工程地质信息技术及其应用
❶ 工程地质中的应用
大型建设工程(如核电站、港口、水库、工厂等)、高层建筑以及经济技术开发区的选址工作必须考虑到地质条件,这里主要指的是区域的稳定性、城市供水条件以及环境的污染状况等。
在城市开展地质工作,必须尽可能地避免对地表造成的破坏,为此,物探方法更受到人们的青睐。但是,在城市工作,工作场所受到很大的局限,接地条件差、已有建筑物的阻挡、工业电磁场的影响、振动及噪声干扰等,使得一些在野外行之有效的物探方法,在城市应用时,常感到束手无策。相反,放射性方法受上述不利因素的影响很小或完全无影响,近年来逐渐受到人们的重视。
应用放射性方法解决工程地质的地球物理前提是:不同的地质体或研究对象,其放射性元素的含量是不相同的,通过测定它们的放射性元素的含量、浓度或它们辐射出的放射性射线照射量率,就可以解决有关的工程地质任务。
(一)北京市区域稳定性研究
首都北京,是我国的政治、经济和文化中心。城市发展十分迅速,市区范围不断扩大。城区人口密集,高层建筑星罗棋布。然而,北京在历史上是地震活动区,因此,研究北京市区域稳定性具有极为重要的意义。
北京市位于华北平原北端,覆盖厚达数百米以上。因此,在北京市区内开展地质工作,必须更多地借助于物探手段。但是,市内建筑栉比,道路纵横,电网林立,管道密布。电磁干扰、振动、噪声的影响相当严重,致使电法、磁法、地震等物探方法难以施展;重力测量只能在夜深人静之时开展工作。相反,放射性方法不受上述因素影响,能正常进行。为验证并追索航磁推断的三条隐伏大断裂,在测区内投入了γ总量、静电α卡法及α杯法;测线总长度达数十千米。
在图7-34中,0~600m之间,α卡、α杯法均出现明显异常,峰位与已知F1断裂相吻合,在推断的F2断裂附近,α卡、α杯所获异常明显,为F2断裂的存在提供了证据;曲线表明,异常密度大,反映了F2断裂破碎范围较宽。在剖面0~1600m之间,α卡及α杯测定值跳变强烈,异常呈多峰状,这可能反映该处构造发育,岩石破碎。可能是由F1以及F2影响所致。
在推断断裂F3及F4处,即剖面2400m及3600m处,α杯、α卡法均有异常显示。但2400m处为高异常峰,而3600m处异常幅度则小得多。F4断裂是否存在值得进一步研究。
(二)深圳市区区域稳定性研究
深圳市为我国重要经济开放城市。从已有地质资料上分析,区内分布有一组北东东向的罗湖断裂。过去曾认为罗湖断裂纵贯市区,将是市区建筑的不利因素。为查明区内构造格架的基本特征,布置了400km2的静电α卡法及甚低频法等。
图7-34 放射性勘探剖面
图7-35是该区构造格架示意图。工作查明区内除分布有罗湖断裂外,新发现莲花山断裂和走向北西的断裂,莲花山断裂是市内主干断裂,它位于罗湖闹市区以北约5.6km处,并延伸入海。它对市政建设影响甚小。罗湖断裂则是莲花山断裂的次级构造,且被后期北西向断裂截成数段,使其难以再次发生较大活动。由此认为,深圳市的区域稳定性较好,为该市的城市规划提供了重要的地质依据。
图7-35 构造格架示意图
❷ 地质信息技术的发展历程
地质信息技术的发展始于20世纪60年代初。最初是物、化探数据处理和模型正、反演的计算机应用,接着是20世纪70年代中期基础地质信息的RS技术和地质图件编绘的CAD技术引进,再接着是80年代初测试数据和描述性数据管理的DBS(数据库)技术引进,以及地质过程计算机模拟理论和技术的兴起,然后是90年代初用于空间数据管理和空间分析的GIS技术引进,随后是90年代后期野外地质测量的GPS技术和GPS、RS、GIS集成化概念的引进,最后是21世纪初用于地质数据分析二维、三维一体化技术及信息共享服务的云计算技术。这里需要着重指出,地球空间信息科学在地质信息科学近期发展中所起的促进作用。所谓地球空间信息科学是一个以系统方式集成所有获取和管理空间数据方法的学科领域,它是地球信息科学中较为成熟的分支学科,其技术体系由“GPS、RS、GIS——3S”及其集成化技术、计算机技术和网络通信技术等组成。地球空间信息科学为地球科学提供空间信息框架、数学基础和信息处理技术。由于地矿勘查对象都带有空间特征,地球空间信息科学从理论、方法和技术等方面深刻地影响着地矿勘查工作。上述3S及其集成技术一出现,便被引进地矿领域。由于地质科学和地质勘查对象及技术的特殊性和复杂性,所引进的各种信息技术成果都经过了改造和再开发,并与原有的技术融合和集成——“多S”集成,才成为今天的地质信息科学技术体系。
因此,地质信息科学的技术体系是在借鉴和引进遥感技术、数据库技术、计算机辅助设计技术和地理信息系统技术的基础上发展起来的。由于地质信息及其处理本身极端复杂,需要有“多S”结合与集成,另外缺乏专门的技术体系和方法论体系研究,因此,至今也没有形成一个如同“GIS”和“3S集成”对于地理信息科学那样完整的技术体系和方法论体系,多数地质信息技术的应用仍然是孤立和分散的。近几年,随着“数字地球”的提出,各国政府和地矿部门纷纷把地矿勘查工作信息化的构想付诸实施,大大促进了地质信息技术的发展。
❸ 举例说明工程地质学应用的领域 简述滑坡的主要影响因素
2、简述滑坡的主要影来响因素。(自30分)
答:滑坡是斜坡上土体 、岩体或其他碎屑堆积物沿一定的滑动面作整体下滑的现象。
影响滑坡的主要因素:
1.岩性:松散堆积层的滑坡主要和粘土有关。基岩滑坡主要与遇水容易软化的岩石有关;
2.构造:滑坡与构造的关系主要有两个方面:一是与软弱结构面的关系,不论是松散堆积层还是基岩,滑动面常常发生在顺坡的层面、节理面、不整和接触面、断面层(带)及劈理页理面上;二是与上部透水层和下部不透水层的构成特征有关。
3.地貌:滑坡与地貌的关系主要是通过临空面、坡度和坡地基部收冲刷来体现的。
4.气候:气候主要是通过降雨和温度对滑坡产生影响。
5.地下水:绝大多数滑坡都是沿饱含地下水的岩体软弱面发生的。
6.地震:地震可通过松动斜坡岩土体结构、造成破裂面和引起弱面错位等多种方式,降低斜坡的稳定性。另外,地震作用力突然施加还会对斜坡的破坏产生触发效应。
7.人为因素:人工切坡过陡、用大爆破方法施工等人为因素促使滑坡发生。为了了解滑坡的稳定性,要查明滑坡形态、范围、结构特征等。
❹ 地质信息技术专业是文科还是理科 就业方向有哪些
地质信息技术专业,
是理科。
地质信息技术专业面向地质矿产勘查、开发和国土资版源行业权,培养了解地质矿产勘查开发基本知识和地质工作一般的方法,熟练掌握地质信息技术基本原理和基本方法,使学生具备运用地质信息技术进行地矿资源数据处理、储备计算、各类图件编绘、空间数据分析与应用能力。
❺ 举例说明工程地质学应用的领域
工程地质学主复要研究建设地区和制建筑场地中的岩体、土体的空间分布规律和工程地质性质,控制这些性质的岩石和土的成分和结构,以及在自然条件和工程作用下这些性质的变化趋向;制定岩石和土的工程地质分类。由于各类工程建筑物的结构、作用、所在空间范围内的环境不同,所以可能发生的地质作用和工程地质问题也不同。据此,工程地质学往往分为水利水电工程地质学、道路工程地质学、采矿工程地质学、海港和海洋工程地质学和城市工程地质学等。工程地质学的研究方法有运用地质学理论和方法查明工程地质条件和地质现象空间分布、发展趋向的地质学方法;有测定岩、土体物理、化学特性,测试地应力等的实验、测试方法;有利用测试数据,定量分析评价工程地质问题的计算方法;有利用相似材料和各种数理方法,再现和预测地质作用的发生、发展过程的模拟方法。随着计算机技术应用的普及和发展,工程地质专家系统也在逐步建立。
至于其应用的领域,主要是铁路、高速公路、隧道、桥梁、工业与民用建筑、水利工程等。
❻ 在工程地质调查中的应用
一、在水利工程中的应用
水利工程有堤坝、堤岸、渠道、输水洞等。地球物理方法在水利工程中的应用,一方面用于工程场地的选址勘查,查明被选区域的岩溶发育情况、覆盖层厚度、风化层厚度以及地质构造等情况,对拟建工程场址的稳定性和建筑适宜性作出评价;另一方面用于水利工程的质量隐患检测,查明坝体是否存在有裂缝、空洞、动物巢穴、管涌等工程质量隐患,为水利工程的消险加固提供依据。目前,常用于水利工程隐患检测的物探方法有地质雷达、自然电位法、高密度电阻率法、人工地震勘探以及声波测试等方法。
1.探测堤坝蚁巢与洞穴
土体堤坝中因碾压不实、库水浸透或动物危害等因素,在坝体中常出现土洞、动物巢穴等危害坝体安全的隐患。在我国南方各省(区)水利工程中白蚁巢穴是一种常见的隐患,白蚁主巢直径一般在40~60 cm,大者可达数米,主巢周围分布着几十个甚至数百个卫星菌圃,其间由四通八达的蚁道沟通,且有的贯穿堤坝的内处坡。因此,深藏于堤坝中的白蚁危害造成的堤坝险情和溃堤率远高于其他原因,找出堤坝白蚁巢是消除堤坝白蚁隐患的关键。地质雷达和高密度电法是对坝体中的土洞、动物巢穴探测的有效方法。图5-1-1是埋深约3m的白蚁主巢的地质雷达图像,白蚁巢在图像上的反射波形态特征为多重强弱交错的凸形条纹区,与周围土壤有明显的分界。
图5-1-1 某堤坝白蚁巢穴的地质雷达图像
2.水坝渗漏的地球物理探测
渗漏是水坝常见的隐患,是造成水坝发生事故的主要原因。水坝渗漏可分为坝基渗漏和坝体及附属结构渗漏,坝基渗漏较为常见。造成水坝渗漏的原因与水坝基础处理的好坏、坝体施工质量、坝基下方地质构造等因素有关。
自然电位法探测水坝渗漏点和渗漏通道是一程常用的方法。由于库水具有天然吸附带电离子的能力,当水库发生渗漏时,带电离子也一起运动,形成电流场,在渗漏位置上自然电位出现负异常,其负异常的大小与渗漏水量有关。图5-1-2是利用自然电场法确定地下水和地表水补给关系的实例。当地下水补给地表水时,在地面上观测到自然电位正异常。图5-1-2(a)为灰岩和花岗岩接触带上的上升泉的自电正异常;图5-1-2(b)为水库渗漏地点上出现的自然电位负异常。
图5-1-2 用自然电位法确定地下水与地表水的补给关系
地质雷达方法用于探测水坝渗漏点和渗漏通道也具有较好的效果。渗漏部位土体的含水量变大,与未发生渗漏的土体形成明显的介电常数上的差异,为采用地质雷达方法探测水坝渗漏位置提供了地球物理条件。黑龙江省某水坝为均质土坝,1998年遭受百年不遇的洪水后,在水坝后坡出现多处面积不等的漏水点。为了查明漏水点在坝体内的分布情况,采用地质雷达在坝顶、坝前坡和后坡进行了探测。图5-1-3为坝顶测线K0+240—K0+400的地质雷达剖面。图中强振幅异常推断为坝体内受到水浸较重的部位,异常埋深为10~12 m。钻探结果表明地质雷达推断的异常区域是发生渗漏的严重区段。
图5-1-3 黑龙江省某水坝地质雷达探测剖
3.坝基帷幕灌浆效果检测
对病险水库的维护处理一般采用帷幕灌浆等方法,灌浆效果的好坏需要采用物探方法检查。某电站大坝岩基帷幕灌浆前后进行超声波探测,图5-1-4是质量检查孔在灌浆前、后的超声波检测曲线,图中可见,在检查孔中上部,灌浆前和灌浆后的波速值差异非常明显,灌浆前岩体的裂隙率高,波速较低;灌浆后岩体裂隙被水泥浆填充,且粘结牢固,波速明显升高。在检查孔的下部,灌浆前和灌浆后波速差异微小,波速较高,这说明岩体本身比较完整,渗透性小。
图5-1-4 质量检查孔灌浆前后声波检测结果
地质雷达对水坝帷幕灌浆质量检测也有较好的探测效果,根据地质雷达图像上灌浆物的影像可计算出有效灌浆深度和水泥浆扩散半径。根据坝体土体和基岩处的强反射弧形影像,可判别已被灌浆物充填的溶洞的大小、形态和深度以及未被灌浆物充填的溶洞、土洞等隐患。
4.古河道的地球物理勘查
古河道常引起大量渗漏,在水库建坝时需对坝基下古河道的地质情况进行详细勘查,了解古河道的分布范围,埋深以及砂砾石厚度等。探测古河道常用的物探方法是电测深法、自然电位法、地震勘探和地质雷达等方法。
图5-1-5 用对称四极剖面法追索古河道的ρs剖面平面图
图5-1-6 横穿古河道的对称四极剖面ρs曲线
图5-1-5和图5-1-6为对称四极剖面法探测和追索古河道的实例。由图5-1-5中各对称四极剖面特征可以看出,在低阻背景上有一高阻异常带。该高阻异常带推断为古河道的反映,该河道由一条主流和一条支流组成。此外,利用ρs曲线特征可大致确定出古河道的形态、中心位置和宽度。若ρs曲线具有对称性,ρs曲线极大值对应于古河床最深的中心位置。若ρs曲线不对称,可根据曲线两翼陡缓推断古河道两岸坡度的大小(图5-1-6),其视宽度可由ρs曲线的拐点位置大致确定。通过等ρs断面图上的等值线形状可反映出古河道的断面形态。由图5-1-7可见,在371号点附近ρs等值线呈高阻闭合圈。结合当地的水文地质条件,推断该异常为一浅层古河道引起。经ZK8、ZK10、ZK11孔验证,证实了古河道的存在,ZK11打到了富含地下水的砂砾石层。
图5-1-7 云南某地寻找浅层砂砾石富水地段(古河道)成果图
图5-1-8为地震横波法探测古河道的实例剖面图。根据钻探资料推测该区域一带有一条古河道,河道埋深为20~30 m,为了查明古河道的位置,采用横波地震勘探。图中可见,40 ms左右的同相轴为第四系地层内部的反射,同相轴连续性好、起伏小;140~220 ms为古河道及两岸附近地层的反射,同相轴连续性好、起伏较大,其形态特征反映了古河道的形态,河道埋深为28 m左右,视宽度约为130 m。
图5-1-8 横波t0时间剖面
二、在交通建设和维护中的应用
1.公路质量检测
公路质量检测的原始方法是采用钻探取心法,该方法不仅效率低、代表性差,而且对公路有破坏。为了快速、准确和科学地评价公路质量,必须采用无损检测方法。目前,常用于公路检测的物探方法有地质雷达、瞬态面波法、高密度电阻率法和人工地震等方法。在这些物探方法中,由于地质雷达方法具有快速、连续、无损检测的特点。因此,在公路质量检测中得到更加广泛的应用。
图5-1-9 电磁波在公路剖面中的传播
高速公路是由土基础、二灰土、二灰碎石、面层等构成,由于空气、沥青面层、二灰碎石、土壤等介质的介电常数不同,电磁波将在其介质发生变化的界面产生反射波。图5-1-9为电磁波在公路剖面中各界面的传播、反射途经示意图。图5-1-10为电磁波在公路剖面中各界面的扫描示意图。
图5-1-10 电磁波在公路剖面中各界面的扫描
长春至四平高速公路采用沥青路面,路面下为碎石垫层。路面分三次铺设完成,设计路面厚度为25 cm。在工程竣工前采用地质雷达进行了路面厚度检测。
工作中使用的地质雷达为SIR-2型,工作天线频率为900 MHz。图5-1-11为长春至四平高速公路上某段路面的地质雷达检测剖面图,图中5.8 ns附近的强反射为沥青面层与碎石垫层界面的反射,根据反射界面的双程走时和电磁波在沥青路面中的传播速度计算出路面厚度。沥青路面的电磁波速度采用实验标定并进行统计后得到。检测结果表明,由于二灰石垫层凸凹不平,导致沥青路面厚度有较大变化,最薄为26 cm,最厚为43 cm。达到了设计的要求。路面厚度评价按国家公路路面结构层厚度评价标准进行。在经数据处理后的地质雷达剖面中读取电磁波在面层中的反射波双程走时,计算出面层厚度并作出厚度评价结果。
地质雷达方法在公路质量检测中除可进行路面厚度检测外,还可进行路基隐患(脱空、裂缝等)的检测以及桥涵的质量检测。有些学者开展了地质雷达对公路压实度、强度及含水量的检测研究,也取得了较好的检测效果。
图5-1-11 长春至四平高速公路某段路面的地质雷达检测剖面
2.铁路路基病害勘查
铁路路基病害一般指铁路路基平台顶部结构不坚实而且渗水,以及原填充物的不均匀性,经长期雨水冲刷和渗透,行车振动等所形成的一定规模的充坑,洞穴或渣石填充物。路基病害比较隐蔽,一旦受到外界因素影响造成塌陷,将直接威胁行车安全,因此,铁路病害的勘查十分重要。
路基勘查中,由于受到电磁干扰、铁轨干扰及行车震动干扰的影响,限制了一些地球物理方法的应用。因此,目前常用于对铁路病害检测的物探方法是微重力测量。
由于路基的病害地段和完整地段有一定的密度差异,为微重力测量提供了前提。图5-1-12是法国波尔多至塞特铁路线上路堤下喀斯特溶洞的微重力异常等值线图,测量位置位于铁路线巴尔萨克处,勘查对象是5 m高的路堤和路基部。图中可见,在该带中部有一处密度较大的地段(异常达3×10-1g.u.),这是一处过去曾进行过灌浆处理的地段。在过去处理时,由于突然塌陷,未能进行专门研究。在地段两端出现-2×10-1~-6×10-1g.u.两处异常,位于边坡基部并向路基底下延伸。经对异常的解释和钻探验证,证实在路基下3~6 m深处的灰岩中存在喀斯特溶洞。
图5-1-12 波尔多至塞特铁路线上路堤下喀斯特溶洞的测定和处理
铁路路基多是用耕土堆垫压实而成,如果出现路基病害,必将引起电性差异。路基位于地面以上(或潜水面以上),所以无论是洞穴或渣石充填物都可使勘探体积所涉及范围内的视电阻率增大,由此对称四极剖面会出现高阻异常。路基病害越严重,规模越大,高阻异常越明显。例如,图5-1-13是陇海路某段采用对称四极剖面法实测曲线,采用AB=7 m,MN=1 m装置,由图可见,全线有三种病害形式:①较大洞穴或渣石填充物的严重病害段,视电阻率曲线值很高;②病害较重段,视电阻率曲线呈高低交错;③轻度病害段,视电阻率较高,视电阻率曲线呈高低交错。病害严重段的影响可至路基外侧钢轨下,是亟需处理部位。轻度病害段,短期内不会形成大的病害,可作为今后雨季的防范对象。
根据物探测量和钻孔所提供的资料,可以确定出需要灌浆地带,得出最佳的工程计划。灌浆处理后,除打钻检查外,还可以进行微重力测量,以圈出灌浆不足或灌浆过量的地层。图5-1-14是在一已知灌浆地带,对灌浆后地层的重力异常变化,与计算机根据模型(用灌浆前的钻孔资料制作的地质模型)计算出来的理论异常曲线对比图5-1-14(a),可以看出,该地带的右半部灌注未超出预计范围,也未出现重力异常。在模型左半部出现剩余异常,表明灌浆不足。图5-1-14(b)是灌浆容量对比图,图5-1-14(c)是地质模型(沿Ⅰ号测线的剖面)。
图5-1-13 路基勘查剖面图(选段)
图5-1-14 巴黎—斯特拉斯堡铁路线上瓦朗吉维尔处
近年来,使用瞬态面波进行铁路路基承载力的检测也取得了较好的结果,为路基病害的确定和治理提供了可靠数据。
利用瞬态瑞雷面波法测试线路路基承载力时,由于受到行车影响,在测线布置时只能在枕轨外侧或路肩上进行。由于瑞雷面波是一个体波,具有体积勘探的特点,因此可代表路基道心的实际情况。瞬态面波数据采集时使用面波仪和低频检波器测量。震源采用18磅大锤和铁板。道间距随着勘探深度的增大而相应增大。数据处理主要是求取频率—速度频散曲线,对频散曲线经过反演拟合并结合路基的实际情况进行分层,计算出各层厚度及瑞雷波的层速度。通过频散曲线上vR数值的大小可以定性地判断测点处瑞雷波速度随深度的变化情况和路基的相对强度特征,vR较高区域反映路基强度较高,vR较低区域反映路基强度较低。
在部分瑞雷波测点上作轻型动力触探(N10)值,根据铁道部轻型动力触探技术规定(TBJ18—87)将N10值换算为乘承载力σ0(σ0=8N10-20),然后将瑞雷面波速度vR与相对应测点的轻型动力触探(N10)击数进行数学统计分析,得到vR与N10的相关关系式:
环境地球物理教程
式中A、B为常数。当相关系数r>0.7时,说明vR与N10是相关的,可用vR代替N10来计算承载力σ0的大小,即:
环境地球物理教程
根据此式可用vR定量计算路基的承载力。
图5-1-15 承载力等值线图
图5-1-15为京广线部分区段K2011+170—K2100+270段路基瑞雷波测试,并按上述换算关系(取A=91.07913,B=2.940517)换算得到的承载力等值线图。图中在K2011+230附近路基的承载力偏低,约为80 kPa。而在其两侧的路基的承载力相对偏高,约为180 kPa。此结果与现场实际的情况非常吻合。
3.隧道掌子面前方地质情况预报
在隧道挖掘过程中常因掌子面前地质情况不详,在不良地质地段经常出现塌方、涌水等现象,严重时会造成人身伤亡和设备损坏等重大事故,造成巨大的经济损失。因此,在隧道掘进过程中及时了解掌子面前方地质情况,特别是断层、破碎带等不良地质构造的规模和特征,这对确保施工安全、合理安排掘进方案、掘进速度和支护措施至关重要。
隧道掌子面前方地质情况预报可分为中长距离预报和短距离预报,中长距离预报采用的物探方法一般是人工地震,短距离预报可采用地质雷达或声波探测。
吉林省某公路隧道岩石以花岗岩为主,其中穿插有角闪岩及绿泥角闪岩破碎带,岩石节理裂隙发育。在掘进方向上有两组断裂(走向为NNE及NNW)交替出现,与EW向小断层及破碎带相切割,形成屋顶形,易产生大块脱落体。为了施工安全及合理设计掘进方案,采用人工地震和地质雷达相结合进行掌子面前方地质情况预报。人工地震方法的实施是在掌子面不同高程上水平布置几条地震测线,用石膏在掌子面上等距离粘接检波器,使用大锤在测线两侧激发和接收地震波。地质雷达方法的实施是在掌子面两侧洞壁及掌子面上水平布置雷达测线,使用100MHz天线等距离点测采集。
图5-1-16为在桩号K241+138掌子面上人工地震中长距离预报的解释结果,在K241+138—K241+063段有断层3处,岩性异常带一处。推断位置为K241+115、K241+120、K241+136和K241+068。挖掘证明,有断层2条(F115、F136),出露位置与推测位置相差1 m左右,走向近EW,断距0.3 m。桩号K241+068处为破碎带,宽度约10 m,系由伟晶岩及角闪岩多次侵入造成。
图5-1-16 桩号K241+138地震中期预报结果示意图
图5-1-17 桩号K241+247雷达短期预报结果示意图
图5-1-17为K241+247掌子面上地质雷达短距离预报的解释结果。洞两壁检测到断层3条(F1、F2、F3),走向为NNE和NNW。按几何关系推测,F1与F3在掌子面前方10 m附近相互交会,F2与F3在掌子面前方约35 m附近相互交会。掌子面上测量到前方断裂5条,分别为F242、F239、F235、F230、F225,走向近EW,与F1和F3断层相切割,洞顶极易形成塌落的块体,对施工安全有严重危害。挖掘证明,掌子面上地震与地雷达探测所预报的结果与地质构造出露位置接近。根据预报的结果,施工单位及时调整掘进方案和掘进速度,采取了更合理的安全防范措施。
4.隧道衬砌质量检测
隧道衬砌后,受诸多因素影响,衬砌混凝土可能出现厚度未达到设计要求或有脱空等质量问题。为及时发现衬砌质量问题,需对隧道衬砌质量进行快速和高分辨率的检测,为隧道工程的科学管理提供依据。在隧道质量检测中最常用的地球物理方法是地质雷达方法。
地质雷达法进行隧道衬砌质量检测的主要内容是混凝土密实性、脱空和衬砌厚度。检测中一般采用500 MHz 或900 MHz高频天线,检测厚度可达几十厘米。测线一般布置在隧道的拱顶、拱腰及边墙三个部位(图5-1-18),拱顶为隧道的正顶部附近,拱腰为隧道的起拱线以上1 m左右,边墙为排水盖板以上1.5 m左右。测量方式采用剖面法,测点间隔一般为几厘米~几十厘米,由测量轮跟踪测量里程。
图5-1-18 测线分布图
隧道衬砌厚度检测中,相关介质的物理参数如表5-1-1所示。
衬砌厚度评价,首先在地质雷达剖面上确认出混凝土与岩石界面间的反射波同相轴,读取反射波双程旅行时间,按公式h=v×计算出混凝土衬砌厚度,速度V可通过明洞地段或钻孔资料标定。密实度的评价可根据探地雷达剖面反射波振幅、相位和频率特征划分为密实和不密实两种类型。不密实的混凝土体在雷达剖面上波形杂乱,同相轴错断;脱空体在雷达剖面上在混凝土与围岩交接面处反射波同相轴呈弧形,与相邻道之间发生错位,依此特征可计算出空洞的范围。由于爆破使围岩表面凹凸不平,因此,在确定脱空时应对剖面上的异常加以细致的分析和确认。
表5-1-1 隧道衬砌厚度检测中相关介质的物理参数表
某公路隧道全长约1.6 km,为全面了解衬砌质量,在隧道即将贯通前开展了地质雷达检测。该隧道衬砌类型有:Sm3、Sm4、Sm5,设计衬砌厚度分别为40 cm、35 cm、30 cm。图5-1-19为里程号K21+390—K21+430区段边墙测线的地质雷达剖面。该区段衬砌类型为Sm5。图中10 ns附近起伏变化的同相轴为围岩界面反射波同相轴,图5-1-20为计算出的混凝土衬砌厚度曲线。
图5-1-19 K21+390K21+430区段边墙测线的地质雷达剖面
图5-1-20 K21+390K21+430区段边墙测线混凝土衬砌厚度解释曲线
❼ 举例说明RS,GIS想结合在工程地质中的应用有哪些方面
GIS应用于工程地质,应该主要侧重于其空间分析和三维设计两个方面。
1、空间分析版,这是GIS特有的优势,特别权是针对空间位置的分析,而相关研究主题的空间位置也是工程地质研究的重要内容。
2、三维设计,GIS的另一优势就是良好的可视化表达,工程地质的研究成果可以经由GIS软件予以体现。
至于遥感,在工程地质中的应用主要有以下两个方面:
1、地质调查,利用高光谱遥感技术,可以实现对特定区域的地表岩层进行某些精细的分析,从而为地质研究提供有效的数据支持,减少人力与物力的投入,可以不到现场就可以详细指导当地的信息。
2、地质监测,可以对大范围区域的地质灾害等进行调查与检测……等
对于两者的结合那是显而易见的,GIS与RS不分家,RS是GIS重要的数据元。
❽ TDR技术及其工程地质应用
史彦新张青孟宪玮杨丽萍
(中国地质调查局水文地质工程地质技术方法研究所,河北保定,071051)
【摘要】时间域反射测试技术(Time Domain Reflectometry)是一种电子测量技术,许多年来,一直用于各种物体的空间定位和形态特征的测量。本文简要描述了TDR的原理,介绍了其在水位监测、岩石及土壤变形监测、土壤湿度测量方面的应用,提出了TDR技术应用于滑坡监测的技术方法。
【关键词】时间域反射测试技术同轴电缆工程地质滑坡监测
1前言
时间域反射测试技术(Time Domain Reflectometry)简称TDR,是一种电子测量技术,许多年来,一直被用于各种物体形态特征的测量和空间定位。早在20世纪30年代,美国的研究人员开始运用时间域反射测试技术检测通讯电缆的通断情况。在80年代初期,国外的研究人员将时间域反射测试技术用于工程地质勘查和监测工作,尤其在煤田地质方面应用较为广泛,常用于监测地下煤层和岩层的变形位移等。到90年代中期,美国的研究人员将时间域反射测试技术开始用于滑坡等地质灾害变形监测的研究,针对岩石和土体滑坡曾经做过许多的试验研究[1]。在国外,TDR技术的应用研究已经引起研究人员的广泛关注和政府部门的极大重视;国内在这方面的研究工作尚属于起步阶段。
2TDR的原理
TDR的早期形式是雷达,可以追溯到19世纪30年代,多数人比较熟悉。雷达通常由无线电发送装置、天线和无线电接收装置三部分组成,发射装置向外发射电磁波短脉冲,接收装置接收从被测物体返回的反射波,通过测量入射波与反射波的间隔时间,就能判定该物体的空间位置;对反射波进行细致的分析(例如振幅分析),可以得出更多的关于被测物体的信息。时间域反射测试(TDR)就是采用电缆中的“雷达”测试技术(Andrews,1994),在电缆中发射脉冲信号,同时进行反射信号的监测。
在TDR中,一个脉冲波(快速的阶跃信号)被发射入同轴电缆(如图1所示)中,脉冲信号在同轴电缆中传播的过程中,能够反映同轴电缆的阻抗特性。电缆的特性阻抗是电缆固有的属性,它取决于电缆内部的介质以及电缆的直径等因素。当电缆发生扭绞、拉长、中断等变形或者遇到像水之类的外界物质时,它的特性阻抗将发生变化。当测试脉冲遇到电缆的特性阻抗变化时,就会产生反射波。对入射波与反射波进行比较,根据两者的异常情况就可以判别同轴电缆的状态(断路、短路以及变形等)。如果TDR测试脉冲信号在测试电缆中的传播速度为Vp,发射信号与反射信号的时间间隔为Td,那么电缆至变形处的距离 d可由式(1)来表示:
图1同轴电缆示意图
地质灾害调查与监测技术方法论文集
由此可以推断出同轴电缆的状态发生变化的位置。
另外,如果测试脉冲信号为V1,反射信号为V2,那么其反射系数为:
地质灾害调查与监测技术方法论文集
根据线性传输理论,可以知道:式中:Rt——变形后电缆的阻抗;
地质灾害调查与监测技术方法论文集
R0——变形前电缆的阻抗。
由(3)式可以得出:
地质灾害调查与监测技术方法论文集
因此可以得出结论:①当 p=0时,Rt=R0,表示电缆的特征阻抗与电缆末端等效阻抗相匹配,发射信号得到了很好的传输,没有反射信号产生。②当ρ=+1时,Rt→∞,表示电缆末端处于开路状态,发射信号完全被反射。③当 p=-1时,Rt=0,表示电缆末端处于短路状态,发射信号完全被吸收。④当-1<p<+1(ρ≠0)时,表示电缆发生变形,并且产生反射波信号。这样,通过测量反射系数ρ,即测量反射信号的振幅,就可以判定电缆变形量的大小。
3TDR技术在工程地质中的应用
根据TDR测试信号遇到电缆阻抗发生变化时产生反射波的原理,可把TDR用于工程地质的很多方面。
3.1TDR用于监测水位的变化[2]
选择空气作填充介质的电缆,把电缆安装在监测井内,在空气与水的接触面,电缆的特性阻抗会大大减小。若向电缆内发射TDR测试脉冲,在空气与水的接触面处,就会产生反射波。测量反射波的时间,就可以推算出水位。当井内水位发生变化时,反射波到达的时间也发生变化:当水位上升,反射波到达的时间提前;当水位下降,反射波到达的时间延长(如图2所示)。这样通过监测反射信号的变化,就可以达到监测水位的目的。3.2 TDR用于监测岩石及土的变形
图2TDR监测水位
把电缆浇铸在钻孔中,使之与周围地层紧密结合。当周围岩石或土发生位移时,会对电缆进行剪切,使电缆发生变形,通过测量电缆变形的位置及变形量,就可判定周围地层发生形变的位置及位移量。
向电缆中发射TDR测试脉冲,当测试脉冲遇到电缆变形处时,就会产生反射波。通过测量反射波到达的时间和幅度,就可知电缆变形的位置及变形量,进而判定周围岩石及土的变形。
3.3 TDR用于测量土壤湿度[3]
TDR用于测量土壤湿度,是基于电缆中TDR测试信号的传播速度对电缆所接触的外界环境敏感的特性。由于水、空气、土壤颗粒的相对介电常数有很大差别,所以含水率不同的土壤,其介电常数是不同的,TDR信号在其中传播的速度也就不同。通过测量TDR反射波到达的时间,又已知同轴电缆传感器探杆的长度,就可求出TDR信号的传播速度,进而求出土壤的介电常数,这样,根据土壤介电常数与含水率的对应关系,就可以确定土壤的湿度。
4 TDR用于滑坡监测
在自然地质作用和人类活动造成地质环境恶化的条件下,斜坡发生变形破坏乃至整体移动就会产生滑坡。为了分析滑坡的形成机理、活动状态及其发展趋势,位移与变形的长期观测是滑坡动态监测的重要组成部分。由于TDR技术可用于监测岩石及土的变形,因此采用TDR技术对滑坡进行监测,就可以了解和掌握滑坡深部的位移与变形的动态变化过程。从理论上来说,TDR技术可以完成大量程的滑坡监测,其量程的大小只与测试电缆的特性有关,与监测钻孔的受损坏程度无关。
在滑坡的长期监测过程中,根据滑坡的实际情况,用钻孔打穿滑动面后直达稳定的地层,并且将同轴电缆放入监测钻孔,然后回填钻孔,使同轴电缆与周围地层紧密结合,对滑坡进行深部定位监测,以确定滑动面位置及其上部不同深度滑坡体的位移动态(如图3所示)。
在安放好测试电缆之后,滑坡体一旦产生滑移,其位移就会引起电缆产生形变,电缆变形导致电缆阻抗特性的变化,这时,安装在地面的滑坡监测系统对钻孔内测试电缆的这种形变进行监测。在发射测试脉冲信号的同时,对反射波信号进行数据自动采集,通过对监测数据(包括时间和幅度等)进行分析和自动处理,就能得到电缆变形处地层的变化过程,实现对滑坡的动态监测,为滑坡预测、预报、评价以及防治研究等提供可靠的数据基础。
图3TDR滑坡监测示意图
5结束语
由上可见,根据TDR技术的基本原理,可将其用于工程地质的许多方面。中国地质调查局水文地质工程地质研究所在潜心研究TDR技术原理的基础上,研制了TDR滑坡监测系统,并应用到长江三峡地质灾害监测的实际工程中,取得了不错的效果。
参考文献
[1]张青,史彦新.TDR滑坡监测技术的研究.中国地质灾害与防治学报,2001,6(2)
[2]史彦新,张青.TDR技术监测地下水位.严重缺水地区地下水勘查论文集(第2集),北京:地质出版社,2003
[3]孙玉龙,郝振纯.TDR技术及其在土壤水分及土壤溶质测定方面的应用.灌溉排水,2000,(2)
❾ 什么是地质信息技术
地质信息技术指在各类地质调查、矿产资源勘查和工程地质勘察领域应用的信息技术原理、版方法权与应用,其中包括地质信息科学与信息系统的基本概念,地矿勘查的数据管理、空间分析、信息处理、地质信息三维可视化、地质过程计算机模拟等方面的基本原理、设计知识与应用技能。
❿ 哪些专业学工程地质学这门课
地质工程专业是研究人类工程活动与地质环境之间相互制约关系,主要研回究如何获取地质环境条答件,并分析研究人类工程活动与地质环境相互制约形式,进而研究认识、评价、改造和保护地质环境的一门科学,是地质学的一个分支,是地质学与工程学相互渗透、交叉的边缘学科。主要课程《高等数学》、《大学外语》、《大学物理》、《大学化学》、《工程制图》、《大学计算机信息技术》、《程序设计语言》、《概率论与数理统计》、《普通地质学》、《矿物岩石学》、《构造地质学》、《第四纪地质与地貌学》、《地史古生物》、《工程物探化探》、《工程力学》、《测量学》、《土力学》、《岩体力学》、《工程地质原理》、《工程地质勘察》、《水文地质学基础》、《地下水动力学》、《水文地质勘察》、《地质工程设计》等。