当前位置:首页 » 地质工程 » 工程地质结业论文格式

工程地质结业论文格式

发布时间: 2021-02-19 14:08:32

㈠ 论文的书写格式

论文格式
1.论文格式——题目:题目应当简明、具体、确切地反映出本文的特定内容,一般不宜超过20字,如果题目语意未尽,用副题补充说明。
2.论文格式——作者:署名的作者只限于那些选定研究课题和制订研究方案、直接参加全部或主要研究工作、做出主要贡献,并了解论文报告的全部内容,能对全部内容负责解答的人。其他参加工作的人员,可列入附注或致谢部分。
3.论文格式——摘要:摘要应具有独立性和自含性,有数据结论,是一篇完整的短文。摘要一般200-300字.摘要中不用图、表、化学结构式、非公知公用的符号和术语。
4.论文格式——正文:论文中的图、表、附注、参考文献、公式等一律采用阿拉伯数字编码,其标注形式应便于互相区别,如图1,图2-1;表2,表3-2;附注:1);文献[4];式(5),式(3-5)等.具体要求如下;
4.1论文格式——图:曲线图的纵.横坐标必须标注量、标准规定符号、单位(无量纲可以省略),坐标上采用的缩略词或符号必须与正文中一致。
4.2论文格式——表:表应有表题,表内附注序号标注于右上角,如“XXX1)”(读者注意:前面“”引号中的实际排版表示方式应该是“1)”在“XXX”的右上角),不用“*”号作附注序码,表内数据,空白代表未测,“一”代表无此项或未发现,"0"代表实测结果确为零。
4.3论文格式——数学、物理和化学式:一律用“.”表示小数点符号,大于999的整数和多于三位的小数,一律用半个阿拉伯数字符的小间隔分开,不用千位擞“,”,小于1的数应将0列于小数点之前。例如94,652应写成94
652;.319,325应写成0.314
325。
应特别注意区分拉丁文、希腊文、俄文、罗马数字和阿拉伯数字;标明字符的正体、斜体、黑体及大小写、上下角,以免混同。
4.4论文格式——计量单位:论文中使用的各种量、单位和符号,必须遵循国家标准GB3100-82,
GB3101-82,GB3102/1-13-82等的规定.单位名称和符号的书写方式,一律采用国际通用符号。没有相应符号的非物理量单位可使用中文(如“件”、“台”、“人”等),它们可以与其他单位的符号构成组合单位(如“件每秒”的符号为“件/S”)。

工程地质实习报告基本格式是什么

第一部分.写写实习单位的状况
第二部分.写写你实习的主要内容
第三部分.你在实习中遇到的问题.
第四部分.你对这些问题的看法及建议
第五部分.总结一下你实习的感想.

㈢ 求一篇有关工程地质的论文

工程地质学是世纪才建立和发展起来的一门地球科学。工程地质专业在工程建设中具有十分重要的位置。工程地质工作的质量,对工程方案的决策和工程建设的顺利进行至关重要。由于地质问题引起的工程事故时有发生,轻则修改设计延误工期,严重时造成工程失事给人民生命财产带来重大损失。近年来,工程地质勘察质量有下滑现象,工程地质分析不够深入,有的甚至出现工程地质评价的结论性错误。今后十年,将有可能成为水利水电工程建设的又一个事故高发期。工程地质对地球环境的保护要发挥重要作用。工程地质面临着新的机遇和挑战。关键词 。

关键词:工程地质 水利水电 勘察 环境 分析 人才 机遇

工程地质对于工程师来说并不陌生。然而,由于人类工程活动引起地质环境的改变,工程地质问题造成工程建设的被动与失败的若干实例证实,许多人对工程地质又是陌生的。
人类历史刚刚翻开新千年新世纪的第一页,一场以高新技术为前导的产业革命却早已开始了,工程地质学科必将在这场革命中获得新生。当然,我们更应该看到技术的每一次革命性进步,都伴随着矛盾与冲突,特别是体制和机制问题,是生产力与生产关系的相互作用,需要协调与适应,改革就成为必然。
当前,工程地质学科正在经历着前所未有的挑战,工程地质专业正面临着新的发展机遇。人类与自然的关系不是斗争而是相互作用和相互影响;人类工程活动不是改造自然而是如何顺应自然。人类赖以生存的地球环境问题,工程地质学家和地质师都要认真关注,并勇敢地承担起应尽的职责。
1 工程地质学科的起源与发展
工程地质学是研究人类工程建设活动与自然地质环境相互作用和相互影响的一门地球科学。20世纪初,为了适应兴建各种工厂、水坝、铁路、运河等工程建设的需要,地质学家开始介入解决工程建设中与地质有关的工程问题,不断地进行着艰苦的工程实践和开拓性的理论探索,首次出版了“工程地质学”专著,工程地质学开始成为地球科学的一个独立分支学科,工程地质勘察则成为工程建设中不可缺少的一个重要组成部分。二次世界大战以后,全世界有了一个较为稳定的和平环境,工程建设的发展十分迅速,工程地质学在这个阶段迅速成长起来了。经过半个多世纪的工程实践和理论探索,工程地质学大为长进,内涵和外延都焕然一新,成为了现代科学技术行列中的重要分支学科。
中国的工程地质事业在解放前基本上是空白,建国后才有了长足的进步和发展。50年代初开始引进苏联工程地质学理论和方法,走过了我们自己的工程实践和理论创新的辉煌历程,形成了有自己特色的工程地质学体系。特别是在水利水电行业,举世瞩目的三峡、小浪底等特大型水利枢纽工程的开工建设,澜沧江、红水河、雅砻江、乌江、黄河等大江大河众多大型梯级水电站的兴建,以及若干正在开展前期工作的其它水利水电工程,充分积累了在各类岩性地区和各种复杂地质条件下进行地质工作的丰富经验,建立了一套比较完整的工程地质勘察规程规范。重大工程建设不断地将数理学科的新成就和高新技术及时吸收进来,极大地丰富了工程地质学科的内容,有力地促进了工程地质学科的发展,使我国工程地质学达到现代科技水准,逐渐成为国际工程地质界的重要成员之一。
今天,工程地质专业学科的内涵已经远远超出了传统工程地质定性描述和定性评价的范畴,发展成为集多种勘探手段去获取基础性地质资料,并对这些资料进行归类汇总、整理分析、定性评价、定量评价、地质预测、工程措施的建议等等既特殊又复杂的综合性专业。任何一个成熟的设计师,都会清楚地意识到工程地质专业在工程设计中的重要位置。无数重大工程成败的实例足以证明工程地质专业在工程建设中的权威性。
在学术界,有国际工程地质学会,国内的中国地质学会、中国水利学会和水力发电工程学会等全国性学术组织都专门设立有工程地质专业委员会,水利水电行业中全国性的学术组织还有“水利水电工程地质信息网”。此外,全国性的勘测技术协会主要还是工程地质专业。这些学术组织为我国各行各业的工程建设作出了重大贡献,发挥了巨大作用。
2 水利水电工程地质的特点
2.1 特殊性与复杂性
在水利水电、电力、工民建、交通、港航、航天、航空、地矿、市政建设等等凡是存在土建工程,要与地质体(地基)打交道的行业,都有工程地质专业,因此,我们称工程地质专业是工程建设的基础性专业,是不必争议的。由于水利水电工程建设自身的特殊性和复杂性,使得水利水电工程地质又是所有这些不同行业的工程地质专业中涉及面最广、问题最复杂、任务最艰巨、声望最高、最具权威性的业界龙头。
水利水电工程建设的特殊性首先表现在工程建筑物的特殊性。工业与民用建筑到处可以见到基本相同甚至完全相同的建筑物,可以部分或全部套用标准设计图纸。而水工建筑物则不然,世界上有成千上万座水库大坝,你就很难找到两座完全相同的大坝。决定大坝的规模、坝型、结构等工程要素的自然条件很复杂,而工程地质条件则是最主要的自然条件之一。水工建筑物的第二个特殊性是与水打交道,所承受的主要荷载是水荷载。水利水电工程不允许失事,一旦失事,损失将十分惨重。
水利水电工程建设的复杂性主要表现在工程规模大,专业多,涉及面广,投资大,工期长,建筑物的形式、结构、功能、荷载组合等等都十分复杂,特别是大型特大型水利水电工程更是如此。例如举世瞩目的三峡水利枢纽工程,涉及到中国的政治、经济、社会、资源、环境、文化等方方面面,你很难找到其它基建工程可以等同于这样的水利水电工程。因此,水利水电工程地质专业的特殊性与复杂性是由水利水电工程建设的特殊性和复杂性所决定的,同时,工程区自然地质环境的复杂性也决定了这个专业的技术难度。
2.2 实践性与经验性
水利水电工程地质的另一特点是强烈的实践性与经验性。在中国水利学会勘测专委会1999年度学术研讨会上,工程地质界知名前辈专家天津院的李仲春教授语重心长地警示工程界:工程地质这个专业太难了,工程地质决策不是通过计算和试验所能左右的,很大程度上取决于我们的工程经验,即是十分成功的工程,也很难证明它既安全可靠又经济合理。李仲春教授的肺腑之言充分表达了工程地质专业的实践性与经验性的深刻含义。
工程地质理论上的任何一项新进展,新方法,新技术,都必须通过大量试验研究、分析论证和工程实践的检验。例如,近二十年来随着数理基础学科和计算机技术的发展,坝基、洞室和边坡稳定性分析计算的理论和方法有了长足的进展,但是这些计算成果仍然只能是工程设计和决策的一种参考,因此在工程界有一种通用说法:不可不信也不可全信。许多工程实例足以说明采取慎重态度的必要性。有些工程从分析计算上看是安全的,实际上却出了问题;而另一些工程通过计算认为不安全,但却安全运行了数十年。因此我们搞工程建设,工程经验往往又是起决定作用的。
2.3 工程地质问题的长期性与隐伏性
水利水电工程地质的第三大特点:在地质体中留下的工程隐患具有长期性和隐伏性,甚至具有不可预见性。法国Malpasset拱坝失事和意大利Vajont水库大滑坡,均为水工史上震惊世界的惨痛教训,其地质隐患在整个勘测设计施工的全过程中没有丝毫警觉。葛州坝工程坝基软弱夹层问题导致工程停工,重新补充勘探并对设计进行重大修改。南盘江天生桥二级水电站厂房建在一个古滑坡上,开工后实在施工不下去了,搬出滑坡体后又位于另一个滑坡体的脚下。该电站的引水隧洞工程地质条件更是复杂得令建设者们防不胜防。由于地质体中留下的工程隐患造成的工程事故,轻则修改设计,重则工程报废,或造成生命财产的重大损失,这样的例子实在太多,举不胜数。
2.4 工程地质测不准原理
著名的量子力学测不准原理:“不能同时测准粒子在某一瞬间的速度和位置”。我们不妨借用这个原理来揭示工程地质的一些本质性问题。事实上,地质体中的某些性质的确是测不准的。例如某一组结构面的产状,你只能用一个区间值来表述,如果仅用一个确定值来表述则肯定不符合客观实际。又如工程地基岩体的物理力学参数,它只能是一个区间值或统计值,因为地质体中每一点的性质都可能是变化的。地质参数精确到某一个具体数值的时候,千万不要把它当成是绝对准确的,否则会误导精确评价的可信性。据此,我们可以将工程地质测不准原理表述为:“地质体的工程性质不可能用绝对准确的参数来确定,它们只能是通过地质测绘、勘探、试验、分析、统计和经验判断后提出一个建议区间值,供设计师根据建筑物的性质在这个区间值中选取设计采用值”。近二十年来,概率统计、模糊数学、灰色理论等数理学科广泛应用于工程地质分析领域,可以说是对工程地质测不准原理的有力支持。有些设计师不能理解地质师为什么只能提出区间值,而不提出确定的数值,当他们对测不准原理透彻理解之后,这种疑问将会自然消除。3 工程地质的技术进步
工程地质勘察技术近二十年来有了长足的进展。测量、物探、钻探、试验等在仪器、设备、新技术、新方法、新手段方面不断推陈出新,为工程地质提供了强有力的技术依托。由于有了各种新技术的支持,工程地质分析从定性到定量就成为可能。定量分析的新理论层出不穷,在学术界十分活跃。
计算机技术的发展对工程地质来说是一场真正的技术革命,从外业资料收集和内业资料整理的工作程序、工作方法、产品成果、质量标准等等均与传统的工程地质有较大的差异,应用前景振奋人心。“工程地质计算机应用技术协作网”业已正式成立,必将对工程地质技术进步起到积极的推动作用。工程地质计算机应用主要包括六大课题:①数值计算;②制图;③数据库;④文档管理;⑤专家系统;⑥网络系统。这六大课题既是多年来本专业计算机应用的实践,也是我们将继续探讨的主要课题,还需要在今后的实践中赋予新的内涵。
4 工程地质专业的任务与责任
工程地质专业的主要任务是:①选址,选择在地质条件上相对最优的工程建筑地区或场地;②评价,阐明工程建筑区或场地的工程地质条件,进行定性和定量的工程地质评价,准确界定工程地质问题;③预测工程建筑物兴建和运用过程中地质条件的可能变化,为研究改善和治理工程地质缺陷的措施提供依据;④调查工程建筑物所需的天然建筑材料等。归纳起来的表述:为工程建设提供基础性和专门性地质资料,为工程选址、建筑物设计以及不良地质条件的工程处理提供技术依据,同时对地质环境的变化作出预测。
为了完成以上任务,需要针对工程建筑物区进行工程地质勘察和工程地质分析,界定和研究主要工程地质问题。工程地质勘察需要勘察目的明确,工程概念清晰,勘察手段多样,勘探精度满足要求。工程地质分析要求方法正确,计算可靠,参数可信,建议措施符合工程实际。工程设计最关心的是建筑物地基的工程地质条件和物理力学性质,因此工程地质工作的最终体现是工程地质定性和定量评价。
工程地质专业只对提交给设计采用的地质资料负责,其物理力学参数也仅仅是建议值,不在建议值范围之内的设计采用值和不适应地质条件的设计方案,地质师不负责。但是,地质师有责任对不符合或不适应地质条件的设计方案提出质疑,对可能存在的工程隐患要与设计师充分交底,对不良工程地质缺陷有责任提出工程处理措施的建议。
一般说来,正规勘测设计院的勘测队伍,已经过几十年工程实践的检验,在正常情况下都可以完成以上任务并尽到地质专业的责任。本文以下章节列出的工程地质工作中存在的若干问题,是归纳了笔者从事工程地质工作十多年来的所见所闻,供地质师们分析问题时参考。
5 工程地质工作存在的问题与对策
5.1 工程地质勘察的质量问题
在工程地质勘察过程中,一般问题较多的是工程概念不清,勘探侧重点不明确,针对性不强,方法不当,手段落后;工程地质分析工作中所选择的理论、方法、计算公式等与实际情况有较大出入,其适应条件的物理意义混淆不清;地质报告中基本地质条件不清楚,主要工程地质问题界定不准确或论证不充分,有问题遗漏甚至结论性错误;有些地质报告没有地质结论,也有些工程没有做多少地质工作就先下结论,极不严肃。此类问题往往造成阶段性工程审查不能一次性通过,可能延误开发时机;或者尽管通过了审查,但却给工程留下了隐患,这种情况的危险性更大。
5.2 相关专业的理解问题
一种情况是地质师对其它专业不理解,这需要加强跨专业的学习。另一类现象是设计施工等相关专业对工程地质的不理解。有的不懂地质却偏要提出一些不切实际的勘探要求,有的工程由设计人员来布置地质勘探工作;有的设计人员对地质专业知其然不知其所以然,自以为是包打天下,不结合地质条件设计不当;也有的是不尊重自然地质规律,野蛮施工,严重破坏地质体的自然结构,造成重大工程事故。所有这些非地质专业的问题,往往在出了问题之后又向地质专业推卸责任,令地质师们不知所云。工程地质界知名专家学者孙广忠教授指出:“实际上,在地质工程实践中脱离地质实际的实例随手可拾,可以说,地质工程施工中出现事故的绝大部分是设计和施工脱离地质实际的结果,或者是对工程地质条件没有搞清楚或认识不清的结果,如果离开了地质基础,则其理论必将脱离地质实际必将作出错误的结论”。
潘家峥院士等前辈专家早已强调过地质学水工,水工学地质。足以可见专业之间的交叉渗透问题,早已被专家们的真知灼见道出了关键,就看我们作何行动。
5.3 勘测周期不合理的问题
从工程地质勘察到地质报告的提交需要一定的工作周期,这是再简单不过的道理。但有些工程没有基础性的前期投入,一旦要报项目,立即就要求提交地质报告;还有些工程是今天提交了可研报告,明天就提交初设报告。此类情况多为地方性工程,一般国家投资的大型工程出现这种局面的不多。没有足够的勘测周期所造成的后果是严重的,地质条件不清楚,投资控制不住,施工后修改设计,或由于地质问题造成承包商巨额索赔等等。更可怕的是留下了工程隐患,可能造成重大工程事故。
5.4 规程规范的问题
规程规范的问题较多,甚至产生了一些混乱。水利系统与水电系统的勘测设计阶段不一致,规程规范也有区别。历经十多年的编写报批,1999年才颁布的国家标准《水利水电工程地质勘察规范》,在勘测程序和新技术的应用方面都已经明显地落后于时代的发展,一经颁布实施就难以把握。更为令人难以理解的是另一部国标《岩土工程勘察规范》并不完全适合于水利水电工程地质,而建设部的一些工程勘察监督机构则以此为依据对水利水电勘测设计单位实施质量检查,使勘测单位不得不准备满足两种规范的两套地质报告分别对付审查和检查。规程规范的修订和出台周期太长,完全不能满足工程建设的需要。水利与水电分家之后,对于工程地质这个专业来说其工作性质是一样的,但却存在不同的技术标准和勘测程序,这种情况还要继续下去,需要寻求解决或协调方案。
5.5 人才问题
文革十年造成的人才断层已经出现。有丰富工程实践经验的前辈地质师相继离岗,各勘测设计院明显缺地质总工人才,八十年代期间各院比较整齐的地质副院长和院级地质总工,近年来在一些勘测设计院已经相继断档,或后继无人,或后备人才尚不成熟。勘测行业不景气,社会地位和经济地位与工程地质专业不相适应,工作环境、工作条件的局限,人才资源开发机制的问题,择业行为中的浮躁动机等等,都不同程度地影响着优秀地质师的成长。
高质量高水平的工程地质分析成果,出自于高水平高素质的地质师。有人说二、三年就可以培养出地质专家,实属无知。要培养出一个具有工程地质分析能力,能够解决复杂问题的地质师,没有十年以上的功夫,大量的工程实践,自身的敬业精神,理论联系实际,相关学科专业的学习和渗透,是决不可能的。十年树木百年树人,在地质师的培养过程中可以充分体现出来。培养优秀地质师的难度可以说远远超过培养博士、研究员和教授的难度。
社会的发展和日趋激烈的竞争市场,对地质师素质的要求也将越来越高,最好是跨专业的复合型人才。竞争的实质是人才的竞争。勘测队伍要走向市场,必须重视高素质人才的培养,重视人才资源的开发。
5.6 技术管理问题
工程地质勘察质量的控制,技术管理是主要环节之一。近年来一些单位提交的勘测设计报告中的地质章节不是地质师写的,报告的编制人中没有地质专业负责人,或地质报告没有院级地质负责人审查把关,报告和图纸中的错误较多。这种情况给总院增加了审查难度,同时也有损勘测设计单位的质量和水平形象,还会延误工程报批的时机。当然也有上级单位工程审查把关不严,助长了这种技术责任心不强的现象。
5.7 其它问题
前期工作投入不够,有些地方部门长期拖欠勘测经费;体制问题,市场竞争不规范,非水利水电勘测单位从事水利水电勘测工作存在工作方法、技术要求和工程地质评价等方面的差异;勘测工作经费仍然按落后的实物工作量计算,造成多勘探多争钱,地质分析多出力多赔本的事实上的不合理现象,长期以来得不到解决。勘测技术的科技含量低,新技术新方法投入少,不能满足现代工程技术发展的要求。
5.8 今后十年将进入工程事故的高发期
鉴于对以上若干问题的担忧,今后十年有可能是我国水利水电工程事故的又一个高发期,这一悲观性预测有些危言耸听,但愿不要成为被不幸言中的事实。
5.9 解决问题的对策
解决问题首先要分清责任。规程规范和部分技术管理方面的问题应该由总院负责;勘测周期不合理,前期工作投入不够等问题应该是地方部门或者计划部门负责;质量、人才、相关专业的协调等问题自然应该由勘测设计单位负责;其它问题大家都有责任,但主要还是取决于大环境。
责任分清楚了,落实到要有人来抓,所有问题虽然我们不敢说都能很好地得到全面解决,但至少可以前进一大步。最可怕的是大家都在畅谈必要性重要性,结果都是纸上谈兵,没有实际行动。笔者在这里也就是夸夸其谈而已,不可能提出可以操作的具体解决方案,这种方案也不该我们提,该谁提?当然应该是谁负责抓,谁就提方案追落实精指挥勤检查,最终归结到谁领导的关键问题上。到此为此,我们的对策就算出台了。
其实,我们这里列出来的众多实际问题,本质上和深层次的是体制和机制问题,需要通过改革才能从根本上解决。随着勘测设计市场化进程的加快,新技术与旧管理的冲突,老观念与新思想的交锋,既是矛盾又是改革的动力,这是不难理解的。
6 工程地质要抓住机遇迎接挑战
汪恕诚部长曾经讲话强调:“不能老修改设计,因为搞招投标尤其是国际合同,修改设计就意味着被索赔”。少修改或不修改设计,是对工程地质提出的更高要求。基本地质资料不准,修改设计就是必须的。高标准严要求就是挑战和机遇。
人类社会的进步与发展,实际上又是一部人与自然相互协调和相互影响的壮丽史诗。以前我们把人与自然的关系当成是与天斗与地斗的斗争关系,实践证明,人与大自然斗争的结果,虽然取得了一些局部性的小胜利,而大自然反过来对人类的惩罚却是灾难性的。人类的每一次产业革命,无不与工程建设有直接关系,与地质环境有直接或间接关系。建国以来,我国的基本建设此起彼伏,水利水电工程建设从无到有,新一轮的建设高潮正在兴起。在多专业组成的基建队伍这个庞大乐团中,地质师要起到指挥和首席演奏家的作用,甚至还要担负起独奏华彩乐章的作用。
尽管工程地质学科正在经历着前所未有的挑战,工程地质工作也存在着这样那样的问题和难题,然而这更是机遇。抓住机遇迎接挑战,顺应自然,保护环境,防止灾害,造福人类,是工程地质学家和地质师的艰巨任务和不可推卸的责任。主要参考文献:
1 王思敬,工程地质学的任务与未来,《工程地质学报》1999年第3期
2 崔政权,《系统工程地质学导论》水利电力出版社,1992.5
3 孙广忠,论地质工程的基础理论,《工程地质学报》1996.第4期
4 黄鼎成等,《走向21世纪的中国地球科学》河南科技出版社,1995年10月
5 张明定等,《水文地质与工程地质的系统思维》西北工业大学出版社,1993年12月
6 陈祖安,工程地质学,《中国电力网络全书水力发电卷》中国电力出版社,1995年5月
7 韦港,水利水电工程地质实例剖析,《工程地质-面向21世纪》中国地质大学出版社,1997年11月
8 陈祖安等,水利水电工程地质计算机应用概述及设想规划,《水利水电工程地质》1995年第1期
9 韦港、冀建疆,关于堤防工程地质勘察规程中若干问题的探讨,《水利水电技术》1999年第10期
10 瑞德尼克[苏],《量子力学史》科学出版社,1979年9月转贴于 中国论文下载中心 http://www.studa.net[首页]

㈣ 土木工程专业的毕业论文怎么写啊(急求)

关键词:30cm混渣+20cm碎石+4层20cm灰土
本人有幸于三月中旬到六月上旬间在天津市塘沽区的天津大道项目实习,以实习期间对天津大道项目路基工程的了解和认识为素材,并按照工程施工的顺序分析路基施工中的要点编纂论文。
一、天津地区气象水文及地质情况
天津位于北半球暖温带,中纬度亚欧大陆东岸,四季分明,介于大陆性欲海洋性气候的过渡带上,属于半湿润季风气候。春季干燥多风,冷暖多变;夏季温高湿重,雨热共济;秋季天高云淡,风和日丽;冬季寒冷干燥,雨雪稀少。年平均气温1~12℃,七月平均气温25.9℃,一月平均气温-5℃,极端最低气温-21℃,极端最高气温40.3℃。年平均降雨652.5mm,一日最大暴雨量304.4mm,最大积雪深度29mm。春秋两季降雨量分别占全年的10%和14%;夏季6月中旬~9月中旬为雨季(汛期),平均雨日34天左右,占全年降水量的73%以上;冬季与血量占全年的1%~3%.
天津地区位于海河流域下游,海河水系是华北地区最大水系,本工程自北向南,横贯扇面中央,共永定河、中亭河,子牙河等3条一级河道,龙河、中泓故道、南运河等3条二级河道,并且沿线灌溉、排水渠道密布,基本形成排灌水网系。
二、天津大道工程概况
天津大道连接天津市中心城区小白楼商务区与滨海新区于家堡、响罗湾商务区,为城市快速路,西起外环线津沽立交,东至中央大道,双向八车道,设计行车速度80km/h。
三、材料要求
(一) 路基填土
1、路基填料宜优先选用级配良好的砾类土、砂类土作为填料,泥炭、淤泥冻土、强膨胀土、有机质土及易溶盐超过允许含量的土等,不得直接用于填筑路基。
2、本工程位于冰冻地区,严禁采用未经处理的粉质土直接填筑路基。当采用其他细土时,路基填料CBR应满足要求。此外,液限大于50%,塑性指数大于26的细粒土不得直接作为路基填料。
3、禁止使用沼泽土、泥炭及淤泥、含有树根、树桩、易腐朽物质或有机质含量大于5%,氯盐含量大于3%,碳酸盐含量大于0.8%的土。
4、中央分隔带及绿化带填土按绿化回填要求进行填筑。
5、细粒土尽可能粉碎,粒径不得大于15mm。
(二) 碎石
1、碎石中不含植物残体、垃圾等杂物。
2、最大粒径应小于30mm,要求其压碎值不超过30%、强度不小于15MP(未筛分碎石)。
3、 碎石的颗粒组成应符合JTJ034-2000中第2.2.1.6中2#级配要求,为方便施工,宜采用10~30mm的粗集料,5~10mm的中集料,0~5mm的石屑细集料三种粒料配合。
3、池塘路基处理碎石垫层用碎石强度不小于15MP(未筛分碎石),最大粒径应小于150mm,通过20mm筛孔的选料不得超过总量的30%,通过0.075mm筛孔的选料不超过总量的10%。
(三) 钢塑双向土工格栅
1、钢塑双向土工格栅应采用凸结点形式,以保证连接牢靠,其性能要求如下:
纵向抗拉强度:≥80KN 横向抗拉强度:≥80KN
伸缩率:≤3% 结点剥离力:≥350N
2、同时为尽量减少搭接程数量,钢塑双向土工格栅幅宽不宜小于4m。
(四) 石灰
1、石灰应采用消石灰或生石灰粉;消石灰中不得有未消解的生石灰颗粒,石灰等级应在三级以上。
2、 如采用生石灰,钙质生石灰中有效氧化钙氧化镁的含量应大于70%;如采用消石灰,钙质消石灰中有效氧化钙氧化镁的含量应大于50%。
3、石灰剂量=石灰质量/干土质量,生石灰块应在使用前7~10天充分消解。消解的生石灰应保持一定的湿度,不得产生扬尘,也不得过湿成团。消石灰宜过孔10mm的筛,并尽快使用。
(五) 水泥
1、 水泥应符合国家技术标准的要求,宜采用42.5MPa的普通硅酸盐水泥、矿渣硅酸盐水泥或火山灰质硅酸盐水泥。
(六) 土壤固化剂
1、土壤固化剂采用液粉土壤固化剂路邦EN-1(浓缩液),固化剂浓缩液掺入剂量为0.014%,或根据实验确定。
2、土壤固化剂的技术性能指标应符合现行行业标准《土壤固化剂》CJ/T3073的规定,溶液的固体含量不得大于3%,不得有沉淀或絮状现象。
(七) 水
应采用饮用水或PH大于或等于6的水。
四、施工程序
(一)路基表层整体处理方案
由于本工程均处于稻、苇地等潮湿地段,路基填筑前应清除地表草皮、树根、腐殖土、垃圾、杂物等,路基清表30cm后大致找平并进行碾压,压实度应符合设计(90%)要求,如达不到压实度要求,可采用5%戗灰处理;如戗灰0~50cm仍达不到压实度要求,需换填50cm碎石垫层,以加快工程进度。
路基填筑高度小于路面和路床总厚度时,应将地基表层土进行超挖并分层回填压实,处理深度不应小于路床底面。
工程所处区域为平原地貌,土质为粘土或粉质粘土,地下水丰富,土质含水量较高,全线路基处于潮湿、中湿状态,因此需要对路基表层按实际情况分别进行处理方可进行路基填筑。
1、填土高度大于2m的路段(路床最低点距清表后地表距离):
地表整平后晾晒,对露出地下水的路段应设置临时排水沟,排除地表积水,经推土机排压后填筑30cm混渣,经12t以上压路机碾压3~4遍后通铺双向土工格栅,土工格栅反包其上灰土层(20cm厚,5%戗灰)2m,继续分层填筑分层压实灰土(5%戗灰,如达不到相应层位压实度及强度要求,增加灰量至8%)至路床顶以下80cm,对无法承受12t以上压路机地段应增加混渣厚度,各层压实度及强度满足设计说明的要求。
2、 填土高度大于1.3m、小于2m的路段(路床最低点距清表后地表距离):
地表整平后晾晒,对露出地下水的路段应设置临时排水沟,排除地表积水,经推土机排压后填筑40cm混渣,经18t以上压路机碾压3~4遍后通铺双向土工格栅,土工格栅反包其上灰土层(20cm厚,5%戗灰)2m,继续分层填筑分层压实灰土(5%戗灰,如达不到相应层位压实度及强度要求,增加灰量至8%)至路床顶以下80cm,对无法承受18t以上压路机地段应增加混渣厚度,各层压实度及强度满足设计说明的要求。
3、填土高度小于1.3m的路段(路床最低点距清表后地表距离):
地表应继续下挖至距路床顶1.3m的高度,排除地表积水后晾晒,经推土机排压后填筑30cm混渣,经18t以上压路机碾压2~3遍后继续填筑20cm的碎石,在混渣和碎石之间通铺双向土工格栅,土工格栅反包其上碎石2m,碎石经18t压路机碾压3~4遍后用平地机刮平碎石层准备填筑灰土。

(二)混渣填筑
1、混渣填筑厚度较大时应分层填筑分层压实,每层以20~25cm为宜
2、混渣填筑时应严格控制含水量,对于含水量较大的应进行适当的晾晒方可以进行碾压。而且应避免使用含土量过大的混渣,如果有含土量较大的材料进场,应先进行堆备,待其他含土量较少的混渣进场时掺拌后填入路基中。
3、混渣的强度应保证不小于15MP,最大粒径应保证小于150mm,通过20mm筛孔的选料不得超过总量的30%,其通过0.075mm的不超过总量的10%,大粒径渣石应填筑在下部,小粒径渣石填筑在上层,保证混渣顶的平整度(误差不超过2cm)空隙较大时应扫入石渣(未筛分),或石屑填充,上部可填筑渣石或石屑。
4、雨天时注意对基槽进行排水,杜绝在含水量过大的情况下对混渣进行碾压。
5 、为避免地基产生过分扰动造成地基基底无法压实,压路机在碾压过程中严禁使用震动碾压。但与此同时为保证填料的密实性,在碾压过程中横向接头要重叠50cm进行碾压,做到无漏压,保证碾压均匀,且严格控制碾压遍数为四遍。碎石填料与混渣碾压要求相同。
(三)碎石填筑
1、由于碎石填筑厚度仅为20cm,应严格控制混渣顶面高程,杜绝混渣侵入碎石填筑范围,减少碎石填筑厚度。
2、碎石填料粒径应控制在5cm以内,其通过0.075mm的总量不超过总量的10%,且级配良好,无杂物。
3、使用碎石强度不小于15MP(未筛分碎石)。
4、大粒径碎石应填筑在下部,小粒径碎石填筑在上层,保证碎石顶的平整度(误差不超过2cm)。
(四)钢塑双向土工格栅的铺设
1、土工格栅存放及铺设直接接触的填料中严禁含强酸性、强碱性物质、
2、一般路段土工格栅的铺设应垂直于路堤轴线方向,桥头路基处理段土工格栅应顺路堤轴线方向铺设。
3、土工格栅之间的连接应使用尼龙卡扣呈梅花型绑扎牢固,搭接长度不小于30cm,间距不得大于3各空格。
4、土工格栅铺设完成后应及时填筑调料,避免受阳光长时间暴晒,铺设与填料填筑时间间隔应不超过48小时。
5、施工中应采取措施避免是土工格栅受损,出现破损及时修补或更换。
6、土工格栅下乘层应平整,铺设时应拉直、平顺、绷紧,紧贴下承层,不得扭曲褶皱。
7、土工格栅上的第一层填料应采用轻型机械摊平和碾压,一切车辆及施工机械只允许沿路堤轴向方向行驶。
8、铺设土工格栅时,应在路堤每边各预留不小于2m的长度,回折覆裹在已压实的填筑层面上,折回外露部分应用土覆盖。
9、混渣层大致平整密实,大块石头尽量压到下层土中或者人工捡走,避免石块咯烂土工格栅。
10、平地机在整平碎石时,下刀要注意掌握力度,发现土工格栅立即收刀,整平时现场必须有人紧盯,发现问题人工及时处理。
(五)路基施工填土要求
1、一般路基段填土处理
(1)路基必须分层填筑分层碾压。每层最大压实厚度不宜超过20cm(当压实机械可以保证压实度并经现场试验、检测合格后可适当加大压实厚度),路床顶面最后一层压实厚度为20cm(遇特殊情况不满足设计要求是,最小压实厚度不得小于10cm)。
(2)含水量应控制在压实最佳含水量±2%之内。
(3)路基填筑宽度每侧应宽出填筑层设计宽度30cm,压实宽度不小于设计宽度,最后销坡。
(4)路基表面应具有2%~4%的向外横坡,防止积水。为避免路基边坡被雨水冲刷,路基填筑过程中要求在路基下坡脚外两米处设置临时排水埝和排水设施。
(5)征地边线外两侧各10m范围内禁止集中取土。
(6)路基填筑范围内严禁作为施工便道使用。
(7)路基填筑应均匀密实,路床顶面横坡于路拱横坡一致。
(8)路基填土压实度、填料最小强度及最大粒径不小于表1要求。
路基压实度、填料最小强度及最大粒径 表1
项目分类 压实度(%)(重型压实标准) 填料最大粒径(cm) 填料最小强度(CBR)%
路堤 上路床(0~30cm) ≥96 10 8
下路床(30~80cm) ≥96 10 5
上路堤(80~150cm) ≥94 15 4
下路堤(>150cm) ≥93 15 3
零填及路堑路床(0~30cm) ≥96 10 8
注:表中所列压实度系按《公路土工试验规程》(JTJ051)重型击实实验法求得的最大干密度计算所得。
(9)路基填土高度
路基最小填土高度须保证不因地下水、地表水、毛细水及冻胀作用而影响稳定性。本工程为城市道路,路基设计最小填土高度应大于路床处于潮湿或中湿状态的临界高度。根据沿线各钻孔(钻探时间为6月份最不利季节)揭示的地下水位以及Ⅱ4区路基处于潮湿、中湿状态的临界高度计算的路基最小填土高度见表2。
处于中湿、潮湿状态时的最小填土高度 表2
名称
孔位 ZK48 ZK49 ZK50 ZK51
孔口标高 2.25 1.9 1.35 2.55
静止水位埋深(m) 1.3 0.9 0.7 1.75
水位标高(m) 0.95 1.00 0.65 0.80
中湿状态路基设计标高(m) 3.90 3.95 3.60 3.75
中湿填土高度(m) 1.62 2.02 2.22 1.17
潮湿状态路基设计标高(m) 3.20 3.25 2.90 3.05
潮湿填土高度(m) 0.95 1.35 1.55 0.5

2、特殊路基段处理
(1)桥头引路段
桥头引路路基填方路段处于中湿状态,应对现状地坪清表整平后,回填路基土,然后在距路床顶面以下40cm以下做20cm土壤固化剂固化石灰土(5%石灰)+20cm土壤固化剂水泥石灰土(2%水泥+3%石灰),保证土基不出现软弹现象。
(2)池塘段路基处理
○1路线在穿越大面积池塘及大型沟渠处应打坝、抽水、清淤、整平后分层填筑分层压实混渣(每层以20cm~30cm为宜)至距路床顶以下100cm处,通铺钢塑双向土工格栅后填筑20cm碎石,碎石之上分层填筑灰土。池塘、大型沟渠等边坡应开蹬成台阶状,蹬高0.4m,两步为一蹬,蹬宽≥0.6m,开蹬处铺设≥1.6m宽的钢塑双向土工格栅。
○2路线经大面积池塘时,应将各池塘间堤埝铲平后再进行填筑混渣垫层、铺设土工格栅等工作,以确保路基整体性。
(3)桥头路基处理
○1桥头两侧地基处理根据地质条件、填土高度和施工周期,采用加固土桩(水泥搅拌桩)+石灰土(8%)的处理方式,加固土桩采用梅花形布置。加固土桩横向布置范围放坡一侧应超出引路坡脚以外至少1.0m。
○2成桩后应凿出桩头50cm,桩顶先铺30cm碎石垫层,然后铺土工格栅,最后再铺30cm碎石垫层 。
○3桥头处理范围控制在50m,根据处理前后恭候沉降差的情况,靠近桥头50m范围内(除台背回填)路堤填料采用8%石灰土,所填填料应分层碾压夯实,压实度要求达到重型90%。桥台后背回填采用14%石灰土分层碾压夯实。
(六)灰土填筑
施工时按照“四区段”和“八流程”进行。“四区段”即:“上土摊铺区、翻晒拌合区、整平碾压去、报验养生区”,“八流程”即:“上土、摊铺、翻晒、布灰、拌合、整平、碾压、养生”。具体施工工艺如下:

1、试验标定
在上土之前应取现场土样测定土的天然含水量及液塑限并进行标准击实试验确定最佳含水量和最大干密度。
2、测量放样
测量组准确放出道路中心线。
3、路堤填筑时在取土场用挖掘机和装载机将土装入自卸汽车,运到填土路基处。根据路基宽度、自卸汽车方量及松铺厚度,用白灰洒线打网格,确定每车土的卸土位置,以保证填土厚度。
4、素土摊铺粗平后,首先应根据虚铺系数追踪测定高程,在考虑虚铺系数的情况下若高程达不到设计值应及时采取措施补救,待满足要求后用铧犁和旋耕犁进行翻晒和粉碎。在上灰前,检查土的含水量,当接近最佳含水量时及时上灰。
5、 摊铺石灰:素土整平稳压后,按眼路线走向5×10m打好方格,根据配比将每格需要的石灰量人工摊铺均匀。上灰时应保证灰土中无杂质、无未消解的灰块。
6、 路拌机拌合:石灰摊铺完成后,均需用路拌机拌合,拌合遍数2遍以上,要用专人在路拌机后面随时检查拌合深度,拌合深度以打入路床顶以下5~10mm为宜,确保无素土夹层,保证拌合均匀色泽一致,没有灰花团和花条,检测混合料的含水量和灰剂量,含水量控制在最佳含水量1~2个百分点,灰剂量符合规范要求。
7、 整平和碾压:用平地机、水准仪跟踪控制高程。当高程、横坡达到规范要求时,先用振动压路机稳压一遍,再用振动压路机振压两遍,然后用18~21t压路机进行碾压三遍,由路肩向路中心碾压,碾压时轮迹重叠1/2轮宽,路肩处应多压2~3遍。严禁压路机在已完成的或正在碾压的路段上急调头或急刹车,以保证石灰土的表面不被破坏。若在碾压过程中出现“弹簧”现象,应采用挖除、重新换填或掺石灰或水泥等措施进行处理。在压路机碾压结束之前用平地机再终平一次,使其纵向顺适,路拱符合设计要求。终平应仔细进行,必须将局部高出部分刮除并扫除路外,对局部低洼之处不再进行找补,可待铺筑下层时处理。
8、 试验检测:一段路基完成后,试验人员及时进行路面外形、压实度、灰剂量等的试验检测,自检合格后报请监理工程师验收,验收合格后进行下层施工。

外形管理的测量频率和质量标准
项次 规定值 检查方法和频率
纵段高程(mm) +5~-20 每20延米1处
厚度(mm) -10~-25 每1500~2000 m26个点
宽度 不小于设计值 每40延米1处
平整度(mm) 15 3m直尺,每200延米2处,每处连续10尺
横坡(%) +0.5,-0.5 每100延米3处

我发的是word文档,有些格式肯定不正确,你自己修改

㈤ 大一地质工程论文怎样写,最好有范文

水利工程坝址选择的工程地质勘察
岩土性质对建筑物的稳定来说十分重要,对坝址的比选具有决定性意义。因此,在坝址比选时,首先要考虑岩土性质。修建高坝,特别是混凝土坝,应选择坚硬、完整、新鲜均匀、透水性差而抗水性强的岩石作为坝址。我国已建和正在施工的70余座高坝中,有半数建于强
岩土性质对建筑物的稳定来说十分重要,对坝址的比选具有决定性意义。因此,在坝址比选时,首先要考虑岩土性质。修建高坝,特别是坝,应选择坚硬、完整、新鲜均匀、透水性差而抗水性强的岩石作为坝址。我国已建和正在施工的70余座高坝中,有半数建于强度较高的岩浆岩地基上,其余的绝大多数建于片麻岩、石英岩和砂岩上,而建于可溶性碳酸盐岩、强度低易变形的页岩、千枚岩上的极少。通过结合工程实践,根据不同成因类型岩土的建坝适宜性及其主要问题作简要概述。
【摘要】通过结合工程实践表明,工程地质勘察人员不仅要了解地质也要了解设计,同时应当对工程地质的相关问题提出分析,并结合工程的实际情况而选取合适的坝址。
【关键词】工程地质勘察,水利工程,坝址选取
1.引言

水工建筑物不同于其他建筑物,有其自身的特点。因水工建筑物的建成,而使广大范围内的水文和水文地质条件发生变化。这种变化就可能引起水库岸坡再造、水库渗漏、水库淤积和坝下游河床冲刷等作用。因此,必须重视勘察、设计、施工全过程,否则,后果极其严重。在坝址选择时除了考虑主体建筑物拦水坝的地质条件外,还应研究包括溢洪、引水、电厂、航闸等建筑物的地质条件,为规划、设计和施工提供可靠依据。
2.坝址选取的工程地质勘察
在自然界中,地质条件完美的坝址很少,尤其是大型的水利枢纽,对地质条件的要求很高,更不能完全满足建筑物的要求。所谓&最优方案&是比较而言的,最优坝址在地质上也会存在缺陷。所以在坝址选择时,应当考虑不同方案,并采取改善不良地质条件的处理措施。因此,地质条件较差,预计处理困难,投资高昂的方案,应首先被否定。坝址选择时,工程地质论证的主要内容包括区域稳定性、地形地貌、岩土性质、地质构造、水文地质条件和物理地质作用以及建筑材料等,还要预计到可能产生的工程地质问题和处理这些问题的难易程度,工作量大小等,下面分别论述。
2.1区域稳定性
区域稳定性问题的研究在水利水电建设中具有特别重要的意义。围绕坝址或要开发的河段,对区域地壳稳定性和区域场地稳定性进行深入研究是一项战略任务。特别是地震的影响直接关系着坝址和坝型的选择,一般情况下,地震烈度由地震部门提供,但对于重大的水利枢纽工程要进行地震危险性分析和地震安全性评价。因此,对于大型水电工程,在可行性研究阶段,应组织专门力量解决区域稳定性评价。
2.2地形地貌
地形地貌条件是确定坝型的主要依据之一,同时,它对工程布置和施工条件有制约作用。狭窄、完整的基岩&V&型谷适合修建拱坝,宽高比大于2的&U&型基岩河谷区宜修建混凝土重力坝或砌石坝。宽敞河谷地区岩石风化较深或有较厚的松散沉积层,一般适于修建土坝。不同地貌单元,其岩性、结构有其自身的特点,如河谷开阔地段,其阶地发育,二元结构和多元结构往往存在渗漏和渗透变形问题。古河道往往控制着渗漏途径和渗漏量等。因此,在坝址比选时要充分考虑地形、地貌条件。
2.3岩土性质
(1)侵入的块状结晶岩体,一般致密坚硬、均一、完整、强度大、抗水性强、渗透性弱,是修建高混凝土坝最理想的地基,其中尤以花岗岩类为最佳。这类岩石需注意它们与围岩以及不同侵入期的边缘接触面,平缓的原生节理,风化壳和风化夹层的分布,选坝时避开这些不利因素。
(2)喷出岩类强度较高、抗水性强,也是较理想的坝基。我国东南沿海、华北和东北有不少大坝坐落在这类岩石上。喷出岩的喷发间断面往往是弱面,存在风化夹层、夹泥层及松散的砂砾石层,还有凝灰岩的泥化和软化等,对坝基抗滑稳定性的影响不可忽视。此外,玄武岩中的柱状节理,透水性很强,在选坝时也须注意研究。例如:桑干河干流上的山西省册田水库大坝坝基为新生代的玄武岩,柱状节理极发育,坝基及绕坝渗漏严重,影响着水库效益
(3)深变质的片麻岩、变粒岩、混合岩、石英岩等,强度高、抗水性强、渗透性差,也是较理想的坝基。但是在这类岩体中选坝址,必须注意片理面的各向异性及软弱夹层的存在,选坝时,应避开软弱矿物富集的片岩(如云母片岩、石墨片岩、绿泥石片岩、滑石片岩)。在浅变质岩的板岩、千枚岩区,应特别注意岩石的软化和泥化问题。
(4)沉积岩中,以厚层的砂岩和碳酸盐岩为较好的坝基。这类岩石坝基较岩浆岩、变质岩的条件复杂。这是因为在厚层硬岩层中常夹有软弱岩层,这些夹层力学强度低,抗水能力差,易构成滑移控制面。碎屑岩类如砾岩、砂岩等,强度与胶结物类型有关,一些胶结物在水的作用下可能产生溶解、软化、崩解、膨胀等。在构造变动下往往发生层间错动,经过次生作用易于发生泥化。在坝址比选时必须十分注意这一问题。此外,碳酸盐岩的岩溶洞穴和裂隙的发育,可能会产生严重的渗漏。
另外,在坝址比选中,河床松散覆盖层具有重要意义。修建高混凝土坝,坝体必须座落在基岩之上,若河床覆盖层过厚,就会增加坝基的开挖工程量,使施工条件复杂化。所以当其他条件大致相同时,应将坝址选择在覆盖层较薄的地段。有的河段因覆盖层过厚,只得采用土石坝型。比选松散土体坝基的坝址时,须研究渗漏、渗透变形和振动液化等问题,而且应避开如淤泥类土等软弱、易变形土层。
2.4地质构造
地质构造在坝址选择中同样占有重要地位,对变形较为敏感的刚性坝来说更为重要。在地震强烈活动或活动性断裂发育的地区,选坝时应尽量避开或远离活断层,而位于区域稳定条件相对较好的地块上。在选坝前的可行性研究时,应进行区域地质研究,查明区域构造格局,尤其要查明目前仍持续活动或可能活动断裂的分布、类型、规模和错动速率,并预测发生水库诱发地震的可能及震级。国外有些水坝就因横跨活断层而坝体被错开或致垮坝。地质构造也经常控制坝基、坝肩岩体的稳定。在层状岩体分布地区,倾向上游或下游的缓倾岩层中存在层间错动带时,在后期次生作用下往往演化为泥化夹层,若有其他构造结构面切割的话,对坝基抗滑稳定极为不利,在选坝时应特别注意。因为缓倾岩层的构造变动一般较轻微,容易被忽视。陡倾甚至倒转岩层,由于构造形变强烈,岩石完整性受到强烈破坏,在选坝时更要特别注意查清坝基内缓倾角的压性断裂。总之,要尽可能选择岩体完整性较好的构造部位作坝址,避开断裂、裂隙强烈发育的地段。
2.5水文地质条件
在以渗漏问题为主的岩溶区和深厚河床覆盖层上选坝时,水文地质条件应作为主要考虑的因素。从防渗角度出发,岩溶区的坝址应尽量选在有隔水层的横谷、且陡倾岩层倾向上游的河段上。同时还要考虑水库有否严重的渗漏问题,库区最好是强透水层底部有隔水岩层的纵谷,且两岸的地下分水岭较高。当岩溶区无隔水层可以利用的情况下,坝址应尽可能选在弱岩溶化地段。这就要求仔细分析研究岩层结构、地质构造和地貌条件。
2.6物理地质作用
影响地址选择的物理地质作用较多,诸如岩石风化、岩溶、滑坡、崩塌、泥石流等,但从一些水库失事实例来看,滑坡对选择坝址的影响较大。在河谷狭窄的河段上建坝可节省工程量和投资,所以选择坝址时总希望找最窄的峡谷段。但是,峡谷地段往往存在岸坡稳定问题,一定要慎重研究。如法国罗曼什河上游一坝址,地形上系狭窄河段,河谷左岸由花岗岩和三叠纪砂岩及石灰岩构成。右岸是里亚斯页岩,表面上看来岩体较完整,后经钻探发现页岩下面为古河床相的砂砾石层,表明了页岩是古滑坡体物质,滑坡作用将河槽向左岸推移了70m。因而只得放弃该坝址而另选新址。
2.7天然建筑材料
天然建筑材料也是坝址选择的一个重要因素。坝体施工常常需要当地材料,坝址附近是否有质量合乎要求,储量满足建坝需要的建材,如砂石、黏土等,是坝址选择应考虑的。天然建筑材料的种类、数量、质量及开采条件及运输条件对工程的质量、投资影响很大,在选择坝址时应进行勘察。
3.结语
从实践表明,选择坝址是水利水电建设中一项具有战略意义的工作,它直接关系到水工建筑物的安全、经济和正常使用。工程地质条件在选坝中占有极其重要的地位,选择一个地质条件优良的坝址,并据此合理配置水利枢纽的各个建筑物,以便充分利用有利的地质因素、避开或改造不利的地质因素。
参考文献
[1]卢元静.水利工程中的地质勘察[J].中小企业管理与科技(上旬刊),):118~119.
董在付.论述水利工程中的水文地质问题分析[J].中国新技术新产品,):31~33.

㈥ 结课论文的格式是什么

毕业论文格式
1、论文题目:要求准确、简练、醒目、新颖。
2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)
3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。
4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。
主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。
5、论文正文:
(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。
〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:
a.提出-论点;
b.分析问题-论据和论证;
c.解决问题-论证与步骤;
d.结论。
6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。
中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:
(1)所列参考文献应是正式出版物,以便读者考证。
(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息

㈦ 论文的格式,标准格式

中英文摘要——目录——正文,正文一般包括:导言(研究背景,文献综述)——提出问题——分析问题——解决问题(对策建议)——参考文献——附录——致谢——学术成果。
一、 基本规范要求的内容
(一)毕业设计说明书(论文)的撰写规格为A4纸。
(二)毕业设计(论文)的文本结构规范
1、毕业设计(论文)任务书;
2、中、外文摘要:扼要叙述本设计的主要内容、特点,文字要精练。中文摘要约300字左右,外文摘要不宜超过250个实词;关键词要符合学科分类,一般为2-4个,每个词均为专业名词(或词组),一词在6个字之内;
3、 目录;
4、正文(理工等类);包括选题背景、方案论证、过程(设计或实验)论述、结果分析、结论或总结。
(1) 选题背景:说明本课题的来源、目的、意义、应解决的主要问题及应达到的技术要求;简述本课题在国内外发展概况及存在的问题,本设计的指导思想。
(2)方案论证:说明设计原理并进行方案选择,阐明为什么要选择这个设计方案(包括各种方案的分析、比较)以及所采用方案的特点。
(3)过程(设计或实验)论述:指作者对自己的研究工作的详细表述。要求论理正确、论据确凿、逻辑性强、层次分明、表达确切。
(4) 结果分析:对研究过程中所获得的主要的数据、现象进行定性或定量分析,得出结论和推论。
(5)结论或总结:对整个研究工作进行归纳和综合,阐述本课题研究中尚存在的问题及进一步开展研究的见解和建议。
注:文科及其它学科,可根据学科特点,参照上述结构制定统一的正文结构规范。
5、致谢;
6、附录;包括与论文有关的图表、计算机程序、运行结果,主要设备、仪器仪表的测试精度等。
7、参考文献。
(三)工作量要求:
1、 论文(设计说明书)字数不应少于2万字;
2、查阅文献15篇以上;阅读并翻译与课题有关的外文资料,译文字数不少于5000字。
(四)文字要求:字体工整,字迹清楚,文字通顺,语言流畅,无错别字。
(五)图纸、图表要求:
1、图纸、图表布局合理,整洁,线条粗细均匀,标注规范,注释准确,使用工程字书写;
2、工程图纸必须按国家规定标准或工程要求绘制;
3、 图表单位要统一为国际单位制(SI)。
(六)参考文献:为了反映文稿的科学依据和作者尊重他人研究成果的严肃态度以及向读者提出有关信息的出处,正文中应按顺序在引用参考文献处的文字右上角用[]标明,[ ]中序号应与“参考文献”中序号一致,正文之后则应刊出参考文献,并列出只限于作者亲自阅读过的最主要的发表在公开出版物上的文献。
参考文献的著录,按著录/题名/出版事项顺序排列:
期刊——著者,题名,期刊名称,出版年,卷号(期号),起始页码。
书籍——著者,书名、版次(第一版不标注),出版地,出版者,出版年,起始页码。
(七)其他:毕业设计(论文)封皮统一印制,其他资料:毕业设计(论文)任务书、评阅意见书、答辩委员会评语等,从网上下载填写完毕后打印,或从网上下载打印后用钢笔填写。
二、基本规范要求的执行
1、各院毕业设计(论文)领导小组,负责组织对本院学生毕业设计(论文)的基本规范内容进行审查。
2、毕业设计(论文)基本规范内容的审查在毕业答辩前完成,审查合格者经专业毕业设计领导小组组长(主任)签字后方可参加答辩。
3、对于在校外进行毕业设计(论文)的学生,其论文审查一律回校后进行。
4、论文经审查不合格者,应令其返工,直到达到要求才能参加答辩。
5、学生提交的应是经指导教师审阅过的并装订好的设计说明书或论文,否则答辩小组有权不予其答辩。

㈧ 工程地质论文(5000 字以上)

第一部分 矿井概括
1 矿区自然地质环境
1.1地理位置及交通情况
晒口煤矿位于福建省邵武市城东的晒口街道办境内。矿区位于邵武市城区方位121度、直距8.5公里,即晒溪桥—新铺一带。地理坐标:东经117°33′~117°36′、北纬27°16′~27°19′。闽江三大支流之一的富屯溪,316国道和鹰厦铁路东西中横贯矿区,矿区与周边主要城市的铁路里程分别为:南平154公里、福州320公里、厦门535公里、鹰潭159公里。矿区往南部36公里与京福高速公路相接,交通十分便利(详见交通位置图)。
交通位置图

1.2、地形地貌
矿区地貌系属起伏不平的中至低山区,主要山脉走向呈北北东—南南西、一般海拔标高为200~350m,最高点云屏山,海拔标高为636.3m;矿区最低侵蚀基准面富屯溪河床,其海拔标高约178m。
区内由于不同时代的岩性差异,风化侵蚀后呈不同的自然地貌景观,中—下侏罗统漳平组及梨山组的砂、砾岩层分布区、基岩裸露,山脊狭窄陡峻,多为单面山,沟谷发育陡直;晚三叠统焦坑组的粉砂岩和前震旦纪的变质岩群及花岗岩等分布区,则为低缓的山丘。
区内第四系冲积平地较少,主要分布于富屯溪和晒溪两岸。
1.3 水系
区内地表水流颇为发育,主要水系有富屯溪、晒溪及6条常年性山间小溪。
富屯溪为矿区的主要水体,自西北向东南横贯矿区中部,为焦坑井田和晒口井田地表天然的分界线,河床宽50~150m。根据邵武水文站历年(1963至1972;1976至1980;1990至1996)资料表明:年平均流量108.1m3/s,最大流量6400m3/s(1967年6月22日),最小流量6.3m3/s(1979年10月)。洪水期一般出现在4~6月份,最大洪水发生在1998年6月22日(流量未测得),矿区东部新铺村一带,洪水位标高196.4m;矿区西部的晒口村一带,洪水位标高189.8m,与晒口大桥桥面相差0.7m。
晒溪为富屯溪的一级支流,发源于罗峰山,自北向南流经下沙新村、洒溪桥,于晒口村西注入富屯溪,年平均流量28m3/s,最大流量190.61m3/s(1967年6月22日),最小流量2.153m3/s(1961年1月15日),洪水期一般与富屯溪同时出现。1998年6月22日,出现最高洪水位(流量未测得),标高为188.3m。枯水季节最低水位标高为179.5m。
新铺溪流量为0.1~0.05m3/s,其它6条常年性小溪流量约为0.02~10L/s。
1.4气象及地震情况
矿区气象属亚热带潮湿性气候,据邵武气象站历年来(1963年至2005年)气象观测资料阐明如下:
气温:平均温度17.9℃,一般于7、8、9月份气温较高;最高温度可达40.4℃(分别出现在1971年7月31日、2003年7月16日及31日);而于12、1、2月份气温较低,最低温度可降到-8.5℃,一般甚少下雪。
降水量:历年平均年降水量1832.5mm,最大可达2455.9mm。降水一般多集中在4、5、6月份,占全年总降雨量约40-50%;但在个别年份雨季提前于3月开始或推迟到7月止。日最大降雨量187.7mm(出现在1970年6月26日),连续降雨最长可达25天(1966年)。
蒸发量:年平均总蒸发量1101.4 mm;一般在7月份或8月份为最大,占全年总蒸发量约30~40%,最大月蒸发量达249.4mm。
潮湿度:1964年~2005年潮湿系数在1.05~1.65间,平均为1.31。 历年绝对湿度平均值18.1毫巴,以6~8月最高;月平均值达27.9毫巴以上;最大可达30.4毫巴,最小达6.6毫巴,年平均相对湿度为81%。
风向及风速:在9月份至次年12月,晴天早晨多雾,一般须到十点左右方可消散,风向多为西北,历年平均风速0.7m/s,6~8月份东风和南风较多。
根据《中国地震参数区划图》(GB18306―2001),本区抗震设防烈度为6度,地震动峰值加速度为0.05g。

2 地质特征
2.1地层
矿区在大地构造中的位置属于南华后加里东准地台华夏台隆遂(昌)建(瓯)台拱的南部,在区域地质构造中的笔架山—香林铺中生代复式向斜内的虎庵山—同青桥背斜的东南翼,呈一大致向东倾伏缓波状的单斜,延深至东部被F1逆断层切割,断层上盘的前震旦系地层出露于地表。矿区出露地层有:前震旦纪变质岩群、上三迭统焦坑组、下侏罗统梨山组,中侏罗统漳平组和第四系。焦坑组为煤系地层。
⑴前震旦纪变质岩群AnZ
主要出露于矿区的西部、东部及北部,为上三迭统焦坑组煤系地层沉积的基底,岩性主要为千枚岩、变质砂岩、云母石英片岩和少量细晶片麻岩及板岩等组成。
⑵上三迭统焦坑组T3j
主要出露于矿区的西部,而东部及北部仅零星出露,属含煤地层,以第一标志层底部为界,分上、下段。地层厚度由南向北(沿走向)逐渐增大,自0~372米;自西向东(沿倾向)逐渐变薄自218~60米。
焦坑组下段为主要含煤段,岩性复杂,岩相变化频繁,厚度变化较大,中下部以厚层状砂砾岩为主,上部为粉砂岩及较稳定的中厚煤层(DE煤层)。
焦坑组上段以湖泊相的粉砂岩为主,分布较普遍,岩性变化不甚明显,为良好的隔水层。
⑶下侏罗统梨山组
本组地层分布较普遍,为煤系地层的盖层。岩性变化不大,以河床相的长石、石英砂岩为主,间夹石英质砾岩和粉砂岩,为矿区的主要含水层。
表1-2-1 各地层关系表
系 统 组 段 层厚m 岩性特征 接触关系
第四系(Q) 0~56 为坡积黄土层,内含滚石、洪积亚粘土,河床冲积砾石层及河漫滩砂土层 角度不整合
侏罗系 中统 漳平组 上段 240 砾石成份复杂的砾岩或砂砾岩 假整合
下段 角度不整合
下统 梨山组 上段 240 河床相的长石石英砂岩为主,间夹石英质砾岩和粉砂岩 假整合
下段 240
三迭系 上统 焦坑组 上段 288 湖泊相粉砂岩为主,夹细---中粒砂岩和少量透镜状含砾砂岩 角度不整合
下段 82 中下部以厚层状砂砾岩为主,夹有透镜状砂岩、粉砂岩,并夹凝灰质砂岩,火山角砾岩与凝灰质泥岩。上部为粉砂岩及较稳定的中厚煤层(DE煤层)
前震旦纪变质岩群 不详 千枚岩、变质砂岩、云母石英片岩和少量细晶片麻岩及板岩

⑷中侏罗统漳平组
主要分布在矿区的东部和北部,为砾石成份复杂的砾岩或砂砾岩,分为上下两段。
⑸第四系(厚度0~56米,一般厚度12米)
为坡积黄土层,内含滚石、洪积亚粘土,常为耕作区,河床冲积砾石层及河漫滩砂土层等。
2.2、构造
矿区构造的复杂程度中等,为一向东倾伏缓波状的单斜构造,倾角为20~30度,以断层构造为主,褶曲构造也十分发育。矿区内较大的断层均在矿区边缘;井内落差0.5~10米的北东向及南东向中、小断层密布,并往往与褶曲共生,断褶并存导致矿区内倾向及走向地层起伏变化。
⑴断层
矿区内较大的断层大致有17条,按其性质和延伸展布方向,大致可分为二组:一组,近于南北及北东向的逆断层为主,如F1、F4、F6、F8(北端)及F9;正断层有F2、F16及F20。另一组,近于东西向的正断层为主,如F3、F5、F14及F21,逆断层有F8(西端)及F10。上述断层主要分布在矿区的西部、东部及北部的边缘,而矿区内比较稀少。各主要断层分述如下:
F1逆断层:位于矿区的东部边缘,全长约6000米以上,倾向约80°~90°,倾角40°~50°,斜断距大于1000米,为矿井的东部边界。
F4逆断层:位于焦坑井田东南部,全长约1850米,倾向110°~ 140°,倾角40°~50°,斜断距小于40米。
F16正断层:位于晒口井田中部,全长约1400米,倾角72°,斜断距约50米。
F20正断层:位于焦坑及晒口井田中部,全长约350米,向南北两端即消失。倾向110°,倾角80°,斜断距较小而往深部消失。故对煤层没影响。
F10平推逆断层(外围原F13):位于矿区北部边缘,为矿井北部边界,全长约5000米以上,断导走向近东南,倾向往北,地表倾角偏陡约60°~ 70°,斜断距不详。
但据矿井巷道揭露,井下小断层甚为发育。晒口井田常见岩、煤层挤压褶曲,且伴随着小断层产生。焦坑井田常见倾向及斜交小断层。
⑵褶曲
矿区为一往东倾伏的单斜构造,沿走向、倾向呈现次一级褶皱。煤系地层产状变化不大,一般倾向70°~120°,浅部的倾角20°~30°,向深部变缓为10°~25°。主要次级褶曲分述如下:
轴向北东褶曲:发育于焦坑组下段角砾岩中,分布在1至6勘探线的西部,两翼宽约150米,幅度20~25米。
轴向近东西:分布矿区西部,宽为70~80米,两翼倾角10°~ 25°向东倾伏,延伸约100米。
据矿井巷道揭露,煤层沿走向出现向、背斜相间褶曲形态,往深处幅度相对减少,轴向为西偏北,向东倾伏。更次级的小型褶曲一般轴向延深数十米左右,幅度几十公分至十余米,往往与小断层相伴生,两者在成因上具有关联。但这些构造不破坏煤层的连续性。
⑶岩浆岩
矿区岩浆岩分布广泛,岩种繁多,侵入时代主要有早至中三叠世的印支期,晚三叠世至侏罗纪的燕山早期。主要分布在矿区的西部和南部的边缘,次为东部的F1断层上盘地层之中。前印支期中、酸性岩中主要有白云母花岗岩及石英闪长岩侵入于变质岩中,共同构成煤系地层的基底。燕山期中酸性岩浆岩侵入岩及喷出岩,主要有安山凝灰岩(成煤之前)、石英斑岩、安山斑岩、火山角砾岩及少量辉绿岩等,尤以石英斑岩及安山斑岩对煤层影响较大,呈小型岩墙及岩脉岩沿断层或褶曲走向侵入,造成煤层变薄,尖灭,给开采带来极大的困难。
总之,矿井构造类别属中等复杂型。
2.3煤层及煤质
2.3.1煤层
矿井主要可采煤层为焦坑组下段的DE煤层,属较稳定的简单~较复杂类型可采煤层。顶板岩性为黑色的砂质泥岩,含植物化石碎片,可见黄铁矿条带或结核,局部为粗砂岩,个别直接顶夹0.2~0.8m的炭质泥岩伪顶。底板为灰黑色角砾岩或砂砾岩,常相变为含砾砂岩。主要可采煤层特征见表1-2-2:
主要煤层特征表
表1-2-2
煤层
编号 煤层厚度(m)
最小—最大
平均(点数)

构 稳

性 顶板岩性特征 底板岩性特征
DE 焦坑
井田 0.20—14.0
2.78
简单

较复杂 不

定 煤层顶板为细粉砂岩,局部为粗粉砂岩、细砂岩,少数地段夹0.2~0.8m厚的炭质泥岩伪顶。一般顶板节理裂隙不发育。
煤层直接顶板厚度变化较大,一般由东向西变薄,而个别点至尖灭。 底板主要为角砾岩或砂砾岩,也有见深灰色的细砂岩或粗粉砂岩,岩石一般坚硬而碎,不易产生形变且煤层底板一般含承压水较微弱,具有岩质疏松等特点。
晒口
井田 0.17—13.8
2.22

2.3.2煤质:
以亮~半亮型的粉~粉块~块状煤为主,煤质化验结果见表1-2-3。
煤质化验结果一览表
表1-2-3
煤层
编号 工业分析 全硫
Sd,t
(%) 磷
Pb
(%) 容重
ARD 发热量
Qv,d
(MJ/kg)
Mad
(%) Ad
(%) Vdaf
(%)
DE 4.17 23.34 4.63 1.936 0.029 1.67 25.16
由上表结果表明:DE煤层为中灰、中硫、低磷、中高发热量的无烟煤。可作为动力、化肥、发电、水泥用煤、民用生活煤等。
2.4 矿井开采技术条件
2.4.1岩石工程地质特征
煤层顶板常见灰黑色,薄至中厚层状的细粉砂岩,局部为粗粉砂岩或细砂岩,但个别地方煤层与直接顶间夹一层0.2~0.8米厚的炭质泥岩伪顶,往往在炮采时与煤层一起采出,而影响煤质。底板主要为灰黑色角砾岩或砂砾岩,岩相变为含砾砂岩,也有见深灰色的细砂岩或粗粉砂岩,质硬,不易产生变形且煤层下伏地层(底板)一般含承压水较微弱,对煤层开采影响不大。但由于矿区内构造较发育,局部地段受断层、褶曲和岩浆岩脉的影响,岩石节理裂隙发育,岩石较破碎,局部岩体质量较差,同时局部地段存在较弱夹层,建议在这些地段开拓过程中,应加强维护,防止冒顶事故的发生。
2.4.2 瓦斯、煤尘和煤的自燃
根据历年瓦斯鉴定确认该矿为低瓦斯矿井。
焦坑井田瓦斯含量为0.1%-1.0%,瓦斯主要成份是:CH4约0.86%,CO2约0.5%,晒口井田瓦斯含量为0.2%-1.0%,瓦斯主要成份是:CH4约2.5%,CO2约0.95%。
但随着开采深度的增加,在独头上山或独头长巷、通风不良处易造成CO、CH4等有害气体聚集,在今后矿井生产过程中应加强矿井通风管理,经常进行瓦斯监测,做好生产过程中防尘、防爆、防自燃工作,以防意外事故发生。
矿区的无烟煤的挥发分为3%左右,无煤尘爆炸危险,建矿至今从未发生过粉尘爆炸事故。
煤矿无烟煤燃点较高,不易发生自燃,但在矿井井田局部块段的顶层煤,由于顶层煤中含硫量突然变高,在此煤层开采揭露后硫化物迅速氧化放热,若通风不良,散热不及导致煤层氧化放热聚集,最终发生煤层自燃。
晒口煤矿煤层自燃现象仅局部块段会发生,采用跟底进尺,后退回采的开采方法,采用工作面煤壁洒水等措施可以防止煤层自燃现象的发生。
2.4.3水文地质
山区地形,地表排泄条件好。
地表水系发达,主要水源是河流及降雨。
降水丰富、集中在4-7月,年平均降雨1200-1300mm/年,降水量1700-1800mm,是矿坑充水的主要来源。
岩性单一,以碎屑岩为主,含水性质单一,均为基岩裂隙水,由于含水层受构造裂隙控制,具有穿层性和和相互分隔的特点,各个含水带之间联通性差。
晒口煤矿大部分煤层位于河流侵蚀面以下,虽然富屯溪、洒溪流经矿区,因留设了有效的保护煤岩柱,河水下渗微弱,对矿区充水影响不大。矿井的主要充水方式有三种基本类型:
Ⅰ类:大气降水、地表水、潜水 → 矿区浅部采动裂隙及构造裂隙 →采空区新生含水层 → 采掘工作面涌出。
Ⅱ类:大气降水、地表水、潜水 → 承压含水层 → 构造裂隙 → 采掘工作面涌出。
Ⅲ类:承压含水层 → 覆岩冒落带、裂隙带两带 → 采掘工作面涌出。
井田的水文地质条件属基岩裂隙类简单型。
根据福煤(邵武)煤业有限公司晒口煤矿提供的矿井涌水量数据,-200m~-600m水平平均涌水量303.2m3/h,最大涌水量431.2m3/h,其中,-200m~-400m水平平均涌水量264.7m3/h,最大涌水量378.1m3/h。

2.4.4地温
根据福建省煤炭工业(集团)有限责任公司于2006年5月18日提交的《福建省邵武市邵武煤矿资源/储量核实报告(焦坑及晒口井田)》和矿方提供的技术资料,晒口煤矿平均地温梯度G=2.41℃/100m,介于1.6℃/100m和3℃/100m,属于中常温类矿井。根据地质报告,预计在矿井-400~-600水平,地温将达到27℃~30℃。
2.5矿区开采情况
晒口煤矿范围原为邵武煤矿开采,其煤炭开采历史悠久,早自清朝光绪二十三年至民国元年,由盐商陈远复主办开采;民国元年至三十六年,由义记公司开采,主要采焦坑井田浅部(即云坪寺之北至焦坑村北东一带)露头煤,均为私人小煤窑土法开采。
1958年—1963年,开始有计划地进行建井开采工作,但仍以小煤窑开采为主。重点开采焦坑井田的浅部煤层,日产约500吨,几年总产量约48.25万吨。
1960年起由省燃料局正式接收为省属企业,正式命名为邵武煤矿,并于1959年开始由省燃料局设计院对矿井进行总体规划设计,设计矿井服务年限为45年。焦坑井田一号井主平峒1959年6月动工兴建,1964年6月投产,以平硐—暗斜井方式开拓,设计生产能力为21万吨/年。晒口井田二号井于1960年开始兴建,1961年1月正式投产,以片盘斜井方式开拓,设计生产能力为15万吨/年。
随着开采水平的延深,原有的生产系统满足不了矿井生产能力需要,为实现焦坑—晒口井田联合集中生产,扩大矿井生产能力,1972年由省煤炭工业设计院对矿井进行技改扩建设计,1973年4月至1974年5月新建一对箕斗斜井至-40水平,将一、二号井-40水平运输大巷贯通,构成统一的运输提升系统,箕斗主斜井负责提煤,副井负责供电、排水,技改扩建后矿井生产能力增至45万吨/年。
为了开采-200和-400水平煤炭资源,从1981年开始由省煤炭工业设计院对第三、四水平开拓延伸进行设计,在二号井副井旁新掘一条908m长的新副井至-200水平,箕斗主斜井往下延伸至-200水平,形成-200水平生产系统。该系统于1993年建成投入使用。
随着资源逐渐枯竭,1995年重新核定矿井生产能力为21万吨/年。
第二部分
1. 矿井自然环境和地质概括
矿区地貌系属起伏不平的中至低山区,主要山脉走向呈北北东—南南西、一般海拔标高为200—350米,最高点云屏山,海拔标高为636.3米;而长年性地表水流发育的富屯溪,则为本矿区最低侵蚀基准面,其海拔标高约178米。本地表水系主要为富屯溪,最大流量为6500m3/s,最小流量为6.3m3/s,平均流量为107.1m3/s,洪水期水位最高标高达+189.6m,枯水期河流最低标高+170m,流量随季节性变化。其次为晒溪,河床最低标高+179.5m,最高洪水位+188.3米,洪水期最大流量为190.61m3/s,最小流量为2.153m3/s,流量随季节性变化。
本区属亚热带潮湿性气候,据邵武市气象局资料,每年4~6月为雨季,11月至次年1月为旱季,历年平均降水量为1762.5mm,气候温和,雨水充沛。
2.地层含水性
矿区出露地层有前震旦纪变质岩群、上三迭统焦坑组、下侏罗统梨山组,中侏罗统漳平组和第四系。现对各地层的富水性简述如下:
⑴、前震旦系变质岩群
主要出露于矿区的西部、东部及北部,为上三迭焦坑组煤系地层沉积的老基底,岩性主要为千枚岩、变质砂岩、云母石英片岩和少量细晶片麻岩及板岩等组成。
⑵、三叠系上统焦坑组
主要出露于矿区的西部,而东部及北部仅零星出露,属含煤地层,系山麓堆积相---冲积相的角砾岩、砂砾岩及砂岩,湖泊相的粉砂岩、细砂岩或透镜状砂岩、砾岩和煤层等。地层厚度由南向北(沿走向)逐渐增大,自0---372米;自西向东(沿倾向)逐渐变薄自218---60米。焦坑组上段风化带为弱含水层,单位涌水量0.0156L/m.s、渗透系数为0.071m/d。焦坑组上段以湖泊相的粉砂岩为主,夹细---中粒砂岩和少量透镜状含砾砂岩等组成,中厚层状、层理发育,含植物化石碎片偶见少量瓣鳃类动物化石,本地层分布较普遍,岩性变化不甚明显,为良好的隔水层。
⑶、侏罗系下统梨山组
本组地层分布较普遍,系为煤系地层的盖层。岩性一般纵横变化不大,以河床相的长石、石英砂岩为主,间夹石英质砾岩和粉砂岩,为矿区的主要含水层。由于基岩裂隙发育不均一,该含水层可分为相互分隔的三个含水带,其中中带即第二含水带中等含水、单位涌水量0.117~054L/m.s、渗透系数为0.138~0.748m/d,其他两个带均为弱含水带。
⑷、第四系残坡积层和冲洪积层
为坡积黄土层,内含滚石、洪积亚粘土,常为耕作区,河床冲积砾岩石层及河漫滩砂土层等。主要分布于富屯溪,晒溪两岸及矿区西部山脚一带,河岸以冲积层砂、砾石为主,山脚一带以坡积含砂土为主,渗透系数0.2~0.9m/d。
3.构造含水性和导水性
晒口煤矿主要构造以断层为主,分别为近于南北及北东向的逆断层为主以及近于东西向的正断层为主。大断层都在矿区边缘,井内落差0.5~10米的北东向及南东向中小断层密布,断层导水性弱或基本不导水。
4矿井充水条件
充水水源分析
⑴大气降水
大气降水是矿区的主要补给水源,它通过地表潜水层及采空区塌陷裂隙补给深部裂隙承压含水层中,成为矿坑的直接补给来源。
⑵裂隙含水岩层水
主要赋存于三叠系上统焦坑组(T3j)砂岩、砂砾岩、含砾砂岩的裂隙中。含水层呈透镜体分布,浅部富水性中等~弱;深部富水性弱~极弱。主要表现为顶板的滴水和渗水,通过调查分析煤层底板的涌水量极小,底板突水的可能性极小。
充水通道分析
矿井充水的水源主要是大气降水,其次是地表水和潜水。主要充水通道是煤层采动时上覆岩层被破坏造成“两带”沟通引起的山体基岩和表土裂隙,塌陷区域,以及采动使断褶构造活化而形成的断褶导水带。
5矿井涌水量、水害预测及其评估
-40m水平涌水量由一采区、二采区、三采区涌水量构成,-200m水平涌水量由五采区、六采区、七采区涌水量构成。矿井排水主要是通过-200m水平中央水泵抽水至-40m水平中央水泵,再由-40中央泵房经箕斗井两趟管路排至地面后流入富屯溪。-200m~-600m水平平均涌水量303.2m3/h,最大涌水量431.2m3/h,其中,-200m~-400m水平平均涌水量264.7m3/h,最大涌水量378.1m3/h。
通过矿区水文地质特征及充水分析,矿井主要充水因素为大气降水、地表水、线状断层带、基岩裂隙水。通过开展矿区水患现状调查,分析矿井水害现状,矿井目前无大的水害威胁。通过对矿井实际涌水量观测,矿井目前实际观测的最大涌水量为880m3/h,平均涌水量为580m3/h。
近些年本矿开采老空区已封闭,留有排水口,存在小部分积水基本能通过排水口排出,对下部的开采影响较小。晒口煤矿目前的排水能力满足生产要求,但仍要做好季节防治水工作。
6.矿井防水害措施
矿井主要充水因素为大气降水、含水岩层和采空区积水。矿井地表水体为沟谷水,含水岩层富水性弱,断层导水性弱,地表水和地下水对开采影响不大,但为了做到预防为主,确保矿井正常生产,对于强降雨后,对采空区的补给,在矿井生产过程中必须做好以下防治水措施:
1、煤矿企业必须在雨季来临前,派专门人员对防治水工作进行全面检查。
2、矿井生产时,应做好水文地质调查工作,在矿井范围内进行水患分析预报;加强职工防治水知识教育,特别是透水预兆、应急措施知识的普及教育;坚持“有疑先停、有疑必探、先探后采(掘)”的原则,配备探放水设备。
3、各矿井在开采下山水平时,要对各矿井主平硐及以上水平的矿井水采取“堵、截、引”等措施排出地面,留设足够隔水煤柱,严防上水平的通过钻孔裂隙带直接馈入下水平,造成额外排水负担。
4、在各个生产水平开采过程中,必须留设足够的隔水煤柱、采空区煤柱、护巷煤柱、断层隔离煤(岩)柱、矿井边界煤柱等保安煤柱,确保矿井安全生产。
5、矿井在开采过程中必须做好水文观测工作,应根据实际涌水量情况,及时扩大水仓容量和更换相应型号、功率的水泵。同时做好水泵及其供电线路维护工作,保持井下排水设备完好和正常运转,确保有足够的排水能力。
6、断层为弱导水或局部弱导水,对矿井充水一般无威胁。但矿区中褶皱构造发育,一般在背斜轴部由于张性裂隙的发育,会形成较大面积的含水层,且含水量较大。对此断裂带、构造带应加强矿山地质及水文地质工作,密切注意井巷围岩、断层破碎带、掘进面等涌水特征,发现顶板淋水加大,顶板来压等透水预兆时,应立即停止作业,采取防范措施。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864