淤泥质类土工程地质性质
Ⅰ 黄土工程性质
黄土工程地质(engineering geological property of loess)是指与黄土分布区工程建设施工及建筑物稳定条件密切相关的黄土的特殊性质,如黄土的湿陷性、压缩性、抗剪强度等。黄土的工程地质性质要阐明了许多出现的问题。基本内容
①黄土一般的工程地质指标,主要包括黄土的物理性质、化学性质和力学性质三大指标;②不同地貌单元、不同时代、不同成因类型的黄土的粒度成分、湿陷性及与湿陷性有关的特殊性质,不同区段内的黄土的湿陷性的评价;③结合区内工程建设进行区域黄土工程地质条件的评价及黄土工程地质区域的划分。在对黄土高原多次暴雨洪水灾害调研的基础上,提案指出:黄土高原水保措施基本能应对一般侵蚀性降雨,但抵御特大暴雨能力有限。由于黄土高原的水资源匮乏,长期以雨洪资源化为主要目标,存在“重蓄轻排”问题,较少考虑流域各地貌单元之间的汇水连通关系,加上工农业生产挤占沟道与河道,进一步导致了流域洪水泥沙连通性的恶化。在极端暴雨条件下,洪水超出流域蓄水能力,土壤侵蚀与洪涝灾害愈发严重,坡耕地沟蚀广布、梯田被严重破坏,在承接上方汇流的部位形成切沟或造成滑坡,庄稼被淹淤埋,淤地坝排水建筑物及坝体被冲毁,甚至淹没下游村庄、城镇,危及人民生命财产安全。同时,大多数流域无整体蓄水与排洪规划,水窖、坝库等措施的蓄水量无法与小流域用水需求相协调,既不能抵御极端暴雨洪水灾害,也不能有效搜集和利用雨洪资源,甚至一度造成“不下雨就干旱,一下雨就水灾”的尴尬局面。
Ⅱ 岩土类型和性质
岩土体是地质灾害的载体,地质灾害一般都是通过岩土体的变形破坏而表现出来的,是地质灾害成生的物质基础。
受地壳运动的控制,“兰—郑—长”工程地段分布有不同年代、成因、物质成份和结构的岩土体,类型复杂多样,工程地质性质各异,它们对地质灾害的形成、分布和活动起着主导作用。岩土体分布出露的特点是:山区、丘陵以岩体为主,而高原、盆地、平原则以土体为主;管线经过地段绝大多数是土体。下面分别就岩体和土体讨论其分布、类型、性质及对地质灾害成生的制约。
(一)岩体
岩体在管线工程地段主要分布于甘肃、陕西段的关山—陇山,山西段的中条山、霍山和太原东山,河南段的大交口镇—观音堂、义马—新安和大别山等地段,湖北、湖南段的大别山和江南丘陵地等地段,总长约300km,约占管线全长的10%。
参考国标《岩土工程勘察规范》(GB50021—2001)的规定,先将岩体按坚硬程度分大类,再由岩石的成因类型、岩性和工程性质,将本管道工程沿线的岩体划分为4类7种(表4-1)。现作简要讨论。
1.坚硬岩类
按成因类型划分为岩浆岩、变质岩和沉积岩3种亚岩类。
岩浆岩类管线地段分布于祁连山褶皱带、秦岭—大别山褶皱带和扬子地台。分别有加里东期、华力西期、燕山期侵位的,其中祁连山褶皱带三期皆有,岩性为花岗岩、石英闪长岩;秦岭—大别山褶皱带为燕山期花岗岩;扬子地台为加里东期和燕山期的花岗岩和花岗闪长岩。一般呈岩基和岩株状产出,整体块状构造,致密坚硬,物理力学性质均质,各向同性。应该说其工程性质优良,但在亚热带环境中化学风化强烈。地质灾害一般不甚发育,以小型崩塌为主。
变质岩类在管线地段的祁连山褶皱带、华北地台、秦岭—大别山褶皱带有分布。祁连山褶皱带主要出露于关山—陇山地段,为中元古界陇山群和前震旦系,主要岩性为大理岩、黑云母片麻岩、混合岩、结晶片岩。华北地台出露于山西支干线的中条山、霍山、太原东山,为太古界涑水群和太岳山群,岩性为混合岩化的黑云角闪斜长片麻岩、斜长角闪岩、大理岩、磁铁石英岩、黑云变粒岩、角闪变粒岩等,岩性复杂,风化较强。秦岭—大别山褶皱带出露于大悟一带,为中上元古界红安群含磷的变粒岩、大理岩和石英片岩夹片麻岩,抗风化能力较弱。由于受片麻理、片理及节理的影响,使岩体的工程地质性质呈明显的各向异性和不均一性。地质灾害不甚发育,一般以小型崩滑为主。
表4-1 岩体类型汇总表
沉积岩类在丘陵、山区分布较广,在各大构造单元中皆有,其地质年代自中元古界至中生界早期几乎皆有,岩性复杂多样,主要有:中元古界熊耳群和汝阳群的安山玢岩、玄武岩、石英砂岩,新元古界洛峪群三教堂组的石英砂岩(以上均在河南境内);上元古界长城系、震旦系的石英砂岩、白云岩、硅质岩、冰碛砾岩等;下古生界寒武系、奥陶系的中厚、厚层碳酸盐岩;上古生界泥盆系的砂岩和碳酸盐岩,石炭、二叠系的中厚、厚层状灰岩和中生界三叠系碳酸盐岩等(上古生界及中生界皆为扬子地台)。按岩性大类可划分为火山喷出沉积岩、碎屑岩和碳酸盐岩三大类。它们的共同特点是,层理构造发育且较厚,抗风化能力较强,但碳酸盐岩具溶蚀性,岩溶较发育,工程地质性质具各向异性。上述这几类岩性分布地段地质灾害一般不甚发育,有小型崩滑和岩溶塌陷(覆盖型岩溶地段)等地质灾害。
2.较硬岩
按成因类型可划分为变质岩和沉积岩两大亚类。
变质岩类分布于祁连山褶皱带、秦岭—大别山褶皱带和扬子地台中,岩性主要是较软弱片岩和千枚岩、板岩。在祁连山褶皱带的管线地段,新元古界长城系变质细砂岩、千枚岩;秦岭—大别山褶皱带信阳群、商城群的云母石英片岩、绿色片岩、绢云石英片岩、浅变质凝灰质砂岩等:扬子地台中元古界冷家溪群和新元古界板溪群的板岩、千枚岩、变质凝灰岩、变质砂岩等。上述各类岩体的共同特点是:片理、千枚理、板理等结构面发育,地面风化较强烈,残坡积层厚度往往较大。岩体具明显的各向异性,力学强度相对较弱。崩塌、滑坡和泥石流等山地地质灾害较发育。
沉积岩类分布于华北地台和扬子地台中,华北地台岩性主要是上古生界和中生界粘土岩、铝土岩页岩、泥质粉砂岩、含煤层;扬子地台主要是泥盆系粉细砂岩、粘土岩、页岩、泥灰岩。它们层理发育、薄层状为主,遇水易软化、崩解,风化也较强烈。由上述岩体组成的丘陵山区,地质灾害较发育,主要有崩塌、滑坡、泥石流和采煤引起的地面塌陷和地裂缝灾害(在山西、河南境内较突出)。
3.软弱岩
这大类岩体主要是沉积岩类,较广泛分布于各大地构造单元中生代晚期和新生代陆相盆地中,地质年代为白垩系、古近系和新近系。由于固结压密程度低,岩体孔隙率高,强度小,变形大。岩性主要是河湖相的砂砾岩、砂岩和泥岩,夹淡水泥灰岩,含石膏、芒硝。岩石一般干单轴抗压强度小于30MPa,而新近系岩石成岩性更差,接近于土体,干单轴抗压强度不足于5MPa,属极软岩。这类岩石遇水易软化崩解,抗风化能力亦低。但这类岩体出露地段地形起伏小,地质灾害不发育,主要有膨胀性岩体的轻度胀缩变形灾害,还存在采空塌陷灾害。
4.软硬相间岩
这大类岩体主要也是沉积岩类,较广泛分布于华北地台和扬子地台的古生界和中生界地层中,一般是两种强度和刚性差异较大的岩性相互成层或间夹;古生界常见的是灰岩与页岩互层,砂岩与泥页岩互层,中生界常见的是砂岩与泥页岩互层。在外力作用下会发生层间错动和脱开,而在地下水等作用下更会泥化而形成泥化夹层,层面间强度降低而成为典型的软弱结构面。所以这类地层组合可以称之为“易滑地层组合”,较易产生滑坡。此外,软硬相间岩层差异风化显著,“上硬下软”组合的条件下,软岩易形成岩龛,崩塌也较普遍。
(二)土体
土体在管线地段广泛分布,约占全长的90%。按地质成因,可划分为残积土、坡积土、洪积土、冲积土、淤积土和风积土等;按粒度成份,可划分为碎石土、砂土、粉土和粘性土。对一些具有特殊成份和结构、工程性质也特殊的土,则可单独划分为特殊土,本管线工程的特殊土有黄土类土、膨胀土、盐渍土和淤泥质土等。这里我们也参考国标《岩土工程勘察规范》(GB50021—2001)的规定,将土体划分为碎石土、砂土、粉土、粘性土和特殊土5大类(表4-2)。以下分别就一般土和特殊土作简要讨论。
1.一般土体
一般土体包括各种成因类型的碎石土、砂类土、粉土和粘性土。
(1)碎石土:
碎石土指的是土中粒径d>2mm的颗粒质量超过总质量50%的土。根据规定,碎石土可再划分为砾质土、卵(碎)石土和漂(块)石土,它们的粒径分别>2mm、20mm或200mm的质量,超过总质量50%。一般冲积成因的碎石土分选性和滚圆度较好,位于河床和河流阶地二元结构的下部,而其他成因的则较差。本工程各段情况是:甘肃段砾卵石占45%~70%,粒径一般 20~80mm,呈次圆—次棱角状,一般分布于冲洪和平原表层之下。陕西段分布于渭河及其各支流以及山前洪积扇。河流冲积成因者在河漫滩和河床地段,在渭河干流厚度可达20~40m,结构较均一;而洪积扇区则为大小混杂的砂卵石为主。山西段主要分布于汾河、龙凤河和潇河等山间河谷地段,以砂卵砾石为主,磨圆较好,级配良好。河南段主要分布在伊洛河、沙颍河等诸河流河谷区,以砂砾卵石为主。湖北—湖南段碎石土多分布于低山丘陵斜坡地带,多为残坡积成因,碎石成分随母岩而变化。一般碎石土较疏松,孔隙比大,渗透性强,地基承载力高。
表4-2 土体类型汇总表
(2)砂类土:
砂类土指的是土中粒径d>2mm的颗粒质量不超过总质量的50%,d>0.075mm的颗粒质量超过总质量50%的土;根据颗粒级配还可划分为砾砂、粗砂、中砂、细砂和粉砂,一般是冲洪积成因的。此类土在本工程的情况是:甘肃段分布于洪积平原表层土之下,主要由粉细砂、中细砂组成,松散—中密状态。陕西段分布于渭河及支流的漫滩、一级阶地和古河道中,以中细砂和粉细砂为主,常含少量砾石,除河漫滩地段外,砂层均埋藏于细粒土之下,厚度不均一,多呈透镜体状,孔隙度大,渗透性强,中粗砂是良好的地基持力层,而饱水粉细砂则易产生震动液化。山西段分布于黄河、汾河及其较大支流的河床、河漫滩和阶地,一般为砂砾石混合,厚度较大。也有在山前倾斜平原区前缘的洪积砂砾石,与细粒土组成多层结构。河南段分布除了与碎石土相同外,在沙颍河以南淮河平原各河流河漫滩和一级阶地前缘地带,表层之下为中细砂,稍密—中密状态,厚度不稳定。砂类土一般级配较好,渗透性较强,一般是良好的地基持力层,但在地震烈度≥Ⅶ区需关注饱和粉细砂的震动液化问题。
(3)粉土和粘性土:
粉土和粘性土也可称之为“细粒土”,前者是土中粒径d>0.075mm的颗粒质量不超过总质量的50%,且塑性指数ⅠP≤10的土;而后者则ⅠP>10的土。这两类土大量广泛分布于郑州—长沙段洪冲积平原和丘陵地段。具各种成因类型。一般洪冲积成因的土体较密实,孔隙比小,含水量相对较少,透水性弱,强度高,地基承载力高。而丘陵地带的残坡积成因者往往与碎石土混杂,土体孔隙性大,透水性相对较强,在久雨或强降雨时,易产生坡积层崩滑。
2.特殊土
(1)黄土类土:
黄土类土是第四纪时期特殊的大陆松散沉积物,它在世界各地分布广而性质特殊。这类土在我国主要分布于西北、华北和东北地区,面积达60万km2以上,以北纬34°~45°之间最为发育,这些地区位于我国西北沙漠区的外围东部地区,具有大陆性干旱少雨气候的特点。黄土类土从早更新世(Q1)开始堆积,经历了整个第四纪,直至现今还未结束。按地层时代及其基本特征,黄土类土可分为3类:老黄土、新黄土和新近堆积黄土(表4-3)。老黄土是Q1、Q2时期堆积的,分别称“午城黄土”和“离石黄土”,一般无湿陷性;新黄土一般是Q3时期堆积的,称“马兰黄土”,也有Q4早期的,具湿陷性,分布面积最广(约占60%);新近堆积黄土一般是Q4晚期堆积的,湿陷性不一。各地黄土类土总厚度不一,陕甘黄土高原地区最厚,可达100~200m,河谷地区一般只有数米至30m左右,且主要是新黄土。黄土类土的成因一直是争论的热点问题,但普遍的看法是,风积成因是主要的,也有冲积、洪积、坡积、冰水堆积等成因类型。颗粒成份以粉粒为主,富含碳酸钙,具大孔性,垂直节理发育,具湿陷性等特征者,称 “典型黄土”,而有些特征不明显者则称“黄土状土”。下面讨论一下本管线工程黄土类土的特性。
本管线工程的黄土类土分布于兰州—郑州段(含山西支干线)。不同地段黄土类土的粒度成份和结构有所不同,所以其物理力学指标和工程地质性质也有明显差异。下面我们以Q3典型的湿陷性黄土为代表作分析。
首先是黄土的颗粒组成,将兰州、西安、太原、洛阳四地作比较(表4-4)。可以看出它们的差异,总趋势是:由西北往东南砂粒和粉粒含量愈来愈小,而粘粒含量则愈来愈大,而粉粒所占比例最大是一致的。所以有人将西部黄土称之为“砂黄土”,而东部为“粘黄土”。 黄土的颗粒组成对其湿陷性有一定影响,即砂粒含量愈多,湿陷性愈强,而粘性愈多则湿陷性愈弱。
表4-3 不同年代黄土的特征
表4-4 湿陷性黄土的颗粒组成单位:%
各地湿陷性黄土的基本物理力学性质指标列于表4-5中。
由西往东的总趋势是:土体的密度和天然含水率愈来愈大,液限和塑性指数也愈来愈大,孔隙比愈来愈小;而三项力学性质指标变化规律则不明显。而且可看出,陇西和陇东地区指标相近似,关中地区与汾河流域也比较接近,而豫西地区与前面的4个地区则又有明显差异。上述规律很重要,因为它与黄土的湿陷性相关的,即自西往东湿陷性逐渐变弱。
管线地段湿陷性黄土的湿陷系数(δs),经大量统计后汇总于表4-6中。从表中可看出,湿陷系数陇西地区最大,陇东地区次之,关中地区汾河流域再次之,而豫西则最小;而且高阶地的湿陷系数要大于低阶地。按有关规定,δs>0.015时,该黄土为湿陷性土;δs为0.015~0.03时湿陷性轻微,δs为0.03~0.07时湿陷性中等;δs>0.07时,湿陷性强烈。所以说,陇西和陇东地区黄土具中等—强烈湿陷性,关中地区和汾河流域黄土具中等湿陷性,而豫西地区黄土为轻微—中等湿陷性。
表4-5 各地湿陷性黄土基本物理力学性质指标
表4-6各地黄土湿陷系数(δs)统计表
湿陷性对黄土地区地质灾害的成生和活动关系密切,地基的湿陷变形破坏本身就是黄土地区特殊的地质灾害。此外由于黄土结构疏松,以及大孔性和垂直节理发育,潜蚀地质灾害也很普遍。由于黄土的湿陷和潜蚀特性,还可诱发崩塌、滑坡和泥石流灾害。
(2)膨胀土:
具有明显遇水膨胀和失水收缩的土称膨胀土。这类土在我国主要分布在南方山前丘陵、垅岗和二、三级阶地上,大多数是晚更新世及以前的残坡积、冲洪积和湖积物。从外表看,膨胀土一般呈红、黄、褐、灰白等不同颜色,具斑状结构,常含有铁锰质或钙质结核。土体常有网状开裂,有腊状光泽的挤压面,类似劈理。土层表面常出现各种纵横交错的裂隙或龟裂现象,这与失水土体强烈收缩有关。膨胀土的胀缩特性,主要是土中含有较多的粘粒,一般粘粒含量高达35%以上,而且这些粘粒大部分为亲水性很强的蒙脱石和伊利石等粘土矿物,膨胀收缩能力较强。天然状态下,膨胀土一般致密坚硬,天然含水率较小,所以土体常处于硬塑或坚硬状态,压缩性较低,强度较高;但在浸水膨胀后,强度明显降低,压缩性增大。膨胀土的这种胀缩特性,对工程建设会带来危害。按我国有关规定,凡自由膨胀率δef大于40%者,即可定名为膨胀土,40%≤δef<65%为弱膨胀土,65%≤f<90%为中等膨胀土,δef≥90%为强膨胀土。
本管线工程的膨胀土主要分布于湖北境内的黄陂县周港、应城支线和五里桥—贺胜桥—横沟桥一带:在河南境内的平顶山、周口西、郾城—驻马店的沙汝河平原和确山—信阳北的低山丘陵也有零星分布。
湖北境内的膨胀土主要分布于高程30~45m的垅岗和岗间坳沟地带,自然地形坡度平缓。土体时代为更新世,颜色呈棕黄、褐黄、棕红色,土体平均自由膨胀率:周港一带下更新统82%(最大99%),应城支线中更新统62%(最大109%),五里桥—贺胜桥一横沟桥一带上更新统44%(最大72%)。土体胀缩性危害主要导致当地居民低层建筑墙体拉裂破坏,斜坡和水渠边坡坍滑。
河南境内的膨胀土分布于淮河平原边缘的平顶山东和确山—信阳北的低山丘陵,以及沙汝河平原之间的周口和郾城—驻马店地段。土体时代为中、晚更新世,颜色呈棕黄、灰绿、棕红色,干燥时呈硬塑状态,裂隙发育,含铁锰质和钙质结核,平均自由膨胀率43.5%。平顶山以膨胀破坏为主,而信阳多以收缩破坏为主,多发生在干旱季节。
(3)盐渍土:
土中易溶盐含量大于0.5%的土称为盐渍土。由于它发育于地表土层中,与道路、低层建筑等有关,主要是土的腐蚀作用以及盐胀和溶陷作用对工程建设的危害。盐渍土按地理分布可分为滨海盐渍土、冲积平原盐渍土和内陆盐渍土等类型。我国盐渍土主要分布在北方诸省区。盐渍土的形成及其所含盐的成分和数量与当地的地形地貌、气候条件、地下水的埋藏深度和矿化度、土壤性质和人类活动有关;它的厚度并不大,一般分布于地表以下1.5~4m范围内,且由地面至深部含盐量逐渐减少。盐渍土的形成一般是由于地下水埋深过浅(甚至出露地面),蒸发强烈而盐分在地表的聚积所致。
盐渍土的性质与所含盐分和含盐量有关。土中的盐类主要是氯盐、硫酸盐和碳酸盐三类,因此盐渍土也相应地划分为氯盐渍土、硫酸盐渍土和碳酸盐渍土(表4-7)。盐渍土中所含盐分及其数量对土的工程地质性质影响很大。由于土成分的改变,影响了土的结构,从而影响了塑性、透水性、膨胀性、压缩性、击实性等性质。
表4-7 盐渍土的分类
本管线工程的盐渍土主要分布于甘肃段通渭以西、陕西段华县—华阴地段和山西段的永济市东北伍姓湖区(K48~K54)及清徐张花营村—榆次西荣(K451~K464)地段。
甘肃段通渭以西地段河谷平原一级阶地潜水位埋深很浅,经测定,土壤中平均含盐量3.4%,最大可达8%~15%,属硫酸—氯型中—超盐渍土。
陕西段华县—华阴地段的盐渍土是由于黄河三门峡水库淤积和回水,引起潜水位壅高,使渭河南岸赤水河至方山河一级阶地中部成为浸没区,而导致土壤盐渍化。但近年来当地大量开采地下水,潜水位埋深增大,盐渍化已几近消失。
山西段永济伍姓湖区地势低洼(比周边低5~8m),表层土由粉质粘土和粉土组成,潜水位埋深0~3m,土中含盐量1.06%~1.18%,类型为硫酸—氯型,属中盐渍土。清除张花营村—榆次西地段地势较周边略低,表层土为粉土,潜水位埋深0.2~3m,土中含盐量0.44%~1.12%,类型为氯—硫酸盐型,属弱—中盐渍土。硫酸盐结晶膨胀以及腐蚀作用,对管道将有一定危害。
(4)淤泥质土:
淤泥质土是指在水流缓慢甚或静水环境中沉积,有微生物参与作用的条件下,含较多有机质,而疏松软弱的粘性土,它是近代在滨海、湖泊、沼泽、河弯、废河道等地区沉积的未经固结的一种特殊土。从外观看,这类土常呈灰、灰蓝、灰绿和灰黑等颜色,污染手指并有臭味。土中含有大量亲水性强的粘土矿物(蒙脱石和伊利石占多数),有机质含量较多(一般含量 5%~15%),天然孔隙比大于1,天然含水率大于液限。其结构形式常为蜂窝状或棉絮状,疏松多孔,压缩性很强,地基承载力很低。我国淤泥质土的地理分布基本上可分为两大类:一类是沿海沉积的,另一类是内陆和山区湖沼盆地沉积的。前者分布稳定而厚度大,后者常零星分布且厚度小。
本管线工程的淤泥质土主要分布于湖北—湖南段。管道经过长江等13条大中型河流的冲湖积平原低洼地段,有较大范围的淤泥质软土分布,有机质含量大于1.5%,岩性为淤泥、淤泥质粘土和淤泥质粉土,呈软塑—流塑状,天然含水率多大于35%,最高达133%,孔隙比1~2.02,最高达3.12,压缩系数一般大于0.5MPa-1,最高可达3.68MPa-1,凝聚力一般9.8~29.4k Pa,内摩擦角6°~15°,地基承载力,天然状态下一般为25~55k Pa,常导致建筑物过量沉降和不均匀沉降。很显然,这类土体对管沟开挖影响较大,常导致沟坡坍塌挤出而不易成形。此外,对场站地基稳定性也有影响。
Ⅲ 泥质粉砂岩的工程地质性质
首先来看看砂岩的概念 —— 砂岩(Sandstone)--由沙粒经过水搬运沉淀于河床上,经千百年的堆内积坚固并经地质物理作用胶容结而成的岩石。砂岩结构呈颗粒状,透水性能良好,其砂粒粒径在1/16-2mm,颗粒特别细小的,比如直径在1/16-1/250mm的称之为粉砂岩。主要成份为:石英成份 52%以上;粘土 15%左右;针铁矿18%左右;其它物质 10%以上。如果石英含量在90%以上,称之为石英砂岩。 泥质粉砂岩成分主要为粉砂,含少量粘土矿物及胶结物
Ⅳ 简述湿陷性黄土的基本工程地质性质
陷性黄土是一复种特殊性质制的土,其土质较均匀、结构疏松、孔隙发育。在未受水浸湿时,一般强度较高,压缩性较小。当在一定压力下受水浸湿,土结构会迅速破坏,产生较大附加下沉,强度迅速降低。故在湿陷性黄土场地上进行建设,应根据建筑物的重要性、地基受水浸湿可能性的大小和在使用期间对不均匀沉降限制的严格程度,采取以地基处理为主的综合措施,防止地基湿陷对建筑产生危害
Ⅳ 岩土体的工程地质分类和鉴定
一、岩体
(一)岩体(岩石)的基本概念岩体(岩石)是工程地质学科的重要研究领域。岩石和岩体的内涵是有区别的两个概念,又是密不可分的工程实体。在《建筑岩土工程勘察基本术语标准》(JG J84-92)中给出的岩石定义是:天然产出的具有一定结构构造的单一或多种矿物的集合体。岩石的结构是指岩石组成物质的结晶程度、大小、形态及其相互关系等特征的总称。岩石的构造是指岩石组成物质在空间的排列、分布及充填形式等特征的总称。所谓岩体,就是地壳表部圈层,经建造和改造而形成的具有一定岩石组分和结构的地质体。当它作为工程建设的对象时,可称为工程岩体。岩石是岩体内涵的一部分。
岩体(岩石)的工程分类,可以分为基本分类和工程个项分类。基本分类主要是针对岩石而言,根据其地质成因、矿物成分、结构构造和风化程度,用岩石学名称加风化程度进行分类,如强风化粗粒黑云母花岗岩、微风化泥质粉砂岩等。岩石的基本分类,在本书第一篇基础地质中有系统论述。工程个项分类,是针对岩体(岩石)的工程特点,根据岩石物理力学性质和影响岩体稳定性的各种地质条件,将岩体(岩石)个项分成若干类别,以细划其工程特征,为岩石工程建设的勘察、设计、施工、监测提供不可缺少的科学依据,使工程师建立起对岩体(岩石)的明确的工程概念。岩石按坚硬程度分类和按风化程度分类即为工程个项分类。
在岩体(岩石)的各项物理力学性质中,岩石的硬度是岩体最典型的工程特性。岩体的构造发育状况体现了岩体是地质体的基本属性,岩体的不连续性及不完整性是这一属性的集中反映。岩石的硬度和岩体的构造发育状况是各类岩体工程的共性要点,对各种类型的工程岩体,稳定性都是最重要的,是控制性的。
岩石的风化,不同程度地改变了母岩的基本特征,一方面使岩体中裂隙增加,完整性进一步被破坏;另一方面使岩石矿物及胶结物发生质的变化,使岩石疏软以至松散,物理力学性质变坏。
(二)岩石按坚硬程度分类
岩石按坚硬程度分类的定量指标是新鲜岩石的单轴饱和(极限)抗压强度。其具体作法是将加工制成一定规格的进行饱和处理的试样,放置在试验机压板中心,以每秒0.5~1.0M Pa的速度加荷施压,直至岩样破坏,记录破坏荷载,用下列公式计算岩石单轴饱和抗压强度:
深圳地质
式中:R为岩石单轴饱和抗压强度,单位为MPa;p为试样破坏荷载,单位为N;A为试样截面积,单位为mm2。
对岩石试样的几何尺寸,国家标准《工程岩体试验方法标准》(GB/T50266-99)有明确的规定,试样应符合下列要求:①圆柱体直径宜为48~54mm;②含大颗粒的岩石,试样的直径应大于岩石的最大颗粒尺寸的10倍;③试样高度与直径之比宜为2.0~2.5。
在此标准发布之前,岩石抗压强度试验的试样尺寸要求如下:极限抗压强度大于75M Pa时,试样尺寸为50mm×50mm×50mm立方体;抗压强度为25~75MPa时,试样尺寸为70mm×70mm×70mm立方体;抗压强度小于25MPa时,试样尺寸为100mm×100mm×100mm立方体。
(G B/T 50266-99)的规定显然是为了方便取样,以金刚石钻头钻探,取出的岩心进行简单的加工,即可成为抗压试样。岩样的尺寸效应对岩石抗压强度是略有影响的。
岩石按坚硬程度分类,各行业的有关规定,虽然各自表述方式有所区别,但其标准是基本一致的(表2-2-1)。
表2-2-1 岩石坚硬程度分类
除了以单轴饱和抗压强度这一定量指标确定岩石坚硬程度外,尚可按岩性鉴定进行定性划分。国标:建筑地基基础设计规范(GB50007-2002)按表2-2-2进行岩石坚硬程度的定性划分。其他规范的划分标准大同小异。
表2-2-2 岩石坚硬程度的定性划分
岩石坚硬程度的划分,无论是定量的单轴饱和抗压强度,还是加入了风化程度内容的定性标准,都是用于确定小块岩石的坚硬程度的。岩石的单轴饱和抗压强度是计算岩基承载力的重要指标。
(三)岩石按风化程度分类
关于岩石风化程度的划分及其特征,国家规范和各行业的有关规范中均有规定,其分类标准基本一致,表述略有差异。表2-2-3至表2-2-10是部分规范给出的分类标准。
表2-2-3《工程岩体分级标准》(GB50218-94)岩石风化程度划分表
表2-2-4《岩土工程勘察规范》(GB50021-2001)岩石按风化程度分类表
续表
表2-2-5《公路桥涵地基与基础设计规范》(JTJ024-85)岩石风化程度划分表
表2-2-6《水利水电工程地质勘察规范》(GB50287-99)岩体风化带划分表
《港口工程地质勘察规范》(JTJ240-97)、《港口工程地基规范》(JTJ250-98)岩体风化程度的划分按硬质、软质岩体来划分,硬质岩石岩体风化程度按表2-2-7划分。软质岩石岩体风化程度按表2-2-8划分。
表2-2-7 硬质岩石岩体风化程度划分表
表2-2-8 软质岩石岩体风化程度划分表
表2-2-9《地下铁道、轻轨交通岩土工程勘察规范》(GB5037-1999)岩石风化程度分类表
续表
表2-2-10 广东省《建筑地基基础设计规范》(DBJ15-31-2003)岩石风化程度划分表
国家标准《建筑地基基础设计规范》(GB5007-2002)对岩石的风化只有第4.1.3条作如下叙述:岩石的风化程度可分为未风化、微风化、中风化、强风化和全风化。未列表给出风化特征,但在岩石坚硬程度的定性划分中(表A.0.1)把不同风化程度的岩石归类到了岩石坚硬程度的类别中。
深圳市标准:《地基基础勘察设计规范》(报批稿)关于岩石风化程度的划分标准,基本采用了《地下铁道、轻轨交通岩土工程勘察规范》GB(50307-1999)的表述形成和内容(表2-2-9),文字略有调整。
纵观各类规范对岩石风化程度的划分,可以看出:
1)除个别规范未列出未风化一类外,岩石风化程度的划分均为未风化、微风化、中等(弱)风化、强风化和全风化。特征描述简繁不一,中等风化与弱风化相对应的风化程度略有差别。
2)风化程度的特征描述,主要是岩石的结构构造变化、节理裂隙发育程度、矿物变化、颜色变化、锤击反映、可挖(钻)性等方面来定性划定。部分规范用波速和波速比及风化系数来定量划定是对岩石风化程度确定的有力支撑。
3)从新鲜母岩到残积土的风化过程是连续的,有些规范把残积土的特征描述放在岩石风化程度划分表中,有一定的道理。国际标准:ISO/TC182/SC,亦将风化程度分为五级,并列入了残积土。从工程角度考虑,残积土对母岩而言已经发生了全面质的变化,物理力学性质和对它的理论研究已属松软土,表中对残积土特征的表述对区别残积土与全风化岩是有现实意义的。
4)国家标准:《工程岩体分级标准》中“岩石风化程度的划分”(表2-2-3)看似简单,规范“条文说明”解释了这一现象,表2-2-3关于岩石风化程度的划分和特征的描述,仅是针对小块岩石,为表2-2-2服务的,它并不代表工程地质中对岩体风化程度的定义和划分。表2-2-2是把岩体完整程度从整个地质特征中分离出去之后,专门为描述岩石坚硬程度作的规定,主要考虑岩石结构构造被破坏,矿物蚀变和颜色变化程度,而把裂隙及其发育情况等归入岩体完整程度这另一个基本质量分级因素中去。
5)上述列表中可以看出,某些规范把硬质岩石和软质岩石的风化程度划分区别开来,而《工程岩体分级标准》中“岩石坚硬程度的定性划分”表(2.2-2)将风化后的硬质岩划入软质岩中。这里有两个概念不可混淆:一是从工程角度看,硬质岩石风化后其工程性质与软质岩相近,可等同于软质岩;二是新鲜岩石中是存在软质岩的,如深圳的泥质砂岩、泥岩、页岩等。
6)相邻等级的风化程度其界线是渐变的、模糊的,有时不一定能划出5个完整的等级,如碳酸盐类岩石。在实际工作中要按规范的标准,综合各类信息,结合当地经验来判断岩石的风化等级。
(四)岩体的结构类型
在物理学、化学及其地质学等学科中对“结构”这一术语的概念是明确的,但有各自的含义,如原子结构、分子结构、晶体结构、矿物结构、岩石结构、区域地质结构、地壳结构等等,岩体作为工程地质学的一个主要研究对象,提出“岩体结构”术语的意义是十分明确的。
岩体结构有两个含义,可以称之为岩体结构的两个要素:结构面和结构体。结构面是指层理、节理、裂隙、断裂、不整合接触面等等。结构体是岩体被结构面切割而形成的单元岩块和岩体。结构体的形状是受结构面的组合所控制的。
事实上,所有与岩石有关的工程,除建筑材料外,都是与有较大几何尺寸的岩体打交道,岩石经过建造成岩(岩浆岩的浸入,火山岩的喷出,沉积岩的层状成沉积,变质岩的混合与动力变质)及后期的改造(褶皱、断裂、风化等),使得岩体的完整性遭到了巨大的破坏,成为了存在大量不同性质结构面的现存岩体。为了给工程界一个明朗的技术路线,不妨以建造性结构面和改造性结构面(软弱结构面)为基础,从各自侧面首先对岩体结构基本类型进行研究,其次将两方面的成果加以综合,即可得出关于岩体结构基本类型的完整概念(图2-2-1)。
(1)以建造性结构面为主的岩体结构基本类型的划分(表2-2-11)
表2-2-11 建造性结构面的岩体结构分类
(2)以改造性结构面(软弱结构面)为主的岩体结构类型的划分(表2-2-12)
表2-2-12 改造结构面为主的岩体结构分类
图2-2-1 岩体结构示意图
(3)由建造性结构面和改造性结构面形成的三维岩体
三维岩体表现出了复杂多变的岩体结构特征,将其综合归纳,形成了较系统的岩体结构类型(表2-2-13)。
表2-2-13 岩体结构类型及其特征
表中表述的岩体结构类型及其特征基本上涵盖了深圳地区岩体的全部结构类型。
(4)岩体完整程度的划分
地质岩体在建造和改造的过程中,岩体被风化、被结构面切割,使其完整性受到了不同程度的破坏。岩体完整程度是决定岩体基本质量诸多因素中的一个重要因素。影响岩体完整性的因素很多,从结构面的几何特征来看,有结构面的密度,组数、产状和延展程度,以及各组结构面相互切割关系;从结构面形状特征来看,有结构面的张开度、粗糙度、起伏度、充填情况、水的赋存等。从工程岩体的稳定性着眼,应抓住影响稳定性的主要方面,使评判划分易于进行。在国标:《工程岩体分级标准》(GB50218-94)中,规定了用结构面发育程度、主要结构的结合程度和主要结构面类型作为划分岩体完整程度的依据,以“完整”到“极破碎”的形象词汇来体现岩体被风化、被切割的剧烈变化完整程度(表2-2-14)。
表2-2-14 岩体完整程度的定性分类表
在1994版的《岩土工程勘察规范》中,未见此表。很明显,此表在《工程岩体分级标准》中出现后,在2001版修订后的《岩土工程勘察规范》中得到了确认和使用。
(五)岩体基本质量分级
自然界中不同结构类型的岩体,有着各异的工程性质,岩石的硬度、完整程度是决定岩体基本质量的主要因素。在工程实践中,系统地认识不同质量的工程岩体,针对其特征性采取不同的设计思路和施工方法是科学进行岩体工程建设的关键。
1994年,国家标准《工程岩体分级标准》(50218-94)给出了岩体基本质量分级的标准(表2-2-15)。在此之前发布的国家标准《岩土工程勘察规范》(GB50021-94),该表是作为洞室围岩质量分级标准的。在2001年修订的《岩土工程勘察规范》(GB50021-2001)中,岩体基本质量分级以表2-2-15的形式来分类,岩体基本质量等级按表2-2-16分类。
表2-2-15 岩体基本质量分级
表2-2-16 岩体基本质量等级分类
(六)岩体围岩分类
地铁、公路、水电、铁路以及矿山工程等行业,均有地下洞室和隧道(巷道)开挖,工程勘察均需对工程所处的围岩进行分类。不同的规范对围岩的分类方法略有不同。
1.隧道围岩
《地下铁道、轻轨交通岩土工程勘察规范》(GB50307-1999)和《公路工程地质勘察规范》(JTJ064-98)规定,隧道围岩分类按表2-2-17划分。
表2-2-17 隧道围岩分类
续表
2.围岩工程地质
《水利水电工程地质勘察规范》(GB50287-99)规定,在地下洞室勘察时,应进行围岩工程地质分类。分类应符合表2-2-18规定。
表2-2-18 围岩工程地质分类
上表中的围岩总评分T为岩石强度、岩体完整程度、结构面状态、地下水和主要结构面产状5项因素之和。各项因素的评分办法在该规范中均有明确规定。围岩强度应力比亦有专门的公式计算。
3.铁路隧道围岩
《铁路工程地质勘察规范》(TB10012-2001)规定,隧道工程地质调绘时,应根据地质调绘、勘探、测试成果资料,综合分析岩性、构造、地下水及环境条件,按表2-2-19分段确定隧道围岩分级。
表2-2-19 铁路隧道围岩的基本分级
续表
该规范还规定,铁路隧道围岩分级应根据围岩基本分级,受地下水,高地应力及环境条件等影响的分级修正,综合分析后确定。关于岩体完整程度的划分,地下水影响的修正,高地应力影响的修正及环境条件的影响,规范中都有明确的规定。
4.井巷工程围岩
矿山工程中的井巷工程,其功能和结构更为多样,所以井巷工程对围岩的分类更加详尽,各种定性和定量指标明显多于其他标准。《岩土工程勘察技术规范》(YS5202-2004、J300-2004)规定,井巷工程评定围岩质量等级按表2-2-20划分围岩类别。
表2-2-20 井巷工程围岩分类
续表
续表
5.工程岩体
国家规范:《锚杆喷射混凝土支护技术规范》(GB50086-2001)从工程岩体支护设计和施工的需要出发,给出围岩分级表,与表2-2-20相比,仅少了Ⅵ、Ⅶ两类,主要工程地质特征少了岩石质量指标RQD和岩体及土体坚固性系数两栏,其他完全相同。
(七)岩质边坡的岩体分类
《建筑边坡工程技术规范》(GB50330-2002)对岩质边坡的岩体分类方法,见表2-2-21
表2-2-21 岩质边坡的岩体分类(GB50330-2002)
续表
表2-2-22 岩体完整程度划分
(八)深圳地区岩体分类、鉴定中存在的问题和改进意见
1)深圳地区的建筑工程除大量的房屋建筑外,公路(道路)桥梁、水利、地铁、铁路等均有大量的投资建设,各行业对岩体质量等级的划分在执行不同规范的分类标准。在当前情况下,这一状况将继续下去。但是,对某一岩体的不同分类标准,仅仅是某一行业的习惯性作法。宏观上看不同分类标准的具体内容并无原则性的区别。无论采用哪种标准都不应该影响岩体评价的正确性。
2)岩体工程特性的评价中,岩体的结构分类应该受到足够的重视。尤其是高大边坡、地质灾害评估等岩体结构对岩体稳定起主导作用的工程项目。只有采取多种科学勘察手段和缜密地进行分析,岩体的结构特征才能弄清楚。
3)岩石风化程度的判断,现场工作除很具经验的野外观察和标准贯入试验外,应多采用岩体波速测试方法,使之成为常用方法之一。准确的波速测试结果,可能比标贯试验所得结果更能准确地判断岩石的风化程度。
4)岩石的风化程度是随埋藏深度的增加而减弱的,风化岩石的强度则是随埋藏深度的增加而增加的。为了充分发挥地基承载力,深圳市地基基础勘察设计规范(送审稿)将厚层花岗岩强风化带分为上、中、下3个亚带,其划分方法见表2-2-23。
表2-2-23 厚层花岗岩强风化带细分
需要指出的是,花岗岩的风化规律一般是上部风化严重,随深度增加而减弱,但也有个别情况,有时随深度增加风化程度并无明显变化,故在划分风化亚带时,应视强风化带的厚度和风化程度改变的深浅,也可以划分一个亚带或两个亚带,不可强求一律划分为3个亚带。
龙岗区的碳酸盐类岩石——灰岩、白云岩、大理岩等基本上不存在全风化和强风化层。由于构造的影响或是其他某种原因(如表面溶蚀剧烈),可能岩石的裂隙比较发育,块度比较小。
二、土体
(一)土体的含义及其工程地质分类
土是泛指还没有固结硬化成岩石的疏松沉积物。土是坚硬岩石经过破坏、搬运和沉积等一系列作用和变化后形成的。土多分布在地壳的最上部。工程地质学把土看作与构成地壳的其他岩石一样,均是自然历史的产物。土的形成时间、地点、环境以及形成的方式不同,其工程地质特性也不同。因此在研究土的工程性质时,强调对其成因类型和地质历史方面的研究具有特殊重要意义。
土的工程地质分类有以下特点:①分类涵盖自然界绝大多数土体;②同类或同组的土具备相同或相似的外观和结构特征,工程性质相近,力学的理论分析和计算基本一致;③获取土的物理力学指标的试验方法基本相同;④工程技术人员,从土的类别可以初步了解土的工程性质。
土的工程地质分类是以松散粒状(粗粒土)体系和松散分散(细粒土)体系的自然土为对象,以服务于人类工程建筑活动为目的的分类。分类的任务是将自然土按其在人类工程建筑活动作用下表现出的共性划分为类或组。
合理的工程地质分类,具有以下实际用途:①根据土的分类,确定土的名称,它是工程地质各种有关图件中划分土类的依据;②根据各类土的工程性质,对土的质量和建筑性能提出初步评价;③根据土的类型确定进一步研究的内容、试验项目和数量、研究的方法和方向;④结合反映土体结构特征的指标和建筑经验,初步评价地基土体的承载能力和斜坡稳定性,为基础和边坡的设计与施工提供依据。
土的工程地质分类有普通的和专门的两类。普通分类的划分对象包括人类工程活动可能涉及的自然界中的绝大多数土体,适用于各类工程,分类依据是土的主要工程地质特征,如碎石土、砂土、黏性土等。专门分类是为满足某类工程的需要,或者根据土的某一或某几种性质而制定的分类,这种分类一般比较详细,比如砂土的密实度分类,黏性土按压缩性指标分类等等。应当指出的是,普通分类与专门分类是相辅相成的,前者是后者的基础,后者是前者的补充和深化。
(二)国外土的工程分类概况
近几十年来,国外在土的工程地质分类研究方面有很大进展,工业和科学技术发达的主要国家,都分别先后制定了各自全国统一的分类标准(表2-2-24)。其中英国、日本、德国的分类均以美国分类为蓝本,结合各自国情适当调整、修改而制定的。
表2-2-24 一些国家的土质分类简况
上述各国的土质分类,都采用了统一分类体系和方法,不仅使各自国内对土质分类有了共同遵循的依据,而且体现了国际统一化的趋势,以促进国际交流与合作。
下列美国的统一分类法(表2-2-25)作为样本,以了解国外分类的标准和方法。
表2-2-25 美国的土的统一分类法
续表
(三)国内土的工程分类
1.统一分类法
1990年,国家标准《土的分类标准》(GBJ 145-90)发布,并于1991年8月起执行。在此之前或之后,水利水电、公路交通等行业土的分类标准与GBJ 145-90标准没有明显区别。(GBJ 145-90)土的分类如表2-2-26和表2-2-27所示。
表2-2-26 粒组的划分
表2-2-27 土质分类表
2.建筑分类法
国标《建筑地基设计规范》(GB50007-2002)土的分类方法(简称:建筑分类法)如表2-2-28。这是从早期《工业与民用建筑地基基础设计规范》(TJ7-74)(试行)到《建筑地基基础设计规范》(GBJ7-89)一直延续下来的土的分类标准。在TJ7-74规范之前,我国一直沿用前苏联规范(HИTY127-55)。建筑分类法在房屋建筑地基基础工程或类似的工程中广泛运用,这在不少行业规范中得以反映,此分类方法也为广大工程技术人员所熟知。目前深圳除公路、铁路行业外,大多采用此分类标准,并纳入到深圳市的地方标准之中。
表2-2-28 土的分类
(四)土的状态分类
土的状态分类属专门分类。对于某种行业或某类工程,土的状态标准是有所区别的,现以《岩土工程勘察规范》(50021-2001)中规定的最常用的分类标准,对碎石土、砂土、粉土的密实度和对粉土的湿度及黏性土的状态进行分类,见表2-2-29至表2-2-34。
表2-2-29 碎石土密实度按M63.5分类
表2-2-30 碎石土密实度按N120分类
表2-2-31 砂土密实度分类
表2-2-32 粉土密实度分类
表2-2-33 粉土湿度分类
表2-2-34 黏性土状态分类
(五)土的现场鉴别方法
1.碎石土密实度现场鉴别方法(表2-2-35)
表2-2-35 碎石土密实度现场鉴别
2.砂土分类现场鉴别方法(表2-2-36)
表2-2-36 砂土分类现场鉴别
3.砂土密实度现场鉴别方法(表2-2-37)
表2-2-37 砂土密实度现场鉴别
4.砂土湿度的现场鉴别方法(表2-2-38)
表2-2-38 砂土湿度现场鉴别
5.粉土密实度现场鉴别方法(表2-2-39)
表2-2-39 粉土密实度现场鉴别
6.粉土湿度现场鉴别方法(表2-2-40)
表2-2-40 粉土湿度现场鉴别
7.黏性土状态现场鉴别方法(表2-2-41)
表2-2-41 黏性土状态现场鉴别
8.有机质土和淤泥质土的分类
土按有机质分类和鉴定方法,《岩土工程勘察规范》(GB50021—2001)的分类方法见表2-2-42。深圳市沿海近岸地区存在大量淤泥或淤泥质土,在上更新统(Q3)的杂色黏土中,有一层泥炭质土,局部有泥炭层发育。
表2-2-42 土按照有机质分类
(六)土的定名和描述
1.统一分类法定名
1)巨粒土和含巨粒的土、粗粒土按粒组、级配、所含细粒的塑性高低可划分为16种土类;细粒土按塑性图、所含粗粒类别以及有机质多寡划分16种土类。
2)土的名称由一个或一组代号组成:一个代号即表示土的名称,由两个基本代号构成时,第一个代号表示土的主成分,第二个代号表示副成分(土的级配或土的液限);由3个基本代号构成时,第一个代号表示土的主成分,第二个代号表示液限;第三个代号表示土中微含的成分。
《土的分类标准》(G B J145-90),对特殊土的判别,列出了黄土,膨胀土和红黏土。对花岗岩残积土并没有特别加以说明。根据深圳有关单位的经验,花岗岩残积土中的砾质黏性土相当于G B J145-90中的含细粒土砾,代号GF;砂质黏性土相当于细粒土质砾,代号GC-GM;黏性土相当于高液限粉土一低液限粉土,代号M H-M L。对淤泥和淤泥质土,G B J145-90分的不细,从工程需要出发,淤泥和淤泥质土的分类宜按建筑行业标准。
2.建筑行业定名
建筑行业定名依照下列几个标准:
1)土名前冠以土类的成因和年代。
2)碎石土和砂土按颗粒级配定名。
3)粉土以颗粒级配及塑性指数定名。
4)黏性土以塑性指数定名。
5)对混合土按主要土类定名并冠以主要含有物,如含碎石黏土,含黏土角砾等。
6)对同一土层中有不同土类呈韵律沉积时,当薄层与厚层的厚度比大于三分之一时,宜定为“互层”;厚度比为十分之一至三分之一时,宜定为“夹层”;厚度比小于十分之一的土层且多次出现时,宜定为“夹薄层”。当土层厚度大于0.5m时,宜单独分层。
3.土的描述内容
(1)当按统一分类法(GBJ145-90)定名时,应按下列内容描述
1)粗粒土:通俗名称及当地名称;土颗粒的最大粒径;巨粒、砾粒、砂粒组的含量百分数;土颗粒形状(圆、次圆、棱角或次棱角);土颗粒的矿物成分;土颜色和有机质;所含细粒土成分(黏土或粉土);土的代号和名称。
2)细粒土:通俗名称及当地名称;土颗粒的最大粒径;巨粒、砾粒、砂粒组的含量百分数;潮湿时土的颜色及有机质;土的湿度(干、湿、很湿或饱和);土的状态(流动、软塑、可塑或硬塑);土的塑性(高、中或低);土的代号和名称。
(2)当按建筑分类法(GB50007-2002)定名时,应按下列内容描述
1)碎石土:名称、颗粒级配、颗粒排列、浑圆度、母岩成分、风化程度、充填物的性质和充填程度、胶结性、密实度及其他特征。
2)砂土:名称、颜色成分、颗粒级配、包含物成分及其含量、黏粒含量、胶结性、湿度、密实度及其他特征。
3)粉土:名称、颜色、包含物成分及其含量、湿度、密实度、摇振反应及其他特征。
4)黏性土:名称、颜色、结构特征、包含物成分及其含量、摇振反应、光泽反应、干强度、韧性、异味及其他特征。
5)特殊性土:除应描述上述相应土类的内容外,尚应描述其特征成分和特殊性质,如对淤泥尚需描述臭味、有机质含量;对填土尚需描述物质成分、堆积年代、密实度和均匀程度等。
6)互层(夹层)土:对具有互层、夹层、夹薄层特征的土,尚应描述各层的厚度及层理特征。
Ⅵ 跪求工程地质中三大岩类的工程地质性质!!!
1、沉积岩
沉积岩是在地表或近地表不太深的地方形成的一种岩石类型。它是由风化产物、火山物质、有机物质等碎屑物质在常温常压下经过搬运、沉积和石化作用,最后形成的岩石。不论那种方式形成的碎屑物质都要经历搬运过程,然后在合适的环境中沉积下来,经过漫长的压实作用,石化成坚硬的沉积岩。
沉积岩依照沈积物颗粒的大小又分砾岩、砂岩、页岩、石灰岩.沉积岩的形成 1.风化侵蚀:在河流上的大石头,经年累月被侵蚀风化,逐渐崩解成小的沙泥、碎屑。 2.搬运:这些碎屑被水流从上游搬运到下游。 3.堆积:下游流速减缓,搬运力减小,岩石碎屑便沉积下来。 4.压密:新的沉积物压在旧的沉积物上,时间久了,底下的沉积物被压得较紧实。 5.胶结:地下水经过沉积物的孔隙,带来的矿物质填满孔隙,使岩石碎屑颗粒紧紧胶结在一起,形成沉积岩。 6.露出:堆积在海底的沉积岩层在板块运动的推挤下拱出海面,露出地表。
2、岩浆岩
岩浆岩也叫火成岩,是在地壳深处或在上地幔中形成的岩浆,在侵入到地壳上部或者喷出到地表冷却固结并经过结晶作用而形成的岩石。因为它生成的条件与沉积岩差别很大,因此,它的特点也与沉积岩明显不同。
岩浆岩又分安山岩、玄武岩、花岗岩。 由地底岩浆冷却凝固形成,由于岩浆成分和冷却凝固方式不同,便形成不同的火成岩。岩浆岩的形成: 1.安山岩:岩浆藉由火山口喷发出地面,快速冷却形成的。 2.玄武岩:岩浆经由缓和喷发漫流而出,逐渐冷凝形成的。 3.花岗岩:岩浆并不喷出地面,而是在地底下慢慢冷却形成的。
3、变质岩
在地壳形成和发展过程中,早先形成的岩石,包括沉积岩、岩浆岩,由于后来地质环境和物理化学条件的变化,在固态情况下发生了矿物组成调整、结构构造改变甚至化学成分的变化,而形成一种新的岩石,这种岩石被称为变质岩。变质岩是大陆地壳中最主要的岩石类型之一。
变质岩又分:板岩、片岩、片麻岩、大理岩。 变质岩的形成:1.为变质前的岩层:由于沉积或火山作用,堆积出一层层岩层。 2.挤压岩层:在强大挤压和摩擦力之下,产生温度和压力,使得深埋在地底下的岩石发生变质作用。 3.变质成新岩石:岩石里零散分布的矿物结晶会呈规矩排列,或生出新矿物来,而变成各种新的变质岩。
Ⅶ 什么是一类土、二类土、三类土区别是什么
一、定义
一类土:是指砂、腐殖土等。
二类土:是指黄土类、软盐渍土和碱土、松散而软的砾石、掺有碎石的砂和腐殖土等。一二类土的坚固系数较低(0.5-0.8)用尖锹、少数用镐即可开挖。
三类土:三类土是指粘土或冰粘土、重壤土、粗砾石、干黄土或掺有碎石的自然含水量黄土等,土的坚固系数为0.81-1.0须用尖锹并同镐开挖。
二、区别:
一类土指砂、腐殖土等。
二类土指黄土类、软盐渍土和碱土、松散而软的砾石、掺有碎石的砂和腐殖土等。
三类土指粘土或冰粘土、重壤土、粗砾石、干黄土或掺有碎石的自然含水量黄土等,土的坚固系数为0.81-1.0,须用尖锹并同镐开挖。四类土指硬粘上、含碎石的重壤土、含巨砾的冰碛粘土、泥板岩等,上的坚固系数达1.0~1.5,土石方,用深度来划分。
(7)淤泥质类土工程地质性质扩展阅读:
1、土的性质由其地质成因、形成时间、地点、环境、方式,以及后生演化和现时产出的条件决定。如干旱区形成的黄土,湿热区形成的红土,静水区形成的淤泥,性质上截然有别。
2、土的结构是土的存在形式,是土中矿物颗粒的相互关系。土的结构特征除土颗粒的大小、形状、表面特性及粒度级配特征外,还包括颗粒间的排列与集合关系,孔隙的大小,颗粒间联结的特点。
3、地壳上的土,种类繁多,为便于研究与实际应用,可按土的工程性质近似地归类,粒度组成一直是土的分类的基本依据,世界上几个国家的土的粒组界限值见表。
4、土的水理性质一般指的是粘性土的液限、塑限(由实验室测得)及由这两个指标计算得来的液性指数和塑性指数。
Ⅷ 中国湿陷性黄土的工程地质性质
一、前言
中国湿陷性黄土就其工程地质性质而言,可分为高原湿陷性黄土和河谷湿陷性黄土两类。前者分布于高原(或台塬高地),为晚更新世马兰黄土,属于风积成因;后者分布在河谷,为全新世冲积黄土。
二、高原湿陷性黄土
在黄土高原地带,虽然工业建筑较少,但民用建筑、生土建筑和窑洞建筑却很多,因此,对于高原湿陷性黄土的工程地质性质进行试验研究是很有必要的。现将有关资料叙述如下。
1.颗粒成分
颗粒成分是决定黄土的工程地质性质的基本因素之一,特别是粘土成分。从分布在不同地区的资料(表1)来看,高原湿陷性黄土的颗粒成分是有区域性变化的,粘土颗粒由西而东、由北而南逐渐增加。
表1 高原湿陷性黄土的颗粒成分
2.物理性质
物理性质是工程地质性质中的一个重要组成部分,是工程措施的直接指标。现从分布在不同地区的资料(表2)来看,高原湿陷性黄土的物理性质也是有区域性变化的,如含水量和容重等存在由西而东、由北而南的变化趋势。但某些指标,如孔隙比等差别不大。
表2 高原湿陷性黄土的物理性质
续表
3.湿陷特征
湿陷性是黄土独特的工程地质性质,是评价黄土地基的重要依据,随着实际资料的积累,目前可获得如下的认识。
1)在平面分布上,由表3中得知,高原湿陷性黄土的相对湿陷系数值是存在着明显的区域性变化的,并且有由西而东、由北而南、从大变小的趋势。
表3 高原湿陷性黄土的相对湿陷系数
2)垂直剖面上,由表3和图1中得知,相对湿陷系数值是随深度增加而减小的,一般在近地表为最大,往下就反复地变小,至一定的深度时,湿陷性基本消失,而过渡到非湿陷性土层。这个消失的深度界限,是随地区的不同而不同的,明显地反映了区域性的差异。但总的看来,这个界限一般在10~16m的深度内。建立这个概念,对地基的评价是非常重要的,因为在高原区,黄土层的厚度很大,常达百米以上,过去曾有人认为,黄土层的厚度与湿陷层的厚度是等同的,现在看来,这是不正确的。
三、河谷湿陷性黄土
工业与民用建筑广泛坐落在黄土河谷平原地带,这里是建筑部门的研究重点,我们曾对分布在不同地区具有代表性的重工业城市开始了调查和试验工作,现简述如下。
1.试验场地的简况
试验场地地质地貌简况示于表4。
表4 试验场地的地质地貌简况
续表
图1 相对湿陷系数随深度变化图
1—太原;2—乾县;3—兰州
2.物质成分
(1)颗粒成分
颗粒成分所采取的分析方法是密度计法,其结果列于表5。
表5 河谷湿陷性黄土的颗粒成分
从表5中可以获得这样的认识,就大范围而言,分布在河谷平原的湿陷性黄土,其粘土的含量与高原湿陷性黄土的分布规律一样,存在着由西而东、由北而南逐渐增加的总趋势。
(2)粘土矿物成分
从粘土矿物成分的分析资料(表6)来看,3个场地黄土的粘土矿物,主要都是伊利石,但其含量各地不同。这从粘土矿物的化学分析中也得到反映。
表6 河谷湿陷性黄土的粘土矿物成分
(3)化学成分
化学成分的分析结果及其特征,可从表7中看出如下几点:
1)化学成分在这3个场地是有差别的,尤其对黄土工程地质性质有重大影响的易溶盐、中溶盐和交换容量等有较大差别。
2)易溶盐的含盐量,以兰州为最大,其次是西安,再次是太原,同时兰州含有大量的易溶性的硫酸根离子,而西安和太原则含量微弱;再以介质溶液的pH 值来看,兰州较西安和太原为小,故兰州为硫酸盐型的黄土,而西安和太原为碳酸盐型的黄土。
3)中溶盐(石膏)在兰州的黄土中含量较多,而在西安和太原的黄土中就没有。
表7 河谷湿陷性黄土的化学成分
3.物理力学性质
物理力学性质的特征见表8、表9。
表8 河谷湿陷性黄土的物理性质
表9 河谷湿陷性黄土的力学性质
1)在物理指标中,含水量等存在着较大的区域性差异,且一般有由西而东、由北而南、从小变大的趋势。但孔隙比等,在某几个地方又基本上是相似的。
2)在力学指标中,凝聚力、内摩擦角的区域性变化较小,但野外的形变模量变化范围很大。
4.湿陷特征
近些年来,对湿陷性的认识有了新的发展,除了相对湿陷系数这个指标外,还新添了湿陷起始压力的指标。
(1)相对湿陷系数
1)在平面分布上:从表10中得知,河谷湿陷性黄土的相对湿陷系数与高原上的湿陷性黄土一样,也存在着区域性变化和一般的由西而东、由北而南、从大变小的趋势。
2)在垂直剖面上:由表10和图2中得知,河谷湿陷性黄土的相对湿陷系数与高原上的湿陷性黄土一样也存在着随深度增大而减小的规律。一般在地表为最大,往下就反复地变小,至一定深度时,湿陷性就要消失。湿陷性消失的深度是有区域特征的,具有西深而东浅的变化趋势,但总的看,它一般都消失在地表下10~15m的深度内。
表10 河谷湿陷性黄土的相对湿陷系数
图2 相对湿陷系数随深度变化图
1—太原;2—兰州;3—西安
(2)湿陷起始压力
湿陷起始压力,在我国已发展成为一个有实用意义的力学指标。从表11来看,它也存在着显著的区域性特征,并也有一般的由西而东、由北而南、从小变大的趋势。
表11 灌谷湿陷性黄土的湿陷起始压力
四、几点认识
1)高原湿陷性黄土和河谷湿陷性黄土,在不同地区内,其工程地质性质具有区域性的差异。且在区域性的基础上,大致都存在着由西而东、由北而南的方向性变化趋势。
2)高原湿陷性黄土和河谷湿陷性黄土,在同一地区内的工程地质性质是存在着类别上的差异的。
3)不同地区的高原湿陷性黄土和河谷湿陷性黄土的工程地质性质是既存在类别上的差异,又存在区域上的差异的。
4)在区域性的差异上,河谷湿陷性黄土远较高原湿陷性黄土的差异要大。这是由于前者的沉积环境远比后者的沉积环境复杂。
5)我国湿陷性黄土的工程地质性质是存在着方向性和地区性的变化特征的,这是由于各地在黄土堆积时的古地理、古气候、沉积环境、发育历史及人类活动等因素的不同所致。因此,在建筑时,要区别对待,因地制宜。
6)在反映方向性和区域性的差异上,若简单地以物理力学性质或以单一指标去了解,则这种内在的方向性或区域性规律就难于识别,只有把这种因素中的各个特征指标联系起来,作出综合的工程地质性质的评价,才能把握其规律。因为黄土是自然作用的产物,它一方面是具有一定物理力学性质,一定的物质成分和组织结构的自然体系;另一方面又是在地质历史过程中形成,且在天然和人为因素影响下,不断改变的自然地质体。这种以黄土的形成、发展,以及相互联系的全面观点所揭露出的我国湿陷性黄土的区域性和方向性的规律,对于今后的科学研究和生产实践,将会起到重要的作用。
参考文献
刘东生,张宗祜.1962.中国的黄土.地质学报,42(1)
刘东生等.1965.中国的黄土堆积.北京:科学出版社
张宗祜.1962.中国黄土类土湿陷性及渗透性基本特征.中国地质,(12)
(本文原载:《中国第四纪研究》,1985年,第六卷,第二期,139~145页)
Ⅸ 胶州湾软弱土层工程地质性质
7.2.1 物质组成
通过胶州湾海积软土的粒度分析发现,土层中粉粘粒组的含量较高;其次为砂粒组的含量;另外,少部分的黏粒与粉粒结合形成具有一定抗水性的假粉粒,具有一定的团聚度。软土中难溶盐含量较低,易溶盐含量较高,说明土体的强度很低。虽然土体中含有较高含量的粉黏粒、“假粉粒”,但有机质含量较高,因此土体颜色呈现黑灰色,土的亲水性强。同时,阳离子交换容量和比表面积也都较大,表现为土体活动性比较强烈,说明该软土属于亲水性土体。在工程上,这给土体的排水固结造成很大困难,致使排水时间过长。
7.2.2 结构特征
由于软黏土独特的沉积环境,使软土具有一定的结构性特征,主要表现为:
1)结合水连接是黏土颗粒间水分子(为极性分子)在不同电荷作用下定向排列形成的,黏土颗粒外围的结合水,越是靠近黏粒表面,受吸附力越大,其分子排列越紧密,就越具有较大的黏滞性和抗剪强度,从而形成一定的粒间连接,大量的水使含水量增大,弱结合水增多,因而排水较困难。
2)水中大量微生物-淤泥细菌作用可以产生出CO2,CO2与土中的CaCO3可形成Ca(HCO3)2,到一定深度后,细菌大量死亡,CO2减少,CaCO3又沉淀下来,形成黏粒间某种程度的灰质胶结,这是产生假粉粒的主要原因。
由于以上的结构性,使得软土在工程地质特性上表现为具有较高的孔隙比和含水量。另外,海水中具有丰富的电解质,因而海积黏土的结构类型多属疏松絮凝状。絮凝状结构由片状颗粒搭成的絮凝状结构单元体构成,颗粒排列比较疏松,孔隙比较大,孔隙间连通性较差,影响了土中孔隙水的排出、位移和流动,所以固结速度较慢。
7.2.3 淤泥质软土的力学性质
对软土物理力学性质的测试一般分土工试验和原位测试两类。常用的土工试验包括重度、含水量、液限、塑限、粒度分析、固结、压缩、剪切试验等。胶州湾淤泥质软土土工试验资料的结果表现出离散性大、可靠性差的特点,分析其原因主要有两个方面:①含水量高、流态的软土难取得原状样;②软土样在运输、保存至试验的过程中难免遭受扰动和失水。
因而,测试结果常代表的是排水固结后或扰动后的软土性质。含沙多或以粉粒为主的软土的剪切试验结果一般低于软土天然抗剪指标,剪切试验结果常代表了重塑土的抗剪指标。排水固结后的软土样,压缩试验则表现出压缩性低于天然软土的实验结果。因此,在探讨胶州湾淤泥质软土性质的时候,主要利用土工试验所得的含水量、重度、液限、塑限资料,对软土的力学性质指标则主要运用原位测试数据。
原位测试方法对软土的评价避免了对土样的扰动或失水固结,能较真实地反映软土的实际特征。针对软土强度低的特征,选用静力触探试验(CPT)和十字板剪切试验(VST)较为理想。静力触探具有连续、快速、简便、精确、高灵敏度的特点,可以在现场直接测得土的贯入阻力指标,了解各土层原始状态的有关物理、力学性质;十字板抗剪试验能较客观地反映出软土的不排水抗剪强度值,同时能反映出重塑土的性质和灵敏度。这些指标对软土区的港口建设及有震动荷载的建(构)筑物的设计有着重要的参考价值。
7.2.3.1 淤泥质土静力触探试验资料分析
静力触探试验对软土的评价具有灵敏、精度高的特点,其评价结果与利用含水量、孔隙比等物理参数对软土的评价结果相吻合。静力触探试验现场直接测得的是土的贯入阻力指标,要获得其他物理力学指标还需要借助经验公式。由于单桥静力触探使用时间较长,国内外已经积累了相当丰富的经验。根据胶州湾软土的特点,采用如下经验公式:
1)土的压缩模量Es=4.13P0.687s
2)土的变形模量E0=6.03P1.45s+2.87
3)地基标准承载力f=0.0807Ps+0.049
结果显示,胶州湾淤泥质土的比贯入阻力Ps很低,在0.05~0.90范围内;压缩模量Es在0.53~4.62MPa之间;变形模量E0在2.95~8.05之间;承载力特征值在53~121kPa。另外,表层0~0.5m比贯入阻力值一般要比0.5~1.0m处值大,经分析是因为表层淤泥质土的沙含量一般比其下部要多,导致表层比贯入阻力值偏大。
由于淤泥质土层是一种新近淤积的土层,没有完成全部的固结过程。在漫长的淤积过程中,一般底部土层由于受到上部土层自重压力的固结作用,其物理力学性质要逐渐比上部土层好;但由于其力学性指标绝对值相当小,一般这种细微的差别很难进行观察和描述。由于淤泥质土的这种特点,在实际工作中,很难根据钻探岩心野外鉴别对土层作准确的定性描述,若进行定量鉴定则困难。静力触探因其测试性能比较灵敏,连续性好,可以详细评价淤泥质土在垂向上的分布规律,能比较好地体现土的力学性质同深度之间的线性关系,便于选择适当的压缩、变形及承载力指标。从图7.4可以看出淤泥质土的上述规律,比贯入阻力Ps值与深度呈正相关性,即随着深度的增加,Ps的值也增加。
图7.4 比贯入阻力(Ps)平均值随深度变化曲线
7.2.3.2 淤泥质土十字剪切板试验资料分析
对胶州湾地区上部海相淤泥-淤泥质粉质黏土层进行十字板剪切试验。十字板剪切试验结果Cu=3.52~15.2kPa,标准值约为6.5kPa;重塑土的抗剪强度Cu'=2.1~9.7kPa;灵敏度St=1.1~2.3。根据十字板剪切试验数据和分析结果来看,淤泥质土层十字板剪切试验抗剪强度Cu值随深度而增大,其重塑土的变化也大致相同。
胶州湾深水区含粉粒少的淤泥质土的灵敏度较低(St=1.1~2.3)。根据相关学者第四系力学性质分析,湾内近岸区以饱和粉粒为主的淤泥质土具有易液化、扰动后强度降低的特点,深水区以黏粒为主的淤泥质土灵敏度较近岸区低。
7.2.3.3淤泥质土工程地质灾害
淤泥质土对海岸工程的主要影响性状表现在长期、缓慢地使建筑物产生不均匀沉降和在较短的时间内发生沉降量过大等工程地质问题。
(1)高压缩性、不均匀性
淤泥质土呈饱和状态,含水量高。淤泥质土层的厚度常与海侵前原始地形及水动力条件、陆源物质有关,使得淤泥质土平面和垂向上成分不均、厚度不一,厚度差异能造成较大差异沉降。因淤泥质土中含有粉细沙薄层或透镜体,使侧向排水不均衡,这也是引发建筑物产生不均匀沉降的潜在因素;应根据其固结排水情况,判定其对地基变形的影响。
(2)触变性、低透水性
围海造田一般将淤泥质软土掩埋于地下。软土中含沙或较粗颗粒的地带,其透水性较好,易排水固结;随着填土时间的推移,软土的强度提高。但是,颗粒偏粗的淤泥质土具有较强的触变性,即具有较高的灵敏度。这种扰动后强度显著降低的特性,使得其静态强度满足建筑物的荷载要求时,尚需考虑震动荷载等对软土的影响。一旦受较大震动荷载影响,触变性特点使软土液化、失去强度,引起建筑物失稳,因差异沉降过大而破坏建筑物结构。填土下有软土而地基土未经处理的地区都有此类工程灾害。
对以细粒为主的淤泥区,因具有低透水性,使填土后淤泥中孔隙水难以排出,其强度提高不明显。
若上部已存在建(构)物,在外荷作用下不能很快排水固结,故易产生较高的孔隙水压力,降低地基土的强度,使建筑物处在长时间、缓慢的沉降状态之中。特别是在动荷载(强振动或地震)的作用下,更易发生不同程度压缩变形,从而造成地基土破坏,使建筑物失稳。
(3)低强度
湾内地基承载力特征值在53~121kPa之间。又因固结程度差,灵敏度高,故抵抗外荷作用的能力低,而且易产生扰动。扰动后的强度大约是原状土强度的20%~30%,故在施工中应尽量减轻土扰动,以利于保持土的天然强度。不排水三轴快剪试验强度很低,φ≈0°,c<0.02MPa;在排水条件下随固结程度的提高而增大,固结快剪φ=5°~15°,c=0.03~0.08MPa。因此,在施工过程中应该注意加荷速度。
(4)震害大
横波波速VS=123.50~164.60m/s,纵波波速VP=270~423m/s,属中软-软弱场地土。地震波在软土中传播时阻尼大,对于固有周期长的高层建筑物易产生共振效应,加重震害。
(5)具有较强的吸附力
主要表现在土与建(构)筑物底面的粘结力、真空负压和侧边阻力上。其中,“真空负压”是主要的。对于“吸附力”,有些场合是需要的,但有些场合需消除。例如在建筑物与土的接触处通水或通气,就可以大大地减少对建筑物的吸附力。
Ⅹ 黄土工程地质性质的介绍
黄土工程地质性质(engineering geological property of loess)是指与黄土分布区工程建设施工及建筑物稳定条件密切相关的回黄土的特殊性答质,如黄土的湿陷性、压缩性、抗剪强度等。