特征是否适宜;二是地球物理数据的分析方法和专业应用模型与GIS技术的结合是否可行。设计人员再根据系统的目标和任务,选择合适的工具型GIS平台。
b.技术上需考虑的问题为:关注计算机硬件的发展速度和GIS软件的使用周期的相适宜性;根据地质灾害勘查研究区范围相对较小的现实,估算研究区总的数据容量,说明数据源的类型与采集方式,在此基础上提出合理的硬件设备配置;根据系统的开发目的,提出二次开发方案。
c.从经济和社会效益着眼需考虑地球物理信息管理系统开发时的经济承受能力,预算系统设计与实现过程所需的费用及系统投入使用后所带来的社会效益。
9.3.2.2系统目标和内容
9.3.2.2.1系统目标
以地质灾害勘查的20余种地球物理技术方法勘测所得到的空间数据和属性数据为核心,利用计算机技术、地理信息技术、数据库技术、可视化技术建立能综合管理研究区地球物理数据并能进行快速查询、同时具备物探数据的绘制成图和成果解释功能的信息管理系统。
9.3.2.2.2系统内容
(1)系统总体结构:系统在结构上可分为应用系统和基础数据库两部分,应用程序由图形管理、属性管理、数据处理、空间分析等模块组成,总体结构如图9-3所示。
图9-3系统总体结构图
(2)系统功能设计:地质灾害勘查地球物理信息管理系统应具备以下功能:
·图形文件输入:支持数字化仪输入方式、扫描矢量化、多种GIS格式数据导入功能;
·基本属性数据的录入与编辑及外挂属性库的浏览和编辑功能;
·常用光栅图像的导入,如JPEG、BMP格式;
·图形数据的修改:对点、线、面等空间对象进行添加、删除、移动等编辑工作;
·查询:实现点、线、面等图形目标查询属性信息,并能查询属性满足一定条件的点、线、面等空间对象以及根据地质灾害勘查的目的、勘查阶段、勘查物探方法查询物探工作量的功能;
·图形的放大、缩小、漫游功能;
·热链接:实现点、线、面等空间对象与文本、照片或图片的热链接;
·空间分析:包括栅格分析及矢量分析;
·绘制物探数据剖面图、平面剖面图、断面图、钻孔柱状图、三维立体图及切片的功能;
·图形格式转换及输出功能。
(3)二次开发设计:二次开发设计主要包括两方面内容:一是根据系统的任务以及选择的开发平台提出需要做二次应用开发的内容;二是对于所需开发的问题准备采用的开发方案。
本系统是一个应用型的GIS系统,二次开发的基本思路是在GIS工具的基础上实现GIS工具向专业型GIS系统的转化。
考虑到本系统具有很强的专业性,开发应具有较高的起点,充分利用现有的软件成果,避免软件开发的重复性。基本思路是在引用GIS平台的基本功能之上,借助于平台所提供的开发语言和通用编程软件尤其是面向对象的可视化开发工具(如Visual Basic、Visual C++)进行二次开发。软件开发的主要任务是专题数据库的结构设计、专题数据库的数据管理与查询、专业数据处理与分析等。
地质灾害勘查地球物理信息管理系统所涉及管理的物探数据类型繁多,要求系统应能接收多种类型的数据,按方法类别入库、处理,并维护数据的完整性和一致性。通过对数据库中物探数据的处理分析、达到物探成果一维、二维、三维显示的目的,在叠加分析的基础上,实现人机交互地质解释。
9.3.3地球物理信息管理系统的实施
系统实施是在系统设计的原则指导下,按照详细的设计方案确定的目标、内容和方法,分阶段、分步完成系统开发的过程。
9.3.3.1系统硬件和软件的引进及调试
其实施过程如图9-4所示。
图9-4系统硬件、软件引进实施步骤
9.3.3.2系统数据库建立
包括各种基础地理数据、地质灾害数据尤其是物探数据的数据源选择,物探数据库点、线、面积测量方式的数据格式的定义,测点、测线及各物探方法属性表的命名原则的确定;按照地球物理方法的分类分别对每类勘探方法的数据库结构进行定义;数据质量检查、图形数据依据层次关系划分图层并建立层名和分层表。
9.3.3.3应用系统的开发
在基础地理信息系统的基础上,应用软件提供的二次开发语言及VB、VC进行编程,开发物探成果显示模块、开发数据库的维护与管理模块、开发人机交互地质解释模块、制定用户界面、建立图形符号库,输入空间和属性数据,编写用户手册等。
9.3.3.4系统测试和联调
对系统开发的每个模块均进行测试。模块组装完毕后,进行系统测试和联调。利用小区域的试验数据,对系统各项功能进行验证。及时发现问题,及时改正,直至符合设计要求。编写系统测试报告。
9.3.4系统的运行与维护
系统运行是指系统经过调试和验收以后,交付用户使用。系统维护是为保证系统正常工作而采取的一切措施和实际步骤。具体包括数据的维护、软件的维护和硬件的维护。定期更新数据,备份数据使系统数据始终处于相对最新的状态。严禁自行更改软件,按操作手册进行操作。
参考文献
黄杏元,马劲松,汤勤等.2001.地理信息系统概论.北京:高等教育出版社
黄伟,李大心,唐庆兵,刘志军.2002.基于GIS技术的工程物探数据管理与处理解释系统,物探化探计算技术,24(2),140~145
秦其明,曹五丰,陈杉等.2001.Arcview地理信息系统实用教程.北京:北京大学出版社
吴信才.2002.地理信息系统原理与方法.北京:电子工业出版社
周风林,洪立波等.1998.地市地下管线探测技术手册.北京:中国建筑工业出版社
张永波、张礼中,周小元,梁国玲.2001.地质灾害信息系统的设计与开发.北京:地质出版社
㈥ 西北地质灾害调查数据集成与服务系统建设初探
李 林 张红英 李 珂
(中国地质调查局西安地质调查中心)
摘 要 应用信息技术将海量的地质调查数据信息按照一定的标准进行数字化存储、管理,通过现代网络服务技术,不仅可以实现信息资源的目录查询,而且可以实现信息的空间查询、检索、浏览,及时有效地为用户提供综合客观的地质信息服务。本文基于此地质信息服务发展方向,依据西北地质灾害调查项目特点和空间数据库现状探索地质灾害管理与防治信息通过网络信息术进行集成与服务。系统基于地质数据库管理思想,架构于大型数据库系统(SQL Server2008)上,充分利用数据融合、集成及管理技术,空间搜索查询技术以及网络技术,采用 C/S 和 B/S 模式将地质灾害数据获取体系、数据管理与分析评价体系,以及数据共享与发布体系关联起来,探索实现集地质灾害的数据采集、信息分级管理、灾情评估、快速响应以及信息发布。
关键词 地质资料 数据集成 系统建设
1 引言
我国是世界上地质灾害最严重的国家之一,每年因地质灾害造成的直接经济损失占自然灾害总损失的 20% 以上,直接影响了人民的生活,制约了社会的可持续发展。国家对此很重视,尤其 1999 年以来地质灾害逐步成为地质环境工作的一项重要职能,越来越受到重视。随着地质灾害研究的深入和地质灾害资料的积累,地质灾害信息基础数据库日益庞大。如何管理这些基础数据乃至从中挖掘和组织出更有用的信息,这都是传统的方法和技术所难以胜任的。随着以 GIS 技术为核心的 3S(GIS,GPS 和 RS)技术在地球科学领域中的蓬勃发展,地质灾害的研究和信息服务工作开辟了一条崭新的途径,使得地质灾害信息共享和动态管理、综合分析和预测、快速预报和应急指挥等成为可能。
西北地质灾害调查数据集成与服务系统的建设就是探索将地质灾害管理与防治信息,通过网络数据库技术进行集成,打破时间、空间和部门分隔的限制,将地质灾害防治管理带入不断积累、科学管理和合理利用,地质灾害防治带入动态评估、快速响应、远程会商及应急指挥的良性循环轨道,系统全方位地实现了向社会提供优质、透明和高效的信息服务,达到了提高地质灾害防治管理效率和质量的目的。
2 系统框架
西北地质灾害调查数据集成与服务系统基于地质数据库管理平台,架构于大型数据库系统(SQL Server 2008)上,充分利用数据融合、集成及管理技术,空间搜索查询技术以及网络技术,采用 C/S 和B/S 模式将地质灾害数据获取体系、数据管理与分析评价体系以及数据共享与发布体系关联起来,实现集地质灾害的数据采集、信息分级管理、灾情评估、快速响应以及信息发布等功能为一体的综合应用。
3 数据集成内容
完整、齐全、有效的第一手资料是建立空间数据库的前提,而地质灾害所涉及的信息众多且来源广泛,能有效地对系统所涉及的多源海量数据进行管理、再现和分析是系统的核心、关键。本次数据集成依据西北地质灾害调查项目特点和空间数据库的建库现状,进行数据筛选、以确定建库所需的数据资料。
集成数据内容包括西北地区历年来完成的“县(市)地质灾害调查”与“1∶50000地质灾害调查”成果,目前分类别分阶段完成了西北“县(市)地质灾害调查”200 多个县市成果的地质灾害调查报告、成果图件及数据库等内容和“1∶50000 地质灾害详细调查”成果,包括延安等 30 个县调查报告、成果图件及数据库等内容进行整合。
为便于数据管理与分析,对地质灾害信息采用了分类、分组、分层的管理模式,将数据库划分为地质灾害调查数据库、地质灾害成果图件数据库、非结构化资料数据库(office 文档、照片、视频等)等多个专题数据库,每个专题数据库中的数据又由若干分组信息组成。易于实现整体查询和归并检索输出,同时也保证了系统的快速高效的性能要求。
4 数据处理与汇总
将地质灾害信息数据上载至集成与服务系统之前,须经数据整理与汇总集成,具体包括灾害调查属性数据整理、成果图件数据整理、图件图层文件整理、投影变换整理、图件图例统一、元数据等几方面的整理。
4.1 灾害调查属性数据整理
灾害调查属性数据整理,重点是根据最新版“县市地质灾害调查数据库”和“1∶50000 地质灾害调查数据库”格式为标准,整理崩塌、滑坡、泥石流、地面塌陷、地裂缝、遥感解译等地质灾害点属性表,统一属性结构;检查统一编码一致性,确保编码与空间位置、行政编码逻辑一致性;检查空间位置经纬度坐标表达是否正确;检查调查表关键属性的正确性,如灾害类型、规模、危害性、稳定性等关键字段是否为空,表达是否严谨、下属词是否正确。
4.2 图件数据整理
成果建库图件文件进行规范检查和统一处理,统一转换为西安 80 坐标系下的经纬度投影图件,所有建库图件及索引图件必须统一转换为 ArcGis Shape 格式,便于上传。
4.3 非结构化文档整理
office 文档、照片、视频等数据,是地质工作实践产生最多、利用率最高的数据。相对存储在各类数据库应用系统地质图数据库、矿产地数据库结构化数据,统称为非结构化数据。采用的处理解决方案是 Mapgis 图形统一为 Mapgis6.7 文件格式;Word、Excel、Powerpoint 文档统一为 office2003 文件格式;PDF 文档为支持汉字编码的 PDF 版本;图片、照片格式统一为 JPEG 格式;未列出的其他文件格式统一压缩为 ZIP 格式。
4.4 查询索引整理
索引整理主要将行政区划、图幅、工作程度等基本、常用检索方式进行统一要求整理。行政区划参照国家最新省、市、县、乡行政区,标准图幅分别按 1/50 万、1/25 万、1/20 万、1/10 万、1/5 万、1/1 万整理,工作程度以县为单元整理(表 1)。
表 1 查询索引属性表
续表
5 系统功能
5.1 地质灾害资料目录管理
地质灾害资料目录服务模块组织并管理地质灾害调查所有的基础与成果信息,是数据信息操作的入口,是整个软件系统数据管理的核心;表现为目录树窗口。地质灾害资料目录管理服务模块可为各个子系统公共调用。
为便于对数据信息的查找与索引,建立目录树结构应对数据进行分类。结合地质灾害调查的实际情况与多年来地质灾害建库经验,同时考虑数据性质、数据类型、数据用途等多方面因素,将信息分为自然地理、地质环境、地质灾害、风险管理与预测评价、气象预警和综合文档等六大类进行管理。大类由系统组织管理,在建库伊始确定,在数据库维护与使用过程中固定不变。其下各个专题可以依据部门以及项目需求自由组织管理,可与信息存放文件夹结构一致,用户可以根据部门及项目数据具体情况,通过调整数据存放路径来改变。
5.2 地质灾害元数据查询
数据查询检索,是在数据库中查找符合某些特定条件的数据信息,包括空间特征查询和属性特征查询。查询功能主要依据用户不同需求完成,能够实现查询结果的定位、闪烁与生成查询结果属性列表。
空间特征查询,包括点击查询、矩形查询、多边形查询,由用户在浏览窗口内用鼠标选取,是以用户交互的方式获取感兴趣信息。
属性特征查询,包括字符串查询、模糊查询和 SQL 查询,用户可以根据实际需要选择适当的方式,同时属性选择支持 SQL 查询和错误检验,输入 SQL 语句,即可进行查询。另外,属性选择还提供了一个查询向导,使用这一向导,一般用户可以很方便地进行属性选择。
5.3 地质灾害调查信息统计
对于数据库中入库的大量地质灾害调查数据而言,能够面向应用才是建库的根本目标,对于目前的研究水平以及应用层次,系统可以提供多种调查信息统计与基于统计的分析功能来满足项目管理的需求。
信息统计功能可以实现对于地质灾害信息属性的各种统计分析,并可将统计结果以图表、饼图、柱状图等形式直观展示。多种统计结果展现形式实现信息的高效管理。
5.4 地质灾害资料文档共享
数据输出包括图形数据和属性数据的输出,输出的范围包括当前查询结果输出和当前数据全集输出,输出方式有存盘输出和打印输出。图形数据的输出涉及图形数据的导出、图形数据格式转换输出、图形数据的生成输出。属性数据的输出涉及属性数据的其他格式导出、属性数据的统计及输出、属性数据的报表输出。
5.5 地质灾害调查信息网络发布
将数据入库整理后,挖掘出部分数据,构建网络信息发布数据库,自动发布地质灾害调查信息,为社会各部门提供不间断网络查询服务。
6 结论
(1)数据平台与数据挖掘服务的结合,在内容处理与信息二次加工方面能够得到极大的增强。挖掘服务可以帮助用户整理完善海量的数据,智能地对地质资料进行数据抽取和索引数字化,从而获得统一的标准化内容集,最终实现以海量内容驱动为基础的综合信息管理和服务系统。
(2)基于 B/S 和 C/S 网络的跨部门、跨地域分布式模式,可以做到资料信息即时产生即时更新维护,减少了传统手动管理的时间延时,从而最大程度地提高资料管理的质量和效率。
(3)系统支持面向空间位置、核心元数据、专业关键词和电子介质文档内容的文字检索等多种资料查询检索模式。
(4)针对地质矿产行业特殊资料如 Mapgis 图件、文档报告等,都给出了特殊的处理方法和解决方案,方便用户利用、浏览。
(5)通过网络和数据库系统安全控制机制,能够保证电子介质资料在线预览的安全控制和脱机安全控制。基于多级角色权限管理模式,实现细粒度的功能控制,最大限度地保证系统平台的安全访问。
(6)此平台基础上集成构建西北地区地质灾害资料管理库,初步形成西北地区地质灾害调查成果数据库管理系统的框架结构,为成果资料信息的社会化共享和服务奠定基础。
该平台专门针对海量异构地质资料数据集成应用难题,提出对包括综合成果、中间研究成果、图件、档案等多种非结构化资料实施分布式统一管理,跨部门、跨地域透明检索的专业解决方案。通过在地质专业核心元数据和地质主题词库基础上构建动态编目、全文检索,以及对地质图件缩略图、在线显示和内容检索的支持,使其更具行业特色,查准率更高。
㈦ win7 32位 装地质灾害详细调查录入系统 安装蓝屏 怎么解决
电脑蓝屏一般会是物理内存存在原因引起的!通常情况下重起就可以解内决问题了!有时候软件容上的冲突也可能造成电脑蓝屏...不过说到底,软件冲突也就是内存的问题导致蓝屏的!还有某些病毒也可能导致电脑蓝屏的,那么还是建议你好好杀杀病毒,建议你使用360杀毒软件进行病毒查杀;并用优化大师优化下系统!还有就是硬件兼容性方面的原因..兼容性的问题也能导致蓝屏的!具体原因还得靠你自己判断了.
㈧ 地质灾害灾情评估系统
一、地质灾害灾情评估类型
地质灾害灾情评估有多种类型。根据地质灾害灾情评估时间,分为灾前预评估、灾中跟踪评估、灾后总结评估。其评估目标虽然基本相同,但评估的特点和方法不完全一致。
灾前评估是对一个地区或一个潜在的地质灾害事件的危险程度和可能造成的破坏损失程度的预测性评价。它的目的除了为减灾决策和防治工程提供依据外,还可以对地区经济发展规划、城市建设规划以及土地资源合理开发利用等提供参考依据。由于地质灾害,特别是崩塌、滑坡、泥石流等突发性地质灾害是具有很大不确定性的随机事件,所以一般采用风险分析方法核算灾害的期望损失,据此评价灾害的风险水平。其具体方法和过程是:在分析地质灾害历史活动程度和形成条件的基础上,通过危险性评价,确定地质灾害事件的发生概率和成灾范围;通过易损性评价,核算危害区内各种受灾体的数量和可能损毁程度;通过破坏损失评价,核算灾害的期望损失,划分风险等级;通过防治工程评价,分析灾害的可防治性和可能效益,提出防治灾害的最优方案。
灾中跟踪评估和灾后总结评估都是在灾害发生以后,对已经出现的灾情进行调查、统计、分析,其主要目的是为及时,有效地进行救灾、抗灾提供依据。灾中跟踪评估是对那些规模巨大、破坏严重、成灾活动有一定时间过程的地质灾害进行适时评估。其基本要求是,在灾害发生后的一定时限内,迅速对灾情作出首次评估;随着灾害的发展,每隔一段时间,及时将最新灾情作出适时评估;直至最后灾害过程结束后再作总结评估。灾后总结评估是指在灾害过程结束以后,对灾害情况进行的全面评估。灾中跟踪评估和灾后总结评估的基本方法是调查、统计,对于灾害规模较小,成灾范围有限的地质灾害,一般通过全面调查,获得灾情要素;对于成灾范围较大,受灾体数量很多的地质灾害,可以采用抽样调查统计方法实现灾情评估。
根据地质灾害灾情评估范围或面积,将地质灾害灾情评估分为点评估、面评估、区域评估。
点评估是指对一个地质灾害体或一个具有相同活动条件和特征的相对独立的灾害群的灾情进行的评估。如一个滑坡或滑坡群、一条泥石流沟或同地区紧邻发育的泥石流群等。点评估的范围一般不超过几十平方公里。其行政区范围一般不超过几个乡(镇)或一个县(市)。面评估是对一个具有相对统一特征的自然区域或社会经济区域(如一个小流域或一个城市)进行的地质灾害灾情评估。评价区面积一般从几十平方公里到几千平方公里。其行政范围一般为一个县(市)或几个县(市)。由于进行面评估的地区都是地质灾害危害比较严重的地区,所以地质灾害一般有几十处或几百处,而且常常不是一种地质灾害,而是几种地质灾害的综合评估。区域评估是指跨流域、跨地区的大面积的地质灾害灾情评估。其评估范围为一省或几省乃至全国区域,面积达几万到几百万平方公里。区域评估区内灾害点成千上万,常常难以准确计数,涉及的灾种几乎包括所有类型的地质灾害。
不同范围地质灾害灾情评估的目的、基础、途径和方法不尽一致。点评估的对象是具体的单一的灾害体或灾害事件,通过评估能比较准确地量化它的损失水平和风险程度,为具体的防治工程提供依据。点评估是在对灾害活动条件和受灾体易损性进行深入研究的基础上进行的,其基本手段除了专门性调查统计外,还需要进行必要的测试和实验。它所使用的各种指标以及得出的不同层次的评价结果,基本上达到绝对的量化程度。面评估的目标是认识一个有限地区的地质灾害的破坏损失程度或风险水平,其意义除了指导灾害防治工程外,还将为地区规划和资源开发提供依据。面评估的基本内容与点评估基本一致,仍然是危险性评价、易损性评价、破坏损失评价和防治工程评价。但其所采取的调查方法一般限于全面调查统计,辅以必要的重点深入调查;所使用的指标和各层次的评价结果虽然达到绝对量化程度,但精度要低于点评估。区域评估的目标是对大面积区域性地质灾害的破坏损失或风险程度进行评价,其意义是为宏观减灾决策和区域经济规划提供依据。区域评估仍以“四评价”为中心内容,采取的基本方法是区域性调查和相应的统计分析;所使用的指标和各层次的评价结果一般达到相对的量化程度;所取得的评价结果主要体现在风险区划上。
综合上述,将点评估、面评估、区域评估的基本特点总结于表4-1。
表4-1地质灾害评估范围分类及其特征表
二、地质灾害灾情评估系统
总结本章以上内容,根据评估时间,地质灾害灾情评估分为灾前预评估、灾中跟踪评估、灾后总结评估;根据地质灾害灾情评估范围分为点评估、面评估、区域评估;各种类型灾情评估的基本内容为危险性评价、易损性评价、破坏损失评价、防治工程评价。这些结合在一起,构成了立体的地质灾害灾情评估体系,它反映了地质灾害灾情评估的总体构成(图4-3)。
图4-3地质灾害灾情评估体系示意图
本课题根据这一评估体系,进一步探讨地质灾害灾情评估的理论基础,并结合典型实例,以“四评价”为基本内容,进行崩塌-滑坡、泥石流、岩溶塌陷、地裂缝、地面沉降、海水入侵、膨胀土等地质灾害的点评估、面评估以及综合地质灾害的区域评估。鉴于灾中跟踪评估和灾后总结评估基本上是属于灾情统计范畴,可以应用一般统计原理和方法进行分析评价。所以,本课题在对历史地质灾害灾情进行统计评价的基础上,重点研究灾害预评估的理论与方法。所有这些内容将在后面的章节进行进一步论述。
㈨ 地质灾害调查
按照防灾减灾需要,在县市突发性地质灾害调查与区划、地质灾害高易发区1∶5万地质灾害调查、地质灾害监测预警示范、地面沉降调查与监测、地震地质灾害调查、重大工程建设区地壳稳定性调查、南方岩溶区岩溶塌陷调查等方面取得了大量进展。
完成了我国山区丘陵县(市)地质灾害调查与区划。1999~2008年,开展了全国1640个山区丘陵县地质灾害调查与区划,调查面积650×104km2,涉及人口约7.9亿。调查工作以县(市)为单元开展,通过1∶10万地质灾害调查,在各调查县(市)圈定地质灾害易发区,建立地质灾害群测群防网络,编制重大地质灾害防灾预案,建立县级地质灾害信息系统,编制县级地质灾害防治规划。共调查并确定地质灾害及地质灾害隐患点24多万处,基本摸清了我国山区丘陵区地质灾害及隐患点发育分布现状,摸清了全国山区丘陵区地质灾害的主要类型和分布规律、划分了地质灾害易发区,为地方政府在社会发展和经济建设过程中合理利用土地、主动防范地质灾害提供了重要依据。我国滑坡、崩塌、泥石流高易发区面积约128×104km2,主要分布在黄土高原地区、渝中鄂西黔北地区和川西南滇西地区。中易发区面积约214×104km2,主要分布在东南沿海低山丘陵地区、湘赣粤桂山地丘陵地区、东北东部山地与山东低山丘陵地区和伊犁河谷地区。
推进了地质灾害高易发区1∶5万地质灾害调查与地质灾害监测预警示范。在开展全国县(市)地质灾害调查与区划基础上,在西南山区、西北黄土高原区、湘鄂桂地区地质灾害高发区以县级行政区为单元开展了地质灾害详细调查,提高调查精度,通过地质灾害严重区滑坡、崩塌、泥石流灾害详细调查与测绘,查明地质灾害及其隐患的分布、形成的地质环境条件和发育特征,并对其危害程度进行评价,圈定地质灾害易发区和危险区,建立地质灾害信息系统,建立健全群专结合的监测网络。2011年以来,开展了大渡河流域、雅砻江流域、湟水河流域等流域的地质灾害调查,进一步了解了地质灾害发育的地质背景条件及诱发因素和地质灾害发育分布规律,确定了流域内主要地质环境问题,总结了西部复杂山体地质灾害成灾模式。对四川、重庆、陕西等省特大型滑坡进行了调查和评价,查明了特大型滑坡的数量、类型与分布规律及滑坡形成的主控诱发因素,分析了特大型滑坡的演化模式与稳定性,开展了特大型滑坡灾害风险区划。在四川雅安、重庆巫山和奉节、江西、陕西延安、闽东南、云南哀牢山等地区,建立了典型地质灾害监测预警示范区,应用光纤传感、GPS和INSAR等高新监测技术,开展地质灾害监测数据采集、传输、分析与发布系统等方面的示范研究,开展了群测群防技术研究与示范,取得了一系列地质灾害监测预警仪器和预警信息管理软件等方面的重要进展。
地面沉降调查与监测工作为区域地面沉降防治提供了基础依据。完成了长江三角洲地区、华北平原、汾渭盆地等重点地区地面沉降和地裂缝调查,建立了以基岩标、分层标和GPS、水准测量为主的区域地面沉降立体监测网络,为地面沉降与地裂缝灾害监测、防治提供了坚实的技术依据,为国家和地方地质灾害防治规划、地质环境保护规划提供了技术支撑。在长三角地面沉降区,研制了真三维变系数地下水流与地面沉降耦合模型,开展了地面沉降监测与风险管理研究,针对深基坑降排水引起的工程性地面沉降问题开展了专题调查与地下水人工回灌试验研究。在华北平原地区,对各项控沉措施进行了研究,提出了典型沉降区地面沉降和地下水开采量控制目标。建立了汾渭盆地地裂缝带黄土流变本构模型,在流变实验基础上,开展了地裂缝城镇减灾示范研究。完成了京沪高铁沿线北京至沧州段沿线地面沉降监测。
应对地震灾害开展了地震地质灾害应急排查与次生地质灾害调查研究。汶川地震、玉树地震发生后,迅速组织相关人员启动紧急启动地震灾区的遥感应急调查,及时提供地震灾区遥感影像数据和解译成果以及地质信息资,同时开展地震地质灾害应急调查,为灾区减灾避灾、灾害(隐患)排查、灾情评估、灾后重建规划等提供了翔实的数据资料。围绕汶川地震地质灾害重大科技问题,开展了现场调查、深部地球物理探测、GPS位移监测和相关试验,获得了龙门山构造带主要活动断裂和汶川地震地表破裂发育分布详细调查资料,总结了地震地质灾害的发育特征及分布规律。
根据国家重大工程建设需要,开展了区域地壳稳定性调查评价。针对青藏高原交通基础设施建设,开展了青藏铁路沿线活动断裂调查,摸清了活动断裂基本特征,实现高精度GPS和地应力实时观测,确定了铁路周缘潜在灾害隐患点;编制了滇藏铁路沿线区域地壳稳定评价分区图,梳理了工程建设中需重视的施工灾害问题。完成了河西走廊、秦巴山区和川西高原等地与西气东输、三峡引水济黄、南水北调等重大工程管线相关的地区活动断裂规律研究、地应力测量和区域地壳稳定性评价。2008年以来,开展了北京主要活动断裂工程稳定性评价,对关键构造部位进行了地应力测量与监测,揭示了北京地区主要隐伏活动断裂的深部几何学特征和首都圈地区地壳浅表层现今地应力环境;开展了关中—天水经济区、黄河上游李家峡库区和中巴经济走廊带的活动断裂调查,分析了其地质灾害效应和相关重大工程地质问题;推动了南北构造带南段活动构造体系调查。
探索推进了南方岩溶区岩溶塌陷调查。2010年以来,以珠江三角洲地区为试点,开展了岩溶塌陷调查,提出了岩溶塌陷地质灾害调查工作指南。在此基础上,推进了武汉、湘中、桂中、皖江经济带等地区的岩溶塌陷调查工作,初步查明了岩溶塌陷发育的现状、类型和时空分布特点。参与了重大岩溶塌陷灾害应急调查,为地方政府抢险救灾及时提供技术支撑。
㈩ 地质灾害祥查调查录入系统中其他调查表野外记录信息怎么填不上
差别非常大,完全不是一回事。你先要了解灾害评估的基础知识,资源评估的基础知识。再了解野外灾害评估和压覆矿产评估的规范和要求。