当前位置:首页 » 地质工程 » 居民地质灾害预警

居民地质灾害预警

发布时间: 2021-02-18 18:14:29

地质灾害气象风险预警指的是什么

地质灾害气象风险预警是指在一定地质环境和人为活动背景条件下,专受气象因素的影响,某属一地域、地段或地点在某一时间段内发生地质灾害的可能性大小。它是真实世界遭受损失可能性的一种状态,而不是真实发生的一种状况。由于人类防御灾害能力和实施防灾措施的不同,这种可能性的状态可能发生也可能不发生或部分发生。地质灾害气象风险预警基于地质灾害的主要控制因素(地层岩性、地质结构、地形地貌、岩土体类型等)和激发因素(降雨、地震、冰雪消融、人为活动)通过模型运算来开展工作,控制因素是基本条件,激发因素在不同地区或同一地区不同时段、不同地段常常表现出较大差异。

㈡ 地质灾害预警系统研发

3.1.1 总体思路

3.1.1.1 基本认识

中国地域广大,地质环境类型复杂多样,斜坡岩土体含水状态与滑坡泥石流事件发生的对应关系是复杂的,滑坡泥石流事件与降雨过程的关系具有离散性。因此,尽可能细化预警区域的划分,对每个预警区的斜坡坡角、坡积层工程地质特征、植被类型和人类活动方式进行系统研究,得出特定环境地质条件(地层岩性、地质结构、地貌形态、地表植被和人类工程经济活动等)下引发地质灾害的大气降雨量临界值,作为地质灾害区域预警判据是可行的。

3.1.1.2 预警对象与预警重点区

降雨引发的区域突发性群发型地质灾害:崩塌、滑坡、泥石流等。

预警重点区是:

1)威胁山区的乡镇、居民点,且无力搬迁的地区;

2)威胁重要工程如桥梁、水坝和电站等地区;

3)威胁线状工程如公路、铁路、输油(气)管线和输电线路以及水上交通线等地区;

4)重要经济区(发达经济区、工矿区和农业区等);

5)重要自然保护区、自然景观和人文景观地区;

6)区域生态地质环境脆弱,且又必须开发的地区。

3.1.1.3 预警类型

突发性地质灾害气象预警可分为时间预警和空间预警两种类型。

空间预警是比较明确地划定在一定条件下(如根据长期气象预报),一定时间段内地质灾害将要发生的地域或地点,主要适用于群发型;

时间预警是在空间预警的基础上,针对某一具体地域或地点(单体),给出地质灾害在某一时段内或某一时刻将要发生的可能性大小,主要适用于单体如大型滑坡,并有群测群防网络或专业监测网络相配合。

空间预警是减轻区域性、全局性地质灾害的有效手段。空间预警是基于地质灾害的主要控制因素(如地层岩性、地质结构、地貌形态、地层突变等)和引发因素(如降雨、地震、冰雪消融、人为活动)开展工作,控制因素是基本条件,引发因素在不同地区或同一地区的不同地段常常表现出极大差异。

3.1.1.4 预警等级

根据《国土资源部和中国气象局关于联合开展地质灾害气象预报预警工作协议》,地质灾害气象预报预警分为5个等级:

1级,可能性很小;

2级,可能性较小;

3级,可能性较大;

4级,可能性大;

5级,可能性很大;

国家层次发布地质灾害预警按以下考虑:

1~2级不发布预报,用绿色和蓝色表示;

3级发布预报,用黄色表示;

4级发布预警,用橙色表示;

5级发布警报,用红色表示。

3.1.1.5 预警时段与地域

预报预警时段是当日20时至次日20时。

预报预警地域是中华人民共和国领土范围,暂不包括香港特别行政区、澳门特别行政区和台湾省。

3.1.1.6 技术路线

1)把全国划分为若干预警区域。

2)确定预警判据。对每个预警区的历史滑坡、泥石流事件和降雨过程的相关性进行统计分析,分别建立每个预警区的地质灾害事件与临界过程降雨量的统计关系图,确定滑坡泥石流事件在一定区域暴发的不同降雨过程临界值(低值、高值),作为预警判据。

3)判定发生地质灾害的可能性。接收到国家气象中心发来的前期实际降雨量和次日预报降雨量数据后,对每个预警区叠加分析,根据判据图初步判定发生地质灾害的可能性。

4)判定预报预警等级。对判定发生地质灾害可能性较大或以上等级的地区,结合该预警区降雨量、地质环境、生态环境和人类活动方式、强度等指标进行综合判断,从而对次日的降雨过程引发地质灾害的空间分布进行预报或警报。

5)制作地质灾害预警产品。

6)发送预警产品。将预警产品报请有关领导签发后,发送国家气象中心。

7)发布预警产品。国家气象中心收到预警产品后,以国土资源部和中国气象局的名义在中央电视台播出。同时,地质灾害预警结果在中国地质环境网站上进行发布。

8)发布预警后,预警人员跟踪校验预警效果,总结提高预警准确率。

3.1.2 科学依据

根据1990~2002年对突发性地质灾害的分类统计,发现持续降雨引发者占总发生量的65%,其中,局地暴雨引发者约占总发生量的43%,占持续降雨引发者总量的66%。也就是说,约2/3的突发性地质灾害是由于大气降雨直接引发的或是与气象因素相关的,地质灾害气象预警工作是有科学依据的。

3.1.2.1 气象因素引发地质灾害的特点

1)区域性:一般在数百至数千平方公里内出现;单条泥石流的流域面积:≤0.6km2者11.9%;0.6~10km2者61.6%;10~50km2者22.4%。

2)群发性:崩塌、滑坡、泥石流等在某一区域多灾种呈群体出现。

3)同时性:巨大灾难在数十分钟—数小时内先后或同时出现。

4)暴发性:滑坡、特别是泥石流的发生具有突然暴发性,宏观上完好的坡体突然滑塌或“奔流”;当地人称为“涡旋炮”或“山扒皮”。如陕西省紫阳县同一地点伤亡人员最多的联合乡鱼泉村7组(瞬间造成37人遇难)是5个“涡旋炮”同时击中的结果。

5)后续性:大型滑坡一般出现在降雨过程后期,甚至降雨结束后数天。

6)成灾大:造成重大人员伤亡和各种财产损失。

3.1.2.2 气象因素引发地质灾害的成因

1)区域性持续降雨或暴雨使松散堆积层达到过饱和状态。

2)成灾地区地形陡峻,坡形变化复杂,坡度25°~70°。

3)地质上具备二元结构,上为松散堆积层,下为坚硬基岩,容易在二者的接触处形成强大渗流带。

4)松散堆积层厚度1~10m,一般1~4m。

5)一般植被覆盖率较高,在强烈暴雨持续作用下起到滞水作用。

6)居民防灾意识薄弱,房屋结构简易,抗灾强度低。房屋大多建在溪沟出山口地段,属于泥石流的流通路径。调查发现,虽然滑坡、泥石流灾害具有暴发性,但多数地点仍有数小时至数分钟的躲避时间,因防灾基本知识缺乏,以致有的村民在抢运财物过程中丧生。

7)对大型滑坡滞后于降雨过程的机理缺乏科学认识。

3.1.2.3 来自统计学的认识

地质灾害具有自然和社会的双重属性。理论研究与科学实践均证明,地质灾害具有可区划性、可监测预警性。

1)分析发现,滑坡的发生在过程降雨量和降雨强度两项参数中,存在着一个临界值,当一次降雨的过程降雨量或降雨强度达到或超过此临界值时,泥石流和滑坡等地质灾害即成群出现。

2)不同地区具体一条沟谷的泥石流始发雨量区间为10~300mm,差异之大反映了地质条件、气候条件等的差异。

3)在降雨过程的中后期或局地单点暴雨达到临界值时出现突发性群发型泥石流、滑坡等地质灾害,滑坡以小型者居多。

4)大型滑坡常在降雨过程后期或雨后数天内出现。

3.1.2.4 区域地质灾害的时空分布

据20世纪90年代的调查,我国泥石流的时空分布频率具有以下特点:

(1)泥石流频率与地貌

3500m以上的高山占9%;1000~3500m的中山占56%;小于1000m的低山占15%;黄土高原区占11%。

(2)泥石流频率与工程地质岩组

变质岩区占43%;碎屑岩区占32%;黄土区占11%;岩浆岩区占9%;碳酸盐岩区占7%。

(3)泥石流发生频率与年平均降雨量(mm/a)

<400区域占10%;400~600区域占16%;600~800区域占18%;800~1000区域占24%;1000~1400区域占22%;>1400区域占10%

(4)泥石流暴发时间(月份)分布频率

5月:9%;6月:18%;7月:34%;8月:24%;9月:10%

上述统计说明,泥石流主要分布在中低山地区;多出现在易于风化破碎的岩土分布区;年均降雨量过高或过低都不会暴发泥石流;发生时间主要出现在每年的6~8月。

3.1.3 中国地质灾害气象预警区划

基于我国地质灾害类型分布、全国气候区划和滑坡泥石流与区域降雨关系的各类研究文献,编制中国地质灾害气象预警区划图。

3.1.3.1 资料依据

基于气象因素的《中国地质灾害气象预警区划图(1∶500万)》的编制主要依据以下资料:

1)中国泥石流及其灾害危险区划图(1∶600万),

中国科学院成都山地灾害与环境研究所,1991

2)中国滑坡灾害分布图(1∶600万),

中国科学院成都山地灾害与环境研究所,1991

3)中国地质灾害类型图(1∶500万),

地质矿产部成都水文地质工程地质中心,1991

4)中国泥石流灾害图(1∶600万),

地质矿产部成都水文地质工程地质中心,1992

5)中国滑坡崩塌类型及分布图(1∶600万),

地质矿产部环境地质研究所,1992

6)中国特殊类土及危害图(1∶600万),

中国地质科学院水文地质工程地质研究所,1992

7)中国地形图(立体,1∶600万),地图科学研究所,1999

8)中华人民共和国气候图集,气象出版社,2002

9)区域降雨资料与滑坡、泥石流关系的各类文献

3.1.3.2 预警区划分原则

根据研究需要,在此提出斜坡划分原理:

1)滑坡和泥石流是在斜坡地区发生的;

2)区域分水岭的两坡气象降雨条件和生态环境是不同的;

3)我国的最大斜坡是帕米尔高原—东海大陆架的多级多层次斜坡;

4)区域斜坡可分为三类:一类是分水岭到海滨,如后界燕山—鲁儿虎山,左界辽河,右界永定河/海河和前界渤海圈闭的区域;二类如大别山—淮河—黄河圈闭的区域;三类如四川盆地周缘区域。

一级区以全国性分水岭或雪线为界,考虑长时间周期、大空间尺度的气候区划和地质地貌环境条件;

二级区主要以重大水系、区域分水岭、区域气候、历史滑坡泥石流事件分布密度、地质环境条件、斜坡表层岩土性质和年均降雨量分布。

3.1.3.3 预警区域划分

本研究立足全国范围,暂时提出两级区划,共划分7个一级预警区,28个二级预警区,可以满足初步工作要求(图3.1)。

(1)预警区的地质灾害特征

A东北山地平原区

A1三江地区

图3.1 中国地质灾害气象预警区划图(28个区)(台湾省专题资料暂缺)

佳木斯/牡丹江地区,气象因素引发地质灾害微弱。

A2东北平原

桦甸/敦化地区以及大兴安岭东麓,气象因素引发地质灾害较弱。

B大华北地区

B1辽南地区

辽东半岛地区(千山),气象因素引发地质灾害较严重。

B2京承地区

北京北部和河北承德地区,气象因素引发地质灾害严重。

B3晋冀地区

太行山东麓地区,气象因素引发地质灾害较严重。

B4山东丘陵

泰山和胶东地区,气象因素引发地质灾害在小范围较严重。

B5豫西地区

灵宝/许昌之间和伏牛山北麓地区,气象因素引发地质灾害较严重—轻微。

B6皖苏地区

大别山北麓和张八岭地区,气象因素引发地质灾害较严重—轻微。

B7江浙地区

临安/嵊州地区,气象因素引发地质灾害在小范围较严重。

C中南山地丘陵区

C1闽浙地区

武夷山/九连山以东地区,气象因素引发小规模地质灾害严重。

C2江西地区

九岭山和赣南地区,气象因素引发小规模地质灾害严重。

C3豫鄂地区

南阳、神农架、大洪山和大别山南麓地区,气象因素引发地质灾害较严重。

C4湖南地区

湘西和湘南(雪峰山)地区,气象因素引发地质灾害严重。

C5桂粤地区

桂西和两广北部地区,气象因素引发小规模地质灾害严重。

D西南中高山区

D1陕南地区

秦岭南麓和大巴山北麓地区,气象因素引发地质灾害严重。

D2四川盆地

成都平原外的其他地区,气象因素引发地质灾害严重。

D3黔渝地区

黔北和重庆地区,气象因素引发地质灾害严重。

D4滇南地区

滇南和黔南部分地区,气象因素引发地质灾害严重。

D5川滇地区

川西、滇西和滇中地区,气象因素(含高山融水)引发地质灾害极严重。

E黄土高原区

E1吕梁地区

大同—太原—临汾一线地区,气象因素引发地质灾害较严重—轻微。

E2陕北地区

陕北黄土高原地区,气象因素引发地质灾害严重。

E3陇西地区

陇西和海东地区,气象因素引发地质灾害极严重。

F北方干旱沙漠区

F1内蒙古东部地区

气象因素引发地质灾害轻微。

F2阿拉善地区

祁连山北麓、玉门/武威地区,气象因素(高山融水)引发地质灾害较严重。

F3南疆地区

天山南麓、阿尔金山北麓气象因素(高山融水)引发地质灾害较严重。

F4北疆地区

天山北麓气象因素(暴雨和高山融水)引发地质灾害严重。

G青藏高原区

G1藏北地区

气象因素引发地质灾害轻微。

G2藏南地区

雅鲁藏布江及支流流域气象因素(暴雨和高山融水)引发地质灾害较严重;藏东南

暴雨引发地质灾害严重。

(2)一级区域界线标志

A/F大兴安岭—七老图山

漠河—凤水山(1398)—古利牙山(1394)—太平岭(1712)—兴安岭(1397)—巴代艾来(1540)—罕山(1936)—黄岗梁(2029)—七老图山

A/B云雾山—长白山

小五台山(2882)—赤城—云雾山(2047)—七老图山—阜新—铁岭—莫日红山(1013)—白头山

B/E太行山—中条山

小五台山(2882)—恒山(2017)—北台顶(3058)—阳曲山(2059)—历山(2322)—华山(2160)

E/F毛毛山—靖边—东胜—小五台

海晏—仙密大山(4354)—毛毛山(4070)—景泰—定边—靖边—榆林—东胜—丰镇—小五台山(2882)

EB/DC秦岭—伏牛山—大别山—括苍山

海晏—龙羊峡—同仁—鸟鼠山(2609)—武山南—凤县—太白山(3767)—首阳山(2720)—秦岭—华山(2160)—全宝山(2094)—老君山(2192)—太白顶(1140)—鸡公山(744)—霍山(1774)—安庆—九华山(1342)—黄山(1873)—桐庐—括苍山(1382)—北雁荡山(1057)

F/G阿尔金山—祁连山

公格尔山(7649)—慕士塔格山(7509)—赛图拉—慕士山(6638)—乌孜塔格(6250)—九个达坂山(6303)—阿卡腾能山(4642)—阿尔金山(5798)—大雪山(5483)—祁连山(5547)—冷龙岭(4849)—毛毛山(4070)

C/D老君山—梵净山—岑王老山

老君山(2192)—武当山(1612)—大神农架(3053)—建始—来凤(>1000)—酉阳—梵净山(2494)—佛顶山(1835)—雷公山(2179)—岑王老山(2062)—富宁

D/G九寨沟—察隅

武山—九寨沟—雪宝顶(5588)—马尔康—炉霍—新龙—巴塘—察隅

(3)二级区域界线

A1/A2小兴安岭—张广才岭—白头山

呼玛—大黑顶山(1047)—平顶山(1429)—大青山(944)—大秃顶子山(1690)—大石头(1194)—甑峰山(1677)—白头山

B1/B2下辽河

B2/B3永定河—海河

B3/B4黄河

B4/B5黄河故道

B5/B6淮河—黄河故道

B6/B7长江

C1/C2武夷山—九连山

黄山(1873)—玉京峰(1817)—黄岗山(2158)—白石峰(1858)—木马山(1328)—九连山(1248)—龙门

C2/C34霍山—幕阜山—罗霄山脉

霍山(1774)—九江—九宫山(1543)—幕阜山(1596)—连云山(1600)—武功山(1918)—井冈山—八面山(2042)—石坑埪(1902)

C3/C4长江

C124/C5南岭山脉

雷公山(2179)—猫儿山(2142)—韭菜岭(2009)—石坑埪(1902)—雪山嶂(1379)—龙门—飞云顶(1282)—莲花山(1336)—神泉港

D1/D23米仓山—大巴山

九顶山(4984)—广元—米仓山—大巴山—大神农架(3053)

D2/D3长江—重庆—华蓥山—万源北

D123/D5夹金山—大凉山

雪宝顶(5588)—九顶山(4984)—二郎山(3437)—贡嘎山(7556)—铧头尖(4791)—大凉山(3962)—长江—五莲峰(2561)—陆家大营(2854)

D3/D4苗岭山脉

陆家大营(2854)—黄果树瀑布—惠水—雷公山(2179)

D4/D5乌蒙山—哀牢山—高黎贡山

陆家大营(2854)—黎山(2678)—马龙—玉溪—哀牢山(3166)—猫头山(3306)—高黎贡山—(3374)—尖高山(3302)

E1/E2吕梁山脉

岱海—管涔山—荷叶坪(2784)—黑茶山(2203)—关帝山(2831)—禹门口

E2/E3屈吴山—六盘山脉

景泰—屈吴山(2858)—六盘山(2928)—太白(2819)

F1/F2

古尔班乌兰井—呼和巴什格(2364)—贺兰山(3556)—香山

F2/F3

马鬃山(2583)—大雪山(5483)

F3/F4天山山脉

托木尔峰(7443)—比依克山(7443)—天格尔峰(4562)—博格达峰(5445)—巴里坤山—托木尔提(4886)

G1/G2冈底斯山—念青唐古拉山脉

扎西岗—冈仁波齐峰(6656)—冷布冈日(7095)—念青唐古拉峰(7111)—嘉黎—洛隆—邦达—巴塘。

3.1.4 地质灾害气象预警判据研究

3.1.4.1 判据确定原则与资料依据

根据有限研究积累和历史经验,滑坡、泥石流的发生不但与当日激发降雨量有关,而且与前期过程降雨量关系密切,本项研究选定1d,2d,4d,7d,10d和15d过程降雨量等6个数据进行统计分析,期望对一个地区气象因素引发滑坡、泥石流地质灾害的原因与临界雨量判据的确定具有全面认识。

本次研究的资料依据主要有两方面:

1)中国地质环境监测院建立的全国地质灾害调查数据库中气象因素引发的历史滑坡泥石流灾害数据(999个);

2)国家气象中心根据中国地质环境监测院提供的滑坡、泥石流数据,整理提供了731个相关站点15d内历史降雨量数据。

3.1.4.2 预警区的临界降雨量判据研究

(1)不同降雨过程代表数据的选定

中国气象局系统对日降雨量(Q)的预报是按当日20时到次日20时计算,而滑坡、泥石流事件可能发生在此24h的任一时段。

若灾害事件在接近24时发生,则基本可对应1d(即当日)过程降雨量;若灾害事件在次日0时以后的夜间发生,则对应前一日(2d)过程降雨量更符合实际。因此,本项研究选定的数据代表时段(日:24h)是:

1d过程降雨量:0≤Q1≤1

2d过程降雨量:1≤Q2≤2

4d过程降雨量:3≤Q4≤4

7d过程降雨量:6≤Q7≤7

10d过程降雨量:9≤Q10≤10

15d过程降雨量:14≤Q15≤15

(2)临界过程降雨量预警判据图的建立

根据滑坡泥石流与降雨关系的研究,制作滑坡泥石流与不同时段临界降雨量关系散点图,发现散点集中成带分布,其上界可用β线表示,下界可用α线表示。因此,利用1d,2d,4d,7d,10d和15d等过程降雨量,可以建立地质灾害预警判据模式图(图3.2)。

图中横轴是时间(1~15d),纵轴是相应的过程降雨量(mm)。我们规定,α线和β线为两条滑坡、泥石流发生的临界降雨量线,α线以下的A区为不预报区(1,2级,可能性小、较小),α~β线之间的B区为地质灾害预报区(3,4级,可能性较大、大),β线以上的C区为地质灾害警报区(5级,可能性很大)。

(3)预警区临界降雨判据图研究

在28个气象预警区中,18个预警区可以形成完整的滑坡、泥石流发生的临界降雨预警判据图(上限值β线、下限值α线);10个预警区因缺乏资料尚不能形成判据图,其中,A1,B5,F1和G24个区完全缺数据;B4,B6,E1,E2,F3和F46个区数据不全(只能形成α线或β线,甚至散点)。这10个区主要为滑坡、泥石流不发育区或人口稀疏地区,暂时对全国的预警工作效果影响不大。

图3.2 预报判据模板图

代表性数据及曲线举例

A2东北平原

中国地质灾害区域预警方法与应用

*3个样本。

A2气象预警区判据图

B1辽南地区

中国地质灾害区域预警方法与应用

*9个样本。

B1气象预警区判据图

C1闽浙地区

中国地质灾害区域预警方法与应用

*50个样本。

C1气象预警区判据图

D1陕南地区

中国地质灾害区域预警方法与应用

*45个样本。

D1气象预警区判据图

D5川滇地区

中国地质灾害区域预警方法与应用

*60个样本。

D5气象预警区判据图

E3陇西地区

中国地质灾害区域预警方法与应用

*50个样本。

E3气象预警区判据图

F2阿拉善地区

中国地质灾害区域预警方法与应用

*8个样本。

F2气象预警区判据图

G1藏北地区

中国地质灾害区域预警方法与应用

*15个样本。

G1气象预警区判据图

3.1.4.3 预警判据校正

为了提高预警精度,依据以下资料对预警区判据图进行了校正:

1)中国大陆滑坡、泥石流与降雨关系的各类科技文献;

2)历年中国地质灾害公报;

3)部分省(区、市)的地质灾害年报;

4)全国县(市)地质灾害调查区划成果资料(主要是福建省);

5)重点地区地质灾害专项研究报告等。

检索发现有13个预警区具有部分滑坡、泥石流与临界过程降雨量研究资料,有15个预警区暂未收集到或完全缺乏研究资料。

13个具备部分研究资料的预警区分别整理成图、表,可供确定相应预警区预警级别时参考,或与预警判据图配合使用。

以C1区为例,见下表(图3.3):

图3.3 C1区地质灾害点分布与临界降雨量统计关系

3.1.5 预警尺度精度评价

3.1.5.1 预警尺度

(1)空间预警尺度

图面表示3000km2(基于1∶500万~1∶600万地质灾害预警区划图)。

(2)时间预警尺度

地灾预警与气象预警时间尺度同步。

3.1.5.2 预警精度评价

1)取决于气象预报精度。目前全国性的气象预报精度尚不高,特别是对引发泥石流影响明显的局地单点暴雨的预报有待加强。

2)雨量站点代表性精度。地质灾害气象预警判据图依赖于气象站点经(纬)度和地质灾害发生点的经(纬)度(距离)的接近程度。

本次资料地质灾害灾情点的经(纬)度与相邻气象站点的经(纬)度之差在0.3°~1.0°之内,也即相差40~50km,反映在平面上即存在约2000km2的误差。

3)地质环境-气象因素耦合机制的研究精度。地形坡度、植被、岩土类型、含水状态、地表入渗和产流等的研究尚很薄弱。

4)人类活动方式、强度与斜坡变形破坏模式尚缺乏科学界定。

3.1.6 地质灾害预警产品制作与发布

3.1.6.1 预警产品制作、签批与发布

1)国家气象中心提供全国每次降雨过程的天气预报资料,每天16:00通过适当方式(E-mail)发送前期实际降雨量和次日预报降雨量数据;

2)中国地质环境监测院接到降雨量数据后,根据此数据和预警判据图对各预警区发生地质灾害的等级进行逐个分析和判定;

3)专家会商、分析判定预报预警结果,根据会商后的结果,做出空间预警,在预警图上划出预报或警报区,此称预警产品;

4)领导审定、签批预警产品;

5)经签批的预警产品于当天16:30通过适当方式(E-mail)发回国家气象中心;

6)国家气象中心接收预警产品,并和天气预报产品统一制作,配音;

7)中央电视台在当天晚上19:30新闻联播后播出地质灾害气象预报或警报及等级;

8)预报或警报地区的有关省级地质环境监测总站应在预警发出24h至48h内,向中国地质环境监测院反馈预警效果校验结果;

9)中国地质环境监测院分析研究预警效果校验结果,改进预警判据,逐步提高预警精度。

3.1.6.2 预警产品发布形式

(1)中央电视台发布播出

预警产品署名:国土资源部

中国气象局

模拟预报词:

今天晚上到明天白天,××地区发生地质灾害的可能性较大,请注意防范。

(2)中国地质环境信息网站发布

主要供专业人士和政府管理部门参考,跟踪研究预警效果,讨论研究预警方法与对策。

设计制作了地质灾害气象预警预报专用“符号”(图3.4)。

图3.4 地质灾害气象预报预警专用“符号”

从2005年开始,在中央电视台发布地质灾害气象预警预报信息图片时,同时配发崩塌、滑坡和泥石流动画,增强了地质灾害预警信息的视觉冲击力,也提高了地质灾害气象预报预警的社会影响力。

3.1.7 地质灾害预警软件系统

3.1.7.1 基于C语言的预警预报软件

2004~2006年,模型采用第一代临界雨量判据法,基于C语言的预警预报软件。具备自动生成降雨等值线、雨量站点上自动计算预报等级、查看雨量站点雨量等功能(图3.5)。缺点是无法自动成区、不具备GIS图层操作功能。

图3.5 基于C语言的第1套预警软件Predmap抓图

3.1.7.2 基于ArcGIS开发了第2套预警预报软件

2007年,基于ArcGIS开发了第2套预警预报软件,模型仍采用第一代临界雨量判据法(图3.6)。主要改进在于将软件系统升级为基于GIS开发,且实现预警区的自动圈闭。缺点是ArcGIS软件庞大,软件操作、升级等方面不便。

图3.6 基于ArcGIS的第2套预警软件抓图

㈢ 如何预防地质灾害

1、加强宣传,提高全社会的地质灾害防治意识
积极开展地质灾害防治知识宣传,内容可包括国务院《地质灾害防治条例》、《地质灾害防治管理办法》等有关法律法规,地质灾害的种类、防治、预报、报告制度,如何安全选择村民住宅用地防范地质灾害,在雨季如何开展地质灾害应急处理,灾害发生时如何处置及应急救灾等内容。各地可按当地实际情况,适时公开进行专题学习和培训活动,通过报纸、广播、电视、张贴宣传画等效方式,广泛宣传地质灾害防治的重要性、必要性以及防灾减灾的相关知识,努力提高广大干部群众的防灾意识和抢险救灾能力。
2、建立气象预报预警制度。
地质灾害的发生大多与强降雨有关。建立气象预报预警制度,主要起警示作用,提醒被预警区的人员在下雨的时候提高警惕,注意防范降雨引发的滑坡和泥石流灾害,其作用类似于雨天提醒大家带把伞。为此,很有必要进一步加强地质灾害群测群防网络的建设与维护工作,强化地质灾害监测,开展实际降雨量监测,一旦发现实际降雨量将要达到地质灾害发生的临界值,立即通知地质灾害危险区的居民采取措施,及时预防避让,减少损失。
3、建立群测群防体系。
群测群防是具有中国特色的地质灾害监测预警体系,也是实践证明的、现阶段我国最直接、最有效的防灾减灾手段。必须动员民间力量,也就是发动群众搞好群测群防,及时发现灾情,及时上报灾情,及时处理灾情。群测群防如同在地灾危险区增加了成千上万个“灾害预警器”,有利于地灾防治工作的全方位开展,有利于提高防灾减灾效率和效果。要着手建立灾害预防体系,逐级落实责任,明确遇到什么情况要上报、报到哪儿。遇到紧急情况,按照事先约定的方式,比如敲锣打鼓或高声呐喊,尽量减少人员伤亡。
4、建立地质灾害监测网络。
不少地质灾害由降雨诱发,为此由国土资源部门和气象部门联合开展的地质灾害气象预报预警工作,是对地质灾害进行区域性的预测预报。因此,根据降雨气象预报,结合地质灾害发生的地质条件,可以对那些主要由降雨诱发的地质灾害进行预测预报。由于气象部门的监测点多集中在市区和平原,在山区的监测点相对少。而地质灾害多发在山区,建立地质部门自己的降雨监测点迫在眉睫。
5、加强地质灾害工程实践
(1)工程防治措施
工程防治措施是防治地质灾害的重要组成部分,工程防治措施的适用条件及方式:大多数房后切坡造成的小型土质滑坡,选用滑坡后缘地表排水、前缘支挡或削方减载护坡等工程措施较为适应。
(2)生物防治措施
生物防治措施是指植树造林,种草护坡及合理耕牧。它具有应用范围广、投资省,能促进生态平衡,改善自然环境条件,防治作用持续时间长的特点,需较长时间才能发挥其效益。根据调查区地质灾害特点和自然经济条件,泥石流区,地面塌陷区及水土流失区应采取封山育林,退耕还林等防治措施,减少地质灾害的发生和经济损失。
(3)避让措施
①雨天避让措施。对灾害隐患点和变形斜坡,采取雨天临时避措旌,各镇在防灾预案的基础上编制安全转移预案,雨天对受威胁户。一作转移地点安排。应根据就近原则、转移地(接受户)不受地质灾害或其它灾害威胁的原则进行操作。
②搬迁避让措施。对一些危险性大、危害性严重的地质灾害,防治费用超过搬迁费用或再建房仍然受地质灾害威胁的,采用搬迁避让措施。调查区需搬迁避让或已搬迁的灾点。

㈣ 滑坡、泥石流地质灾害气象预警预报

气象因素是诱发滑坡、泥石流等地质灾害的关键因素,开发基于Web-GIS和实时气象信息的实时预警预报系统,实现地质灾害实时预警预报与网络连接的地质灾害预警预报与减灾防灾体系,对可能遭受的地质灾害进行实时预警预报,及时广泛地发布预警信息,有利于实现科学高效、快速地开展灾害防治,从而最大限度地减少灾害损失,保护人民生命财产安全,变被动防治为主动防治地质灾害。

一、滑坡、泥石流地质灾害气象预警预报的主要依据

区域地质灾害(滑坡、泥石流等)空间预测主要是圈定地质灾害易发区,也就是前面论述的地质灾害危险性评估与区划。在区域地质灾害空间预测的基础上,结合实时的气象动态信息,分析研究滑坡、泥石流等地质灾害的主要诱发因素,研究同一地质环境区域,在不同气象条件下发生地质灾害的统计规律和内在机理,通过确定有效降雨量模型、降雨强度模型、降雨过程模型的临界阀值,建立基于实时动态气象信息的区域地质灾害预警预报时空耦合关系,从而对区域性的滑坡、泥石流等地质灾害进行危险性时空预警预报。

根据研究区域的地质条件、灾害调查情况、气象条件等,划分地质灾害易发区等级,统计已发生滑坡、泥石流等地质灾害与有效降雨量、24小时降雨强度的相关性,确定出不同易发区不同等级的临界降雨量(I、II),作为判别分析的阀值,确定降雨量危险性等级。降雨量小于I级临界降雨量的为低危险性,降雨量介于Ⅰ-Ⅱ级临界降雨量之间的为中危险性,降雨量大于II级临界降雨量的为高危险性。

将各单元的有效降雨量与临界有效降雨量进行对比,确定出各单元的降雨量危险性等级,将降雨量危险性等级和地质灾害易发区等级进行叠加,叠加结果见表3-4和图3-2,对应于4个不同的易发区把地质灾害预警预报等级划分为5级:其中,3级及3级以上为预警预报等级,5级为预警预报区的最高等级,1级和2级为不预警区,不同的预警预报等级采用不同的颜色予以表示。3级预警区是指应加强对灾害点的监测地区;4级预警区是指应密切加强对灾害点监测的地区,采取一定的防范措施;5级预警区是指应全天对灾害点进行监测,直接受害对象尤其是住户和人员在必要时应该采取避让措施。在预警预报中,3级为注意级,4级为预警级,5级为警报级。

表3-4 地质灾害预警区等级划分表

图3-2 区域地质灾害宏观预警构建思路示意图

我国自2003年开展全国地质灾害气象预警预报工作以来,一些专家学者就致力于预警预报模型方法的研究与探索,主要经历了两个阶段。

第一阶段,2003~2006年,采用的是第一代预警方法,即临界雨量判据法。该方法的主要原理是根据中国地貌格局、地质环境特征及其与降雨诱发型崩滑流地质灾害关系统计分析结果,以全国性分水岭、气候带、大地构造单元和区域地质环境条件,进行一级分区;以区域分水岭、历史滑坡泥石流事件分布密度、地形地貌特征、地层岩性、地质构造与新构造运动、年均降雨量分布等,进行二级分区;将全国划分为7个预警大区、74个预警区;并分区开展历史地质灾害点与实况降雨量之间的统计关系,确定各预警区诱发滑坡泥石流灾害的临界雨量,建立预警预报判据模板(图3-3);利用全国地质灾害数据库和县市调查信息系统中的地质灾害样本和中国气象局提供的降雨资料,通过统计分析,确定地质灾害发生前的1日、2日、4日、7日、10日和15日的临界雨量作为判据模板,建立地质灾害气象预警预报模型,开展地质灾害预警预报。

图3-3 预警预报判据模板

第二阶段,即第二代预警方法。2006~2007年,“全国地质灾害气象预警预报技术方法研究”项目设立,开展了全国地质灾害气象预警预报方法升级换代的研究工作。刘传正教授提出了地质灾害区域预警理论的三分法,即隐式统计预报法、显式统计预报法和动力预报法;并提出了显式统计预警方法(称为第二代预警方法)设计思路。该方法改进了第一代预警方法中仅依靠临界过程雨量方法的局限,实现了临界过程降雨量判据与地质环境空间分析相耦合。2007年该项工作取得初步研究成果,经完善后已在2008年全国汛期预警工作中正式使用。

根据地质灾害区域预警原理和显式预警系统设计思路,具体预警模型建立过程如下:

(1)地质灾害预警分区。将全国分为7个预警大区,分区建立预警模型。

(2)地质灾害气象预警信息图层编制。充分考虑地质灾害发生的地质环境基础信息、地质灾害历史发生实况等,共编制预警信息图层30个。

(3)地质灾害潜势度计算。探索一条计算地质灾害潜势度的计算方法,根据历史地质灾害点分布情况,采用不确定系数法计算地质环境CF值、采用项目组创新提出的权重确定法确定权重,从而计算地质灾害潜势度。

(4)统计预警模型建立。以10km×10km的网格进行剖分,将地质灾害潜势度、历史灾害点当日雨量、前期雨量作为输入因子,地质灾害实发情况作为输出因子,采用多元线性回归方法,建立预警指数计算模型,从而确定预警等级。

二、美国旧金山湾滑坡泥石流气象预警系统

目前世界上滑坡泥石流灾害气象预警主要是依据美国旧金山湾滑坡泥石流预警系统提出的临界降雨阀值的方法。该系统在1985年至1995年期间运行了10年,后因种种原因被迫关闭。它是世界上运行时间最长的滑坡泥石流预警系统,其经验值得思考。

Campbell从1969年开始研究洛杉矶滑坡发生机制,1975年提出了建立基于国家气象局(NWS)降雨预报和(前多普勒)雷达影像的洛杉矶泥石流预警系统的设想。Campbell指出,泥石流预报还是可能的,可通过降雨强度和持续时间的监测,并与根据降雨-滑坡发生概率的关系所建立的临界值进行比较,进行泥石流灾害等级的等级预报。一旦超过临界值,就要对居住在山脚下的居民发出预警,撤离危险地,最大程度地减少灾害损失。Campbell提出的泥石流预警系统由以下方面构成:①雨量计观测系统,记录每小时的降雨量;②具有能够识别暴雨地区降雨强度中心的气象编图系统;将降雨数据标绘在地形(坡度)图及相关滑坡影响图上;③实时采集数据和预警管理和通讯网络。

1982年1月初,灾难性暴雨袭击了旧金山湾地区,引发了数以千计的泥石流及其他类型的浅层滑坡。经济损失达数百万美元,25人死亡。尽管该地区的人们得知暴雨预报,但并没有得到任何关于滑坡、泥石流的警报。尽管Campbell提出的建议没有在旧金山湾地区得以实施,但1982年的这场灾难性事件使得建立泥石流预警系统变得十分紧迫和必要。

图3-4 加州La Honda的泥石流降雨临界线

Cannon和Ellen(1985)建立了加州La Honda的泥石流降雨临界线(图3-4)。他们用年均降雨量(MAP)对临界降雨持续时间和临界降雨强度进行了修正(标准化),即将临界降雨强度修正为临界降雨强度/年均降雨量(MAP)。他们建立的滑坡降雨临界值是旧金山湾地区泥石流预警系统的基础。1986年2月旧金山湾地区连降暴雨,美国地质调查局和国家气象局联合启动了泥石流灾害预警系统,通过NWS广播电台系统发布了两次公共预警。这是美国首次发出的泥石流灾害预警。该次暴雨引发了旧金山湾地区数以百计的泥石流,造成1人死亡,财产损失达1000万美元。如果不是预警系统的准确预报,损失将会更加严重。

1986年的泥石流灾害预警是根据Cannon和Ellen(1985)确定的经验降雨临界值发布的。1989年Wilson等人在该经验降雨临界值的基础上,建立了累积降雨量/降雨持续时间关系曲线,对不同的规模和频率的泥石流确定不同的临界值降雨量。据此USGS滑坡工作组进行泥石流灾害预报。

Wilson自1995年一直研究困扰早期滑坡预警系统的泥石流降雨临界值强烈受局部降水条件(地形效应)影响的难题。

如前所述,Cannon(1985)建立的旧金山湾地区的区域泥石流降雨临界值,试图用长期降雨量(MAP)来修正地形效应的影响。MAP是用来描述长期降雨气候条件最常用的参数,可从标准气象图中获得。Cannon建立MAP标准化临界值,是滑坡预警系统的主要技术基础。然而,正如Cannon本人所说,在早期滑坡预警系统运行过程中,发现降雨少的地区ALERT系统的雨量数据会产生“假警报”,反映了MAP标准化会出现低MAP地区的不一致性问题。后来Wilson(1997)将旧金山湾地区的MAP标准化方法应用到南加州和美国太平洋西北部地区,出现了明显的低估或高估降雨临界值的问题。

降雨量作为参数实际上反映了暴雨规模和频率两个综合作用过程。美国太平洋西北部地区降雨量频率高但每次降雨量小,导致年均降雨量大;而南加州地区则降雨频率小但每次降雨量大,结果是年均降雨量小。年均降雨量标准化方法应识别出那些“极端”的降雨事件,即降雨量远远超过那些频率高但降雨量小的暴雨事件。因此,对于估计泥石流降雨临界值来说,单个暴雨的规模要比降雨频率重要得多。

长期的气候作用使斜坡本身达到了一种重力平衡状态,即斜坡入渗与蒸发及地表排水之间达到了平衡。这种长期的平衡作用过程可能包含着无数已知和未知的机制。斜坡土壤的岩土工程性质、地表排水率及水网分布、本土植被都可能对局部气候产生影响。Wilson用日降雨规模—频率分析,重新检查了年均降水量标准化临界值的不一致性。在年均降雨量低的旧金山湾地区,泥石流的降雨临界值高于MAP标准化的预测值。Wilson提出了参考的泥石流降雨临界值,这有益于研究降雨与地表排水之间的相互作用。Wilson的研究表明,5年暴雨重现率可以代表降雨频率与侵蚀率的优化组合关系。对三个具有明显不同降雨气候模式的不同地区(南加州洛杉矶地区、旧金山湾地区、太平洋西北部地区),采集了触发致命泥石流灾害事件的历史雨量数据,建立了(引发广泛泥石流发生)历史上触发大范围泥石流的24小时峰值暴雨降雨量与参考降雨值(5年暴雨重现值)之间的关系曲线(图3-5)。该关系曲线可用来估计泥石流的降雨临界值,与Cannon的MAP标准化降雨临界值相比,特别是可以在更加可靠点的范围内通过插值估计出特定地点(特别是受地形效应影响的山区)的临界值。

图3-5 历史触发大范围泥石流的24小时峰值暴雨降雨量与

尽管旧金山湾地区的滑坡泥石流气象预警系统在1995年关闭了,但自1995年以来没有停止对降雨/泥石流临界值方面的研究。这些研究加深了对降雨、山坡水文条件、长期降雨气象条件和斜坡稳定性之间相互作用的认识,这将为旧金山湾地区乃至世界其他地区的滑坡气象预警工作奠定很好的科学基础。

三、降雨监测与预报

旧金山湾地区滑坡预警系统运行的十年间,当地NWS的天气预报主要依靠1987年2月发射的气象卫星GOE-7(1997年被GOES-10所取代)。每隔30分钟,GOES气象卫星传送覆盖从阿拉斯加湾至夏威夷的北美西海岸云团图像。根据这些图像,当地NWS可以估计出大暴雨的速度、方向和强度。图像中的红外波谱图像还能指示云团的温度,它是估计降雨强度的重要信息。另外,地面气象观测站可获得大气压、风速、温度、降雨数据,与卫星气象数据雨季NWS国家气象中心提供的长期天气趋势预报信息相结合,当地NWS天气预报办公室综合分析这些数据,准备和提供定量天气预报(QPT),一天发布两次加州北部和南部地区未来24小时天气预报。

雨量监测(ALERT)系统能远距离自动采集高强度降雨观测数据,并将数据传送到当地实时天气预报中心。到1995年,旧金山湾地区ALERT系统已建立了60个雨量观测站点(图3-6)。尽管每个站点的建立得到了NWS的支持,但每个站点的设备购买、安装和维护则由其他联邦、州和地方政府机构负责。从1985年到1995年滑坡预警系统运行期间,USGS一直负责维护设在加州Menlo公园的ALERT接收器和数据处理微机系统。

要评估即将到来的暴雨是否会引发泥石流灾害,要考虑两个临界值:①前期累积降雨量(即土壤湿度);②临近暴雨的强度和持续时间的综合分析。为此,USGS滑坡工作组在La Honda研究区安装了浅层测压计,并对土壤进行了监测。如果测压计首先显示出对暴雨的强烈反应,即认为已达到前期临界值。通常冬至后需几个星期的时间才能使土壤湿度超过前期临界值,之后要随时关注暴雨强度和持续时间是否足以触发泥石流灾害。

图3-6 1992年旧金山湾滑坡预警雨量监测系统—ALERT

四、泥石流灾害预警的发布

当暴雨开始时,开始监测降雨强度,估计暴雨前锋到来的速度。根据观测的降雨量,结合当地NWS的定量降雨预测(QPF);与建立的泥石流降雨临界值进行对比分析,确定泥石流灾害的类型和规模。NWS和USGS的工作人员共同参与该阶段的工作,向公众发布三个等级的泥石流灾害预警:即①城市和小河流洪水劝告(urban and small streamsflood advisory);②洪水/泥石流关注(flash-flood/debris-flow watch);③洪水/泥石流警报(flash-flood/debris-flow warning)。在1986年至1995年间,多次发布了不同级别的泥石流灾害预警。

五、小结

滑坡和泥石流灾害的危险性预测主要是通过灾害产生条件分析,预测区域上或某斜坡地段将来产生滑坡泥石流灾害的可能性,圈定出可能产生滑坡泥石流灾害的影响范围及活动强度。滑坡泥石流灾害危险性预测的指标体系结构层次如图3-7所示,根据滑坡泥石流灾害危险性预测的研究对象的差异性,可从三种研究尺度建立滑坡泥石流灾害危险性预测指标体系。

图3-7 地质灾害空间预测指标体系结构层次图

区域性滑坡泥石流灾害危险性预测就是通过分析滑坡泥石流灾害在区域空间分布的聚集性及规律性,圈定出滑坡泥石流灾害相对危险性区域,从而为国土规划、减灾防灾、灾害管理与决策提供依据。不同的预测尺度对应于不同的勘察阶段和研究精度。滑坡泥石流灾害危险性区划对应于可行性研究阶段,要求对拟开发地域工程地质条件的分带规律进行初步综合评价,确定滑坡泥石流灾害作用发生的可能性及敏感性,提交的成果是区域工程地质条件综合分区图和地质灾害预测区划图。

㈤ 自然灾害各类预警解释

预警信号由名称、图标、标准和防御指南组成,分为台风、暴雨、暴雪、寒潮、大风、沙尘暴、高温、干旱、雷电、冰雹、霜冻、大雾、霾、道路结冰等。 预警信号的级别依据气象灾害可能造成的危害程度、紧急程度和发展态势一般划分为四级:Ⅳ级(一般)、Ⅲ级(较重)、Ⅱ级(严重)、Ⅰ级(特别严重),依次用蓝色、黄色、橙色和红色表示,同时以中英文标识。 气象灾害预警信号及防御指南
[编辑本段]一、台风预警信号
台风预警信号分四级,分别以蓝色、黄色、橙色和红色表示。 (一)台风蓝色预警信号 图标: 标准: 24小时内可能或者已经受热带气旋影响,沿海或者陆地平均风力达6级以上,或者阵风8级以上并可能持续。 防御指南: 1.政府及相关部门按照职责做好防台风准备工作; 2.停止露天集体活动和高空等户外危险作业; 3.相关水域水上作业和过往船舶采取积极的应对措施,如回港避风或者绕道航行等; 4.加固门窗、围板、棚架、广告牌等易被风吹动的搭建物,切断危险的室外电源。 (二)台风黄色预警信号 图标:标准:24小时内可能或者已经受热带气旋影响,沿海或者陆地平均风力达8级以上,或者阵风10级以上并可能持续。 防御指南: 1.政府及相关部门按照职责做好防台风应急准备工作; 2.停止室内外大型集会和高空等户外危险作业; 3.相关水域水上作业和过往船舶采取积极的应对措施,加固港口设施,防止船舶走锚、搁浅和碰撞; 4.加固或者拆除易被风吹动的搭建物,人员切勿随意外出,确保老人小孩留在家中最安全的地方,危房人员及时转移。 (三)台风橙色预警信号 图标: 标准:12小时内可能或者已经受热带气旋影响,沿海或者陆地平均风力达10级以上,或者阵风12级以上并可能持续。 防御指南: 1.政府及相关部门按照职责做好防台风抢险应急工作; 2.停止室内外大型集会,停课、停业(除特殊行业外); 3.相关水域水上作业和过往船舶应当回港避风,加固港口设施,防止船舶走锚、搁浅和碰撞; 4.加固或者拆除易被风吹动的搭建物,人员应当尽可能待在防风安全的地方,当台风中心经过时风力会减小或者静止一段时间,切记强风将会突然吹袭,应当继续留在安全处避风,危房人员及时转移; 5.相关地区应当注意防范强降水可能引发的山洪、地质灾害。 (四)台风红色预警信号 图标: 标准:6小时内可能或者已经受热带气旋影响,沿海或者陆地平均风力达12级以上,或者阵风达14级以上并可能持续。 防御指南: 1.政府及相关部门按照职责做好防台风应急和抢险工作; 2.停止集会、停课、停业(除特殊行业外); 3.回港避风的船舶要视情况采取积极措施,妥善安排人员留守或者转移到安全地带; 4.加固或者拆除易被风吹动的搭建物, 人员应当待在防风安全的地方,当台风中心经过时风力会减小或者静止一段时间,切记强风将会突然吹袭,应当继续留在安全处避风,危房人员及时转移; 5.相关地区应当注意防范强降水可能引发的山洪、地质灾害。
[编辑本段]二、暴雨预警信号
暴雨预警信号分四级,分别以蓝色、黄色、橙色、红色表示。 (一)暴雨蓝色预警信号 图标: 标准:12小时内降雨量将达50毫米以上,或者已达50毫米以上且降雨可能持续。 防御指南: 1.政府及相关部门按照职责做好防暴雨准备工作; 2.学校、幼儿园采取适当措施,保证学生和幼儿安全; 3.驾驶人员应当注意道路积水和交通阻塞,确保安全; 4.检查城市、农田、鱼塘排水系统,做好排涝准备。 (二)暴雨黄色预警信号 图标: 标准: 6小时内降雨量将达50毫米以上,或者已达50毫米以上且降雨可能持续。 防御指南: 1.政府及相关部门按照职责做好防暴雨工作; 2.交通管理部门应当根据路况在强降雨路段采取交通管制措施,在积水路段实行交通引导; 3.切断低洼地带有危险的室外电源,暂停在空旷地方的户外作业,转移危险地带人员和危房居民到安全场所避雨; 4.检查城市、农田、鱼塘排水系统,采取必要的排涝措施。 (三)暴雨橙色预警信号图标: 标准: 3小时内降雨量将达50毫米以上,或者已达50毫米以上且降雨可能持续。 防御指南: 1.政府及相关部门按照职责做好防暴雨应急工作; 2.切断有危险的室外电源,暂停户外作业; 3.处于危险地带的单位应当停课、停业,采取专门措施保护已到校学生、幼儿和其他上班人员的安全; 4.做好城市、农田的排涝,注意防范可能引发的山洪、滑坡、泥石流等灾害。 (四)暴雨红色预警信号 图标: 标准: 3小时内降雨量将达100毫米以上,或者已达100毫米以上且降雨可能持续。 防御指南: 1.政府及相关部门按照职责做好防暴雨应急和抢险工作; 2.停止集会和停课、停业(除特殊行业外); 3.做好山洪、滑坡、泥石流等灾害的防御和抢险工作。 三、暴雪预警信号 暴雪预警信号分四级,分别以蓝色、黄色、橙色、红色表示。 (一)暴雪蓝色预警信号 图标: 标准: 12小时内降雪量将达4毫米以上,或者已达4毫米以上且降雪持续,可能对交通或者农牧业有影响。 防御指南: 1.政府及有关部门按照职责做好防雪灾和防冻害准备工作; 2.交通、铁路、电力、通信等部门应当进行道路、铁路、线路巡查维护,做好道路清扫和积雪融化工作; 3.行人注意防寒防滑,驾驶人员小心驾驶,车辆应当采取防滑措施; 4.农牧区和种养殖业要储备饲料,做好防雪灾和防冻害准备; 5.加固棚架等易被雪压的临时搭建物。 (二)暴雪黄色预警信号 图标: 标准: 12小时内降雪量将达6毫米以上,或者已达6毫米以上且降雪持续,可能对交通或者农牧业有影响。 防御指南: 1.政府及相关部门按照职责落实防雪灾和防冻害措施; 2.交通、铁路、电力、通信等部门应当加强道路、铁路、线路巡查维护,做好道路清扫和积雪融化工作; 3.行人注意防寒防滑,驾驶人员小心驾驶,车辆应当采取防滑措施; 4.农牧区和种养殖业要备足饲料,做好防雪灾和防冻害准备; 5.加固棚架等易被雪压的临时搭建物。 (三)暴雪橙色预警信号 图标: 标准:6小时内降雪量将达10毫米以上,或者已达10毫米以上且降雪持续,可能或者已经对交通或者农牧业有较大影响。 防御指南: 1.政府及相关部门按照职责做好防雪灾和防冻害的应急工作; 2.交通、铁路、电力、通信等部门应当加强道路、铁路、线路巡查维护,做好道路清扫和积雪融化工作; 3.减少不必要的户外活动; 4.加固棚架等易被雪压的临时搭建物,将户外牲畜赶入棚圈喂养。 (四)暴雪红色预警信号 图标: 标准:6小时内降雪量将达15毫米以上,或者已达15毫米以上且降雪持续,可能或者已经对交通或者农牧业有较大影响。 防御指南: 1.政府及相关部门按照职责做好防雪灾和防冻害的应急和抢险工作; 2.必要时停课、停业(除特殊行业外); 3.必要时飞机暂停起降,火车暂停运行,高速公路暂时封闭; 4.做好牧区等救灾救济工作。
[编辑本段]四、寒潮预警信号
寒潮预警信号分四级,分别以蓝色、黄色、橙色、红色表示。(一)寒潮蓝色预警信号 图标: 标准: 48小时内最低气温将要下降8℃以上,最低气温小于等于4℃,陆地平均风力可达5级以上;或者已经下降8℃以上,最低气温小于等于4℃,平均风力达5级以上,并可能持续。 防御指南: 1.政府及有关部门按照职责做好防寒潮准备工作; 2.注意添衣保暖; 3.对热带作物、水产品采取一定的防护措施; 4.做好防风准备工作。 (二)寒潮黄色预警信号 图标: 标准: 24小时内最低气温将要下降10℃以上,最低气温小于等于4℃,陆地平均风力可达6级以上;或者已经下降10℃以上,最低气温小于等于4℃,平均风力达6级以上,并可能持续。 防御指南: 1.政府及有关部门按照职责做好防寒潮工作; 2.注意添衣保暖,照顾好老、弱、病人; 3.对牲畜、家禽和热带、亚热带水果及有关水产品、农作物等采取防寒措施; 4.做好防风工作。 (三)寒潮橙色预警信号 图标: 标准: 24小时内最低气温将要下降12℃以上,最低气温小于等于0℃,陆地平均风力可达6级以上;或者已经下降12℃以上,最低气温小于等于0℃,平均风力达6级以上,并可能持续。 防御指南: 1.政府及有关部门按照职责做好防寒潮应急工作; 2.注意防寒保暖; 3.农业、水产业、畜牧业等要积极采取防霜冻、冰冻等防寒措施,尽量减少损失; 4.做好防风工作。 (四)寒潮红色预警信号 图标: 标准: 24小时内最低气温将要下降16℃以上,最低气温小于等于0℃,陆地平均风力可达6级以上;或者已经下降16℃以上,最低气温小于等于0℃,平均风力达6级以上,并可能持续。 防御指南: 1.政府及相关部门按照职责做好防寒潮的应急和抢险工作; 2.注意防寒保暖; 3.农业、水产业、畜牧业等要积极采取防霜冻、冰冻等防寒措施,尽量减少损失; 4.做好防风工作。
[编辑本段]五、大风预警信号
大风(除台风外)预警信号分四级,分别以蓝色、黄色、橙色、红色表示。 (一)大风蓝色预警信号 图标: 标准:24小时内可能受大风影响,平均风力可达6级以上,或者阵风7级以上;或者已经受大风影响, 平均风力为6~7级,或者阵风7~8级并可能持续。 防御指南: 1.政府及相关部门按照职责做好防大风工作; 2.关好门窗,加固围板、棚架、广告牌等易被风吹动的搭建物,妥善安置易受大风影响的室外物品,遮盖建筑物资; 3. 相关水域水上作业和过往船舶采取积极的应对措施,如回港避风或者绕道航行等; 4.行人注意尽量少骑自行车,刮风时不要在广告牌、临时搭建物等下面逗留; 5.有关部门和单位注意森林、草原等防火。 (二)大风黄色预警信号 图标: 标准:12小时内可能受大风影响,平均风力可达8级以上,或者阵风9级以上;或者已经受大风影响, 平均风力为8~9级,或者阵风9~10级并可能持续。 防御指南: 1.政府及相关部门按照职责做好防大风工作; 2.停止露天活动和高空等户外危险作业,危险地带人员和危房居民尽量转到避风场所避风; 3.相关水域水上作业和过往船舶采取积极的应对措施,加固港口设施,防止船舶走锚、搁浅和碰撞; 4.切断户外危险电源,妥善安置易受大风影响的室外物品,遮盖建筑物资; 5.机场、高速公路等单位应当采取保障交通安全的措施,有关部门和单位注意森林、草原等防火。 (三)大风橙色预警信号 图标: 标准:6小时内可能受大风影响,平均风力可达10级以上,或者阵风11级以上;或者已经受大风影响, 平均风力为10~11级,或者阵风11~12级并可能持续。 防御指南: 1.政府及相关部门按照职责做好防大风应急工作; 2.房屋抗风能力较弱的中小学校和单位应当停课、停业,人员减少外出; 3.相关水域水上作业和过往船舶应当回港避风,加固港口设施,防止船舶走锚、搁浅和碰撞; 4.切断危险电源,妥善安置易受大风影响的室外物品,遮盖建筑物资; 5.机场、铁路、高速公路、水上交通等单位应当采取保障交通安全的措施,有关部门和单位注意森林、草原等防火。 (四)大风红色预警信号 图标: 标准:6小时内可能受大风影响,平均风力可达12级以上,或者阵风13级以上;或者已经受大风影响,平均风力为12级以上,或者阵风13级以上并可能持续。 防御指南: 1.政府及相关部门按照职责做好防大风应急和抢险工作; 2.人员应当尽可能停留在防风安全的地方,不要随意外出; 3.回港避风的船舶要视情况采取积极措施,妥善安排人员留守或者转移到安全地带; 4.切断危险电源,妥善安置易受大风影响的室外物品,遮盖建筑物资; 5.机场、铁路、高速公路、水上交通等单位应当采取保障交通安全的措施,有关部门和单位注意森林、草原等防火。
[编辑本段]六、沙尘暴预警信号
沙尘暴预警信号分三级,分别以黄色、橙色、红色表示。 (一)沙尘暴黄色预警信号 图标: 标准: 12小时内可能出现沙尘暴天气(能见度小于1000米),或者已经出现沙尘暴天气并可能持续。 防御指南: 1.政府及相关部门按照职责做好防沙尘暴工作; 2.关好门窗,加固围板、棚架、广告牌等易被风吹动的搭建物,妥善安置易受大风影响的室外物品,遮盖建筑物资,做好精密仪器的密封工作; 3.注意携带口罩、纱巾等防尘用品,以免沙尘对眼睛和呼吸道造成损伤; 4.呼吸道疾病患者、对风沙较敏感人员不要到室外活动。 (二)沙尘暴橙色预警信号 图标: 标准:6小时内可能出现强沙尘暴天气(能见度小于500米),或者已经出现强沙尘暴天气并可能持续。 防御指南: 1.政府及相关部门按照职责做好防沙尘暴应急工作; 2.停止露天活动和高空、水上等户外危险作业; 3.机场、铁路、高速公路等单位做好交通安全的防护措施,驾驶人员注意沙尘暴变化,小心驾驶; 4.行人注意尽量少骑自行车,户外人员应当戴好口罩、纱巾等防尘用品,注意交通安全。 (三)沙尘暴红色预警信号 图标: 标准:6小时内可能出现特强沙尘暴天气(能见度小于50米),或者已经出现特强沙尘暴天气并可能持续。 防御指南: 1.政府及相关部门按照职责做好防沙尘暴应急抢险工作; 2.人员应当留在防风、防尘的地方,不要在户外活动; 3.学校、幼儿园推迟上学或者放学,直至特强沙尘暴结束; 4.飞机暂停起降,火车暂停运行,高速公路暂时封闭。
[编辑本段]七、高温预警信号
高温预警信号分三级,分别以黄色、橙色、红色表示。 (一)高温黄色预警信号 图标: 标准:连续三天日最高气温将在35°C以上。 防御指南: 1.有关部门和单位按照职责做好防暑降温准备工作; 2.午后尽量减少户外活动; 3.对老、弱、病、幼人群提供防暑降温指导; 4.高温条件下作业和白天需要长时间进行户外露天作业的人员应当采取必要的防护措施。 (二)高温橙色预警信号 图标: 标准:24小时内最高气温将升至37°C以上。 防御指南: 1.有关部门和单位按照职责落实防暑降温保障措施; 2.尽量避免在高温时段进行户外活动,高温条件下作业的人员应当缩短连续工作时间; 3.对老、弱、病、幼人群提供防暑降温指导,并采取必要的防护措施; 4.有关部门和单位应当注意防范因用电量过高,以及电线、变压器等电力负载过大而引发的火灾。 (三)高温红色预警信号 图标: 标准:24小时内最高气温将升至40°C以上。 防御指南: 1.有关部门和单位按照职责采取防暑降温应急措施; 2.停止户外露天作业(除特殊行业外); 3.对老、弱、病、幼人群采取保护措施; 4.有关部门和单位要特别注意防火。
[编辑本段]八、干旱预警信号
干旱预警信号分二级,分别以橙色、红色表示。干旱指标等级划分,以国家标准《气象干旱等级》(GB/T20481-2006)中的综合气象干旱指数为标准。 (一)干旱橙色预警信号 图标: 标准:预计未来一周综合气象干旱指数达到重旱(气象干旱为25~50年一遇),或者某一县(区)有40%以上的农作物受旱。 防御指南: 1.有关部门和单位按照职责做好防御干旱的应急工作; 2.有关部门启用应急备用水源,调度辖区内一切可用水源,优先保障城乡居民生活用水和牲畜饮水; 3.压减城镇供水指标,优先经济作物灌溉用水,限制大量农业灌溉用水; 4.限制非生产性高耗水及服务业用水,限制排放工业污水; 5.气象部门适时进行人工增雨作业。 (二)干旱红色预警信号 图标: 标准:预计未来一周综合气象干旱指数达到特旱(气象干旱为50年以上一遇),或者某一县(区)有60%以上的农作物受旱。 防御指南: 1.有关部门和单位按照职责做好防御干旱的应急和救灾工作; 2.各级政府和有关部门启动远距离调水等应急供水方案,采取提外水、打深井、车载送水等多种手段,确保城乡居民生活和牲畜饮水; 3.限时或者限量供应城镇居民生活用水,缩小或者阶段性停止农业灌溉供水; 4.严禁非生产性高耗水及服务业用水,暂停排放工业污水; 5.气象部门适时加大人工增雨作业力度。
[编辑本段]九、雷电预警信号
雷电预警信号分三级,分别以黄色、橙色、红色表示。 (一)雷电黄色预警信号 图标: 标准:6小时内可能发生雷电活动,可能会造成雷电灾害事故。 防御指南: 1.政府及相关部门按照职责做好防雷工作; 2.密切关注天气,尽量避免户外活动。 (二)雷电橙色预警信号 图标: 标准: 2小时内发生雷电活动的可能性很大,或者已经受雷电活动影响,且可能持续,出现雷电灾害事故的可能性比较大。 防御指南: 1.政府及相关部门按照职责落实防雷应急措施; 2.人员应当留在室内,并关好门窗; 3.户外人员应当躲入有防雷设施的建筑物或者汽车内; 4.切断危险电源,不要在树下、电杆下、塔吊下避雨; 5.在空旷场地不要打伞,不要把农具、羽毛球拍、高尔夫球杆等扛在肩上。 (三)雷电红色预警信号 图标: 标准: 2小时内发生雷电活动的可能性非常大,或者已经有强烈的雷电活动发生,且可能持续,出现雷电灾害事故的可能性非常大。 防御指南: 1.政府及相关部门按照职责做好防雷应急抢险工作; 2.人员应当尽量躲入有防雷设施的建筑物或者汽车内,并关好门窗; 3.切勿接触天线、水管、铁丝网、金属门窗、建筑物外墙,远离电线等带电设备和其他类似金属装置; 4.尽量不要使用无防雷装置或者防雷装置不完备的电视、电话等电器; 5.密切注意雷电预警信息的发布。
[编辑本段]十、冰雹预警信号
冰雹预警信号分二级,分别以橙色、红色表示。 (一)冰雹橙色预警信号 图标: 标准:6小时内可能出现冰雹天气,并可能造成雹灾。 防御指南: 1.政府及相关部门按照职责做好防冰雹的应急工作; 2.气象部门做好人工防雹作业准备并择机进行作业; 3.户外行人立即到安全的地方暂避; 4.驱赶家禽、牲畜进入有顶蓬的场所,妥善保护易受冰雹袭击的汽车等室外物品或者设备; 5.注意防御冰雹天气伴随的雷电灾害。 (二)冰雹红色预警信号 图标: 标准:2小时内出现冰雹可能性极大,并可能造成重雹灾。 防御指南: 1.政府及相关部门按照职责做好防冰雹的应急和抢险工作; 2.气象部门适时开展人工防雹作业; 3.户外行人立即到安全的地方暂避; 4.驱赶家禽、牲畜进入有顶蓬的场所,妥善保护易受冰雹袭击的汽车等室外物品或者设备; 5.注意防御冰雹天气伴随的雷电灾害。
[编辑本段]十一、霜冻预警信号
霜冻预警信号分三级,分别以蓝色、黄色、橙色表示。 (一)霜冻蓝色预警信号 图标: 标准:48小时内地面最低温度将要下降到0℃以下,对农业将产生影响,或者已经降到0℃以下,对农业已经产生影响,并可能持续。 防御指南: 1.政府及农林主管部门按照职责做好防霜冻准备工作; 2.对农作物、蔬菜、花卉、瓜果、林业育种要采取一定的防护措施; 3.农村基层组织和农户要关注当地霜冻预警信息,以便采取措施加强防护。 (二)霜冻黄色预警信号 图标: 标准:24小时内地面最低温度将要下降到零下3℃以下,对农业将产生严重影响,或者已经降到零下3℃以下,对农业已经产生严重影响,并可能持续。 防御指南: 1.政府及农林主管部门按照职责做好防霜冻应急工作; 2.农村基层组织要广泛发动群众,防灾抗灾; 3.对农作物、林业育种要积极采取田间灌溉等防霜冻、冰冻措施,尽量减少损失; 4.对蔬菜、花卉、瓜果要采取覆盖、喷洒防冻液等措施,减轻冻害。 (三)霜冻橙色预警信号 图标: 标准:24小时内地面最低温度将要下降到零下5℃以下,对农业将产生严重影响,或者已经降到零下5℃以下,对农业已经产生严重影响,并将持续。 防御指南: 1.政府及农林主管部门按照职责做好防霜冻应急工作; 2.农村基层组织要广泛发动群众,防灾抗灾; 3.对农作物、蔬菜、花卉、瓜果、林业育种要采取积极的应对措施,尽量减少损失。
[编辑本段]十二、大雾预警信号
大雾预警信号分三级,分别以黄色、橙色、红色表示。 (一)大雾黄色预警信号 图标: 标准:12小时内可能出现能见度小于500米的雾,或者已经出现能见度小于500米、大于等于200米的雾并将持续。 防御指南: 1.有关部门和单位按照职责做好防雾准备工作; 2.机场、高速公路、轮渡码头等单位加强交通管理,保障安全; 3.驾驶人员注意雾的变化,小心驾驶; 4.户外活动注意安全。 (二)大雾橙色预警信号 图标: 标准:6小时内可能出现能见度小于200米的雾,或者已经出现能见度小于200米、大于等于50米的雾并将持续。 防御指南: 1.有关部门和单位按照职责做好防雾工作; 2.机场、高速公路、轮渡码头等单位加强调度指挥; 3.驾驶人员必须严格控制车、船的行进速度; 4.减少户外活动。 (三)大雾红色预警信号 图标: 标准:2小时内可能出现能见度小于50米的雾,或者已经出现能见度小于50米的雾并将持续。 防御指南: 1.有关部门和单位按照职责做好防雾应急工作; 2.有关单位按照行业规定适时采取交通安全管制措施,如机场暂停飞机起降,高速公路暂时封闭,轮渡暂时停航等; 3.驾驶人员根据雾天行驶规定,采取雾天预防措施,根据环境条件采取合理行驶方式,并尽快寻找安全停放区域停靠; 4.不要进行户外活动。
[编辑本段]十三、霾预警信号
霾预警信号分二级,分别以黄色、橙色表示。 (一)霾黄色预警信号 图标: 标准:12小时内可能出现能见度小于3000米的霾,或者已经出现能见度小于3000米的霾且可能持续。 防御指南: 1.驾驶人员小心驾驶; 2.因空气质量明显降低,人员需适当防护; 3.呼吸道疾病患者尽量减少外出,外出时可带上口罩。 (二)霾橙色预警信号 图标: 标准:6小时内可能出现能见度小于2000米的霾,或者已经出现能见度小于2000米的霾且可能持续。 防御指南: 1.机场、高速公路、轮渡码头等单位加强交通管理,保障安全; 2.驾驶人员谨慎驾驶; 3.空气质量差,人员需适当防护; 4.人员减少户外活动,呼吸道疾病患者尽量避免外出,外出时可带上口罩。
[编辑本段]十四、道路结冰预警信号
道路结冰预警信号分三级,分别以黄色、橙色、红色表示。 (一)道路结冰黄色预警信号 图标: 标准:当路表温度低于0°C,出现降水,12小时内可能出现对交通有影响的道路结冰。 防御指南: 1.交通、公安等部门要按照职责做好道路结冰应对准备工作; 2.驾驶人员应当注意路况,安全行驶; 3.行人外出尽量少骑自行车,注意防滑。 (二)道路结冰橙色预警信号 图标: 标准:当路表温度低于0°C,出现降水,6小时内可能出现对交通有较大影响的道路结冰。 防御指南: 1.交通、公安等部门要按照职责做好道路结冰应急工作; 2.驾驶人员必须采取防滑措施,听从指挥,慢速行使; 3.行人出门注意防滑。 (三)道路结冰红色预警信号 图标: 标准:当路表温度低于0°C,出现降水,2小时内可能出现或者已经出现对交通有很大影响的道路结冰。 防御指南: 1.交通、公安等部门做好道路结冰应急和抢险工作; 2.交通、公安等部门注意指挥和疏导行驶车辆,必要时关闭结冰道路交通; 3.人员尽量减少外出。
[编辑本段]十五、气象预警的级别
气象灾害预警信号种类由原来的3种增加到10种,为人们所熟悉的黑色台风预警信号将退出历史舞台。 灾害的严重性和紧急程度,新版气象灾害预警信号总体上分为蓝色、黄色、橙色和红色四个等级(Ⅳ、Ⅲ、Ⅱ、Ⅰ级),分别代表一般、较重、严重和特别严重,同时以中英文标识,与国家的所有应急处置等级和颜色保持一致。 而原有的台风、暴雨、寒冷3种预警信号的黑色预警信号将成为历史,统一以红色为最高等级,由原来的“白、绿、黄、红、黑”改为现在的“白、蓝、黄、橙、红”;暴雨预警信号和寒冷预警信号原规定按“黄、红、黑”来分等级十种突发气象灾害预警信号

㈥ 地质灾害防治措施

崩塌灾害防治的工程措施:

1、拦挡:对中、小型崩塌可修筑遮挡建筑物或拦截建筑物。拦截建筑物有落石平台、落石槽、拦石堤或拦石墙等,遮挡建筑物有明洞、棚洞等。

2、支撑与坡面防护:支撑是指对悬于上方、可能拉断坠落的悬臂状或拱桥状等危岩采用墩、柱、墙或其组合形式支撑加固,以达到治理危岩的目的。对危险块体连片分布,并存在软弱夹层或软弱结构面的危岩区,首先清除部分松动块体,修建条石护壁支撑墙保护斜坡坡面。

3、锚固:板状、柱状和倒锥状危岩体极易发生崩塌错落,利用预应力锚杆(索)可对其进行加固处理,防止崩塌的发生。锚固措施可使临空面附近的岩体裂缝宽度减小,提高岩体的完整性。

4、灌浆加固:固结灌浆可增强岩石完整性和岩体强度。一般先进行锚固,再逐段灌浆加固。

5、疏干岸坡与排水防渗:通过修建地表排水系统,将降雨产生的径流拦截汇集,利用排水沟排出坡外。对于滑坡体中的地下水,可利用排水孔将地下水排出,从而减小孔隙水压力、减低地下水对滑坡岩土体的软化作用。

滑坡灾害防治的工程措施

1、排除地表水和地下水:滑坡滑动多与地表水或地下水活动有关。因此在滑坡防治中往往要设法排除地表水和地下水,避免地表水渗入滑体,减少地表水对滑坡岩土体的冲蚀和地下水对滑体的浮托,提高滑带土的抗剪强度和滑坡的整体稳定性。

2、减重与加载:通过削方减载或填方加载方式来改变滑体的力学平衡条件,也可以达到治理滑坡的目的。但这种措施只有在滑坡的抗滑地段加载,主滑地段或牵引地段减重才有效果。

泥石流灾害防治的工程措施

1、跨越工程:在泥石流沟上方修筑桥梁、涵洞跨越避险工程,使泥石流有排泄通道,又能保证道路的畅通。

2、穿越工程:在泥石流下方修筑隧道、明硐和渡槽的穿越工程,使泥石流从上方排泄,下方交通不受影响。这是通过泥石流地区的又一种主要工程形式,对于隧道、明洞和渡槽设计的选择,总的原则是因地制宜。

3、防护工程:对泥石流地区的桥梁、隧道、路基及重要工程设施修筑护坡、挡墙、顺坝和丁坝等防护工程,从而抵御泥石流的冲刷、冲击、侧蚀和淤埋等危害。

4、排导工程:修筑导流堤、急流槽、束流堤等排导工程,改善泥石流流势、增大桥梁等建筑物的排泄能力。

5、拦挡工程:修筑拦砂坝、固床坝、储淤场、支挡工程、截洪工程等拦挡工程,控制泥石流的固体物质和雨洪径流,削弱泥石流的流量、下泄量和能量,以减缓泥石流的冲刷、撞击和淤埋等危害。

(6)居民地质灾害预警扩展阅读:

诱发地质灾害的因素主要有:

1、采掘矿产资源不规范,预留矿柱少,造成采空坍塌,山体开裂,继而发生滑坡。

2、开挖边坡:指修建公路、依山建房等建设中,形成人工高陡边坡,造成滑坡。

3、山区水库与渠道渗漏,增加了浸润和软化作用导致滑坡泥石流发生。

4、其它破坏土质环境的活动如采石放炮,堆填加载、乱砍乱伐,也是导致发生地质灾害的致灾作用。

㈦ 地质灾害黄色预警是什么意思

地质灾害黄色预警信号是指24小时内地质灾害发生的风险较高。地质灾害黄色预警信号是地质灾害预警信号中的第一级。

地质灾害预警级别分为五级,但预警信号为四级,即蓝色、黄色、橙色和红色,分别代表一般、较重、严重和特别严重,黄色预警是指未来24小时内发生地质灾害的可能性较大,应及时通知监测人员和受威胁住户注意避险。

(7)居民地质灾害预警扩展阅读:

质灾害气象预警预报信息每年汛期(5-9月)在中央电视台天气预报节目中和中国地质环境信息网上发布,目的是提醒被预警区的干部和群众防范滑坡、崩塌和泥石流灾害。可以分为以下等级:

一级提醒级,24小时内,灾害发生可能性很小。 启动重要地质灾害隐患点的群测群防巡查。

二级 提醒级,24小时内,灾害发生可能性较小。 预报预警时间内对重要地质灾害隐患点24小时监测。

三级 注意级,24小时内,灾害发生可能性较大。 预报预警时间内启动地质灾害隐患点群测群防,并24小时监测;采取防御措施,提醒灾害易发地点附近的居民、厂矿、学校、企事业单位密切关注天气预报,以防天气突然恶化。

四级 预警级,24小时内,灾害发生可能性大。 启动受地质灾害隐患点威胁区居民临时避让方案;暂停灾害易发地点附近的户外作业,各有关单位值班指挥人员到岗准备应急措施。组织抢险队伍,转移危险地带居民,密切注意雨情变化。

五级 警报级,24小时内,灾害发生可能性很大。 启动不稳定危险斜坡威胁区居民临时避让方案;紧急疏散灾害易发地点附近的居民、学生、厂矿、企事业单位人员,关闭有关道路,组织人员准备抢险。

参考资料:网络—地质灾害黄色预警信号

㈧ 新疆地质灾害预警、预报与防治

第一节 地质灾害预警、预报与防治现状

一、地质灾害预警、预报与防治现状

新疆地质灾害预警、预报与防治工作起步较晚。截至2005年,主要工作内容为以下5个方面:

(一)群测群防系统建设与运行

本项工作始于2000年以来开展的《县(市)地质灾害调查与区划》项目,截至2005年,已开展“县(市)地质灾害调查与区划”工作的县(市)共计33个,主要开展的工作内容包括:

1.以县为单位建立了监测网

一级网—县级监测网;二级网—乡(镇)级监测网;三级网—村级监测网。

2.主要工作内容

(1)定期巡视,汛期来临前强化监测,主要对灾害体的变形量和位移量进行测量。

(2)出现险情时采取预警、避让等应急处理措施,以及其他缓解灾害发生的措施。

(3)以居民点为防治对象,明确监测范围和监测人,主要任务是目测灾害体变化,发现异常及时上报。

(4)加强宣传和培训工作。

(5)编制地质灾害防灾预案,并广而告之于民众。

(6)对监测网点的管理和运行做出了明确规定,主要包括签订责任书;监测信息的及时反馈、分析处理、指导性意见的再反馈;落实汛期值班制度;建立地质灾害灾情速报制度等。

(二)地质灾害应急反应系统建设

主要包括地质灾害险情巡查、应急调查和速报工作。截至2005年底,全疆共出动300余人次进行险情巡查和应急调查工作,提交调查报告40余份。

仅2003年自治区国土资源厅先后共派出8个巡查和检查组,33人次,行程22100余千米,历时49天,并于3月31日~4月13日专门派出汛期地质灾害防治工作检查巡查组,重点对伊犁地区、塔城地区、博尔塔拉州、昌吉州4个地(州)的新源县、巩留县等9个县(市)地质灾害防治工作进行了巡查检查。上述工作的开展避免了已发生灾害点人员伤亡增多、财产损失加重、灾情扩大;及时发现了新的地质灾害隐患点,会同当地人民政府、国土资源局及乡、村领导制定出预防措施,在很大程度上避免和减少了生命财产损失。

通过巡查检查我区地质灾害重点防治区域的防治工作情况,采取与当地政府座谈等形式,提高了当地政府对地质灾害防治工作的重视程度,保障了地质灾害防治各项工作的顺利进行。目前各地都不同程度地开展了地质灾害险情巡查工作,遇有灾情都能及时进行调查和上报,自治区国土资源厅以不定期工作简报形式及时向自治区领导和国土资源部报告灾情。

(三)汛期地质灾害气象预报预警

主要开展的工作有:确定了地质灾害预报预警灾害种类为区域群发突发性滑坡、崩塌和泥石流,地质灾害气象预报预警采用空间预报预警类型;划分了预报预警等级、时间段及区域;地质灾害气象预报预警区划及预报预警模式;制定了地质灾害预报预警程序。

2003年地质灾害气象预报预警首先在伊犁至托克逊后沟天山南北麓区域试运行发布。由于新疆地质灾害预报预警开展较晚,预报判据还未分析建立,采用专家分析方法进行预报。2003 年9 月15日~2003年9月30日,利用气象局内部信息系统进行了试运行发布,资料传送通过拨号进入气象局网络设置的上传下载专用文件夹,下载24小时降水预报等值线图,上传地质灾害预报预警图。

(四)全面落实地质灾害防灾预案的编制

年度汛期防灾预案编制制度始于1998 年,近年来覆盖面逐步扩大。2005年全疆14个地(州、市)均于2月上旬完成了本辖区“汛期地质灾害防灾预案”的编制工作,并报当地政府,预案编制覆盖率达到了100%。防灾预案对全区14个地区、46个易发区段、百余处隐患点进行了预测,并提出了防御措施。成功预报地质灾害典型实例包括:巩留县莫乎尔乡小莫乎尔沟孔格亚夏东侧山体滑坡、新源县别斯托别乡恰普河牧业村别拉西滑坡,避免了24 人死亡、19万元的经济损失,并总结出了一套成功预报减灾的经验。

(五)地质灾害空间信息系统建设

根据已开展的地质灾害调查专项调查及相关调查成果,建立了地质灾害空间数据库。

(六)对重大地质灾害(隐患)点开展了治理工作

主要包括:乌鲁木齐市六道湾煤矿、阿勒泰将军沟泥石流;西沟煤矿、哈密硫磺沟煤矿、昌吉五宫煤矿、哈巴河赛都金矿、富蕴乔夏哈拉金铜矿、伊犁伊能煤矿、巴音郭楞州石棉矿、乌市老君庙煤矿等矿山崩塌、滑坡、泥石流、地面塌陷灾害治理。

二、存在的主要问题

地质灾害预警预报及防治工作尚处于起步阶段,在管理上、技术上尚存在较多不完善之处,有待进一步提高。

第二节 地质灾害预警、预报与防治

一、地质灾害预警、预报

(一)群测群防系统建设与运行

根据地质灾害发育分布特点,按照“分步建立、逐步完善”的原则,建立自治区群测群防网络体系。“十一五”期间,完成52个县(市)群测群防网络体系的建立。与此同时,建立专业监测骨干网络,对于重要地质灾害隐患点,由专业技术人员采用专业设备进行监测;因工程建设可能引发地质灾害的,由建设单位安排专人负责地质灾害监测,形成自治区专业监测骨干网络体系,实现监测数据传输、自动处理。“十一五”期间,首先建成伊犁谷地、天山北坡经济带两个区域重要地质灾害隐患点的专业监测骨干网络,之后,完成北疆、东疆重要地质灾害点的专业监测骨干网络的建设。

(二)地质灾害应急反应系统建设

建成以自治区国土资源行政主管部门为指挥核心、自治区地质环境监测院为主体的自治区地质灾害应急反应指挥中心,建成以各地(州、市)、县(市)国土资源行政主管部门为指挥核心、地质环境监测机构和各地勘单位为主体的地质灾害应急反应系统,构成全疆的应急反应系统。配置必要的专业设备,每年汛期前进行险情巡查,重点检查各级防灾预案、群测群防网络、汛期值班、监测责任的落实情况,并对主要地质灾害隐患点进行险情巡查;汛期中对监测工作加强监督管理,接到险情或灾情报告及时组织技术力量在最短的时间内赶到现场,调查灾害原因、发展趋势,协助当地政府采取应急措施,并提出处理对策,汛期后进行复查,总结经验,部署下一年度的地质灾害防治工作。

(三)汛期地质灾害气象预报预警

(1)正式开展地质灾害气象预报预警工作,主要区域为乌鲁木齐以及西天山南北地区。

(2)地质灾害预报预警的灾种崩塌、滑坡、泥石流3种类型。

(3)预报等级按国土发 〔2003〕 229 号文件统一划分为5 级:1级为可能性很小;2级为可能性较小;3级为可能性较大;4级为可能性大;5级为可能性很大。其中3级在预报中为预报级(注意级);4级在预报中为预警级;5 级在预报中为警报级;1、2 级为不发布级。

(4)地质灾害预报预警信息的权限:发布警报(5 级)由厅领导审批;发布预报信息(3、4 级)由厅地环处处长审批;不发布预报预警信息(1、2 级)由厅授权新疆维吾尔自治地质环境监测院主管领导审批。

(5)发布对象为各级国土资源主管部门及广大社会民众。

(6)完善地质灾害气象预报预警发布程序以及地质灾害和气象数据信息的传输、采集、汇总、分析和处理系统,引用最新的数据信息技术处理手段和方法,提高预报准确度。

(四)全面落实地质灾害防灾预案的编制

对新发现的地质灾害(隐患)点编制防灾预案,并落实实施。对已编制防灾预案的地质灾害(隐患)点,加强实施情况的监督和检查。

(五)地质灾害空间信息系统建设

通过地质灾害空间信息系统的建设,建立比较完善的自治区地质灾害数据库、矿山地质环境数据库、地质灾害防治决策支持系统和信息管理系统,建成地质灾害监控空间信息网络系统。对地质灾害进行信息采集、汇总、分析和处理,及时反映地质灾害综合研究成果及地质灾害预警信息,快速准确地将这些成果和信息提供给政府决策并传播给广大公众,为新疆的经济建设服务。

“十一五”期间完成52 个县(市)地质灾害数据库建设,建成自治区地质灾害监控中心站。通过互联网实现区级中心站与国家中心站信息数据共享,及时为政府和社会提供服务,为国家防灾减灾提供基础信息。建成14 个地(州、市)级监控站。实现国家、自治区中心站与地、州、市级监控站的网络互联和信息数据共享。建立相对完善的基于地理信息系统(GIS)和互联网的地质灾害空间信息系统,实现地质灾害监测信息采集、存储、传输、处理及成果发布等全过程的有效管理与监控,提高处理突发事件的能力和地质灾害防治水平。

(六)地质灾害监测预报预警示范区建设

建立伊犁哈萨克自治州巩留县滑坡地质灾害监测预报预警示范区。通过详细的地质环境调查、灾害历史和降水历史资料分析、滑坡和气象水文监测等,研究滑坡灾害的形成机制,掌握滑坡灾害主要诱发因素,特别是融雪水和降雨在灾害发生中所起的作用,确定发生滑坡的临界降雨量、降雨强度和积雪深度,充分运用“3S”等现代化的技术手段开展滑坡灾害气象预报预警;完善巩留县滑坡灾害监测预报预警示范区建设,建成巩留地质灾害防治示范县;远期推广滑坡灾害监测预报预警经验。

二、地质灾害防治

根据新疆地质灾害易发程度分区,结合自治区国民经济和社会发展计划,将突发性地质灾害防治划分为地质灾害重点防治区(Ⅰ)、次重点防治区(Ⅱ)和一般防治区(Ⅲ)。结合致灾的灾种不同和区域性地质灾害的危害特点,在重点防治区内进一步划分出4个防治亚区,在次重点防治区内划分出2个防治亚区。

地质灾害防治工作的重点放在易发程度高的经济发达区、人口相对密集区和重要基础设施建设分布区。按照“统筹规划、突出重点、分步实施、全面推进”的原则,进行工作部署。

(一)重点防治区(Ⅰ)

1.伊犁谷地山区滑坡、泥石流、地面塌陷灾害重点防治亚区(Ⅰ1

分布于伊犁谷地黄土覆盖的中低山丘陵区和煤系地层区,面积21632.24平方千米。滑坡、泥石流灾害在新源县、巩留县、尼勒克县和特克斯县尤为发育,地面塌陷灾害在伊犁哈萨克自治州直属8县1市均有分布。“十一五”期间,制定伊犁哈萨克自治州直属8县1市的地质灾害防治规划,建立地质灾害群测群防网络体系,新建伊犁哈萨克自治州地质环境监测站,开展汛期地质灾害气象预报预警,对受重要地质灾害隐患严重威胁的学校、农牧民实施移民搬迁工程。

严禁已迁出危险区域的居民回迁。限制在重要地质灾害隐患点威胁范围内从事各类工程建设;确需建设且又无法避让的,必须进行地质灾害防治工程勘查治理。

2.重要交通沿线崩塌、滑坡、泥石流灾害重点防治亚区(Ⅰ2

该区包括216、217、218、219、312、314、315 国道山区段、南疆铁路鱼儿沟至和静段、兰新铁路了墩至十三间房段等,面积20598.30平方千米。

完成217、312、314国道山区段的地质灾害专项调查,划定危险区,建立警示标志,制定防灾预案,完成217国道独—库公路山区段、312国道果子沟段地质灾害勘查。

在重要交通沿线两侧200米范围内,严禁露天采矿活动,限制地下采矿活动;严禁诱发或加剧地质灾害的其他人类活动。

3.天山南北麓和准噶尔西部山地低山丘陵含煤带地面塌陷灾害重点防治亚区(Ⅰ3

该区包括准噶尔盆地西、北、东部、吐—哈盆地北部、塔里木盆地南部及天山南北麓的低山丘陵煤矿区分布段等。面积36353.38平方千米。

完成天山北坡经济带11县(市)的以地面塌陷灾害为主的矿山地质环境及地质灾害专项调查工作,完成乌鲁木齐市六道湾煤矿地面塌陷区治理示范工程,出台矿山地质环境治理恢复保证金制度实施办法,全面推行矿山地质环境保护方案编审制度和新建矿山准入制度,严格执行矿产资源储量压覆占用制度。

严禁威胁城镇及重要工程设施安全的采矿活动,禁止在地面塌陷危险区进行其他人类活动。

4.大河流域山区段及西昆仑高山区以泥石流为主的地质灾害重点防治亚区(Ⅰ4

主要包括克兰河阿勒泰市区段、叶尔羌河山区段(以暴雨泥石流为主)、喀拉喀什河、西昆仑高山区及天山南北麓大河山口段(以滑坡—泥石流为主),总面积25601.87平方千米。

完成克兰河阿勒泰市区段、叶尔羌河山区段以泥石流为主的专项地质灾害调查工作;完成阿勒泰市将军沟泥石流治理和叶尔羌河、开都河山区段和库车河、喀拉喀什河、奎屯河、玛纳斯河等出山口段严重威胁人民生命财产和重要工程设施安全的以泥石流、滑坡为主的地质灾害隐患点的勘查治理工作。

严禁从事诱发对人民生命财产和重要工程设施安全构成威胁的泥石流、滑坡灾害的人类工程活动。

(二)次重点防治区(Ⅱ)

1.中高山、极高山以崩塌、泥石流为主的地质灾害次重点防治亚区(Ⅱ1

分布在天山、昆仑山西段和阿尔泰山林带以上的中高山、极高山地带,面积135993.50平方千米。雪线以下的高山草甸多为良好的夏季牧场,局部地段存在采矿活动。通过分期开展地质灾害调查与区划,设立警示标志、实施避让措施、加强地质灾害防治科普宣传等预防工作,以避让为主,避免人员伤亡和财产损失。

2.中低山以崩塌、滑坡-泥石流为主的地质灾害次重点防治亚区(Ⅱ2

主要分布在阿尔泰山南坡、天山、昆仑山—阿尔金山北坡的中低山区等,面积105898.74平方千米。人类经济活动主要为矿业开发和牧业生产。

通过分期开展地质灾害调查与区划,加强地质灾害防治知识科普宣传,采取以避让为主的防治手段,达到防灾减灾目的;实施矿山地质环境保护方案编审制度、矿山地质环境治理恢复保证金制度,对矿业开发诱发的地质灾害,采用工程、生物等多种措施进行治理。

(三)一般防治区(Ⅲ)

包括全疆除重点防治区和次重点防治区以外的所有地区,面积1322012.15平方千米。低山丘陵区多为小型崩塌和泥石流,局部地段存在滑坡;盆地平原区存在沙漠化、盐渍化。

分期开展地质灾害调查与区划,采取避让和生物工程措施对低山丘陵区地质灾害进行防治,保护地质环境;通过科学规划、合理开发利用水土等自然资源,保护并逐步改善生态环境;采取退耕还林、还牧、还草、植树造林等措施,防治土地沙漠化;采取竖井排灌、井排与渠排相结合等降低地下水位的措施,防治土壤盐渍化。

㈨ 年国家地质灾害气象预警服务

5.8.1 技术准备

5.8.1.1 工作情况

2008 年度国家级地质灾害气象预警预报服务在 5 月 1 日至 9 月 30 日开展,每日一次。由于汶川地震和台风活动以及强降雨影响,2008 年加强并延续了预警预报值班。5月 13 日以后针对地震灾区加密了预报频次,由每日 1 次增加为 2 ~ 3 次,增加了 60 次。预警预报期也从 9 月 30 日延续到 10 月 4 日( 台风“海高斯”登陆) ,11 月 5 日又增加了 1次,增加了 6 天。

2008 年预警预报值班共 159 天,制作预警预报产品 213 份。在中央电视台发布地质灾害预警预报信息 94 次( 其中 4 级 93 次,5 级 1 次) ,在中央人民广播电台发布 94 次,在中国地质环境信息网上发布 176 次( 3 级以上) ,在国土资源部政府网上发布 94 次。

由于汶川地震区山坡岩土体更加松散破碎、余震不断、强降雨天气频繁出现的情况,加强了地质灾害预警预报工作。主要是加密了预报频次,适度提高了地质灾害预报等级。制作地质灾害预警预报产品的频次从每日 1 次增加到每日 3 次,分别在中央电视台早晨 7 点、中午 12 点和晚上 7 点 30 分气象节目发布,并在中央电视台多个频道、中央人民广播电台随气象节目一起滚动播出,同时在中国地质环境信息网上实时发布。警示当地居民和抢险救灾人员注意防范地震余震和降雨引发的滑坡、崩塌、泥石流等地质灾害; 警示临时居住帐篷和救灾场所的百姓要避开山体斜坡、河流沟口等易发地质灾害的部位,提醒沿山路行驶的车辆和行人要注意山体滑坡、崩塌落石和泥石流。

适当增加地质灾害气象预警预报的频次的工作流程为: 国家气象中心提出,经与中国地质环境监测院会商后联合发布。西太平洋洋面生成( 强) 热带风暴后,若预测可能影响中国大陆,国家气象中心提前告知中国地质环境监测院,以便针对东南沿海的地质灾害气象预警预报做好前期准备工作。

5.8.1.2 预警产品计算

( 1) 集成了两代预警模型

为了便于新旧预警模型并行使用、相互校验,提高预警预报计算结果的精确性,新的预警预报系统软件中将第一代预警模型( 临界雨量模型) 、第二代预警模型( 显式统计预警模型) 集成在同一系统中( 图 5.35) 。

第一代预警模型( 临界雨量模型) : 基于雨量站点的地质灾害预报,预警计算在雨量站点上完成,在雨量站点上生成不同等级的预警等级点。

第二代预警模型( 显式统计预警模型) : 以剖分的网格( 10km ×10km) 为单位,在每个预警网格上计算预警产品值。

图 5.35 两代预警模型集成使用

( 2) 可采用分步式计算与一站式计算两种计算方式

分布式计算主要是分为: 气象数据自动导入-预报产品计算两步进行,便于预警产品计算之前先完成下载雨量、数据导入、数据分布查看等操作( 图 5.36) 。一站式计算: 将数据导入、产品计算从头到尾一步完成,便于日常预警值班的方便快捷。

图 5.36 分步式计算与一站式计算两种计算方式

5.8.1.3 数据管理

( 1) 雨量数据自动下载

当气象部门将前期实况雨量和次日的预报雨量上传到 FTP 地址上后,无论是一站式计算,还是分布式计算方式,预报员使用预警软件时第一步就是直接从 FTP 上下载数据,下载完毕后自动提示,并直接导入软件系统参加计算。

中国地质灾害区域预警方法与应用

( 2) 数据自动备份

根据日常工作需求,软件实现在计算完成后,完成原始雨量数据的自动备份、预警产品结果的自动备份( 图 5.37) 。

图 5.37 数据自动备份

原始雨量数据备份到目录“D: 2008rain701”

Copy ftp: / /129.179.10.68 / c-cma / a-forecast /0701 / 整个文件夹。

预警产品结果数据备份到目录“D: 2008results701”

Copy “data publish ”下的 3 个文件:

gt080701.doc; gt080701.txt; 080701.bmp; 080701.jpg;

Copy “data result ”下的 3 个文件 080701.w l; 080701.w p;

Copy “data station 80701.w t”

5.8.1.4 数据查询

数据查询功能中,除地质背景环境条件查询( 图 5.38,首先在图层管理栏内打开要查询的地质环境条件数据,然后使用“查看属性”来查看相应的地质环境条件) 外,本次软件改进中主要增加了较强大的雨量数据的查询功能。

雨量查询功能主要是基于雨量站点的原始查询、统计查询以及数据导出等功能。通过右键点击“站点查询”,即可得到各雨量站点的信息,主要包括: 实况雨量、累计雨量、14 时雨量、条件查询 4 个选项卡。

图 5.38 地质背景环境条件查询

实况雨量: 查询结果是所选雨量站点的逐日 24h 雨量值( 图 5.39) 。累计雨量查询结果是所选雨量站点的逐日累计雨量,系统设计为累计 7d 的雨量。

图 5.39 雨量查询窗口

14 时雨量: 查询结果是当前日期 8 时至 14 时的 6h 实况雨量、经过计算得到的当前日期 14 时至昨日 14 时的实况雨量。

条件查询: 主要是一些较复杂的定制查询功能和查询结果导出功能。可以通过选择站号、站名、起始日期、终止日期,进行不同时间段各个雨量站点的累计雨量查询( 图5.40) 。

图 5.40 条件查询

5.8.1.5 预警产品修正

地质灾害预警预报产品自动完成后,预报员可根据经验或会商结果对预警产品进行修正。关于预警产品修正依据方面,增加了分省易发区图; 产品背景数据补充县界、县名以及地貌简图。

( 1) 增加了分省( 区、市) 易发区图( 图 5.41)

图 5.41 分省( 区、市) 易发区图

( 2) 修正了产品背景数据( 图 5.42,图 5.43)

图 5.42 中国地貌底图

图 5.43 预警区县界县名

5.8.1.6 软件界面与显示

软件界面作了进一步的完善; 图层显示标准化等,如不同雨量用不同的颜色大小进行标记; 不同预警等级的颜色也给出相应的颜色显示标准。

( 1) 软件界面

从每日预警值班的角度,进一步完善和简化了预警软件界面,图层控制管理窗口使用更加清晰方便( 图 5.44) 。

图 5.44 完善后的软件界面

( 2) 图层显示标准化

不同雨量用不同的颜色大小进行标记。关于当日 8 点、14 点雨量显示的相关约定根据雨量大小( 子图号均为 34) ( 图 5.45) :

图 5.45 8 点实况雨量显示标准化

≥250mm: 深红色( 253) ,RGB 为 151 31 23; 子图宽度和高度均为 60;

100 ~ 250mm: 粉红色( 183) ,RG B 为 255 0 191; 子图宽度和高度均为 50;

50 ~ 100mm: 蓝色( 5) ,RG B 为 0 0 255; 子图宽度和高度均为 40;

25 ~ 50mm: 浅蓝色( 19) ,RG B 为 135 135 255; 子图宽度和高度均为 30;

10 ~ 25mm: 绿色( 90) ,RG B 为 0 175 0; 子图宽度和高度均为 20;

< 10mm: 浅绿色( 7) ,RG B 为 0 255 0; 子图宽度和高度均为 10。

( 3) 预警等级颜色标准化

( RGB,图 5.46)

图 5.46 预警等级颜色标准化

5.8.1.7 矢量化网上发布

将发布的预警产品格式改为矢量化格式,从而实现预警产品查询的方便快捷和精确定位( 可直接查询到县级行政区域) ( 图 5.47) 。根据需要可实现雨量数据的实时显示与查询; 同时,能够满足每日多次预警产品的发布需求。

图 5.47 改进的矢量化网上发布及放大后效果

5.8.2 5 级地质灾害警报区

2008 年汛期,共发布了 1 次 5 级预警预报信息。我们对这次预报的地质灾害发生情况进行了调查。

5.8.2.1 5 级地质灾害预警预报情况

2008 年 7 月 20 日下午,中国地质环境监测院收到中国气象局的天气预报: 未来 24 小时( 7 月 20 日 20: 00 ~7 月 21 日 20: 00) 甘肃南部、四川中部和北部、陕西西南局部、宁夏南部局部等地震影响区,以及吉林东南部、辽宁东部有暴雨( 50mm) 。其中甘肃南部局部、四川中部局部和北部局部,以及吉林东南局部有大暴雨( 100mm) 。

针对气象局降雨预报和预测暴雨地区的地质环境条件,经过与被预警区省级地质灾害预警预报技术单位和气象局会商,我们发布了如下预警预报信息: 今日 20: 00 至明日 20:00,甘肃南部、四川中部和北部、陕西西南局部、宁夏南部局部等地震影响区,以及吉林东南部、辽宁东部局部发生地质灾害可能性较大( 3 级) 。其中,甘肃南部局部、四川中部局部和北部局部等地震重灾区发生地质灾害可能性大或很大( 4 ~5 级) ( 图 5.48) 。

图 5.48 7 月 20 日降雨预报等值线和地质灾害气象预警预报区域

5.8.2.2 地质灾害发生情况与地质环境条件

根据四川、甘肃国土资源厅地质环境处获得反馈信息,7 月 20 日晚至 7 月 22 日期间,四川省东南部发生较大地质灾害 47 处; 甘肃省南部发生较大地质灾害 8 处。

四川省 7 月 20 ~22 日发生的地质灾害主要分布在四川省东部和中南部。在地质环境分区上分别属于盆地东华蓥山平行岭谷地质环境区和峨眉山高中山地质环境区。

盆地东华蓥山平行岭谷地质环境区: 以剥蚀构造地形为主,背斜成山向斜成谷,山高谷深,岭谷相间,山岭海拔 700 ~1700m,间以石灰岩槽状谷地或山间小盆地,山间盆地一般海拔 300 ~500m,相对高差 100m 左右。地形坡度 30° ~35°,背斜山地区较陡。侏罗系分布最广( 达 80%以上) 。地层岩性为泥岩、砂质泥岩、岩屑长石砂岩、粉砂岩不等厚互层组成软硬相间的岩体主要组合。构造呈北东—北北东走向,由一系列平行的狭长不对称箱状背斜组成,断裂少见。区域地壳属间歇性面状抬升,地壳活动较强。区域最大地震震级为 5.75 级,地震基本烈度为Ⅵ-Ⅶ。

峨眉山高中山地质环境区: 以高中山地貌为主,地势由北向南渐增,海拔 1000 ~3700m,切割深度 500 ~1000m,地形坡度15° ~40°,山坡上缓下陡,山顶圆缓,沟谷狭窄。地层包括下古生界的碳酸盐岩、变质岩,以及中生界的砂岩、泥岩和火山喷发的玄武岩等。软硬相间的岩体组合,类型较多,岩层较破碎。构造以南北向的褶皱、断裂为主,兼有北东向、北西向断裂切割,地层错落,岩层破碎,地壳活动较强,地震烈度为Ⅷ度。滑坡、崩塌、泥石流较发育。

甘肃省发生的地质灾害主要分布在陇南山地。该地区属西秦岭山地,地势西高东低,海拔 2500 ~4500m,地形强烈切割,水文网发育,相对高差 1000 ~2000m,属中高山地形。岩土体类型以变质岩岩组、碳酸盐岩岩组为主,碎屑岩类和黄土零星分布。年平均降雨量一般为600mm,7 ~ 9 月 3 个月降雨量占全年的 65% ,多暴雨。植被覆盖率达 30% ~ 46% 。属于滑坡、泥石流中等-高-极高发育地区。

5.8.2.3 预警预报效果分析

7 月 20 日对甘肃南部局部、四川中部局部和北部局部等地震重灾区发布了 4 ~ 5 级的地质灾害预警预报。7 月 21 ~22 日,地质灾害大量发生,实际发生区在四川东南部和甘肃南部。甘肃南部和中部局部的预报是准确的,四川北部没有报准的原因是实际降雨发生了偏移。20 日预报的暴雨中心是南部局部、四川中部局部和北部局部等地震重灾区,而实际暴雨中心却落在了四川东南部和甘肃南部以及陕西西南部( 图 5.49) 。

5.8.3 2008 年预警预报效果分析

本章选取 2008 年 7 月和 8 月的预报情况进行分析。

5.8.3.1 成功预报情况分析

实际计算时,如果当日仅有 1 个预报区,则按 1 个区计算; 如果有多个预报区,则按实际预报区个数计算,3 级、4 级和 5 级区共同参与计算。采用第 3 章 3.7 节建立的计算公式,计算出 2008 年 7,8 月预报准确率( 表 5.11) 。

图 5.49 7 月 21 日预报降雨、实际降雨与地质灾害点分布对比

表 5.11 2008 年 7,8 月预报准确率

表 5.11 列出 7 月共发布 93 个预报区,有 30 个准确预报区,平均预报准确率为32.26% 。8 月共发布 64 个预报区,有 14 个准确预报区,平均预报准确率为 21.88% 。每日预报准确率的变化从 0 ~100%均有,显示地质灾害发生的准确情况具有一定的随机性,同时与降雨量的情况有一定的关系,是一个复杂的过程,造成预报准确率较低。遇到大范围强降雨出现时,预报准确率会有所提高。

5.8.3.2 空报情况分析

实际计算时,如果当日仅有 1 个空报区,则按 1 个区计算; 如果有多个空报区,则按实际个数计算,三级、四级和五级区共同参与计算。空报率和准确率之和为 1。采用第 3 章 3.7建立的计算公式,计算出 2008 年 7,8 月空报率( 表 5.12) 。

表 5.12 2008 年 7,8 月空报率

根据表 5.12 空报率的计算结果,7 月的平均空报率为 67.74%,8 月的平均空报率为78.12% ,空报率较大,主要是因为预报降雨与实际降雨偏差较大所致。

表 5.13 2008 年 7,8 月漏报率

2008 年 7 月 20 日预报降雨和实际降雨情况可以看出,两个预报 100mm 的地区,其中一个降雨量不到10mm,另一个区中最大降雨量仅为40mm,降雨中心完全偏离预报区域,且降雨中心最大降雨量为 73mm,与预报 100mm 相差 27mm( 图 5.50) 。

图 5.50 7 月 20 日预报雨量与实际雨量对比图

5.8.3.3 漏报情况分析

采用第 3 章 3.7 建立的计算公式,计算出 2008 年 7,8 月漏报率( 表 5.13) 。

根据表 5.13 显示的计算结果,7 月的平均漏报率为 66.87% ,8 月的平均漏报率为86.54% ,漏报率较大,主要是因为地质灾害预报是针对比较大的云团或台风等强对流天气引起的地质灾害的预报准确率较高,而对于局地暴雨等天气情况引发的地质灾害预测较低。

5.8.4 暴雨日数与地质灾害

将汛期( 5 ~9 月) 全国暴雨日数与地质灾害点分布叠加( 图 5.51) 。

显示暴雨日数较大的地区集中分布在广东南部、广西南部、湖北东部等地。图 5.52 暴雨日数分段与单位面积地质灾害点统计,灾害点密度较大的区域集中在暴雨日数在 3 ~5 日之间,而在暴雨日数 >10 日的区域地质灾害点密度并不是最大的,即总体上,暴雨日数分布与地质灾害点密度分布对应关系不好。

图 5.51 2008 年 5 ~9 月全国暴雨日数与地质灾害点分布( 台湾省专题资料暂缺)

图 5.52 2008 年 5 ~9 月全国暴雨日数分段与单位面积地质灾害点统计

5.8.5 强降水过程引发地质灾害分析

2008 年汛期( 5 ~ 9 月) 全国共有 8 次强降水过程,在地质灾害多发区引发了大量的崩塌、滑坡、泥石流等地质灾害。

( 1) 2008 年 5 月 25 ~31 日强降水过程

2008 年 5 月 25 ~ 31 日,华南大部,特别是广西、贵州、广东局部发生一次强降水过程,过程降水量达 50 ~200mm。在全国多个省份引发了 365 处重大地质灾害。其中: 湖南 206处,广西 32 处,贵州 17 处等( 图 5.53) 。

图 5.53 2008 年 5 月 25 ~31 日强降水过程与地质灾害点分布( 台湾省专题资料暂缺)

从图5.54降水量分段与单位面积灾害点个数统计来看,过程降水量在50~200mm范围内,地质灾害点密度均较大,特别是过程降水量大于200mm的区域,主要分布在广西东北部、广东中北局部地区,地质灾害点分布更为集中,密度达7.4处/100km2;过程降水量为150~200mm的区域,覆盖了贵州、广西两省(区)交界地区,密度也较大,达2.8处/100km2。从全国统计来看,5月25~31日88.8%的地质灾害点位于累积雨量50~100mm范围内,全国地质灾害点主要是由本次强降水过程引发的。

图5.54 2008年5月25~31日降水量分段与单位面积地质灾害点统计

(2)2008年6月6~19日强降水过程

2008年6月6~19日,在我国的华南大部,特别是广东、广西、江西等地持续出现强降水过程,过程降水量达200~800mm。全国多个省份596处灾害点。其中:江西147处,广西126处,湖南88处,广东55处,浙江33处,云南23处等(图5.55)。

图5.55 2008年6月6日~19日强降水过程与地质灾害点分布(台湾省专题资料暂缺)

从图5.56降水量分段与单位面积灾害点个数统计来看,过程降水量在200~800mm范围内,地质灾害点分布最多,占全国灾害点总数的70.5%。过程降水量大于800mm的区域,主要分布在广东的东南局部,为地质灾害不易发地区,没有灾害点出现;过程降水量400~800mm的区域基本覆盖了广东、广西、江西、浙江、安徽等省(区)的山地(地质灾害高发区),地质灾害分布最为广泛,地质灾害点密度为4.6~6.4处/100km2;过程降水量200~400mm的区域覆盖了云南、重庆、湖南等地,地质灾害分布广泛,灾害点密度为6.4处/100km2。可见,本次大范围地质灾害的发生主要受到此次强降水过程的控制。

图5.56 2008年6月6~19日降水量分段与单位面积地质灾害点统计

(3)2008年7月6~10日强降水过程

2008年7月6~10日,华南大部、贵州东部、江南中西部、江汉东部、江淮西部、黄淮中东部、吉林北部等地出现了贯穿南北的强降水过程,全国多个省份共76处重大灾害点,其中:广东13处,湖北13处,安徽9处,广西2处等。

从图5.57降水量分段与单位面积灾害点个数统计来看,随着过程降水量增大,地质灾害点密度明显呈现增多趋势,特别是过程降水量介于100~300mm的区域,地质灾害分布点密度为0.8处/100km2;过程降水量大于300mm的区域,主要分布在广东的东南局部,为地质灾害不易发地区,没有灾害点出现;过程降水量在0~100mm范围内,也有大量灾害点分布。可见,此次强降水过程分布广泛,除降水中心灾害点个数较多外,在其他降水范围内仍有很多灾害点分布。

图5.57 2008年7月6~10日降水量分段与单位面积地质灾害点统计

(4)2008年7月20~24日强降水过程

2008年7月20~24日,四川盆地、黄淮、江淮等地普降暴雨到大暴雨,过程雨量50~200mm。在多处引发了大量地质灾害,其中四川50处,湖北29处,湖南26处,陕西7处,重庆6处,贵州6处等。

从图5.58降水量分段与单位面积灾害点个数统计来看,灾害点密度最大的区域过程降水量主要介于100~150mm之间,主要分布在四川、湖北、湖南等地质灾害多发区,而在过程降水量更大(>200mm)的区域,灾害点密度反倒相对较小,主要是因为这部分区域主要位于山东、河南、湖北等省份的地质灾害低易发区。可见山区或者说地质灾害多发区的灾害发生,主要受到强降水过程的控制,也即只有强降水过程落在地质灾害多发区时,地质灾害才会大量发生。

(5)2008年7月31日至8月2日强降水过程

2008年7月31日至8月2日,安徽、江苏局地出现强降水过程,累计降雨量50~200mm,局地250~530mm。最大降雨中心位于安徽的东北局部(>300mm),无灾害点发生;次级降雨中心位于安徽南部,为灾害多发区,引发灾害10处。

图5.58 2008年7月20~24日降水量分段与单位面积地质灾害点统计

从图5.59降水量分段与单位面积灾害点个数统计来看,也反映了这一特点,灾害点主要分布在过程降水量100~300mm的区域。在10~100mm覆盖的其他区域,有一些灾害点零星分布。

图5.59 2008年7月31日至8月2日降水量分段与单位面积地质灾害点统计

(6)2008年8月13~17日强降水过程

2008年8月13~17日,长江中上游、江淮地区等地大部分地区出现大到暴雨、局部大暴雨,降雨量普遍在50mm以上,湖北南部和东部、湖南西北部、河南东南部、安徽西部等地有100~200mm,部分地区超过200mm。在湖北、湖南、重庆等地引发大量灾害。其中湖南27处,湖北14处,四川12处,贵州6处,陕西3处,重庆2处。

从图5.60降水量分段与单位面积灾害点个数统计来看,灾害点密度最大的区域主要集中落于降水量大于200mm的区域,因为该区域位于湖南西北局部地区,降水强度的大幅度集中[24h降水量湖南桑植(164.4mm)、通道(113.4mm)、平江(108.0mm)破历史同期记录],引发了大量的群发地质灾害。

(7)2008年8月28~29日强降水过程

2008年8月28~29日,湖北、安徽、重庆等地两天累计雨量一般有50~250mm。在湖北引发了7处,重庆引发了4处地质灾害。

从图5.61降水量分段与单位面积灾害点个数统计来看,灾害点主要集中分布在过程降水量大于50mm的区域,该区域主要位于湖北、湖南北部、重庆大部两日累积雨量基本都达到暴雨级别,降雨强度大,地质灾害频发。

图5.60 2008年8月13~17日降水量分段与单位面积地质灾害点统计

图5.61 2008年8月28~29日降水量分段与单位面积地质灾害点统计

(8)2008年9月22~27日强降水过程

2008年9月22~27日,四川省9个县(市)降了大暴雨;北川县连续5d出现暴雨;彭山和新都2个县(市)日降水量突破9月历史极值。地震灾区部分地方道路中断,山体滑坡和泥石流频发,重大灾害点达40处(图5.62)。地质灾害点密度最大区域位于100~200mm降水量区域,其次为50~100mm区域。

从图5.63降水量分段与单位面积灾害点个数统计来看,灾害点主要集中分布在过程降水量100~200mm的区域,主要位于四川西部南北延伸地带。

5.8.6 台风暴雨引发地质灾害分析

2008年汛期(5~9月)全国共有6次台风登陆我国大陆,带来了丰富强降水,对于崩塌、滑坡、泥石流等地质灾害的发生起到了一定的引发作用。

(1)热带风暴“风神”(6月25~29日)

6号热带风暴“风神”6月25日清晨在深圳登陆。受其影响,广东、福建、广西、江西、湖南等地降大到暴雨,在广东、江西、浙江、广西等省(区)引发了大量的崩塌、滑坡、泥石流地质灾害。

从不同降水量分段的灾害点密度来看,过程降水量在50~400mm之间时,灾害点分布较多,特别是100~200mm、300~400mm过程降水量时,灾害点密度分别达到了1.2处/100km2和1.6处/100km2。而降水量大于400mm的区域主要集中在广东东南沿海局部地区,灾害少发(图5.64)。本时段的地质灾害点主要是由于台风带来的集中降水引发的。

图5.62 2008年9月22~27日强降水过程与地质灾害点分布(台湾省专题资料暂缺)

图5.63 2008年9月22~27日降水量分段与单位面积地质灾害点统计

图5.64 热带风暴“风神”(6月25~29日)诱发灾害点分布统计

(2)热带风暴“海鸥”(7月19~20日)

7号热带风暴“海鸥”7月15日下午在菲律宾以东海面上生成。17日在台湾省宜兰县登陆,18日在福建省霞浦县再次登陆。受其影响,福建、广东、浙江、江西等地相继出现暴雨到大暴雨,在广东、福建两省引发了7处滑坡、崩塌、泥石流等小型灾害(图5.65)。

图5.65 热带风暴“海鸥”(7月19~20日)诱发灾害点分布统计

本次降水过程具有降水面积相对集中的特点,过程降水量大于50mm的区域面积较小,灾害点集中分布在过程降水量100~150mm的局部区域。

(3)热带风暴“凤凰”(7月28日至8月2日)

第8号热带风暴“凤凰”于7月25日下午在西北太平洋洋面上生成,28日早晨在台湾省花莲登陆,同日22时在福建省福清市再次登陆,登陆时为台风强度(中心附近风力12级)。受其影响,浙江东南部、福建中北部等地普降大到暴雨,部分地区大暴雨或特大暴雨;长江口、福建、浙江等地出现8~10级大风,局部达14级。在安徽、福建、广东、江西等省份引发了35处群发型地质灾害。

过程降水量大于300mm的区域主要集中在安徽东部与江苏交界地区,属地质灾害不易发区,无灾害点分布。而过程降水量在100~300mm的区域主要分布在福建、广东、安徽南部等地质灾害多发区,降水集中,地质背景环境条件脆弱,地质灾害大量发生(图5.66)。

图5.66 热带风暴“凤凰”(7月28日至8月2日)诱发灾害点分布统计

(4)强热带风暴“北冕”(8月7~9日)

强热带风暴“北冕”8月6日傍晚在广东省阳西县沿海登陆,登陆时中心附近最大风力有10级;并于7日下午在广西东兴市沿海再次登陆,登陆时中心附近最大风力有8级。受其影响,华南大部以及云南普降大到暴雨,局部降大暴雨或特大暴雨,过程最大降水量超过400mm。引发130处地质灾害,其中:四川50处,湖北29处,湖南26处,陕西7处,重庆6处,贵州6处等。

从过程降水量分段的灾害点密度来看,降水量大于200mm的区域分布在广西南部的局部区域,地质灾害低发。而降水量50~100mm的区域分布在云南东部、广西中部、广东中部等灾害多发区,灾害点密度达1.4处/100km2(图5.67)。

图5.67 强热带风暴“北冕”(8月7~9日)诱发灾害点分布统计

(5)强台风“森拉克”(9月14~16日)

强台风“森拉克”于9月14日凌晨在台湾省宜兰县沿海登陆,登陆时中心附近最大风力为15级(48m/s)。“森拉克”具有发展快、强度强,移动慢、路径异常,正面袭击台湾,影响台湾和东海时间长等特点,降水集中在福建东北沿海、浙江东南沿海局部,无典型的台风引发灾害报告(图5.68)。

图5.68 强台风“森拉克”(9月14~16日)诱发灾害点分布统计

(6)强台风“黑格比”(9月23~27日)

强台风“黑格比”于9月24日晨在广东省电白县沿海登陆,登陆时中心最大风力达到15级(48m/s)。“黑格比”带来的强降水过程与强热带风暴“北冕”相似,地质灾害点密度最大的区域过程降水量介于100~200mm之间,在广东、广西、云南等地引发了大量地质灾害(图5.69)。

图5.69 强台风“黑格比”(9月23~27日)诱发灾害点分布统计

5.8.7 第一代与第二代区域预警系统应用对比

以2007年7~8月和2008年7~8月空间预报准确率核算,前者约为40%,后者约为27%,但后者预警面积仅为前者的四分之一,大大减少了预警区域,等于减少了防灾相应成本。

采用两套系统以2008年5月1~15日实际预警情况开展了对比分析(表5.14)。

表5.14 2008年汛期第一代与第二代区域预警系统应用对比

结论是,第二代预警系统在继承第一代系统临界雨量判别优势的基础上,突出反映了区域地质环境条件,在预警准确度、精细度等多个方面有较大改进。

㈩ 全国地质灾害监测预警体系建设的主要任务

全国地质灾害监测预警体系建设的总体规划如图7.1所示。

7.3.1 国家、省、市、县级地质灾害监测预警站网建设

县级以上国土资源行政主管部门建立地质灾害监测预警体系,会同建设、水利、交通等部门承担地质灾害监测任务,负责业务技术管理,并可受政府委托行使部分地质灾害监测管理职能,发布地质灾害监测预警信息。地质灾害监测机构是公益性事业单位。

(1)国家级地质灾害监测站

国家级地质灾害监测站负责全国性地质灾害专业监测网、信息网的建设与运行工作,并承担国家级地质环境监测任务;承担全国地质灾害预警预报和相关的调查研究工作;拟编全国地质灾害监测规划、计划、工作规范和技术标准;开展科技交流与合作,研究和推广新技术、新方法;承担全国地质灾害监测数据、成果报告的汇总、分析、处理和综合研究,为政府决策部门和社会公众提供信息服务;负责对省(区、市)级地质灾害监测业务的指导、协调和技术服务。

(3)地质灾害监测预警研究试验区

针对我国突发性地质灾害具有区域性、同时性、突然性、暴发性和危害大等特点,结合国土整治规划和资源能源开发,在代表性地区开展地质灾害监测预警示范。在试验区建立自动遥测雨量观测站网,逐步建立试验区滑坡、崩塌和泥石流区域爆发的降雨临界值,为突发性灾害的区域预警提供依据。同时,在试验区开展降雨期斜坡岩土体渗流观测,研究降雨诱发滑坡、崩塌和泥石流的机理。

2010年前,进一步完善和建设三峡库区立体式监测预警示范区。完成三峡库区滑坡、崩塌、泥石流灾害的立体监测网建设,在库区60处地质灾害点实现监测数据的自动采集、实时传输和自动分析;完善库区20个县级监测点建设;完成1∶1万航摄飞行;建立全库区的遥感(RS)监测系统,完成全球定位系统(GPS)控制网、基准网建设。

2010年以前重点在重庆市区、北京市、甘肃兰州市、陕西安康市、四川雅安、云南新平、云南东川、浙江金华市、江西宜春市等地区开展突发性地质灾害监测预警试验研究。

(4)地面沉降和地裂缝监测网

1)国家级地面沉降监测网选址原则:①跨省区的地面沉降灾害区域;②有一定的监测工作和设施基础;③地方政府有积极性,并提供配套资金;④具有较为完善的法规和管理体系。

2)工作部署:2010年之前,重点开展长江三角洲、华北平原、关中平原、淮北平原和松嫩平原地面沉降和地裂缝监测网的建设;2010年以后逐步开展汾河谷地、辽河盆地、珠江三角洲以及全国其他主要城市地面沉降和地裂缝的调查及监测网的建设。

长江三角洲地面沉降和地裂缝监测网包括上海市全部,江苏的苏锡常地区、南通地区和盐城地区南部的三个县(市),浙江的杭嘉湖平原,控制面积近5万km2

华北平原地面沉降和地裂缝监测网包括北京、天津市的平原区,河北省的环渤海平原区和山东的鲁西北平原,控制面积5万多km2

关中平原和汾河谷地地面沉降和地裂缝监测网的覆盖范围自六盘山南麓的宝鸡,沿渭河向东,经西安到风陵渡转向北东,沿汾河经临汾、太原到大同,宽近100km,长近1000km,包括渭河盆地、运城盆地、临汾盆地、太原盆地、大同盆地等,涉及近50个(县)市。

7.3.3 群测群防体系建设

突发性地质灾害群测群防网主要针对地质灾害较严重的山区农村,以县为单位,在专业队伍指导下,建立由当地政府领导下的县、乡、村三级群测群防体系。在各级地方政府的组织和领导下,充分发挥各级监测站的技术优势,提高群众的防灾意识和参与程度,完善监测预报制度,到2010年,建成1400个县(市)突发性地质灾害易发区的群测群防网络体系。

(1)群众监测网络建设

1)监测点选定原则:①危险性大、稳定性差、成灾概率高,会造成严重灾情的地质灾害隐患体;②对集镇、村庄、工矿及重要居民点人民生命安全构成威胁的地质灾害隐患体;③一旦发生将会造成严重经济损失的地质灾害隐患体;④威胁公路、铁路、航道等重要生命线工程的地质灾害隐患体;⑤威胁重大基础建设工程的地质灾害隐患体。

2)监测点的建设:根据上述原则确定需要监测的地质灾害隐患点后,由专业调查组及时向当地政府提出监测方案,同时协助搞好监测点的建设工作。①监测范围的确定:除对地质灾害隐患点和不稳定斜坡本身的变形迹象进行监测外,还应把该灾害点威胁的对象和可能成灾的范围,纳入监测范围。②监测方法与要求:对当前不宜进行治理或暂时不能进行治理的隐患点,危害大的应建立简易监测点,同时要对宏观地面变形、滑坡体内的微地貌、地表植物和建筑物标志等进行观察。以定期巡测和汛期强化监测相结合的方式进行。定期巡测一般为半月或每月一次,汛期强化监测将根据降雨强度,每天或24小时值班监测。③监测点的设置:简易监测点一般采用设桩、设砂浆贴片和固定标尺,对滑坡体地面裂缝相对位移进行监测,对危害大的隐患点,如有条件也可用视准线法测量监测点的位移。

3)监测网点的管理与运行:①监测责任落实到具体的单位与个人。被监测的地质灾害隐患点所在的乡(镇)、村和有关单位为监测责任人,在其领导下,成立监测组,监测组由受危害、威胁的居民点或有关单位的群测人员组成。②建立岗位责任制,县、乡(镇)、村应逐级签订责任书。调查过程中,采取多种方式进行宣传与培训,教会监测责任人、监测组成员和群众,如何监测、如何判断灾害可能发生的各种迹象和灾情速报及有关应急防灾救灾的方法。③信息反馈与处理。县(市)国土资源主管行政部门负责监测资料与信息反馈的收集汇总,上报到市(地、州)国土资源行政部门(或地质环境监测站)进行综合整理与分析,省国土资源厅地质环境处(或省地质环境总站)将上报的资料与信息录入省地质灾害空间数据库,进行趋势分析,同时对下一步监测工作提出指导性意见。④预测有重大险情发生时,当地政府和有关单位应立即采取应急防灾减灾措施,同时应立即报告省、市、县政府和国土资源主管部门,派出专业人员赴现场协助监测和指导防灾救灾。⑤建立地质灾害速报制度,按国土资发[1998]15号文附件执行。

4)资料的收集与监测数据的整理:①监测数据包括地质灾害点基本资料、动态变化数据、灾情等。②所有监测数据均应以数字化形式储存在信息系统中,同时,必须以纸介质形式备份保存。③监测点必须进行简易定量监测,并须整理成有关曲线、图表等。应编制有关月报、季报和年报,同时,对今后灾害发展趋势进行预测。④监测数据应按有关程序逐级汇交。

(2)群专结合的预报预警系统建设

1)县(市)国土资源行政主管部门归口管理和指导群众监测网络,负责监测资料与信息反馈的收集汇总。

2)县(市)国土资源行政主管部门的地质环境职能部门应根据气象、水文预报和监测资料进行综合分析,预测地质灾害危险点,并及时向有关乡(镇)、村和矿山及负有对重要设施管理的有关部门发出预警通知。

3)县(市)国土资源行政主管部门负责组织各乡(镇)、矿山、重要设施主管部门编制汛期地质灾害防灾预案。编制全县(市)汛期地质灾害防灾预案,并负责组织实施。

4)县(市)国土资源行政主管部门负责组织地质灾害防治科普宣传活动和基层干部培训工作。

7.3.4 地质灾害监测预警信息网建设

地质灾害监测预警与防治数据是国家与地方进行地质灾害防治,保障社会与经济建设的重要信息,具有数量大、更新快、用途广等特点。通过信息网的建设,实现数据的采集、存储、分析和发布,切实做到为政府、研究人员和社会提供所需的地质灾害信息,为国家经济建设宏观决策提供基础的科学依据。

到2010年,在完善中国地质灾害信息网与各省地质灾害信息网及部分地(市)地质灾害信息网的同时,建成集地质灾害监测、地下水环境监测等为一体的全国地质灾害监测信息系统,实现地质灾害监测数据的自动采集、传输、存储、数据管理、查询、应用和信息实时发布系统。

到2020年,以科学技术为先导,不断完善全国地质灾害监测信息系统,结合气象、水文、地震等相关因素,建成多专业领域、多信息处理技术的信息系统;全面提升我国地质灾害监测信息水平,满足社会和民众对地质灾害信息的需求,实现远程会商、应急指挥等重要决策功能。

地质灾害监测预警信息系统建设依托于各级地质灾害监测机构,具有统一要求、统一流程、分级管理等特点,是一个与现代计算机技术紧密结合的系统工程。本书在第11章(全国地质灾害防治信息系统建设规划研究)全面讨论了包括地质灾害监测预警信息系统在内的整个地质灾害防治信息系统的建设问题,本节不再赘述。

7.3.5 突发性重大地质灾害应急反应机制建设与远程会商应急指挥系统建设

(1)应急反应机制建设

从现在(2004年)起,国家、各省(区、市)要组建以省国土资源行政主管部门为指挥中心,以地质环境监测总站(院、中心)为主体,地(市、州)、县(市、区)国土资源行政主管部门和地方专业队伍协同作战的地质灾害监测预警应急反应系统。

1)应急反应系统要配置必备的应急设备,每年汛前对防灾预案中地质灾害隐患点的主要县(市)进行险情巡查,重点检查防灾减灾措施、群测群防网络、监测责任制是否落实到位,并对主要灾害隐患点进行险情巡查,汛中加强监测,汛后进行复查。

2)发现险情和接到险情报告能在最短的时间内赶到现场,进行险情鉴定,同时能够及时对灾害进行动态监测、分析,预测灾害发展趋势,根据灾害成因、类型、规模、影响范围和发展趋势,划定灾害危险区,设置危险区警示标志,确定预警信号和撤离路线,组织危险区内人员和重要财产撤离,情况危急时,强制组织避灾疏散。

3)接到特大型和大型地质灾害隐患临灾报告,指挥部办公室会同相关部门,迅速组织应急调查组赶赴现场,调查、核实险情,提出应急抢险措施建议。

(2)突发性重大地质灾害远程会商与应急指挥系统建设

随着国家经济建设规模的日益扩大和人民生活水平的不断提高,地质灾害造成的损失日趋突出,地质灾害的防治工作必须针对重大地质灾害及时作出反应,提出科学的决策意见,及时指挥应急处理工作。

突发性重大地质灾害远程会商及应急指挥系统,是针对突发重大地质灾害的预报和应急指挥,在建立地质灾害综合数据库的基础上,构建连接国务院国土资源主管部门、地质灾害数据中心与重点地质灾害发生区的远程会商和应急指挥网络化多媒体环境及地质灾害应急数据传输环境,形成一套信息化的地质灾害远程会商和应急指挥工作流程。

其主要工作内容如下:

1)对重大地质灾害预报和应急指挥相关的信息进行提取、加工、整理、集成与分析,建立地质灾害综合数据库。信息内容包括地理、地质背景数据;气象分析数据;地质灾害调查与监测数据;地质灾害情况资料;救灾条件信息等。

2)建立地质灾害信息发布平台。开发和建设重大地质灾害信息预报与应急指挥相关的动态信息发布系统、空间信息提取与发布系统、多媒体信息发布系统。

3)构建地质灾害远程会商和应急指挥的网络和多媒体运行环境。包括多点、多级视频会议系统、大屏幕显示系统及有关音像、电话系统;国家与重点地质灾害区域之间的网络信息传输系统;构建地质灾害重点区域应急调查数据快速传输环境。

4)研究与制定形成一套地质灾害远程会商和应急指挥系统工作规范。分析地质灾害远程会商和应急指挥工作的特点,提出地质灾害远程会商和应急指挥系统工作的模式,建立一套相关的工作规范。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864