当前位置:首页 » 地质工程 » 陈芳中国地质大学武汉

陈芳中国地质大学武汉

发布时间: 2021-02-17 10:08:27

① 南海神狐海域含水合物层粒度变化与水合物饱和度关系

陈芳1,刘广虎1,苏新2,周洋1,陆红锋1,刘坚1,王金莲1

陈芳(1966—),女,教授级高级工程师,主要从事微体古生物学和海洋地质研究。

1.广州海洋地质调查局,广州510760

2.中国地质大学海洋学院,北京100083

摘要:为探讨沉积物粒度与水合物饱和度的关系,对南海神狐海域水合物钻探区的2个获取水合物的钻孔岩心沉积物进行了粒度分析及粒度与水合物饱和度对比分析。结果表明:水合物主要赋存于粉砂中,含水合物沉积物具有φ(粉砂)为>70%,φ(黏土)小于介于15%~30%之间,φ(砂)一般小于10%的基本特征,其中粉砂中以8~32μm和32~63μm粒级的中细-粗粉砂占优势;含水合物层中砂、粗粉砂含量高的层位与水合物饱和度高的层位呈良好的对应关系,说明粗粒沉积物更有利于水合物的形成和发育。

关键词:沉积物粒度;含水合物层;神狐海域;南海

Variation in Grain Size of Gas Hydrate-Bearing Sediments and the Correlation of Gas Hydrate Saturation from Shenhu Area in the Northern South China Sea

Chen Fang1,Liu Guanghu1,Su Xin2,Zhou Yang1,Lu Hongfeng1,Liu Jian1,Wang Jinlian1

1.Guangzhou Marine Geologic Survey,Guangzhou 510760,China

2.School of Ocean sciences,China University of Geosciences,Beijing 100083,China

Abstract:Grain size of sediments from two drill holes of Shenhu gas hydrate drilling-area from northern South China Sea are analyzed to understand the relationship between the variation in grain-size of sediments and the saturations of gas hydrates.The results suggest that the siltfraction is the dominant component of gas-hydrate-bearing sediments,fealuned by with> 70‰f silt.The second component is clay,in a range of 15%~30%,whereas the sandfraction is less than 10%.The Grain size of gas-hydrate-bearing sediments is similar to the one of no gas-hydrate-bearing sediments.The contents of coarse-grains silt(0.063~0.032mm) and sand(0.063~0.5mm) can be correlated with sediment layers where gas hydrates saturations were high.It further suggests that the occurrence of gas hydrates in Shenhu aera is mainly correlated with coarse-grams sized sediments.

Key words:sedimentary grain size;gas-hydrate-bearing sediments; Shenhu Area;South China Sea

0 引言

水合物的形成与分布除了需要特定的温压条件外,更需要合适的沉积条件,以提供充足的气体来源和良好的储集条件。作为水合物存在载体之一的海洋沉积物,其岩性是除温压条件外控制水合物成藏的重要因素。岩性的差异影响着水合物的产状与饱和度,一般地,沉积物越粗,饱和度越高。各海域已发现水合物的水合物稳定带沉积物的岩性各有差异,但相同的是水合物稳定带内沉积物粒度总体相对较粗[1-5]。笔者以我国在南海神狐海域成功钻取水合物钻孔岩心为材料,分析研究南海北部水合物稳定带沉积物的粒度特征及其与水合物饱和度的关系,探讨沉积物粒度对水合物的制约机制。

1 取样与方法

所研究的2个含水合物钻孔SH2B和SH7B沉积物样品,由广州海洋地质调查局于2007年在南海北部陆坡神狐海域实施“我国海域天然气水合物钻探”航次调查所获得。含水合物层岩心取样主要采用非保压、保压的FC、FRPC和FPC方式。鉴于该钻探航次的实际需要等原因,钻探只在关键和部分控制层段钻取岩心。因此,粒度分析样品取样间隔差异较大,介于20~68 m之间,两钻孔共取样176个。钻孔取样位置见参考文献[6]。沉积物粒度分析方法遵照中华人民共和国国家标准《GB/T 12763.8.6.3-2007海洋调查规范第八部分:海洋地质地球物理调查》执行,粒级标准采用尤登-温德华氏等比制φ值粒级标准,粒度参数计算采用福克和沃德公式。分析方法采用Mastersizer2000型激光粒度仪:取沉积物样品数克置于玻璃杯中,加纯净水适量使样品充分浸泡,浸泡12 h使样品充分分散;加5 m L的0.5 mol/dm3的六偏磷酸钠(〔Na PO3〕),再浸泡12 h,将浸泡充分分散的样品搅拌均匀,取适量加入激光样品槽中,加超声振动和高速离心,使样品再次充分分散,测定各级粒级质量分数。激光粒度分析误差相同粒级差小于3%,均符合国家标准要求,可以满足本次研究的需要。沉积物粒度分类和命名采用谢帕德的沉积物三角图解法分类方案。样品的处理和测试工作是在广州海洋地质调查局测试所完成。

沉积物原位结构扫描电镜分析在广州海洋地质调查局测试所完成,仪器型号为捷克产的VegaⅡ LUM。

2 结果

2.1 水合物储层的地层分布

南海水合物钻探航次应用目前世界水合物勘查中多种新的测试方法和手段来探查水合物的存在和分布。如测井获得的异常电阻率记录、红外线图像(IR images)分析得到的温度差值记录、孔隙水低氯离子浓度的记录等。对沉积物岩心的IR扫描、样品在水中的分解过程观察及X射线扫描均提供了SH2B孔和SH7B孔地层中水合物存在的直接证据。取心后证实水合物呈分散状分布在黏土质粉砂和粉砂的孔隙中,肉眼难以观察到,水合物分解后沉积物呈粥状。通过对测井资料、取心资料以及地震资料的详细分析,确定出水合物层的分布区间;其中SH2B孔水合物分布的区间约在海底以下191~225 m之间,SH7B孔水合物分布的区间大体在海底以下155~177 m之间。根据生物地层的分析,水合物分布在上中新统—下上新统含钙质生物的黏土质粉砂和含钙质粉砂中,硅质生物放射虫和硅藻缺失(图1)[6]

图1 神狐海域水合物储层的地层分布[6]

2.2 含水合物层粒组类型含量变化

沉积物粒度按照大小划分为3个粒组类型:>0.063 mm的颗粒统称为砂,0.04~0.063 mm的颗粒称为粉砂,<0.04 mm的颗粒则统称为黏土。两钻孔沉积物中最主要的粒组类型均是粉砂,粉砂平均体积分数介于72.89%~74.75%之间。含水合物层沉积物粒组类型平均体积分数与其上下层位沉积物的差别不大,但粒组类型体积分数的范围值有差异(表1)。以SH2B孔粉砂体积分数为例,该孔不含水合物层的粉砂体积分数介于53.74%~81.35%之间,而含水合物层的介于72.02%~77.09%之间。含水合物层沉积物具有粉砂大于70%,黏土量介于15%~30%之间,砂一般小于10%的基本特征。

表1 神狐海域含水合物层及其相邻层位沉积物粒组类型体积分数φB/%

2.3 含水合物层粒级组分分布

采用尤登-温德华氏等比制φ值粒级标准细分法将两钻孔沉积物粒级划分为以下10个粒级:粗砂>0.5 mm,中砂0.5~0.25 mm,细砂0.25~0.125 mm,极细砂0.125~0.063 mm,粗粉砂0.063~0.032 mm,中粉砂0.032~0.016 mm,细粉砂0.016~0.008 mm,极细粉砂0.008~0.004 mm,粗黏土0.004~0.001 mm和细黏土<0.001 mm,以便进行更细致地讨论。

SH2B孔含水合物层粒级组分以中粉砂、细粉砂和极细粉砂粒级为主,平均体积分数分别为20.55%、24.74%和19.07%;粗粉砂占9.57%;砂含量偏低,细砂—粗砂未见,仅见极细砂,平均体积分数1.39%;黏土以粗黏土为主,为12.39%。SH2B孔水合物主要分布在中粉砂、极细粉砂和细粉砂沉积物中,总体上,与含水合物层上下层位相比粒级组分体积分数差别不大(图2)。

SH7B孔含水合物层的沉积物较SH2B孔含水合物沉积物要粗,以粗粉砂、中粉砂和细粉砂粒级为主,体积分数分别为18.08%、26.46%和20.10%;各粒级的砂均有出现,以中砂和极细砂为主,分别为3.22%和3.88%;黏土以粗黏土为主,占8.86%。与含水合物层上下层位相比,粗粉砂、中粉砂粒级沉积物明显增加,粗粉砂、中粉砂和细粉砂是SH7B钻孔含水合物沉积物组成的最主要颗粒组分(图3)。但总的来说,在含水合物层的粉砂粒级中,以8~32 mm和32~63 mm这两个粒级占优势。

图2 SH2B孔各粒级组分体积分数分布(%)(阴影部分为含水合物层,下同)

图3 SH7B孔各粒级组分体积分数分布

2.4 含水合物层粒度与水合物饱和度的关系

图4 SH2B孔含水合物层粒度体积分数与水合物饱和度的对比

根据测井参数(LWD)推算出来的水合物饱和度值,理论上代表了沉积物中孔隙被水合物充填的程度。利用测井电阻率(LWD-RAB)和测井沉积物孔隙度值,根据Archie方程可以从理论上推算水合物饱和度值(Sh)[7-8]。这一方法在ODP 164航次和ODP 204航次得到充分实践和验证[9-10]。同样的,利用该方法计算出神狐海域水合物饱和度值。神狐海域含水合物层饱和度值变化范围较大,介于0.6%~47.3%之间,不同层位水合物饱和度差异明显。这种差异与沉积物粒度差异相关性较强。SH2B、SH7B孔水合物层沉积物砂、粗粉砂含量高的层位与水合物饱和度高层位有良好地对应关系(图4,图5A,B),即沉积物中砂、粗粉砂含量高,水合物饱和度也高,反之亦然。这种特征在SH7B孔表现得尤其明显,如在1 594~16 663 cm层段,砂含量5.15%~10.06%,饱和度为20%~44%,平均32%; 16 840~17 120 cm层段,砂含量下降,为1.31%~1.48%,饱和度随之下降,为2%~7%,平均4%; 17 160~17 585 cm层段,砂含量上升为1.75%~3.94%,饱和度随之也上升,为8%~23%,平均17%;粗粉砂与水合物饱和度的关系与砂和饱和度的关系相似(图5A,B)。这种粗粉砂粒径与水合物饱和度关系在3个单层中显示更为明显(图5B)。

图5 SH7B孔含水合物层粒度体积分数与水合物饱和度的对比

3 讨论

对南海神狐水合物钻探区钻井含水合物层岩性特征的研究发现,含水合物层岩性与上下不含水合物层位的差异不大。因此,只要温压、气源等条件满足,在南海海底以下任何深度都可能形成水合物。但就南海神狐海域含水合物层而言,粗粒沉积物砂、粗粉砂含量高的层位与水合物饱和度高的层位呈良好地对应关系,说明沉积物的颗粒粒径是影响水合物形成的控制因素。推测粗粒沉积物可以增加沉积物的孔隙度,为水合物的形成提供更大的孔隙空间,这一点在对含水合物层沉积物原位结构研究中得到证实。根据扫描电镜的观察,沉积物中的砂、粉砂和黏土颗粒随机分布,黏土充填在砂、粉砂颗粒间;砂主要由有孔虫和条状形黄铁矿组成,而粉砂主要由不规则的石英和长石组成,黏土主要充填于颗粒间孔隙中(图6),其含量的高低影响孔隙度的发育程度。换言之,粗粒沉积物含量高,黏土含量相对降低,有利于孔隙的发育,黏土由于其黏性和密实性不利于孔隙的发育。而且粗粒沉积物渗透性好,有利于气体的运移和储存。但水合物饱和度与沉积物的孔隙度并未完全呈正相关关系,含水合物层沉积物为松散未固结沉积物,实测的沉积物孔隙度自下而上逐渐增加,而水合物饱和度表现为时高时低,说明孔隙度只是控制水合物饱和度的因素之一;水合物饱和度还受气体通量、孔隙类型和大小、沉积物渗漏性等因素的影响。初步研究发现,南海神狐水合物钻探区钻井含水合物层沉积物的孔隙主要有粒间孔隙和粒中孔隙2种类型,实测的沉积物孔隙度主要由粒间孔隙组成,而粒中孔隙主要存在于沉积物中的有孔虫房室中。由于实测的沉积物孔隙度无法测得粒中孔隙,因此,水合物饱和度表现为时高时低,除了受粒间孔隙影响外,很大程度受粒中孔隙的影响。关于这方面的深入研究结果另有文章介绍。

图6 SH7B孔16835-16860cm原位沉积物颗粒的分布结构

4 结论

对南海神狐海域钻取的含水合物的2个钻孔岩心进行沉积物粒度分析及其与水合物饱和度的对比分析,结果表明:

1)含水合物层沉积物相对较粗,其基本特征为以(含)钙质生物粉砂为主,粉砂含量为>70%,黏土含量介于15%~30%之间,砂一般小于10%。

2)含水合物层沉积物的粉砂粒级,以8~32 μm和32~63μm粒级的中、细—粗粉砂占优势。粗粒沉积物砂、粗粉砂含量高的层位与水合物饱和度高的层位呈良好地对应关系,说明沉积物的粒度是水合物形成的重要控制因素之一。粗粒沉积物有利于孔隙的发育和水合物的形成。

参考文献

[1]Ginsburg G,Soloviev V,Matveeva T,et al.Sediment Grain-Size Control on Hydrate Presence,Sites994,995 and 997[C]//Paul1C K,Matsumotor R,Wallace P J.Proceeding of ODP Initial Reports 164.TX:College Station,2000:237-245.

[2]Shipboard Scientific Party.Leg 204 summary[C]//TR Hua M,Bohrmann G,Rack F R,et al.Proc ODP Init Repts204.TX:College Station,2003:1-75.

[3]Kraemer LM,Owen R M,Dickens G R.Lithology of the Upper Gas Hydrate Zone,Blake Outer Ridge,a Link Between Diatoms,Porosity,and Gas Hydrate[C]//Paul IC K,Matsumotor R,Wallace P J.Proceeding of ODP Inital Reports 164.TX:College Station,2000:229-236.

[4]苏新,宋成兵,方念乔.东太平洋水合物海岭BSR以上沉积物粒度变化与气体水合物分布[J].地学前缘,2005,12(1):234-242.

[5]王家生,高钰涯,李清,等.沉积物粒度对水合物形成的制约:来自IODP航次证据[J].地球科学进展,2007,22(7):659-665.

[6]陈芳,苏新,周洋,等.南海北部陆坡神狐海域晚中新世以来沉积物中生物组分变化特征及意义[J].海洋地质与第四纪地质,2009,29,(2):1-8.

[7]Archie G E.The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics[J].American Insititute of Mining,Metallurgica and Petroleum Engineers,1942,146:54-67.

[8]Collett T S.Well Log Evaluation of Gas Hydrate Saturations[C]//SPWLA 39th Annual Logging Symposium.Houston SPWLA,1998.

[9]CollettT S,Ladd J.Detection of Gas Hydrate with Downhole Logs and Assessment of Gas Hydrate Concentrations (saturations) and Gas Volumes on the Blake Ridgewith Electrical Resistivity Log Data[C]//Paull C K,Matsumoto R,Wallace P J.Proceeding of ODP,Science Results,164.Tx:College Station,2000:179-191.

[10]Trehu AM,Long P E,Torres M,et al.Three-Dimensional Distribution of Gas Hydrate Beneath Southern Hydrate Ridge:Constraints from ODP Leg 204[J].Earth Planet Science Letters,2004,222:845-862.2004,22.

② 南海北部陆坡神狐海域HS-岩心表层沉积物古菌多样性

张勇1,苏新1,陈芳2,蒋宏忱1,陆红峰2,周洋2,王媛媛1

张勇(1981-),男,博士研究生,主要从事海洋地质微生物研究。

1.中国地质大学地质微生物实验室,北京100083

2.广州海洋地质调查局,广州510760

摘要:利用分子生物学技术,分析南海北部神狐海域天然气水合物潜力区HS-373PC岩心表层沉积物中古菌多样性,从沉积物中提取总DNA并扩增古菌16S rRNA基因序列,对克隆文库进行系统发育分析。结果显示:所有古菌序列均属于泉古菌(Crenarchaeota)和广古菌(Euryarchaeota)。其中泉古菌以C3为主要类群,另有少量序列属于marine benthic group (MBG)-B,MBG-C、marine crenarchaeotic group I (MGI)、marine hydrothermal vent group (MHVG)和novel group of crenarchaea(NGC);广古菌以MBG-D为主,其他序列分别属于Unclassified Euryarchaeotic Clusters-1/2 (UEC-1/2)。

关键词:古菌多样性;16S rRNA;海洋沉积物;天然气水合物调查区;神狐海域;南海北部陆坡

Archaea Diversity in Surface Marine Sediments from Shenhu Area,Northern South China Sea

Zhang Yong1,Su Xin1,Chen Fang2,Jiang Hongchen1,Lu Hongfeng2,Zhou Yang2,Wang Yuanyuan1

1.Geomicrobiology Laboratory,School of Ocean Sciences,China University of Geosciences,Beijing 100083,China

2.Guangzhou Marine Geological Survey,Guangzhou 510760,China

Abstract:Archaeal diversity in the surface sediments from Shenhu Area in South China Sea was studied with the use of 16S rRNA gene phylogenetic analysis.All the retrieved archaeal clone sequences could be grouped into Marine Benthic Group(MBG)-B,-C and-D,Novel Group of Crenarchaea,C3,Marine Hydrothermal Vent Group,Marine Crenarchaeotic Group I,and unclassified euryarhaeotic group,among which MBG-D and C3 were the most predominant groups in the Euryarchaeota and Crenarchaeota,respectively.The results indicated that archaea were abundant and diverse in surface sediments from the northern South China Sea.

Key words:archaeal diversity; 16S rRNA; marine sediments; gas hydrate exploration area; shenhu area;northern south China Sea

0 引言

海洋生态环境独特,具有高盐、高压、低温、寡营养和光照强度变化大等特点。生活在这一复杂环境中的微生物为适应独特环境条件,在物种类型、代谢类型、功能基因组成和生态功能上形成丰富的多样性[1],其中原核微生物主要为古菌和细菌两大类群[2]。早期有关古菌存在及多样性的研究仅局限于温度、p H和盐度比较极端与厌氧的环境下,在这些极端环境中发现了超嗜热菌、极端嗜酸菌、极端嗜盐菌和产甲烷菌。目前已经从热泉、热液喷孔、硫质喷孔、盐湖、高碱湖、下水道消化池和瘤胃这些典型的环境中分离出了古菌[2]。随着分子生物学技术的发展,古菌研究的范围逐渐扩大,常见的环境比如海水[3]、盐湖水[4]和土壤[5-6]中,都发现有大量的古菌存在。随着研究领域的扩大,对古菌的分布、新陈代谢的多样性、从极端环境到普通环境的垂向变化以及在生态系统中所起作用的研究显得愈加重要。海洋深部生物圈内的古菌群落已经作为特定地质微生物标志,被用来指示过去和现代海洋的地球化学变化和地质环境的变迁[7]

南海神狐海域天然气水合物调查研究区位于南海北部陆坡中段神狐暗沙东南海域附近,即西沙海槽与东沙群岛之间海域。根据野外地温梯度测量和室内沉积物样品的热导率测量结果以及钻探站位温度原位测量结果表明,神狐海域研究区的地温梯度为45~67.7℃/km,其热流和地温梯度处于中—低范围,该区域流体相对活跃,断层发育,有利于天然气水合物的发育[8]。2006年我国在该区实施钻探,已经成功获取了天然气水合物样品[8]。笔者对神狐海域天然气水合物调查区HS-373PC样品岩心表层5~20 cm深度沉积物开展了古菌多样性的调查,并初步探讨它们与沉积物中地质环境的相互作用。

1 材料方法

1.1 样品采集

2006年夏, “ 海洋四号”调查船在南海北部神狐海域(19°51.2803 ' N,115°12.0888 ' E)水深1 402 m处获得重力活塞岩心HS-373PC样品,岩心全长928 cm。本文通信作者随船考察,并采取微生物样。微生物取样间隔为50 cm,取样后在无菌箱中切除表面沉积物,内部样品置于无菌袋保存于液氮中,航次结束后用干冰运至实验室于-20℃保存。实验室操作时,切除表面沉积物以防止污染。

用于微生物计数的样品采集参考国际大洋钻探(ODP:ocean drilling program)201和204航次中所应用的微生物样品处理方法[9-10],在无菌操作箱中进行:用灭菌手术刀切除岩心外部沉积物,灭菌注射器取约1 cm3样品,加入9 m L高温灭菌并过滤除菌(0.2 mm)的海水,加入终浓度为4%的甲醛固定,置于4℃保存。航次结束后低温运到实验室4℃保存。

1.2 微生物计数(acridine orange direct count,AODC)

样品细胞计数参照吖啶橙直接染色计数法[11]改进。样品漩涡震荡10 min,取1 m L加入9 m LPBS(0.145 mol/L Na Cl,0.0045 mol/L KH2PO4,0.0055 mol/L K2HPO4,灭菌)缓冲液,震荡5min,400r/min离心5 min,静置1 h充分沉淀,取上清液加入1%的吖啶橙5m L,黑暗中染色15 mm,过滤到孔径0.22μm的聚碳酸酯膜(Whatman,UK)上,用10 m L PBS缓冲液冲洗滤膜,置于载玻片上,于荧光镜下观察计数。

1.3 DNA提取与16Sr DNA的扩增

称取约1 g样品,使用Ultra Clean soil DNAkit (Mo Bio,Solana Beach,Calif.,US)试剂盒提取总DNA,溶于灭菌的纯水中。

古菌扩增引物为:Arch21F(5’-TTC YGG TTGATC CYG CCRGA-3’,Y=A,C or G;R=A or G)和Arch958R(5’-YCC GGC GTT GAM TCCATTT-3’,M=Aor C)[3]。PCR反应条件:95℃变性7min,然后94℃变性30 s,54℃退火30 s,72℃延伸1.5min,45个循环,最后72℃延伸10 min。产物经1%的琼脂糖凝胶电泳检测后切胶回收。

1.4 克隆文库的构建与5序列分析

纯化回收后的PCR产物连接到p GEM-T Easy Vector(Promega,US)上,转化Escherichiacoli.JM109感受态细胞。取适量转化后培养的细胞涂到含氨苄青霉素、X-Gal和IPTG的LB平板上, 37℃培养过夜,12~16 h后取出,置于4℃冰箱。

随机挑选部分白色转化子,接种到上述LB平板上,37℃培养后,使用引物M13-RV (5'-CAG GAA ACA GCT ATG AC-3')和M13-47(5'-GTT TTC CCA GTC ACG AC-3')做菌落PCR。反应条件如下:95℃变性10min,加入1.25U Taq酶,然后94℃变性30 s,54℃退火30 s,72℃延伸2min,35个循环,最后72℃延伸10min。扩增产物经1%的琼脂糖凝胶电泳检测后,挑选部分样品进行测序。

所得序列用Sequencer 4.8(Gene Codes Corporation,US)软件进行分析,经Bio Edit软件编辑后,以97%的序列相似性作为划分标准[12],使用DOTUR软件(http://www.plantpath.wisc.e/fac/joh/DOTUR.html)选出运算分类单位(operational taxonomic unit,或OTU),用a Rarefact Win软件(http://www.uga.e/~strata/software.html.)得出饱和曲线。所得OTU对应序列输入NCBI数据库,在线使用BLAST (basic local alignment search tool)对比序列,采用Neighbor-Joining建树方法构建系统发育树。

本研究中所得到的古菌16Sr DNA序列在Gen Bank核酸数据库里的接受序列号为HS373A1-HS373A98(FJ896063-FJ896103); HS373A107-HS373A16(GU181294-GU181316)。

2 结果与分析

2.1 沉积物微生物计数

表层沉积物中的总微生物计数使用吖啶橙染色直接计数法,计数结果显示微生物的数量约为1.69×107cells/g沉积物(湿重)。

2.2 古菌多样性分析

所测序列经筛选后得到132个有效序列,共分为64个OTU。文库覆盖率C=1-(n/N) (其中n为OTU中只出现一个克隆子的数目,N为总序列数)为68.2%。使用a Rarefact Win软件分析得到克隆文库的饱和曲线(图1)。

图1 南海北部HS-373PC岩心表层沉积物中古菌16SrRNA基因序列饱和曲线

该132个序列均属于未培养类型,同源序列大多数来自海洋沉积物,分别属于泉古菌(Crenarchaeota)和广古菌(Euryarchaeota)两大类(图2)。其中泉古菌以C3[13]为主(占总序列的24%),其他序列属于marine benthic group (MBG)-B[14],MBG-C[15],marine crenarchaeotic group Ⅰ(MGI)[16],marine hydrothermal vent group (MHVG)[17]和novel group ofcrenarchaea(NGC)[15]。广古菌以MBG-D[13]为主(占总序列的16%),其他序列属于unclassified euryarchaeotic clusters (UEC)-1/2。各类群所占比例见图3。

泉古菌中包含92个克隆序列(占总序列的70%)。其中以C3为主要类群,包含32个克隆,同源序列来源广泛,其中大多数来自南海沉积物中,相似性在97%~99%之间。其他同源性最高的序列来自太平洋秘鲁边缘海(ODP Leg 201)和喀斯喀特边缘海(ODP Leg 204)含有水合物的沉积物[13]、墨西哥湾沉积物(AB448792)和维多利亚港沉积物(EF203609)。MBG-B(也称为Deep-Sea Archaeal Group,DSAG)[17-19]类群最先发现于深海沉积物和热液口,该类群广泛存在于多种深海环境中[20],文库中有2个克隆属于该类群,同源序列来自鄂霍次克海冷泉沉积物[15]、墨西哥湾沉积物(IODP Site 1230)和Juan de Fuca海岭沉积物[15],相似性为98%~99%,这几个地区沉积物均发现水合物存在。20个克隆属于MBG-C,同源序列(相似性为95%~99%)来自深海沉积物和红树林土壤。12个克隆属于MGI,同源序列源自南海沉积物[16,21]和北冰洋沉积物(FJ571813),相似性在97%~99%之间。有4个克隆属于MHVG,与来自墨西哥湾沉积物的克隆(AB432999)相似性最高(99%)。NGC类群有20个克隆,其中相似性最高(相似性98%)的序列(EU713901)来自鄂霍次克海[15],其他克隆相似性最高的序列(DQ984855)和(AB433026)分别来自南海沉积物和墨西哥湾深海沉积物,相似性仅为89%和92%。

广古菌包含40个(占总序列的30%)克隆序列。其中MBG-D是优势类群,有21个克隆属于该类群,分为13个OTU。其中大部分克隆同源序列来源于南海[16,21]、智利瓦斯科湖、Skan湾[22]、墨西哥湾、日本南海海槽[23]、鄂霍次克海[15]和秘鲁边缘(ODP Leg 201)有机含量丰富不含水合物的深海沉积物[13]。另2个克隆相似性最高的序列(AF068817)来自大西洋中脊热压喷口[24],同源性只有86%。19个克隆组成UEC类群,9个克隆属于UEC-1,同源序列来源于南海沉积物、Baby Bare海湾热液喷口[25]和Skan湾[22]。10个克隆属于UEC-2,相似性最高的序列来源于南海[26]和Santa Barbara海盆[27],相似性在96%~99%之间。

3 讨论

海底沉积物表层有机质含量相对比较丰富,为微生物的生长繁殖提供充足的物质能量。据统计太平洋表层沉积物中微生物(包括细菌和古菌)丰度为108~109cells/cm3沉积物[28],有活性的微生物丰度为108cells/cm3沉积物[29]。本文HS-373PC岩心表层沉积物使用吖啶橙染色计数获得的微生物的数量,与南海南沙盆底陆坡沉积物中使用荧光原位杂交计数的结果[16]相比数量偏低。

图2 南海北部HS-373PC岩心表层沉积物中古菌16SrRNA基因序列系统发育树

图3 南海北部HS-373PC岩心表层沉积物古菌文库中各类群所占的比例

(其中“Un”为未分类的类别)

HS-373PC岩心的表层沉积物中古菌多样性虽然比较高,但从序列类别来说,大部分所在的类群在其他海区沉积物中都有发现[13,15,17-20,22-24]。尤其是大多数序列与南海其他地区沉积物中所报道的古菌类群[16,21,26]具有很高的相似性。而且在群落组成结构等方面比较起来还是有所不同。

与南海其他地区古菌类群相比,如在西沙海槽表层沉积物中古菌以MGI为主要类群(49.2%),其他包括TMEG(terrestrial miscel1aneous euryarch-aeotic group)、MBG-A/B/D、C3和NEG(novel euryarchaeotic group)类群以及17%的UEC克隆[21]。南海琼东南沉积物中古菌以MCG和MBG-B(DSAG)为主要类群(各占27%),其他还存在MBG-D、SAGMEG、TMEG和3个克隆的甲烷八叠球菌(Methanosarcinales)以及29%的UEC克隆[26]。MGI类群常发现于海洋和陆地环境,在海洋环境中,广泛分布于表层和次表层沉积物中,该类群可能兼性自养或者代谢类型多样[30]。本文神狐海域水合物潜力区的表层沉积物中的古菌,也有MGI类群出现,该类群所占比例仅为9%。MBG-B类群最先发现于热液口深海沉积物,目前在深海海底沉积物中均发现此类群[20],该类群在底部甲烷上涌流的上层硫酸盐还原带沉积物中含量丰富,可能在硫酸盐还原和甲烷氧化中起重要作用[31];此类群在南海琼东南盆地表层沉积物中所占比例较高,在神狐海域表层沉积物中,只有2个克隆出现,测试表明该深度甲烷体积分数较低(约40×10-6),而硫酸根质量浓度较高(2 655 mg/L),说明该深度甲烷氧化与硫酸盐还原程度还比较低。

与上述南海所报道2个地区古菌多样性相比,神狐海域HS-373PC表层沉积物中古菌C3类群的克隆明显占优。该类群尚未有培养种类,具体代谢类型还不清楚。类群中相似性最高的序列来自太平洋秘鲁边缘(ODP Leg 201)和喀斯喀特边缘海(ODP Leg 204)含有水合物的沉积物。

西太平洋日本南海海槽含有天然气水合物的沉积物中,古菌多样性很低,只发现有3种类群的古菌类群,分别与脱硫球菌、热网菌和热球菌相似,没有发现其他类群[32]。东太平洋美国俄勒冈州外海水合物海岭的ODP 204航次1244、1245和1251站位有水合物存在的表层沉积物岩心中,古菌以MBG-B(DSAG)类群为主[13](约占50%~100%)。而位于东太平洋赤道海域ODP 201航次几个地质环境不同钻探站位的表层沉积物中古菌群落结构不同,其中1230站位(含天然气水合物)古菌以MBG-B(DSAG)类群为主[13];1227站位(不含水合物但有机质含量丰富)古菌以MCG和SAGMEG为主要类群,不含MBG-B(DSAG)类群[13];而1225站位(不含天然气水合物且有机含量低)古菌以MGI和MBG-A为主要类群,但含少量MBG-B(DSAG)类群[13]。由此可见,即使是在发现了天然气水合物的地区,表层样中古菌的类型和群落结构也随海域或同海域不同站位地质环境而变化。神狐海域HS-373PC表层沉积物古菌的优势类群和上述地区明显不同。前人对南海表层沉积物有机质含量的总结表明,神狐地区属于有机质含量较低的地区[33]。因此,如果就HS-373PC表层沉积物中有机质含量低而古菌群落含少量MBG-B类群这2点来看,和东太平洋赤道海域ODP 201航次1225站位具有一定的相似性。

该岩心采集的区域属于已确定的天然气水合物潜力区,一系列的数据强烈暗示该区沉积物深部存在着天然气水合物[8]。但对该岩心表层沉积物中古菌多样性分析后发现,古菌中没有明显指示天然气水合物存在的类群出现,可能是本文所取的样品处于沉积物表层,各种参数变化不明显,在古菌多样性上没有明显的显示。对于HS-373PC岩心中微生物多样性和地质环境的关系进一步的探讨,还有待于建立在未来获得更多微生物和地质环境分析的基础上。

参考文献

[1]任立成,李美英,鲍时翔.海洋古菌多样性研究进展[J].生命科学研究,2006,10(2):67-70.

[2]Chaban B,Ng S Y,Jarrell K F.Archaeal Habitats-From the Extreme to the Ordinary[J].Canadian Journal Microbiology,2006,52:73-116.

[3]De lo ng E F.Archaea in Coastal Marine Environments[J].Proceedings of the National Academy of Sciences,1992,89:5685-5689.

[4]Jiang H C,Dong H L,Yu B S,et al.Dominance of Putative Marine Benthic Archaea in Qinghai Lake,Northwestern China[J].Environmental Microbiology,2008,10(9):2355-2367.

[5]Walsh D A,Papke R T,Doolittle W F.Archaeal Diversity Along a Soil Salinity Gradient Prone to Disturbance[J].Environmental Microbiology,2005,7(10):1655-1666.

[6]Yan B,Hong K,Yu Z M.Archaeal Communities in Mangrove Soil Characterized by 16S rRNA Gene Clones[J].The Journal of Microbiology,2006,43(5):566-571.

[7]Inagaki F,Takai K,Komatsu T,et al.Archaeology of Archaea:Geomicrobiological Record of Pleistocene Thermal Events Concealed in a Deep-Sea Subseafloor Environment[J]Extremophiles,2001,5(6):385-392.

[8]吴能友,张海A,杨胜雄,等.南海神狐海域天然气水合物成藏系统初探[J]天然气工业,2007,27(9):1-6.

[9]Shipboard Scientific Party.Explanatory Notes[C]//D'Hondt S,Jogensen B B,Miller D J,et al.Proceedings of the Ocean Drilling Program,Intial Reports.Texas:College Station,2003,201:1-103.

[10]Shipboard Scientific Party.Explanatory Notes[C]//Trehu A M,Bohrmann G,Rack F,et al.Proceedings of the Ocean Drilling Program,Intial Reports.Texas:Texas A&M University,2003,204:1-102.

[11]Bottomley P J.Light Microscopic Methods for Studying Soil Microorganisms[C]//Weaver R.Methods of Soil Analysis,Part 2.Microbiological and Biochemical Properties.SSSA Book Series no.5.Soil Science Society of America,Madison,Wis.1994:81-105.

[12]Humayoun S B,Bano N,Hollibaugh J T.Depth Distribution of Microbial Diversity in Mona Lake,Amermictic Soda Lake in California[J].Applied and Environmental Microbiology,2003,69:1030-1042.

[13]Inagaki,F,Nunoura T,Nakagawa S,et al.Biogeographical Distribution and Diversity of Microbes in Methane Hydrate Bearing Deep Marine Sediments on the Pacific Ocean Margin[J].Proceedings of the National Academy of Sciences,2006,103:2815-2820.

[14]Mason O U,Di Meo-Savoie C,Van Nostrand J D,et al.Prokaryotic Diversity,Distribution,and Insights Into Their Role in Biogeochemical Cycling in Marine Basalts[J].The ISME Journal,2009,3(2):231-242.

[15]Dang H Y,Luan X,Zhao J,et al.Diverse and Novel Nif H and NifH-Like Gene Sequences in the Deep-Sea Methane Seep Sediments of the Okhotsk Sea[J].Applied and Environmental Microbiology,2009,75(7):2238-2245.

[16]李涛,王鹏,汪品先.南海南部陆坡表层沉积物细菌和古菌多样性[J].微生物学报,2008,48(3):323-329.

[17]Inagaki F,Suzuki M,Taikai K,et al.Microbial Communities Associated with Geological Horizons in Coastal Subseafloor Sediments from the Sea of Okhotsk[J].Applied and Environmental Microbiology,2003,69(12):7224-7235.

[18]Vetriani C,Jannasch H H,Mac Gregor B J,et al.Population Structure and Phylogenetic Characterization of Mari ne Benthic Archaea in Deep-sea Sediments[J].Applied and Environmental Microbiology,1999,65(10):4375-4384.

[19]Takai K ,Horikoshi K.Genetic Diversity of Archaea in Deep-Sea Hydrothermal Vent Environments[J].Genetics,1999,152:1285-1297.

[20]Sorensen K,Teske A.Stratified Communities of Active Archaea in Deep Marine Subsurface Sediments[J].Applied and Environmental Microbiology,2006,72(7):4596-4603.

[21]李涛,王鹏,汪品先.南海西沙海槽表层沉积物微生物多样性[J]生态学报,2008,28(3):1166-1173.

[22]Kendall M M,Wardlaw G D,Tang C F,et al.Diversity of Archaea in Marine Sediments from Skan Bay,Alaska,Including Cultivated Methanogens,and Description of Methanogenium Boonei sp.Nov[J].Applied and Environmental Microbiology,2007,73(2):407-414.

[23]Nunoura T,Oida H,Toki T,et al.Quantification of Mcr A by Quantitative Fluorescent PCR in Sediments from Methane Seep of the Nankai Trough[J].FEMS Microbiology Ecology,2006,57(1):149-157.

[24]Reysenbach A L,Longnecker K,Kirshtein J.Novel Bacterial and Archaeal Lineages from an in Situ Growth Chamber Deployed at a Mid-Atlantic Ridge Hydrothermal Vent[J].Applied and Environmental Microbiology,2000,66(9):3798-3806.

[25]Huber J A,Hohnson H P,Butterfield D A,et al.Microbial Life in Ridge Flank Cru stal Fluids[J].Environmental Microbiology,2006,8(1):88-99.

[26]Jiang H C,Dong H L,Ji S,et al.Microbial Diversity in the Deep Marine Sediments from the Qiongdongnan Basin in South China Sea[J].Geomicrobiology Journal,2007,24:505-517.

[27]Harrison B K,Zhang H,Berelson W,et al.Variations in Archaeal and Bacterial Diversity Associated with the SulfateMethane Transition Zone in Continental Margin Sediments (Santa Barbara Basin,California)[J].Applied and Environmental Microbiology,2009,75(6):1487-1499.

[28]Parkes R J,Cragg B A,Bale S J,et al.Deep Bacterial Biosphere in Pacific Ocean Sediments[J].Nature,1994,371:410-413.

[29]Schippers A,Neretin L N,Kallmeyer,J,et al.Prokaryotic Cell of the Deep Sub-Seafloor Biosphere Identified as Living Bacteria[J].Nature,2005,433:861-864.

[30]Teske A.Microbial Community Composition in Deep Marine Subsurface Sediments of ODP Leg 201:Sequencing Surveys and Cultivations[C]//Jorgensen B B,D'Hondt S,Miller D J.Proceedings of the Ocean Drilling Program,Scientific Results 2006,201,1-19.

[31]Biddle J F,Lipp J S,Leverd M A,et al.Heterotrophic Archaea Dominate Sedimentary Subsurface Ecosystems off Peru.[J].Proceedings of the National Academy of Sciences,2006,103(10):3846-3851.

[32]Reed D W,Fujita Y,Delwiche M E,et al.Microbial Communities from Methane Hydrate-Bearing Deep Marine Sediments in a Forearc Basin[J].Applied and Environmental Microbiology,2002,68(8):3759-3770.

[33]苏新,陈芳,于兴河,等.南海陆坡中世纪以来沉积物特性与气体水合物分布初探[J].现代地质,2005,19(1):1-13.

③ 建筑学考研,西安建筑科技大学怎么样

还可以吧。 建大是著名的建筑“老八校”之一,现在也是“老八校”中最好考的。内
最好容的专业是建筑学,城市规划,建大学生在国际大学生设计竞赛和论文评比中先后 7 次名列前茅,获得 10 余项奖励。学校有六大王牌专业:包括建筑学,城市规划,给水排水工程,建筑环境与设备工程,土木工程,运输工程(总图工程),冶金工程,所以你考这个学校是相当好的。。就业也相当的好,不过这个专业比较难考。努力吧。

④ 南海北部DSH-1C柱状样晚更新世以来沉积物磁性特征及其环境意义

罗祎1,苏新,陈芳2,黄永样2

罗祎(1982-),女,博士研究生,主要从事海洋地质方面研究,E-mail:[email protected]

1.中国地质大学海洋学院,北京100083

2.广州海洋地质调查局,广州510760

摘要:对取自南海北部陆坡“海洋四号沉积体”DSH-1C柱状样进行了沉积学和磁学分析,结合相关资料探讨了该柱状样沉积物磁性特征其纵向变化,及其与该区沉积环境变化的关系。结果表明:DSH-1C柱状样自上而下共划分3个岩性单元,表层沉积物为全新世MIS1期以黏土质粉砂为主的深海-半深海沉积;中部含数层重力流沉积夹层,为晚更新世MIS2期沉积;底部为晚更新世MIS3期黏土质粉砂。该柱状样x值平均值为1.72×10-7m3/kg。所有样品的IRM 均已达到SIRM的80%以上,S300的最小值为0.605。该柱状样沉积物中的磁性矿物极少,以低矫顽力矿物为主;该柱状样磁性特征在陆源物质输入较多的间冰期(MIS1和MIS3期),磁性参数值较高;反之,在MIS2磁性参数值较低,可能与冰期该区陆源物质减少有关。此外,该岩心柱中富含有孔虫壳体或双壳碎屑的重力流层沉积物的磁性参数值低,与这些逆磁性碳酸盐组分的增加有关。

关键词:磁性特征;粒度分析;晚更新世;东沙;南海

The Magnetic Properties of Late Pleistocene Sediments in Core DSH-1 C from Northern South China Sea and Their Environment Significance

Luo Yi1,Su Xin1,Chen Fang2,H uan Yongyang2

1.School of Ocean Sciences,China University of Geosciences,Beijing 100083,China

2.Guangzhou Marine Geological Survey,Guangzhou 510760,China

Abstract:A study of magnetic properties of sediments at the piston core DSH-1C from deep sea area of Dongsha,the South China Sea was carried out.The 626cm-core were subdivided into three lithologic units:Holocene clayey silt (Unit I,MISl) at the top interval of the core; late Pleistocene turbidity sequences characterized by 3 to 4 major sand layers in the middle interval(Unit Ⅱ,MIS2) ; and then the lowest sequences composed by clayey silt interbedded with thin silty sand or silt layers (Unit Ⅲ,MIS 3)..The average value of the Xfor the sediments is 1.72×10-7m3/kg,and all samples show high values of IRM,over 80‰f sediment SIRM,while the minimum of S300for all samples is 0.605.According to magnetic properties obtained,it was inferred that sediments from the core contained very rare magnetic minerals.Lowest values of magnetic properties (X,NRM and SIRM) were observed in the intervals of Unit Ⅱ,where turbidity layers containing abundant calcareous foraminifera shells occurred,indicating the dilution of carbonate in these sediment layers.On the other hand,higher values those parameters were seen in the interglacial period (MIS l and MIS3) ,probably e to more terrigenous debris input ring warm periods in this area.

Key word:magnetic properties ; grain size;late Pleistocene; Dongsha area; South China Sea

0 引言

环境磁学自20世纪80年代确立至今逐渐形成了一门以磁性测量为核心手段,磁性矿物为载体,利用磁学的方法去研究环境作用、环境过程和环境问题的新兴交叉学科[1-3]。海洋沉积物的环境磁学研究亦已成为近年来研究的热点。在这一领域国内外学者通过对深海岩心沉积物或浅表沉积物磁学特征的研究,结合年代学、沉积学和地球化学等资料,研究沉积物的来源及沉积环境的变化,去重建古气候和古环境[1-6]

当前,在对海洋沉积物的磁学特征的研究中,沉积物磁化率的变化可以反映物源和环境的改变已经得到普遍的认同及应用。其他磁性参数(如:天然剩磁、等温剩磁、非磁滞剩磁等)也逐渐被引入到海洋沉积物的矿物学、古地磁学、次生变化及成岩过程等的研究中[4-12]。不仅如此,近年来国外学者在对海洋天然气水合物的研究中,探讨了水合物赋存区沉积物的磁性参数(主要以磁化率为代表)及其与自生矿物(主要以黄铁矿为代表)的关系[13-15]

本文为首次在南海水合物赋存区进行柱状岩心沉积物的磁性研究。将利用环境磁学和沉积学方法,通过对来自南海北部水合物赋存区获得的DSH-1C重力柱状样沉积物的磁性特征及其沉积环境的对比研究,来探讨该研究区表层沉积物的磁性参数变化的因素及其与沉积环境变化的关系,希望通过以上研究获得该研究区表层沉积物的磁性特征及其环境意义。

1 样品与方法

1.1 样品来源

DSH-1C保压重力活塞柱状样全柱长626 cm,由2006年“海洋四号”科考船取自南海北部陆坡,东沙海域“海洋四号沉积体”气体水合物调查区,水深3 000 m。该区冷泉活动的证据首先由“海洋四号”科考船发现,2004年中德合作SO177航次“太阳号”科考船对“南海北部陆坡甲烷和天然气气体水合物分布、形成及其对环境的影响研究”的调查获得更多证据,并命名为“海洋四号”沉积体[16-17]

该区位于南海北部陆坡东部,台湾海峡北岸,构造上属于被动大陆边缘,毗邻台湾岛西南的外滨增生楔。水深在1 500~3 000 m之间,平均水深大于2 500 m[16](图1)。

研究区海底具有强似海底反射层(BSR)的地震反射特征。在海底电视对海底的调查中,发现该区有深水冷泉双壳类、菌席。对SO177航次GC10站位[16](图1)的岩心描述中提到该区沉积物中有因甲烷气体胀气形成的裂隙结构。其孔隙水地球化学分析结果也在一些深度表现出孔隙水氯离子异常等地球化学特征,并由甲烷通量推测该站位深部存在甲烷源。

图1 南海北部陆坡“海洋四号沉积体”水深图及DSH-1C、SO177-GC10站位示意图

1.2 研究方法

对DSH-1C柱状样描述其岩性特征、照相后,按10 cm间隔取样,取样厚度为2 cm,得到共计63份沉积物样品,对其进行了磁学、粒度和碳酸盐含量测试。

1.2.1 岩石磁学方法

对DSH-1C柱状样的磁学参数进行了磁化率(X)、天然剩磁(NRM)、非磁滞剩磁(ARM)、等温剩磁(IRM)及饱和等温剩磁(SIRM)的测试。

所邻近的SO177-GC10柱状样已有对有孔虫AMS14C年龄的测试结果[16],其底部年龄为50~60 ka,属于布容正极性期,因此未对DSH-1C柱状样的磁倾角方向进行考虑。环境磁学样品直接用无磁性立方盒封装,并对所有样品进行低温烘干(小于40℃)。

(1)磁化率测量在中国地质大学(北京)地学实验中心进行,利用KLY-4S卡帕桥磁化率仪测得全部样品的质量磁化率。

(2)样品剩磁及退磁参数测量均在中国科学院地质与地球物理研究所古地磁实验室进行。2G-755R岩石超导磁力仪上完成,对所有样品进行天然剩磁测量,然后进行退磁。仪器测量范围2.0×10-12~2.0×10-4Am2;灵敏度1.0×10-12 Am2。除490cm处样品测量值为2.37×10-4Am2超出量程仅作参考,320cm处由于电脑故障测量值未被保存外,其余61份样品测量值最小值为1.36×10-6Am2,最大值为1.18×10-4Am2,为可信值。一般的海洋沉积物样品经过15~25 m T的交变退磁,即可获得特征剩磁,故选择0、5、10、15、20、25、30、40、50、60、70m T的退磁步骤。240 cm和320 cm处由于电脑故障测量值未被保存外,获得61份样品的特征剩磁。

(3)应用2G-760超导磁力仪,在外加90 m T交变场叠置0.1 m T的直流场下测定样品的非磁滞剩磁。仪器测量范围1.0×10-7~1.0×10-2Am2;灵敏度2.0×10-12Am2。全部样品测量值最小值为3.96×10-5Am2,最大值为2.68×10-3Am2,为可信值。

(4)为保证对样品饱和等温剩磁的测量值在2G-760超导磁力仪量程范围内,对测量样品质量进行缩减。用Model660 Pulse Magnetizer在1.7 T磁场下进行磁化,后在2G-760超导磁力仪上测量饱和等温剩磁。全部样品测量值最小值为1.38× 10-4Am2,最大值为9.08×10-3Am2,为可信值。将样品置于100、300 m T的反向磁场中磁化得到全部样品的等温剩磁(IRM-100、IRM-300)。

定义S300=(-IRM-300)/SIRM,计算得到S300

1.2.2 粒度分析

粒度测试在中国地质大学(北京)海洋学院利用英国马尔文公司Mastersize2000型激光粒度仪进行测试。本文样品没有进行有机质和钙质组分的去除,希望得到沉积物全部碎屑的粒度特征,所以进行了全粒级的粒度分析。方法为:取2 g左右待测样品放入20 m L的烧杯中加入适量蒸馏水浸泡,使其在自然状态下分散。测试前加入0.5 mol/L的六偏磷酸钠溶液进行化学分散,测试中未进行超声处理。

1.2.3 碳酸盐含量测试

碳酸盐含量测试也在中国地质大学(北京)海洋学院利用容量法测试。因部分样品含有较多钙质生物壳体,为保证样品测定的准确性,每份样品至少取3份进行平行测定。

2 结果与讨论

2.1 岩性及粒度特征

DSH-1C柱状样沉积物的主要岩性为灰绿色黏土质粉砂,中间夹有数层富含有孔虫及生物碎屑的粗粒粉砂质夹层,部分层位夹有灰黄色或灰黑色细层,黏性较大,下部有皲裂现象和气胀孔结构。根据岩性和粒度变化可将该岩心自上而下分为3个岩性单元(Ⅰ-Ⅲ) ( 图2)。

图2 DSH-1C柱状样沉积物粒度分析结果

岩性单元I(0~约152 cm)为含有孔虫粉砂,砂粒组分中含有较多的有孔虫,因此与碳酸盐含量变化对应。岩性单元Ⅱ(约152~470 cm)以富含大量生物碎屑(双壳、腹足等壳体)及有孔虫砂黏土质粉砂为主要特征。砂层及黏土质粉砂层交替。岩性单元Ⅲ(约470~620 cm)为含深灰黑色粉砂质夹层的黏土质粉砂。沉积物中钙质组分相对较低,也较稳定。

2.2 年代确定

表1 SO177-GC10浮游有孔虫AMS14C年龄数据[16-17]

图3 DSH-1C与SO177-GC10柱状样岩性、粒度分析、对比曲线图(左图据文献[17])

采用SO177航次在“海洋四号”沉积体获得的GC10表层柱状沉积物样浮游有孔虫AMS14C年龄数据(表1)[16-17]。据Zhang等[17]研究,GC10柱状样的3个岩性单元(图3左图),上部为全新统沉积,中部和下部为更新统顶部沉积。两者分界以富含有孔虫和生物碎屑层末次出现为标志。通过与GC10进行对比可以得出:DSH-1C柱状样沉积物在约152 cm深度下部富含有孔虫和生物碎屑砂的首次出现为标志。152 cm之上为全新统沉积,之下为更新统顶部沉积(图3)。其中岩性单元Ⅱ为末次冰期MIS2时期的沉积,而岩性单元Ⅲ为MIS3时期的沉积。

2.3 磁学结果

图4为DSH-1C柱状样磁学参数测试结果随深度变化的曲线图,其中X、NRM、ARM和SIRM记录天然物质的磁性变化与沉积物中磁性矿物的含量、种类、粒度等相关。一般来说,通过计算得到S300的大小与沉积物中中低矫顽力磁性矿物和高矫顽力磁性矿物的相对含量呈正比例关系[18]。本文主要探讨DSH-1C柱状样沉积物中磁性矿物的含量变化。

根据测试结果,结合其岩性特征,可将DSH-1C柱状样的磁学参数特征分为Ⅰ(0~152 cm)、Ⅱ(152~470 cm)、Ⅲ(470~626 cm)3段。

图4 DSH-1C柱状样磁学参数(X、NRM、ARM、SIRM和S300)随深度变化图

Ⅰ段(0~152 cm):该深度段X的变化范围为(2.37~4.84)×10-7m3/kg,波动幅度较大且随深度的增加而降低。NRM、ARM和SIRM数值曲线特征与X变化趋势相一致。此深度段样品的S300在0.925~1.00变化。

Ⅱ段(152~470cm):该深度段X、NRM、ARM和SIRM平均值明显降低,整体数值趋于平稳。X平均值为1.10×10-7m3/kg。ARM平均值在1.17×10-7Am2/kg,比上一段减少87.6%。SIRM平均值为6.54×10-6Am2/kg,比上一段平均值减少57.5%。此段S300波动幅度大,全柱最小值0.605出现在330cm。

Ⅲ段(470~626cm):X、NRM、ARM 和SIRM 数值相对上一段升高,有明显波动。全柱最大值出现在490 cm处,其X、NRM、ARM 及SIRM 均显示为最大值。S300与上两段明显不同,变化幅度很小,呈稳定趋势。

由于天然物质的磁化率主要取决于其中磁性矿物的含量,如果亚铁磁性矿物含量很少,磁化率则非常弱。主要是顺磁性矿物乃至逆磁性矿物对磁化率做出的实际贡献[1-2]。综合3个深度段, DSH-1C柱状样X值最大值仅为6.02×10-7m3/kg,平均值为1.72×10-7m3/kg。可见该柱状样沉积物中磁性矿物含量极少。

天然样品S300,低矫顽力磁性矿物(如磁铁矿)其值接近于1,高矫顽力磁性矿物(如赤铁矿)其值则低于0.5[9,18]。DSH-1C柱状样S300的最小值为0.605,并且所有样品在300 T外加磁场下获得的IRM均已达到SIRM的80%以上。由此该柱状样沉积物中以低矫顽力的软磁性矿物为主。

此外,该柱状样沉积物X、NRM、ARM 和SIRM随深度具有相同的变化趋势,以上这些特征表明磁性矿物的含量是该研究区沉积物磁性特征的主要影响因素。

2.4 磁性特征及其环境意义

本文选取磁性参数X和S300,结合已得到的沉积特征和古海洋学结果进行对比分析(图5)。

图5 DSH-1C柱状样x、S300、黏土体积分数和碳酸盐体积分数随深度变化图

2.4.1 磁性参数的变化

磁化率为代表的海洋沉积物的磁性参数受多种因素的影响。已经得知本文研究区沉积物磁性特征主要受到磁性矿物含量的影响。总体趋势来看,岩性单元Ⅰ和Ⅲ区间内沉积物的磁性矿物含量要高于岩性单元Ⅱ内沉积物。并且,在沉积物黏土粒级(体积)百分含量较高的层段沉积物磁化率数值相对较高。这一变化趋势与南海南部NS93-5孔[19]、东帝汶海MD98-2172岩心[12]和东海内陆架EC2005孔的部分层段[20]沉积物磁化率和粒度的相关关系的研究结果相似。在对台湾海峡西部外海表层沉积物[21]和墨西哥湾陆坡表层沉积物[15]的磁化率的研究中,也发现沉积物粒度越细,其磁化率数值越高。

在同一岩性单元内沉积物的磁性主要受到碳酸盐含量和碎屑矿物含量2个因素的影响。以岩性单元Ⅱ内沉积物为例:首先,在碳酸盐含量高的层段区间,X值相对较低(图5中阴影部分),这是由于碳酸盐是逆磁性矿物,对磁化率等磁性参数的贡献极小,并且碳酸盐含量的大幅增加稀释了沉积物中黏土粒级含量,使得相应层段的沉积物磁性相对较低。其次,在黏土粒级含量相对较低的层段,X值却相对较高(图5中虚线框部分)。具有这一特征的深度区间,通过对沉积物岩性观察、沉积物图片观察和粒度分析结果得出这些深度区间内粉砂含量高,含有相对大量碎屑矿物。可认为该深度区间碎屑矿物含量对沉积物磁性参数有重要的贡献。

该柱状样S300比值在碳酸盐含量较高的重力流沉积层段比值较小,在碎屑矿物含量较高的层段比值较大。这一特征仍然显示了磁性参数与碎屑矿物含量的关系。

2.4.2 磁性参数变化与沉积环境

通过与SO177航次GC10站位沉积学和古海洋学结果[16-17]相对比,可以得到DSH-1C柱状样3个岩性单元从下到上分别为MIS3期到MIS1期的沉积记录。在该沉积期间内,据前人研究[17,22-23],MIS1期(冰后期)为全新世高海面暖时期,MIS2期为末次冰期,MIS3期为末次间冰期。从图5可见,气候最暖时磁性参数值最高,末次冰期磁性参数最低,而末次间冰期较高。

在海洋沉积物中磁性矿物来源除海底火山和热液成岩作用带来的磁性矿物之外,其中主要是通过风、河流、冰川的搬运作用以及海岸的侵蚀作用,将陆源碎屑搬运至海洋沉积物中的磁性矿物;其他也有生物作用、成岩作用形成的自生磁性矿物。目前研究认为,陆坡海洋沉积物中磁性矿物主要来自于陆源,而其磁性参数(如磁化率)与沉积物中陆源物质丰度相关[1-2,4,9,19]。前人在对黄土磁性矿物揭示古气候变化的研究中[24]提出,温暖潮湿的气候促进黄土的化学风化形成磁性较强的古土壤,而寒冷时期的黄土磁性较弱。

由此可推知,物源区碎屑矿物自身的风化过程因气候冷暖改变而产生的磁性差异,输入海洋中也可能导致温暖时期的海洋沉积物磁性较强,反之在寒冷时期较弱。

因此,研究区内,气候温暖间冰期河流的淡水输入量较大,带来较多的陆源物质[23],表现为磁性参数的相对高值。这一特征在碎屑矿物含量较高的层段(如490 cm深度区间)有明显的表现:沉积物中除含有较多碎屑矿物之外还含有少量木屑,具有陆源碎屑的特征相应其磁性也表现为高值。在寒冷的MIS2期间,淡水输入减少,同时海平面的降低,也增加了离开陆地的距离,整体陆源输入的不足导致沉积物中磁性矿物含量小,该岩心中此期的磁性参数值最低。此外,该地史时期内海平面为最低,有数层来自陆架的重力流沉积层[16-17,23,25-28],这些重力流层中含有大量的有孔虫和生物碎屑[26-27]。它们的存在使得这些层中沉积物中碳酸盐含量增加,同时也是导致这些重力流层中磁性最低的原因。

3 结论

通过对南海北部陆坡DSH-1C柱状样沉积物的粒度分析结果、磁学分析结果、碳酸盐含量的分析,通过与相邻站位SO177-GC10站位沉积物岩心的对比,得到以下认识:

1)DSH-1C柱状样为晚更新世到全新世的深海—半深海沉积,主要岩性为黏土质粉砂,中间夹有数层重力流沉积物。

2)DSH-1C柱状样沉积物的磁性特征随深度变化的特征,显示其主要受沉积物中磁性矿物含量影响;沉积物中磁性矿物含量十分稀少,以低矫顽力软磁性矿物为主;沉积物磁性垂直变化与黏土粒级含量变化相似,并且受到碳酸盐稀释作用和碎屑矿物含量的影响。

3)DSH-1C柱状样在气候温暖的MISl冰后期(0~约152 cm),海平面最高,陆源输入量最大,沉积物磁性参数值最高;MIS2末次冰期(约152~470 cm深度区间),海平面最低,陆源输入不足,磁性参数最低;MIS3末次间冰期(约470~626 cm深度区间),气候相对较暖,海平面较高,磁性参数较高。

参考文献

[1]Evans M E,Heller F.Environmental Magnetism:Principles and Applications of Envirom-agnetics[M].London:Academic Press,1986:1-127.

[2]Thompson R,Oldfield F.Environmental Magnetism[M].London:Allen&Unwin,1986:7-174.

[3]姜月华,殷鸿福,王润华.环境磁学理论、方法和研究进展[J]地球学报,2004,25(3):357-362.

[4]周元涛,张玉芬.环境磁学及其在古气候环境研究中的应用[J].工程地球物理学报,2007,4(6):533-540.

[5]Rao V P,Kessarkar P M,Patil S K,et al.Rock Magnetic and Geochemical Record in a Sediment Core from the Eastern Arabian Sea:Diagenetic and Environmental Implications During the Late Quaternary[J].Palaeogeography,Palaeoclimato1ogy,Palaeoecology,2008,270:46-52.

[6]Kanamatsu T,Ohno M,Acton G,et al.Rock Magnetic Properties of the Gardar Drift Sedimentary Sequence,Site IODP U1314,North Atlantic:Implications for Bottom Current Change Through the Mid-Pleistocene[J].Marine Geology,2009,265:31-19.

[7]贾海林,刘苍宇,张卫国,等.崇明岛CY孔沉积物的磁性特征及其环境意义[J].沉积学报,2004,22(1):117-123.

[8]李萍,李培英张晓龙,等.冲绳海槽沉积物不同粒级的磁性特征及其与环境的关系[J].科学通报,2005,50(3):262-268.

[9]孟庆勇,李安春,靳宁,等.东菲律宾海柱状沉积物的磁性特征[J].海洋地质与第四纪地质,2006,26(3):57-63.

[10]孟庆勇,李安春,李铁钢,等.东菲律宾海沉积物200ka以来地磁场相对强度记录及其年代学意义[J].中国科学D辑:地球科学,2009,39(1):24-34.

[11]顾家伟,王张华,李艳红,等.东海外陆架前孔沉积物的岩性和磁性特征及成因讨论[J]古地理学报,2006,8(5):269-276.

[12]李海燕,张世红,方念乔.东帝汶海MD98-2172岩心磁记录与还原成岩作用过程[J].第四纪研究,2007,27(6):1023-1030.

[13]Novosell,Spence G D,Hyndman R D.Reced Magnetization Proce by Increased Methane Flux at a Gas Hydrate Vent[J].Marine Geology,2005,216:165-274.

[14]Larrasoana J C,Roberts A P,Musgrave R J.Diagenetic Formation of Greigite and Pyrrhotite in Gas Hydrate Marine Sedimentary Systems[J].Earth and Planetary Science,2007,261:350-366.

[15]Ellwood B B,Balsam W L,Roberts H H.Gulf of Mexico Sediment Sources and Sediment Trends from Magnetic Susceptibility Measurements of Surface Samples[J].Marine Geology,2006,230:237-248.

[16]黄永样,Suess E,吴能友,等.南海北部甲烷和天然气水合物地质——中德合作SO-177航次成果专报[M].北京:地质出版社,2008:20-191.

[17]Zhang Haiqi,Su Xin,Chen Fang,et al.Last Glacial LowSea-Level Turbidites Recorded in the Abyssal Cold-Seep Sediments from the Northern South China Sea,Chinese Journal of Oceanology and Limnology(in press).

[18]Dekkers M J.Environmental Magnetism:An Introction[J].Geologie in Mijinbouw,1997,76:163-182.

[19]杨小强,李华梅,周永章.南海南部NS93-5孔沉积物磁化率特征及其对全球气候变化的记录[J].海洋地质与第四纪地质,2002,22(1):31-37.

[20]孟庆勇,李安春,徐方建,等.东海内陆架EC2005孔沉积物磁化率与粒度组分的相关研究[J].科技导报,2009,27(10):32-37.

[21]杨黎静,汪卫国.台湾海峡西部表层沉积物磁化率特征[J]沉积学报,2009,27(4):26-33.

[22]同济大学海洋地质系编著.古海洋学概论[M],上海:同济大学出版社,1989:241-248.

[23]周斌,郑洪波,杨文光,等.末次冰期以来南海北部物源及古环境变化的有机地球化学记录[J].第四纪研究,2008,28 (5):407-413.

[24]邓成龙,刘青松,潘永信,等.中国黄土环境磁学[J].第四纪研究,2007,27(2):193-210.

[25]石学勇.南海北部深水区SO177航次沉积物粒度及微结构分析研究[D].北京:中国地质大学,2006.

[26]张富元,张霄宇,杨群慧,等.南海东部海域的沉积作用和物质来源研究[J].海洋学报,2005,27(3):79-90.

[27]陈芳,苏新,D Nurnberg,等.南海东沙海域末次冰期最盛期以来的沉积特征[J].海洋地质与第四纪地质,2006,26(6):9-17.

[28]Chen M T,Huang C Y,Wei K Y.25,000-year Late Quaternary Records of Carbonate Preservation in the South China Sea[J].Palaeogeography,Palaeoclimatology,Palaeoecology,1997,129:155-169.

⑤ 南海北部神狐海域天然气水合物成藏动力学模拟

苏丕波,梁金强,沙志彬,付少英,龚跃华

苏丕波(1981-),男,博士,主要从事天然气水合物的气源条件与成藏模拟研究,E-mail:[email protected]

注:本文曾发表于《石油学报》2011年第2期,本次出版有修改。

广州海洋地质调查局,广州510760

摘要:为了了解南海北部神狐海域天然气水合物的成藏匹配条件,针对神狐海域水合物研究区典型二维地震剖面,构建了该区的地质模型,并对其进行了天然气水合物成藏动力学的模拟。研究结果表明:神狐海域具备有利于天然气水合物成藏的温度、压力条件;微生物气和热解气的资源潜力巨大,满足水合物形成的气源条件;运移条件优越,有利于天然气水合物的聚集成藏。针对上述结果,提出了该区天然气水合物的成藏模式,并初步预测该区天然气水合物资源潜力巨大,是进一步勘探水合物的远景区。

关键词:南海;神狐海域;天然气水合物;成藏模式;生物气;热解气

Gas Hydrate Reservoir Simulation of Shenhu Area in the South China Sea

Su Pibo,Liang Jinqiang,Sha Zhibin,Fu Shaoying,G ong Yuehua

Guangzhou Marine Geological Survey,Guangzhou 510760

Abstract:In order to understand the natural condition of gas hydrate formation,a geological model of gas hydrate reservoir,which based on the typical seismic image obtained from Shenhu area,was studied by basin modeling.The studies indicated: 1) The temperature and pressure of Shenhu study area are appropriate for gas hydrate reservoir; 2)These gas source rocks have huge gas-generating potential,thus provide abundant gas sourcefor gas hydrate formation; 3)The hydrocarbon migration conditions are favorable for accumulation of gas hydrate.A forecasting model of gas hydrate formation was given after basin analysis.The conclusion is drawn that Shenhu area is a better hydrate prospecting area because of its favorable conditionsfor gas hydrate formation.

Key words:South China Sea ; Shenhu area;gas hydrate;reservoir model;biogases ; thermolytical gases

0 引言

天然气水合物是在低温、高压环境下由水和天然气组成的类冰结晶化合物,主要赋存在陆地永久冻土带和水深超过300 m的海洋沉积物中。目前发现的海底天然气水合物主要分布于世界各大洋边缘海域的大陆斜坡、陆隆海台和盆地以及一些内陆海区的大洋沉积物中,水深一般为300~4 000 m ,赋存沉积物一般为海底以下0~1 500m[1]

控制海洋天然气水合物成藏的关键因素包括温度、压力、气体组分和饱和度及孔隙水组成,水合物的结晶和生长还取决于沉积物颗粒大小、形状和组成[2],但是这些因素受到海洋中一系列构造和沉积作用的影响,在不同的时间尺度上可能导致多种天然气水合物成藏的动力学反映[3-5]。目前,国内外对天然气水合物赋存及分布的主控因素的研究仍局限于对影响水合物成藏的个别因素探讨上,如全球气温变化、构造活动与地热史、沉积作用效应、地温梯度和冰川性海平面相对移位等[6],这些因素均可改变天然气水合物形成所需要的温压条件与沉积物的物性特征,从而影响天然气水合物系统的稳定性。除温压条件外,是否有充足的气体供应是控制天然气水合物的形成的另外一个重要的控制因素;从动态过程来考虑,除了烃类气体的供应外,还涉及烃类气体到达天然气水合物稳定带的运移通道,天然气水合物形成的构造环境等。

南海北部陆坡含油气盆地发育,气源丰富,类型众多,深部热解气、浅层微生物气均有可能形成天然气水合物,虽然部分学者分别就烃类气体供应问题、烃类运移条件、岩层和构造对天然气水合物产状与分布影响或控制做过单方面的研究[7-9],但还没有将它们作为一个有机整体在时空尺度上开展水合物的成藏系统研究。本文选取南海北部神狐海域研究区的典型地震剖面,围绕天然气水合物“成藏”这一核心问题,通过水合物成藏动力学模拟,结合地震剖面解释成果,对南海北部神狐海域天然气水合物成藏模式进行了初步的探讨。

1 研究区地质概况

图1 研究区位置及范围

神狐海域水合物研究区地理上位于南海北部陆缘陆坡区的中段神狐暗沙东南海域附近,即西沙海槽与东沙全岛之间海域,构造上位于珠江口盆地珠二坳陷白云凹陷(图1)。白云凹陷水深200~2 000 m,面积约为20 000 km2,新生代最大沉积厚度约为12 000 m,地史上经历多次地壳运动和多阶段的构造演化,地质构造复杂,断层-褶皱体系非常发育[10-13]。神狐海域研究区晚期断层极其发育[14],新生代断层大致可分为晚中新世和上新世以来2个主要时期,晚中新世断层以NW为主,断层大部分切割上中新统,部分切割上新统,是研究区最主要的断层活动时期;上新世以来活动断层以NEE向为主,断层活动下,部分断层切穿较新的沉积层延伸至海底附近,深部断层为天然气向浅部水合物稳定带运移创造了有利条件,而褶皱构造易于捕获天然气,促使水合物的形成。同时,神狐海域海底滑塌作用非常强烈,有分析认为可能与水合物的形成和分解有关[15]。此外,根据沉积相分析[16-17]

于兴河,苏新,陈芳,等.南海天然气水合物成矿的沉积条件初步研究.北京:中国地质大学,广州:广州海洋地质调查局,2002.,南海北部陆坡自晚渐新世以来处于坳陷沉降期,以滨、浅海—半深海沉积环境为主,陆源碎屑供给充足,沉积速率大、厚度大、粒度总体上中等偏细。特别是晚中新世以来神狐海域研究区以三角洲、扇三角洲、滑塌扇、浊积扇沉积为主,重力流非常发育,特别是第四纪,广泛发育滑塌沉积,这些沉积体普遍具有较高的沉积速率,沉积厚度相对较大,含有大量的有机质,并能得以有效地保存,能为天然气水合物的形成提供充足的气源。综合分析,神狐研究区具备良好的天然气水合物成藏地质条件。

2 模型选择及参数的选取

由于神狐海域探井缺乏,本次模拟剖面选取既考虑选择神狐海域水合物研究区具有代表性的典型剖面,同时兼顾该区及邻区是否有可以借鉴的模拟参数资料。结合这两点,本次模拟研究选取神狐海域水合物研究区的二维地震测线Line A,该测线处水深介于400~1 700 m,地层自下而上发育有始新世文昌组、渐新世恩平组、中新世珠海组、珠江组、韩江组、粤海组、上新世万山组和第四系8套地层,在水深500~1 000 m之间的万山组内识别了指示水合物存在的BSR特征标志(图2)。

本次研究采用IES软件中的Petro Mod 2D模块,主要对研究区新生界的温压场、有机质热演化指数R。和流体运移进行了模拟。地层压力的演化基于2个假设应用有限元模拟方法来模拟孔压发育史:首先假设岩石和孔隙流体在压缩和变形过程中保持质量平衡;其次压实过程中,流体排出极其缓慢,能够以达西流法则来描述牛顿流。热史恢复则采用地球热力学和地球化学结合方法,即将正演技术与反演技术、地史恢复与热史恢复结合起来,利用已知的地层信息和古温标资料作为约束条件,对研究区的热演化史进行模拟。有机成熟度的计算采用Sweeney和Burnham 提出的EASY% Ro模型[18-19],它是目前用于成熟度计算最为完善的一种模型,它不仅考虑了众多一级平行化学反应及其相应反应的活化能,而且还考虑了加热速率,适用范围广,能比较精确的模拟地质过程中有机质成熟度演化。

图2 神狐海域研究区模拟测线A原始解释剖面及地质模型

a.测线A原始地震剖面(时间域);b.测线A模拟地质模型(深度域)

模拟中主要需要岩石性质、地质界面、烃源岩地球化学和断层活动性等参数,对这些模拟参数的选取,综合借鉴了研究区各方面的研究成果。其中,模拟所需的岩性参数来源于中海油钻探资料[20];地质界面参数中古水深来源于高红芳等[21]在该区的研究结果;热流来源于ODP184航次调查成果[22-23];古地温由IES系统根据剖面所在的全球位置和纬度,利用全球平均地表温度窗口以及古水深变化计算不同时期的温度曲线;对于烃源岩地球化学参数,综合目前研究资料及地质分析,认为该区主要烃源岩层为文昌组和恩平组,其中恩平组w(TOC)平均值为2.19%,HI平均值为157.4 mg/g,由于白云凹陷尚未钻遇文昌组烃源岩,文昌组烃源岩层TOC、HI数据根据珠江口盆地珠一坳陷与珠三坳陷的资料结合该区地质条件类比分析认为:研究区文昌组为中深湖相泥岩, w(TOC)平均值为2.94%,HI平均值为483.4 mg/g[24];而断层活动性的分析主要是基于断层在地震剖面上断过的层位以及研究区构造活动的时间来判断和估算。本次模拟研究中,断层根据其活动期次划分为始新世中期神狐运动及之前形成的活动断层,中中新世东沙运动形成的活动断层以及上新世以后的活动断层;对剖面经过的每一条断层均进行了属性定义,在模拟过程中,各断层活动性自构造活动时间开始均设为完全开启状态。

3 模拟结果分析

模拟结果是否可靠需要通过模拟结果与钻井实测值进行对比来进行检验。研究区番禺低隆起有部分探井,其中井B有实测的地温和镜质体反射率[25],且该井与测线剖面较近,两者的演化环境与受热历史相差不大。可以利用该井的实测值对模拟结果进行检验,从与该井最近的剖面点模拟结果与实际井资料的对比图(图3)可以看出,测线点模拟曲线与井测试值趋势比较一致,说明模拟结果比较准确,可以用模拟结果来进行相关解释。

图3 神狐研究区井B地温和Ro实测值与模拟值对比

3.1 温压场模拟

天然气水合物的形成与成藏需要特定的温压条件,低温和高压有利于水合物的形成和稳定赋存[26]。测线A通过地震剖面解释,在水深500~1 000 m之间的万山组内识别了指示水合物存在的BSR特征标志。通过模拟得到该区现今的温度场(图4)与压力场(图5),在剖面上BSR所处温度在16℃左右,压力在15 MPa左右,对比世界上已知天然气水合物区,结合甲烷在海水中形成水合物的相平衡曲线[27],表明该测线剖面BSR区域处于天然气水合物稳定存在的温压场范围内,符合天然气水合物的成藏要求。

图4 神狐海域A测线现今温度场模拟

图5 神狐海域A测线现今压力场模拟

3.2 有机质成熟度模拟

对神狐海域地质调查站位资料的分析[28]

郭依群,梁劲,龚跃华,等.南海北部神狐海区天然气水合物资源概查报告.广州:广州海洋地质调查局,2004.:研究区浅表层沉积物中普遍存在游离气,甲烷碳同位素δ13C1的测试结果显示:δ13C1(PDB) (‰)值在-46.2‰~-74.3‰之间,平均为-60.9‰,除2个样品的δ13C1(PDB)值为-46.2‰和-51‰外,大多数样品的δ13C1(PDB)值小于-57‰,证实神狐海域浅表层沉积物顶空气主要来源于生物气。同时,许多调查站位顶空气甲烷的含量在垂向上保持了相对较高的丰度,特别是在调查区北部白云凹陷内,甲烷的含量分别接近了120μL/kg和200μL/kg,暗示其深部可能有持续稳定的游离甲烷供应,来源于深部的热解气。王建桥等[29]对研究区东部的ODP1146站位顶空气样品进行了分析,结果显示为混合气体的特征。由此推测,研究区浅部地层中的天然气可能兼有生物气和热解气2种来源。

Ro值是反映烃源岩成熟度的重要指标。通常,生物气的烃源岩应处于未熟—低成熟的生烃门限以下,其Ro< 0.7%,有机质热演化Ro模拟结果显示(图6):浅部地层上新世万山组、中新世粤海组、韩江组Ro位于0.2%~0.6%,均未进入生油门限,由于其厚度大,且有机质丰度较高;其中,第四系w(TOC)平均为0.22%~0.28%,万山组w(TOC)平均为0.30%~0.39%,粤海组w(TOC)平均为0.49%;粤海组—第四系海相泥岩生烃潜力w(Sl+S2)平均为0.13~0.32 mg/g,均已达到了作为生物气烃源岩的有机质丰度和生烃潜力的标准和条件

郭依群,梁劲,龚跃华,等.南海北部神狐海区天然气水合物资源概查报告.广州:广州海洋地质调查局,2004.,这几套层序可以成为良好生物成因气的主力“生物烃源岩”,具备生成生物气的巨大潜力。在合适的条件下,能够为水合物成藏提供大量的生物气气源。

图6 神狐海域A测线有机质成熟度模拟

同时,模拟结果也表明了凹陷内的“热解烃源岩”文昌组和恩平组有机质的演化程度普遍较高。其中,文昌组Ro值在2%以上,最大值超过3%,处于过成熟生干气阶段,已产生大量热解气。而恩平组Ro为1.3%~2.6%,处于高演化阶段,现阶段以生气为主。高分辨率地震资料解释结果显示

梁金强,郭依群,沙志彬,等.天然气水合物资源量评价方法及成矿远景研究.广州:广州海洋地质调查局,2002.,文昌组在白云凹陷中面积达1 900 km2,厚度1 700~3 000 m,w(TOC)平均值为2.94%,w(氯仿沥青“A”)平均值为0.225%;干酪根H/C原子比为1.5~1.0,大多在1.2,表明有机质类型为Ⅰ和Ⅱ型,以Ⅱ1型为主,HI平均为483.4mg/g;恩平组在白云凹陷中分布面积为2 860 km2,厚度1 100~2 300 m,w (TOC)平均值为2.19%,w(氯仿沥青“A”)平均值为0.1976%;干酪根H/C原子比多在1.2~0.7,表明有机质类型以Ⅱ和Ⅲ型为主。岩石热解分析测定恩平组烃源岩生烃潜力w(S1+S2)为(0.22~34.36)×10-3,平均3.1 1×10-3,H为41.6~400.0 mg/g,平均为157.4 mg/g。综上所述,研究区热解生气潜力同样巨大。

3.3 流体运移模拟

通过前面有机质成熟度的模拟分析可以知道,处于测线A深部的文昌组和恩平组有机质成熟度已处于高演化阶段,均以产气为主。从测线剖面所在区域的文昌组和恩平组烃源岩产生的油气流体运移模拟结果可以看到(图7),深部的文昌组和恩平组烃源岩已经开始产生大量的热解气,并且产生的热解气通过断层或上部渗透率高的岩层,可以运移至浅部水合物稳定带,为水合物成藏提供一定的热解气。同时也应注意到,虽然深部烃源岩层能够大量产气,但是大部分气体在运移至珠海组和珠江组时,在有利构造部位集聚成藏,这些成藏的气体然后以断裂为主要运移通道向上运移至浅部水合物稳定带;同时,也可以看到,当断层断裂至海底时,气体将沿着断层逸散至海面,造成气体的散失,不利于水合物的成藏。另外,深部热解气也可以随超压孔隙流体向上运移,与浅部生物气混合形成水合物。而在浅部,由于断裂构造不发育,受流体势控制,浅部生物气以则向运移为主运移至水合物稳定带区域。

图7 神狐海域A测线油气运移模拟

4 水合物成藏模式的构建

天然气水合物成藏是一个复杂的过程。其成藏系统包括烃类生成体系、流体运移体系、成藏富集体系,它们彼此之间在时间和空间上的有效匹配将共同决定着天然气水合物的成藏特征。白云凹陷于始新世—早渐新世在潮湿的气候环境、全封闭的深洼陷及高的沉积速率下形成了巨厚的文昌组、恩平组烃源岩,随后,这2组烃源岩在裂后相对构造平静期大量生烃,而以高沉积速率的深水细粒为主的充填作用导致白云凹陷形成超压;随后的东沙运动使白云凹陷发育大型底辟构造和大量NW 向张扭断裂,压力随之得到释放,逐步形成今天趋于正常地层压力的状态[30]。超压存在说明油气运移曾经不畅,现今白云凹陷趋于正常压力,则表明超压得到了有效释放、油气运移通畅,大量油气已经运移出来。因此,可以认为晚期底辟和断裂产生的垂向通道为油气垂向输导的有效通道。油气勘探也显示白云凹陷北坡天然气藏具有晚期断裂控制成藏的特点,同时由于白云凹陷深水区同样存在大量具有底辟构造和断裂相关的浅层亮点气异常反射,也证明了凹陷深部的油气被垂直输导到浅部地层;显然,白云凹陷存在晚期活动的断裂和底辟带的垂向输导系统,可以大大改善天然气的垂向运移条件。代一丁等[31]通过盆地模拟表明:文昌组和恩平组两套烃源岩层在开平凹陷现在处在生、排烃高峰期,在白云凹陷已处在产生裂解气的阶段。这与本次模拟吻合。另外,离该测线不远处,有我国第一口深水钻井LW3-1-1井,该井在上渐新统珠海组和下中新统珠江组钻遇了大量天然气,累计天然气地质储量约为800亿~1 100亿m3[32-33]。据此推测,该区域深部烃源岩在一定程度上可以产生大量热解气,这些热解气通过合适的断层与底辟为天然气水合物的成藏提供一定的热解气源。

同时,近海油气勘探表明[34],南海北部边缘盆地生物气的烃源岩分布相当广泛,纵向上从上中新统至第四系,甚至在局部区域的中中新统的不同层段均有分布;区域上盆地内均有大套浅海相和半深海相的泥质烃源岩展布,其有机质丰度相对较高,已达到了作为生物气烃源岩的标准,且具有一定的生烃潜力。并且已在珠江口盆地东部白云凹陷北斜坡PY34-1和PY30-1构造的浅层已发现生物气气藏。

图8 神狐海域天然气水合物成藏模式

综上所述,构建了该区的水合物成藏模式图(图8)。该成藏模式认为神狐海域水合物气源为通过深海平原生物气横向迁移和深部热解气的垂向运移混合成因,深度热解烃源岩具有良好的生烃能力,生成的大量气体以活动断裂为主要运移通道向上运移,并在合适的条件下在源岩上部有利构造部位形成一定规模的天然气气藏。同时,这些深源高成熟气体持续以断裂为主要运移通道或者随超压孔隙流体向上运移,这些气体运移至浅部与浅部生物成因气混合在一起,在合适的温压域内形成水合物。

5 结论

1)神狐海域具备有利于天然气水合物成藏的水深、温度、压力条件及其地质条件。

2)神狐海域气源条件充足,白云凹陷深部发育文昌组和恩平组两套主要的烃源岩,其有机碳含量和镜质体反射率值均较高,以产气为主,部分气体通过断裂构造运移至水合物稳定带,为天然气水合物成藏提供一定的热解气气源;神狐海域浅部韩江组,粤海组,万山组及第四系镜质体反射率在0.2%~0.6%之间,热成熟低、厚度大、泥岩及有机质含量高,是良好的生物气气源岩;生物气资源潜力巨大,可为天然气水合物的形成提供生物成因气气源。

3)神狐海域运移条件优越,发育沟通气源岩层的断裂与底辟构造,为水合物的成藏提供气体的垂向运移通道;而在浅部,气体则通过侧向运移为主运移至水合物稳定带。

参考文献

[1]Kvenvolden K A,Ginsburg G D,Soloviev V A.Worldwide Distribution of Subaquatic Gas Hydrates[J].Geo-Marine Letters,1993,13:32-40.

[6]Grevemeyer I,Villinger H.Gas Hydrate Stability and the Assessment of Heat flow Through Continental Margins[J].International Journal of Geophysics,2001,145 (4) :647-660.

[7]樊栓狮,刘锋,陈多福.海洋天然气水合物的形成机理探讨[J]天然气地球科学,2004,15(5):524-530.

[8]陈多福,苏正,冯东,等.海底天然气渗漏系统水合物成藏过程及控制因素[J].热带海洋学报,2005,24 (3):38-46.

[9]吴时国,姚根顺,董冬冬,等.南海北部陆坡大型气田区天然气水合物的成藏地质构造特征[J].石油学报,2008,29(3):324-328.

[10]张功成,米立军,吴时国,等.深水区——南海北部大陆边缘盆地油气勘探新领域[J].石油学报,2007,28 (2):15-21.

[11]张光学,祝有海,梁金强,等.构造控制型天然气水合物矿藏及其特征[J].现代地质,2006,20(4):605-612.

[12]庞雄,陈长民,朱明,等.南海北部陆坡白云深水区油气成藏条件探讨[J].中国海上油气,2006,18(3):145-149.

[13]张功成.南海北部陆坡深水区构造演化及其特征[J].石油学报,2010,31(4): 528-533.

[14]吴能友,杨胜雄,王宏斌,等.南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J].地球物理学报,2009,52 (6): 1641-1650.

[15]龚跃华,杨胜雄,王宏斌,等.南海北部神狐海域天然气水合物成藏特征[J].现代地质,2009,23(2):210-216.

[16]于兴河,张志杰,苏新,等.中国南海天然气水合物沉积成藏条件初探及其分布[J].地学前缘,2004,11(1):311-315.

[17]于兴河,张志杰.南海北部陆坡区新近系沉积体系特征与天然气水合物的分布的关系[J].中国地质,2005,32(3):470-476.

[18]Sweeney J J,Burnham A K.Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics[J].AAPG Bull,1990,74:1559-1570.

[19]Burnham A K,Sweeney J J.A Chemical Kinetic Model of Vitrinite Maturation and Reflectance[J].Geochimica et Cosmochimica Acta,1989,53(10): 2649-2656.

[20]翟光明,王善书.中国石油地质志:十六卷:沿海大陆架及毗邻海域油气田[M].北京:石油工业出版社,1990:101-121.

[2]Clennell M B,Hovland M,Booth J S,et al.Formation of Natural Gas Hydrates in Marine Sediments:Conceptual Model of Gas Hydrate Growth Conditioned by Host Sediment Properties[J].Journal of Geophysical Research.1999,104:22985-23003.

[21]高红芳,杜德莉,钟广见.珠江口盆地沉降史定量模拟和分析[J].南海地质研究,2006: 11-20.

[22]吴能友,蔡秋蓉.南海大洋钻探184航次初步成果简介[J].海洋地质,1999(4):9-52.

[3]Kvenvolden K A.Methane Hydrates and Climate Change[J].Global Biogeochemical Cycles,1988,2(3):221-229.

[23]黄永样,张光学.我国海域天然气水合物地质-地球物理特征及前景[M].北京:地质出版社,2009:95-105.

[24]傅宁,米立军,张功成.珠江口盆地白云凹陷烃源岩及北部油气成因[J].石油学报,2007,28(3):32-38.

[4]Dickens G R,O'Neil J R,Rea D C,et al.Dissociation of Oceanic Methane Hydrate as a Cause of the Carbon Isotope Excursion at the End of the Paleocene[J].Pale oceanography,1995,10: 965-971.

[25]石万忠,陈红汉,陈长民,等.珠江口盆地白云凹陷地层压力演化与油气运移模拟[J].地球科学:中国地质大学学报, 2006,31(2):229-236.

[5]Buffett B,Archer D.Global Inventory of Methane Cathartic:Sensitivity to Changes in the Deep Ocean[J].Earth and Planetary Science Letters,2004,227:185-199.

[26]Kvenvolden K A,Mc Menamin M A.Hydrocarbon Gases in Sediment of the Shelf,Slope,and Basin of the Bering Sea[J].Geochim Cosmochim Acta,1980,44:1145-1]50.

[27]Hyndman R D,Davis E E.A Mechanism of the Formation of Methane Hydrate and Seafloor Bottom-Simulating Reflectors by Vertical Fluid Expulsion[J].Geophys Res 1992,97(B5):7025-7041.

[28]雷新民,张光学,郑艳.南海北部神狐海域天然气水合物形成及分布的地质因素[J].海洋地质动态,2009,25(5):1-9.

[29]王建桥,祝有海,吴必豪,等.南海ODP1146站位烃类气体地球化学特征及其意义[J].海洋地质与第四纪地质, 2005,25 (3) :53-59.

[30]朱伟林,张功成,杨少坤,等.南海北部大陆边缘盆地天然气地质[M].北京:石油工业出版社,2007: 138-144.

[31]代一丁,庞雄.珠江口盆地珠二坳陷石油地质特征[J].中国海上油气,1999,13(3): 169-173.

[32]朱俊章,施和生,何敏,等.珠江口盆地白云凹陷深水区LW3-1-1井天然气地球化学特征及成因探讨[J].天然气地球科学,2008,19(2):229-233.

[33]朱伟林,张功成,高乐.南海北部大陆边缘盆地油气地质特征与勘探方向[J].石油学报,2008,29(1): 1-9.

[34]何家雄,夏斌,张启明,等.南海北部边缘盆地生物气和亚生物气资源潜力与勘探前景分析[J].天然气地球科学, 2005,16(2):167-174.

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864