当前位置:首页 » 地质工程 » 叶柏寿水文与工程地质

叶柏寿水文与工程地质

发布时间: 2021-02-16 13:20:38

『壹』 国土资源部地质灾害防治与地质环境保护重点实验室

(一)实验室简介

国土资源部地质灾害防治与地质环境保护重点实验室,目前是我国地质灾害防治领域唯一的国家重点实验室。现任学术委员会主任为中国工程院王思敬院士,实验室主任为黄润秋教授。实验室立足于为我国地质灾害防治和地质环境保护提供全面系统的理论和技术支持,服务于国家重大工程建设和防灾减灾实践,围绕我国尤其是西部地区地质灾害防治与地质环境保护提供实际需求服务。

(二)2013年度重要科研成果

1.黏度时变性灌浆材料扩散与固结研究

针对复杂地层岩土体,存在裂缝开度大、封堵困难、浆液凝结时间长、循环冻融寿命低、材料损耗严重等突出问题,成都理工大学裴向军教授带领团队启动了“黏度时变性灌浆材料扩散与固结研究”项目。通过系统研究,在水泥-化学浆液的溶剂化膜理论方面具有突出创新,所研制的具有自主知识产权的注浆扩散测试装置和开发的SJP系列黏度时变灌浆材料,解决了速凝灌浆材料早期强度高、后期强度低这一国际性难题,并在黏度时变性灌浆材料组成、性能参数及浆液扩散测试方法等方面具有新颖性,取得了十分显著的社会、经济效益。项目成果荣获2013年中国发明专利金奖、四川省科技进步一等奖,主要完成人包括裴向军、黄润秋、李正兵、裴钻、罗建林、袁进科、杨富平、张晓超、焦瑞峰、董秀军等(图32)。

图32 相关项目获奖情况

2.自主研发了浆液扩散测试装置,解决了浆液流速、压力与流量的测试难题以及对浆液扩散的影响

试验流体生成装置产生灌注浆液,按设计的灌浆压力、灌浆量向浆液扩散测试装置提供实验流体(图33)。

图33 浆液生成装置

3.研制了SJP型黏度时变性灌浆系列材料,它们分别适用于陡倾宽缝岩体、架空松散地层、盐渍化土、冻土等复杂地层

开发研制的SJP型系列水泥基黏度时变性灌浆材料,以水灰比0.6的水泥浆液为原浆,掺入具有独立知识产权的高分子材料。可泵期调控5~90min,为常规水泥浆终凝时间缩短了1/5~1/10。3天期强度高出普通水泥浆2.5~4倍,后期强度较普通水泥浆高出20%~30%(图34)。

本项成果已经推广应用于水利水电、矿山、铁道、公路及汶川地震灾区恢复重建等数十项重大工程,如雅砻江锦屏一级水电站危岩体及边坡坝基加固工程(2007~2012年)、大渡河长河坝水电站岩体锚索和固结灌浆加固工程、遂-资-眉高速公路路桥(涵)过渡段加固治理工程、新疆天山公路、甘孜得荣红岩子高边坡应急治理工程、九龙斜卡水电站坝基防渗灌浆工程、“九寨•云顶”项目建筑地基加固处理工程、凉山白水河滑坡治理工程、云南昆明舒铂广场基础工程(2013年)。通过科学控制水泥浆液扩散范围,减少复杂岩体灌浆用水泥量高达30%~90%,成果在企业的应用累计新增产值达14.7亿元,产生利润1.12亿元。研究成果有效控制浆液的使用和排放,达到环境和生态保护的目的。

图34 SJP型液浆材料实验数据

『贰』 开封黄河水利学院校有什么专业

1、水利工程学院

水利水电建筑工程、水利水电工程技术 (水利水电工程检测技术方向)、水利水电工程技术 (水利水电工程施工技术方向)、水利工程、水利工程(城市水利方向);

工程造价(水利工程造价方向)、建设工程监理(水利工程监理方向)、安全技术与管理、水电站动力设备、水文与水资源工程、水土保持技术、水文与工程地质

2、土木与交通工程学院

道路桥梁工程技术、土木工程检测技术、建筑工程技术、地下与隧道工程技术、工程造价、道路养护与管理、建筑工程技术(建筑工程质量与安全管理方向)、给排水工程技术、城市轨道交通工程技术。

3、测绘工程学院

工程测量技术、地籍测绘与土地管理、测绘工程技术、摄影测量与遥感技术、测绘地理信息技术。

4、机械工程学院

机械设计与制造、数控技术(智能方向)、模具设计与制造、机电一体化技术、工业机器人技术、汽车检测与维修技术、工程机械运用技术。

5、国际教育学院

商务英语(国际会展方向)、土木工程检测技术(中外合作办学)、道路桥梁工程技术(中外合作办学)、建筑工程技术(中外合作办学)、物流管理(中外合作办学)、工程测量技术(中外合作办学)。

6、财经系

投资与理财、会计、会计(注册会计师方向)、会计信息管理。

7、环境与化学工程系

食品加工技术、电厂化学与环保技术、食品质量与安全、应用化工技术、环境工程技术。

8、管理系

市场营销、电子商务、网络营销、物流管理。

9、信息工程系

计算机应用技术、计算机网络技术、数字媒体应用技术、软件技术。

10、自动化工程系

发电厂及电力系统、建筑电气工程技术、电气自动化技术、电子信息工程技术、应用电子技术。

11、旅游系

旅游管理(旅游电子商务方向)、旅游管理、酒店管理。

12、艺术系

视觉传播设计与制作、环境艺术设计。

参考资料来源:网络——黄河水利职业技术学院

『叁』 德州市城区地热流体的水质特征及水质评价

冯守涛 吉延梅 王小刚

(山东省鲁北地质工程勘察院,德州253015)

作者简介:冯守涛(1978—),男,助理工程师,主要从事水工环地质勘查工作。

摘要:对德城区现有13 口地热井的水质分析资料进行统计分析,对本区地热流体的物理、化学特征进行了阐述,重点对地热流体的水质和地热开发利用过程中的腐蚀与结垢趋势进行了评价。

关键词:德州;地热流体;水质评价;腐蚀;结垢

1997年华北石油康海实业公司水井工程大队,在山东省地勘局第二水文地质工程地质大队院内打出德州市第一口探采热水井,由此揭开了德州市开发利用地热资源的序幕。到目前为止,德城区已打了13口优质探采结合地热井,取水层位主要为新近系馆陶组下部砂砾岩和古近系上部的细砂岩,井口水温为54~58.5℃,主要应用于洗浴、供暖、游泳、医疗保健等领域。

1 地温场的分布

德州市城区位于新华夏构造体系华北地台辽冀台向斜临清坳陷的次级构造单元德州凹陷范围内,德州凹陷位于沧县、埕宁、鲁西三个隆起带的倾状交汇处和黄骅、临清、济阳三个坳陷带的收敛部位。其西南与临清凹陷相通,北与吴桥凹陷相连,西与武城-隆兴庄凸起相邻,东与宁津凸起相接,南与高唐-堂邑凸起相邻。区内发育有一组北北东向断裂,其构成了德城区的基底构造轮廓。

根据德州城区100余口井的温度资料,德州城区平均地温梯度在2.7~3.8℃/100m之间,与区域地温梯度值基本一致,将地温梯度大于3℃/100m地区定为地热异常区,则除大院-市府-烟厂一线外,全区均为地热异常区。其中地温梯度3.0~3.5℃/100m的热异常区位于德州凹陷边缘及武城凸起部位,基岩埋深为1450~1550m;地温梯度大于3.5℃/100m的热异常区分布在沧东断裂带,中心最大地温梯度为3.8℃/100m,基岩埋深为1550m。

2 地热流体特征

2.1 地热流体的物理特征

本区馆陶组地热水,清澈透明,口感咸,色度为5~25度,浑浊度为2~7.5度,无异味,无肉眼可见物,井口平均水温55.7℃。地热流体中含有较多的气体成分,其中游离CO2含量达到5.10mg/L,H2S含量为0.19mg/L,受其影响地热水抽至孔口时呈浅乳白色,并混杂有许多小水珠,经短时间静置后变成无色透明。由于Fe3+含量达到1.52mg/L,地热水放置一段时间后呈微黄色。

2.2 地热流体化学特征

分析结果表明(表1),地热流体中阴离子以氯离子为主,含量1562.5~1725mg/L,摩尔分数大于74%,阳离子以钠离子为主,含量2060.89~2251.08mg/L,摩尔分数大于90%,水化学类型为Cl—Na型;总矿化度4772.12~4987.57mg/L。矿化度与水中Cl-、Na浓度呈正相关,相关系数rNa+-矿=0.76,rCl--矿=0.44(n=13)(图1、图2)。由于馆陶组热储层在水平方向上埋藏、分布稳定,地热水水化学成分基本一致,水化学类型相同。在垂直方向上,馆陶组热储层与明化镇组下段热储层的水化学类型明显不同,后者水质类型一般为HCO3—Na型,矿化度较低,两者具明显的垂直分带性。

表1 馆陶组热储层地热流体主要化学成分一览表(平均值)

注:表中数据除pH外,其余单位为mg/L。

图1 Cl-与矿化度关系

图2 Na与矿化度关系

3 地热流体补给来源探讨

地热流体各组分之间的比例系数可以用来判断地热流体的成因,常用的比例系数有Cl/Br、γNaCl等,经计算德城区馆陶组热储中地热流体Cl/Br为884.54、γNaCl=1.18,这些系数都大于海水(Cl/Br为300、γNaCl=0.85),说明本区的地热流体具有大陆溶滤水的特征。

德城区馆陶组热储层地热流体的δD为-75.05‰~-118.7‰,δ18O为-9.54‰~-12.01‰,根据中国大气降水直线投点知,δD和δ18O值均在中国大气降水直线附近,δ18O值略偏离中国大气降水直线,这是因为地热流体在运移过程中的分馏作用使18O增加所致。据推测,热水补给主要来自东南部的泰沂山区或西部的太行山区的大气降水。地热水中氚含量很低,一般在(0.50~5.26)±2.97Tu之间,同时经14C测定,该区馆陶组地热水绝对年龄为1.526万年,这说明地下热水属于较古老的雨水。

4 热储温度评价

地球化学温标建立的基础是地热流体与固相围岩中的矿物,在一定的温度条件下达到化学平衡,在随后地热流体温度降低时,这个“记忆”仍于保持。我们分别利用TK/Na温标、TK/Mg温标、T石英温标、T玉髓温标进行了计算,认为只有T玉髓温标较适用于本区。采用的公式为:

山东省环境地质文集

式中:T玉髓为有蒸气损失时的热储温度,℃;ρ(SiO2)为地热流体中 SiO2的质量浓度,mg/L。

经推算馆陶组热储层的温度为51.6℃,与实测馆陶组热储层的温度(54~58.5℃)比较接近。

5 地热流体水质评价

5.1 医疗与洗浴用水水质评价

水温是医疗矿水的重要指标,不同水温产生不同的治疗作用和效果。本区馆陶组热储层地热流体的井口温度为54~58.5℃,为低温地热资源的温热水,符合医疗热矿水标准,可用于洗浴、医疗。

本区馆陶组热储地热流体中氟含量达到医疗价值浓度标准;偏硼酸、偏硅酸含量达到矿水浓度值标准,可命名为含硼、硅的氟氯化钠型热矿水。其他微量元素虽没有达到命名矿水浓度,但仍具有一定的保健作用。

5.2 渔业用水水质评价

地热水养鱼在地热直接利用中是十分普遍的,同时也是地热梯级综合利用低温段尾水余热的有效途径。从地热水的水质特点出发,突出主要有害元素的影响,可将氟化物、硫化物、酚、砷及汞作为地热水养鱼的水质控制指标(蔡义汉,2004),在适当与低氟冷水混合使用后,根据地热水养鱼水质评价分级表,本区地热水作为渔业用水的评价结果为良。

5.3 工业用水水质评价

该地热水水质中,氯化物、硫酸盐、铁离子、矿化度等组分含量高,不适宜于制革、染料、纺织、制糖、淀粉、食品、建筑等工业用水。但由于温度较高,可作为工业供热。

5.4 灌溉用水水质评价

灌溉水的水质对农作物生长影响很大,将地热水是否能作为灌溉水的控制项目定为总溶解固体(TDS)、氯化物、碳酸盐、钠吸附比(SAR)、硼、砷及氟化物。根据地热水灌溉水质评价分级表,本区地热水作为灌溉用水的评价结果为严重,不可作为灌溉用水。

5.5 直接排放水质评价

本区地热水中的有害成分小于地热水有害成分最高允许排放浓度,可以直接排放到地下管道中,但排放水温应低于30℃。将氟化物、硫化物、总溶解固体、酚、汞、砷和硼7个项目作为地热水直接排放水质的控制指标,对地热水排放水质进行评价分级,并与德城区浅层地下水水质进行比较,本区地热水直接排放的评价结果为优。

6 地热开发的腐蚀与结垢趋势评价

6.1 地热开发的腐蚀趋势评价

地热流体中通常含有7种具有明显腐蚀作用的化学物质:氯离子、溶解氧、硫酸根、pH值、硫化氢(包括H2S、HS、S2-)、二氧化碳、氨

另外地热流体中的总固形物也对金属的腐蚀产生影响。

根据天津地热研究培训中心(天津大学)所做的大量分析研究表明(白丽萍等,1992):当地热水中氯离子的摩尔分数超过25%时,可用拉伸指数(LI)评价地热流体的腐蚀趋势。拉伸指数的表达式为:

山东省环境地质文集

式中:LI为拉伸指数;[ Cl]为氯化物或卤化物浓度,以等当量的CaCO3表示(mg/L);[ SO4]为硫酸盐浓度,以等当量的 CaCO3表示(mg/L);AIK 为总碱度,以等当量的CaCO3表示(mg/L)。

经计算本区地热流体的拉伸指数LI=19.28,大于10,为强腐蚀性水,对金属具有强腐蚀性。因此,在工程设计中应考虑地热流体对金属的强腐蚀性。

6.2 地热开发的结垢趋势评价

根据垢层的化学成分,水垢可分为碳酸钙垢、硫酸盐垢和硅酸盐垢。

6.2.1 碳酸钙垢结垢趋势评价

影响碳酸钙结垢的主要因素有 pH 值、压力(CO2分压力)、温度及共存盐浓度(总固形物)。根据天津地热研究培训中心(天津大学)所做的大量分析研究表明:当地热水中氯离子的摩尔分数超过25%时,同样可以采用拉伸指数(LI)判断地热水中碳酸钙结垢趋势,当拉伸指数LI>0.5时,不结垢,反之可能结垢。由于本区地热流体的拉伸指数为19.28,大于0.5,因此,本区的地热水在开发利用过程不会产生碳酸钙结垢问题。

6.2.2 硫酸钙垢结垢趋势评价

硫酸钙垢以无水硫酸钙和二水硫酸钙(石膏)两种形式析出,无水硫酸钙的溶解度比二水硫酸钙小,但由于动力学的原因,无水硫酸钙在低于93℃时不会析出。影响硫酸钙沉积的主要因素为水温和水中总固形物的含量。地热流体中硫酸钙生成趋势可由石膏(CaSO4·2H2O)的相对饱和度(Sr)定性估算,其表达式:

石膏的相对饱和度

山东省环境地质文集

经计算(图3),石膏Sr=0.13<1,地热流体为未饱和,不会生成石膏垢。

图3 低温地热水中CaSO4·2H2O的溶解度积

溶解度积按质量表示而不按摩尔表示,并对离子强度和温度作了修正(Radian Corporation,1979)

6.2.3 硅酸盐垢结垢趋势评价

硅酸盐垢的成分比较复杂,通常含有40%~50%的SiO2、25%~30%铁和铝的化合物以及10%~20%的Na2O,地热流体中硅酸盐的结垢趋势可用无定形SiO2的相对饱和度(Sr)的大小来判断。其表达式为:

无定形SiO2

经计算,本区地热水中无定形SiO2的Sr=0.0013<1,所以无硅酸盐水垢生成。

7 结语

德州市城区馆陶组热储层中的地热流体,在开发利用过程中存在的主要问题是地热流体对金属的强腐蚀问题,在设计地热系统时,应伴以防腐工程设计,遵循简便可行、使用寿命长、成本低、经济性好的原则,在地热系统中安装热交换器,使地热流体将热量传递给洁净无腐蚀性的循环水而不直接进入系统,不失为一种较经济的方法。

参考文献

白丽萍,孟宪级.1992.地热水碳酸钙结垢趋势的判断.见:第一届天津地热学术研究会论文集.天津:天津大学出版社

蔡义汉.2004.地热直接利用.天津:天津大学出版社

『肆』 浅谈几种常用电法勘探的原理及优点

岩土体电来阻率测试技术源
实施原理: 由于温纳装置是等比装置,且 M N / A B = 1/ 3,所以视电阻率与电位差及电流强度的关系式为:ρ s=k Δ U A M / I
该方法较传统的解释方法具有快速、准确的特点, 相对于传统的解释方法而言更适合工程物探在解决地层划分和电阻率测试中的应用。另外, 场地的岩土电阻率是工程设计接地装置的一个重要参数。它的确定对电流尽快地散入大地, 达到足够小的接地电阻及接地装置地下部分的合理布局起到十分重要的作用, 它沿地层深度的变化规律是选择接地装置型式设计的主要依据。
三维直流电法
该法较传统直流电法勘探具有信息量大、精度高的优点, 在工程勘察中有较好的应用效果, 同时又拓展了老式电法仪的应用范围, 延长了老式仪器的经济使用寿命;但又具有施工量大的缺点,性价比决定其适合于小区域的工程勘察。
高密度电法
高密度电法实际上是集中了电剖面法和电测深法, 其原理与普通电阻率法相同,即以岩石、矿物的电性差异为基础, 通过观测和研究人工建立的电流场在大地中的分布规律, 解决水文、环境和工程地质问题, 所不同的是在观测中设置了高密度的观测点, 是一种阵列勘探方法。

『伍』 水文水井钻探技术的现状

水文地质钻探是勘探开发地下水的一个重要技术手段,其任务就是在地面水文地质调查的基础上,进一步查明地下水的埋藏条件、运动规律和含水层的水质、水量以及水温等水文地质规律,为合理的开发利用、保护或补给地下水提供所需的资料。

新中国成立以来,我国的水文水井钻探技术经历了50多年的发展,有了长足的进步,现从工艺与设备两个方面对其发展现状作一简要分析。

2.2.1.1 钻探工艺

水文水井钻探工艺技术经历了无循环静液柱护壁钢丝绳冲击钻进、清水或普通泥浆正循环回转钻进、低固相优质泥浆正循环回转钻进、泵吸反循环和气举反循环回转钻进、多工艺空气钻进以及多介质反循环钻进等阶段。目前我国水文水井钻探工艺呈现如下特点。

(1)循环介质

水基、气基介质并存,可供选择余地大。对水源比较充足地区以水基介质为主,对干旱缺水地区则以气基介质为主。根据勘探区不同地层条件可供选择的主要介质如下:

1)水基钻井液:清水、普通泥浆、加重泥浆、无固相泥浆、饱和盐水、各种乳胶液及润滑钻井液等。

2)气基钻井液:空气(压缩空气)、雾状气(气水混合)、稳定泡沫、胶质泡沫及充气泥浆(泡沫泥浆)等。

冲洗液在孔内循环方式有3种:正循环钻进、反循环钻进(气举、双壁管)、正反循环(混合)钻进等。

(2)碎岩方法及碎岩工具

碎岩方法经历了钢丝绳冲击钻进、钻粒、硬质合金回转钻进、牙轮钻头回转钻进到球齿钻头气动或液动冲击回转钻进等。目前,冲击钻进、回转取心钻进、回转全面钻进、冲击回转钻进等钻进方法都有应用。在卵砾石地层水井钻凿工程中,钢丝绳冲击钻进仍是一种有效的方法。而在水文地质普查孔、水文地质勘探孔钻探过程中多用回转取心钻进和冲击回转钻进方法。在探采结合孔和水井钻探过程中多用回转全面钻进、冲击回转钻进方法。

2.2.1.2 钻探设备

早期的水文水井钻探设备多借用岩心钻探设备,由于钻进能力不能满足要求,一般采用小口径钻进取心(样),大口径分级扩孔成井方法。水井钻探多采用钢丝绳冲击钻进,静水压护壁,捞砂筒排渣的工艺方法。目前使用的水文水井钻探设备多为专用设备。常用的钻机除了20世纪50年代至70年代研制的DPP-100型、SPJ-300型、SPJT-300型、SPS-400型SPS-600型和红星-400型外,多采用新型车装SPC系列钻机(钻深100~600m)、散装TSJ系列钻机(钻深600~2000m)。20世纪80年代至90年代研制的SDY-600型、FD-300型全液压动力头车装钻机对提高我国的水文水井勘探技术水平及钻探新工艺的推广应用起到了极大的推动作用。除此之外有关部门还引进了美国的T4W和 T3W、德国的B3A、法国的R28等型号的车装全液压水文水井钻机。据不完全统计上述钻机中应用最多的机型是SPJ-300、SPC-300和TSJ-1000型。“九五”期间,由勘探所与济南探矿厂联合开发成功SJ-1500型、SJ-2000型转盘水井钻机,其最大特点是主卷扬机配备有水刹车及油马达平衡给进系统,适于钻进1500~2000m的水文地质孔和800~1500m的水井及地热井。张家口探矿厂研制成功了SPS2000型水井钻机,用于1500m深层地下水及浅层地热的开采。

钻探用泥浆泵主要有:衡阳探矿机械厂生产的BW系列、石家庄煤探机械厂生产的TBW系列。为了适合深孔泡沫钻进的需要,吉林大学研制成功了BWZ-250、BWZ-1100型水泵泡沫增压装置;为了满足深孔气举反循环钻进的需要,勘探所与蚌埠空压机总厂联合研制成功了WF-5/60C型压缩机,可满足3000m以内的气举反循环钻进的需要。

2.2.1.3 成井管材

过去多用水泥管、铸铁管和厚钢管,这些管材笨重、易腐蚀、易结垢,影响水井寿命。现在常用塑料管、桥式镀锌滤水管、贴砾滤水管、玻璃钢管代替。

『陆』 义县至朝阳至叶柏寿段改造工程什么时候开工

县—朝阳—叶柏寿铁路扩能改造工程的推荐方案为:结合既有线落坡提速改造增建二线方案。铁路等级为I级,正线数目为双线,设计速度目标值为120/160公里/小时,牵引种类为内燃预留电化。线路总长173.4公里,其中,朝阳境内有150.4公里。工程投资估算总额为53.9亿元。根据项目改造计划要求,全线将于今年6月开工建设,工期为两年。
在评审会上,朝阳市就铁路扩能改造方案相关问题与铁道部、沈阳铁路局、省发改委和铁道设计院进行了汇报和沟通。该市交通局、发改委、铁道办等单位参加了会议。据了解,增建二线后,锦承线将封闭李家沟、周家屯、南岭、大营子、波罗赤、东大道车站。结合已实施的朝阳南站改建、部分货场搬迁工程,补充研究朝阳站为客运站,朝阳南站为货运站的方案,由沈阳铁路局牵头,并协调落实朝阳站剩余货场搬迁工程及11家专用线改接朝阳南站相关事宜。
为做好项目开工前的各项准备工作,该市政府向国省有关部门表示,朝阳各级政府和职能部门将积极协调有关部门,全力支持工程建设。结合本线扩能改造工程的可研情况,该市提出4点建议:原则同意线路走向,尽量减少项目占地和征地拆迁量;翻建朝阳火车站,保留波罗赤、东大道、大营子站或根据线路走向重新设站;统筹考虑朝阳南站货场建设,逐步实现朝阳站客货分离;结合朝阳城乡总体规划及现状,在扩能工程中完成既有平交道口改造为公铁立交,也就是说,将现有的文化路、黄河路公铁平交道口配套为公铁立交。这样,不仅满足铁路线扩能改造需要,也将进一步缓解城市交通在平交道口存在的拥堵状况。

『柒』 探测与监测

一、矿井物探技术应用

随着矿井开采深度的增加和开采强度的加大,煤层底板突水的频率也日益增加,焦作矿区除了加强水文地质预测预报及井下钻探工作外,还大力开展了物探技术的推广与应用,先后引进了矿井直流电法仪、无线电波坑透仪、瑞雷波仪、音频电透仪、加拿大GEONICS公司TEM47瞬变电磁仪、地质雷达和超低频遥感地质探测仪,应用效果非常显著。这里主要研究的是矿井物探技术在防治水方面的应用,另外介绍了超低频遥感地质探测仪的应用,它和其他物探仪器原理差别较大。

矿井物探技术在矿井防治水方面主要用于探测工作面顶、底板含水层贫富水区域划分;巷道顶底板及侧帮构造带和富水区;巷道掘进头前方构造带和富水区;放水孔或底板注浆孔孔位确定;工作面内部隐伏构造带、夹矸及薄煤带位置;煤层厚度快速探测等。以下就各类物探技术的特点和应用效果加以综述。

1.直流电法

矿井下通常应用三极测深法和对称四极测深法。根据探测目的不同,直流电法工作装置形式有多种形式。三极测深法工作装置形式为A—M-O-N—B(∞),四极测深法工作装置形式为A—M-O-N—B。两种方法M、N均为测量电极,用于探测地电场电压,根据测出的电流、电压值结合装置系数就可以换算出地层视电阻率值;A、B均为供电电极,用于向岩层供电。直流电法一般供电极距越长,供电电场分布范围越广,探测深度和两边辐射范围越大。通过对不同地点、不同深度地层的视电阻率值进行全方位探测和综合分析,就可以达到研究岩层、矿体或构造等的目的。

直流电法探测是以煤、岩层的导电性差异为基础,通过人工向地下供入稳定电流,观测大地电流场的分布规律,从而确定岩、矿体物性分布规律或地质构造特征。

直流电法具有方法灵活、理论成熟、抗干扰能力强、仪器简便的优点,可用于划分岩层贫富水区域、探测巷道附近构造破碎带位置、工作面采煤时的易煤层底板突水地段或确定放水孔孔位等。以下为几个探测实例。

图3-23为焦作矿区某工作面回风巷直流电法探测富水性区域断面图。直流电法探测结果认为,该工作面切巷往外0~100m段采煤时煤层底板极易发生煤层底板突水灾害。在生产工程中,实际采煤时到65m处底板发生煤层底板突水,煤层底板突水量达160m3/h。对此及时进行了预测预报,矿井提前采取了防治水措施,该工作面得以安全采煤。该工作面切巷向外0~220m段采煤时煤层底板极易发生煤层底板突水灾害。通过对地质资料分析也认为,此段L8灰岩可能与下伏L2灰岩甚至O2灰岩导通,煤层底板突水水源补给充分。井下数据采集重复了3次,结果雷同,因此建议此段跳采。焦作煤业集团公司有关领导研究直流电法探测结果后,决定在220m处重开切巷向外采煤,目前已按新方案安全采煤。

图3-23 焦作矿区某工作面回风巷直流电法探测富水性区域断面图

该图中较深蓝色代表低阻区,可以看出低阻区距巷道底板距离较远,L8灰岩含水层导高较小。直流电法探测结果认为,该工作面采煤时煤层底板不会发生煤层底板突水灾害。实际生产过程中采煤非常顺利,证明直流电法探测结果是正确的。

图3-24 焦作矿区某工作面低阻异常中心区域放水孔布置图

图3-24为焦作矿区某工作面低阻异常中心区域放水孔布置图。根据直流电法探测结果,在该工作面低阻异常中心区域布置了4放水孔,钻孔涌水量为82m3/h。

2.无线电波坑透

无线电波坑透仪可以探测工作面内部隐伏构造带、夹矸及薄煤带等异常体,从而为工作面采煤设计提供依据。无线电波坑透技术的原理主要如下:将发射机和接收机分别放置于采煤工作面两条相对巷道(运输巷和回风巷)中,利用发射机发出的无线电波在煤层中传播时被与煤层电性不同的地质体如断层、陷落柱、夹矸或其他地质体等吸收,造成衰减系数的差异,从而形成接收信号的阴影区。交替变换发射机和接收机的位置,就可以对阴影区进行交会,从而确定异常体位置和大小。

图3-25为焦作矿区某工作面无线电波坑透探测成果图。无线电波坑透探测结果认为,工作面切巷到回风巷43号测点和运输巷41号测点连线处圈定区域为异常区,结合地质资料分析为薄煤带。经钻探验证确实为薄煤带,因此根据无线电波坑透探测结果,改变原来设计方案,在回风巷39号点和运输巷40号点连线处(图中红线)重开切巷,再开始生产。

图3-25 焦作矿区某工作面无线电波坑透探测成果图

图3-26为焦作矿区某工作面无线电波坑透探测成果图。无线电波坑透探测结果认为,圈定的回风巷里段断层位置与工作面采煤时实际揭露情况完全吻合。

图3-26 焦作矿区某工作面无线电波坑透探测成果图

3.瑞雷波

瑞雷波技术探测优点是快速,全方位,施工灵活,定位误差小。瑞雷波技术探测的原理主要如下:根据不同频率的瑞雷波沿深度方向衰减的差异,通过测量不同频率成分(反映不同深度,高频反映浅,低频反映深)瑞雷波的传播速度来探测不同深度煤层和顶、底板岩层及其中的断层、喀斯特等地质异常体。

图3-27为焦作矿区某巷道瑞雷波超前探测成果图。在巷道迎头瑞雷波技术超前探测时,发现前方20.78~25.28m段为断裂破碎区,实际钻探证实为20.35m见断层,误差仅为0.43m。

图3-27 焦作矿区某巷道瑞雷波超前探测成果图

4.音频电透

音频电透视技术是根据CT扫描工作原理,利用两条相对巷道(如工作面回风巷和运输巷)交替进行发射和接收,记录发射电流和接收的一次场电位差,结合工作面几何参数(宽度、长度等位置关系)计算出每个发射点对应的每个接收点的视电导率值(视电阻率值的倒数),通过多重交会,绘制出工作面内部一定深度范围内岩层视电导率值的平面等值线图,从而得知此范围内富、导水区域平面分布的位置与特征。音频电透视技术是以煤、岩层的导电性差异为基础,通过人工向地下供入音频范围内的低频电流,观察大地电流场的分布规律,从而确定岩、矿体物性分布规律或地质构造特征。一般情况下,工作频率为15Hz时,探测深度大约为工作面宽度的一半,选用的工作频率越低则电场穿透深度越大。

图3-28为焦作矿区某工作面音频电透探测成果图。音频电透探测结果认为,该图中蓝线视电导率值为6所圈蓝色区域为煤层底板相对富水区,应为煤层底板注浆改造重点区域,需要加密钻孔;其他区域可少布钻孔;工作面回风巷116号点与运输巷19号点连线往外可以不进行煤层底板注浆改造。实际在煤层底板注浆改造时,布置在高导异常区内的钻孔平均出水量为86.3m3/h,低导正常区内钻孔平均出水量是37.5m3/h,前者水量是后者的2倍多。工作面回风巷116号点与运输巷19号点连线往外段打了4个钻孔,平均水量是8.6m3/h,为相对不富水区。钻探证实揭露情况与音频电透探测结果相吻合。

图3-28 焦作矿区某工作面音频电透探测成果图

5.瞬变电磁

瞬变电磁仪具有布置灵活、探测方向性强、对低阻区敏感、施工快速的优点,可以全方位探测巷道各个方向或工作面内部的相对富水区位置及形态、顶底板构造破碎区,确定工作面采煤时容易发生煤层底板突水地段、煤层底板注浆改造重点注意区域、放水孔位置等。

图3-29瞬变电磁技术原理图可以说明,瞬变电磁技术原理是利用不接地回线或接地线源向地下发射一次脉冲磁场,当脉冲结束、发射回线中电流突然断开后,地下介质中就要激励起感应涡流场,以维持在断开电流以前存在的磁场,此二次涡流场呈多个层壳的环带型,随着时间的延长,由发射回线附近介质逐步向下及向外扩展,不同时间到达不同深度和范围。二次涡流场仅仅与地下介质的电性有关,因此利用线圈或接地电极观测二次场即可了解地下介质的电阻率分布情况,从而达到探测目标体的目的。

图3-29 瞬变电磁技术原理图

图3-30为焦作矿区某巷道瞬变电磁视电阻率图。在煤层底板L8灰岩中开拓疏水巷时,在迎头处利用瞬变电磁法,超前探测到迎头前方33~42m段为相对低阻区,该方法判断为相对富水区并得到钻探证实。

图3-31为焦作矿区瞬变电磁视电阻率断面图。利用该方法探测到巷道底板存在隐伏断裂构造。通过在此布置放水孔,钻孔涌水量为60m3/h此隐伏断裂的含水性得到了证实。

图3-30 焦作矿区某巷道瞬变电磁视电阻率图

图3-31 瞬变电磁视电阻率断面图

图3-32焦作矿区某巷道瞬变电磁视电阻率断面图。在某运输巷向下帮侧(平行岩层倾向)探测距离110m处有无平行运输巷走向、断距为25m的断层(该断层为原地质勘探报告推断结论),利用该方法否定了此处该断层的存在(110m处为相对高阻),并得到钻探证实。

图3-32 焦作矿区某巷道瞬变电磁视电阻率断面图

图3-33焦作矿区某工作面瞬变电磁视电阻率断面图。该图为某工作面运输巷瞬变电磁45°斜下方探测结果。探测时0~430m段已经完成煤层底板注浆改造,大部分区域显示为相对高阻,但0~100m段下部阻值不高,认为是注浆改造效果差,需补打少量钻孔;460~590m段因尚未注浆改造,显示为相对低阻区,为煤层底板注浆改造重点区域。

图3-33 焦作矿区某工作面运输巷瞬变电磁视电阻率断面图

6.地质雷达

地质雷达是在矿井井下利用电磁波的传播时间来确定所需探测反射体(断层、陷落柱、喀斯特等地质异常体)的距离,它是矿井井下用于超前探测的有力工具。

7.超低频遥感地质探测仪

北京大学课题组在国家863计划资助下,研制了超低频遥感地质探测仪,并于2002年5月成功申请专利,该装置在石油天然气勘探和水文工程地质勘探领域获得较好应用。在煤田瓦斯方面,课题组研究成员已经在河南伊川郑煤集团公司暴雨山煤矿和登封金岭煤矿,进行了超低频遥感地质探测试验,探测曲线解释基本正确,反映明显,具有推广应用价值。之后在郑煤集团公司大平矿、超化矿进行超低频遥感地质探测试验。目前在郑州矿区和将在焦作矿区应用。

8.综合应用评述

直流电法技术主要用于划分岩层贫富水区域,探测巷道附近构造破碎带位置,工作面采煤时的易突水地段或确定放水孔孔位等。该方法优点是仪器简便、理论成熟、抗干扰能力强、方法灵活;缺点是井下数据采集时必须保证电极接地条件良好,体积效应影响资料解释时对异常区具体方位的准确判断。

无线电波坑透技术主要用于探测工作面内部陷落柱形态,隐伏断层构造带位置,富水性区域,夹矸和薄煤带等地质异常体。该仪器优点是仪器简便,对异常区定位效果好,施工快速;缺点是同象异质现象明显,井下数据采集时需断开测区内电缆,避免电磁干扰,资料解释时对异常区的定性判断仍需与地质资料结合。

瑞雷波技术主要用于全方位探测巷道附近的喀斯特、岩层界面及断层带、富水区、裂隙发育区等地质异常体。该仪器优点是全方位、快速、定位误差小、施工灵活;缺点是资料解释时“定量”易而定性难,较易引起多解性,井下工作时需多次重复探测,提高结果的可靠性,探测深度较浅,一般不超过40m。

音频电透技术主要用于探测整个工作面富水性的横向变化情况和顶、底板岩层岩性。该方法优点是井下抗干扰能力较强,仪器精度高;缺点是资料解释时对异常区的纵深位置不易准确判断。

瞬变电磁技术主要用于全方位探测巷道各方向或工作面内部的顶底板相对富水区位置及形态、构造破碎区,确定工作面采煤时的易突水地段或放水孔位置,划定煤层底板注浆改造重点区域等。该方法优点是适用于各种角度和方位探测,探测方向性强,对低阻区敏感,布置灵活,施工高效;缺点是井下工作时需注意尽量避开大的金属干扰体,在某些理论问题上需要进一步研究。

矿井地质雷达探测技术的最大优点,既是矿井井下超前探测(探距30~40m)的有力工具,又具有施工点面积小,垂直、水平方向探测均可,探测的精度也比较高;缺点是抗干扰差。

物探技术经过几十年发展,呈现出应用广泛、技术丰富、仪器多样的特点,但各种仪器和技术方法都有自己的适用范围和优缺点。焦煤集团公司在多年推广应用上述各种物探技术的实践中,深感应充分了解各种物探仪器和技术的特点,针对性地使用的重要性。

总之,实际应用时应尽可能采用综合物探手段,优缺互补,相互取长补短,多种方法并用,对目标体做出正确判断,尽可能消除多解性,这样才能满足矿井生产多方面的需求,使得物探工作快速准确向着定性又定量的方向发展。应当指出,矿井物探技术的发展是几十年来焦作矿区防治水工作者们积极探索的结果,这和前辈们与地测处防治水中心同行们的集体努力分不开。作者参加了部分实验与研究工作。

二、焦作矿区井下水位监测系统

随着矿井水平的延伸和采区的推进,目前大量的水文观测孔被破坏,部分观测孔因长期锈蚀而失去观测价值,使一些生产地区没有地下水水位资料,直接影响着这些地区的安全生产。往往花费几十万元施工的水文观测孔,仅投入使用1~2个月就被破坏。如果在地面施工水文观测孔,不仅需花费高额的资金,而且地面观测孔容易遭受人为破坏。因此,建立井下水位监测系统已成为当务之急。

焦作煤业集团公司采取了许多行之有效的防治水措施,其中地下水位观测系统的建立就是有效的防治水措施之一。地下水位观测系统为工程技术人员及时准确地掌握地下水水位变化情况,制订切实可行的防治水措施提供了依据。特别是当煤层底板突水发生后,地下水位动态变化能为准确判断煤层底板突水水源,预测煤层底板突水水量的变化趋势,采取相应的防治水措施提供依据。焦作矿区积极开展防治水工作,通过各种途径同煤层底板突水灾害作斗争,到目前为止,已连续20年未发生淹井事故,矿井涌水量也由过去的650m3/min减少至目前的280m3/min。

1.水位监测系统

(1)水位监测系统在焦作矿区的发展历史:20世纪80年代中、后期,焦作矿区就开始建立地面水文观测孔水位遥测监测系统,但仪器供电电源为电池供电,没有及时更换电池,而使仪器损坏。另外,野外遥测系统也容易遭受破坏。不易保护。因此,该系统没有得到推广应用。

20世纪90年代,因地面观测孔的急剧减少,又缺乏资金在地面施工水文观测孔,为满足安全生产的需要,就在井下施工放水测压孔,以了解地下水位的动态变化。水位的观测部分矿井使用压力表,另一部分矿井使用水位自动记录。水位自动记录仪虽然比用压力表观测井下水位先进得多,但水位自动记录仪供电电源为充电电池,数据的存储模块必须上井后才能传输到微机,才能输出水位数据,使用起来不方便,且使用寿命短。

21世纪初期,随着信息技术迅猛发展,现代传感技术的日趋成熟,采用先进的自动监测方法已是大势所趋。焦煤集团公司与煤科总院抚顺分院合作,于2001年成功地在演马庄矿建立起一套井下水位监测系统,该系统将计算机测控技术、计算机网络技术、远程数据通信技术融为一体,强有力地实现了远距离的井下水位数据采集、传输、实时数据集中监测、处理。该系统克服了以前水位监测系统的缺点,供电电源采用井下防爆供电电源,实现了全自动实时对井下水位进行监测,具有投资少,精度高,使用寿命长,操作方便的优点。

(2)水位监测系统组成及主要功能:系统由主站(地面监测中心站)和N个分站(井下水压观测站点)构成。

主站:由计算机、打印机、远程数据通信设备及系统应用软件(含系统控制、数据通讯、数据处理等),设在地面监测中心机房。

主站是通过远程数据通信设备对井下分站进行远程控制,实时获取井下各观测点的水压数据,同步监测井下各水压观测点的水压变化情况。并通过系统应用软件将水压数据进行整理、辑录、显示。根据需要利用系统应用软件生成相关数据报表、绘制各类曲线、图形、打印输出等,同时还可以在网上,将相关数据传输。

分站:由高精度水压传感器(或高精度压力变送器)、数据采集器、数据通讯接口、远程数据通信装置、防爆电源、安全保护罩等组成。安装在井下水压观测点。

分站完成水压数据采集,实现水压数据的远距离传输。分站系统是通过压力传感器反映水压变化的物理量转换为电压(电流)形式的模拟量。该模拟量经由放大、模数转换电路处理后再将其转换为数字信号,通过数据采集器内置计算机系统对该数字信号进行处理并记录到存储器中,完成数据采集。与此同时数据采集器内置远程通信接口设备也在不断检测主站信息。当检测到主站要求发送数据指令信息时则由数据采集器内置计算机控制,通过远程数据通信设备将数据采集器记录的水压数据发送至主站。

(3)系统主要技术指标

主站:硬件配置:intel P4 2.53 G/256 M DDR/80 G/16 倍 DVD/17 英寸液晶/56 K/100 M/A3幅面激光及彩色喷墨打印机;系统运行环境:Windows98 se/windows Me/win dows2000/windows XP;操作方式:全中文菜单式;观测方式:实时监测;数据记录方式:自动、手动任选;测量时间间隔:任意设置;暂存数据:≥1000组。

分站:防爆类型:本质安全型;压力测量范围:0~10MPa;传感器精度:±0.3%F·S;分辨率:2.0cm;通讯距离:>500m;传输速率:>300pbS;分站个数:1~255(255Max);环境温度:0~+40℃。

2.井下水位监测系统使用情况

焦作矿区演马庄矿于2001年12月建立了井下水位监测系统,由于资金等原因,当时仅设立了两个分站,即在该矿25采区下山施工两个测压孔(L8灰岩含水层),安装SY1151压力传感器,SY-1型数据采集器,数据通讯口,防爆电源。水压数据经通讯电缆传输到地面主站,再根据用户的需要,利用系统应用软件生成相关数据报表(如日报、月报、年报),绘制各类曲线、图形(如月曲线图、月柱状图、年曲线图、年柱状图),对水位进行实时监测。通过近几年的使用,井下水位监测系统具有投资低、操作方便、数据准确可靠,使用寿命长等优点,克服了过去地面观测孔测水位难,数据不准确,观测孔易遭破坏等缺点。即使发生淹井事故,井下无供电电源,系统亦能利用本身电池正常工作一个月。2002年5月10日,井下水位监测系统显示L8灰岩含水层水位下降,就立即与井下联系,得知25031工作面煤层底板突水,根据井下水位监测系统显示的水位平稳下降趋势,且没有发现L8灰岩含水层水位有反弹现象,判断该煤层底板突水点水源为L8灰岩,煤层底板突水点涌水量不会急剧增大,对安全生产不会造成大的影响。由此可见,井下水位监测系统能了解地下水位的动态变化,为判断煤层底板突水水源,采取相应的防治水措施提供依据。

该系统于2003年底已建成投入使用,井下的水文孔资料直接在各矿计算机上显示。目前焦作煤业集团公司和北京龙软公司合作,将各矿与集团公司网络联系起来,只要在集团公司的任何一部上网计算机上,进入水文监测系统网站,就能查阅到各生产矿井下各含水层的水位资料。目前正在进入试运行阶段。

可以认为井水位监测系统是一项经实践证明了的成熟技术。井下水位监测系统具有投资少、操作方便、数据准确可靠、使用寿命长等优点,能够代替地面水文观测网。井下水位监测系统具有推广应用前景。探测和监测技术是高承压水上采煤水害综合控制技术的重要组成部分。

『捌』 放射性同位素氚(T)和<sup></sup>C在水文地质中的应用

一些元素同位素的原子核可以自发地以一定的速率进行蜕变,放出某种射线后形成新的原子核,这部分同位素称为放射性同位素。放射性蜕变是不稳定同位素原子核的一种特性,是由于原子核中中子过剩(即中子数与质子数之比大于1.5)而引起的,其蜕变还具有一定的规律性。

(一)放射性同位素的衰变(或蜕变)定律

根据卢瑟福和索迪的理论,在任一时刻内不稳定同位素原子核(母核)的衰变速率正比于当时尚未衰变的原子数N,当列入一个比例常数(衰变常数λ)之后,就有下列数学式:

水文地球化学基础

式中:dN/dt——母核原子数的变化速率,此速率随时间而减小,故在其前面加一负号;

λ——衰变常数,它表示天然放射性同位素在单位时间内衰变机率的大小;

N——当时尚未衰变的母核原子数。

将上式整理与积分后为:

水文地球化学基础

得-lnN=λt+C

式中:lN是以e为底的N的对数;C是积分常数,它可以从初始条件t=0时N=N0给出,

故有:

C=lnN0

将其代入上式,则有:-lnN=λt-lnN0

整理后,

式中:N0——初始放射性母核原子数(即t=0时刻的放射性母核原子数);

N——t时刻剩余的放射性母核原子数;

λ——放射性衰变常数;

t——衰变时间;

e——自然对数的底数(e=2.71828182)。

(5-4)式为放射性同位素衰变定律的一般表达式。它表明原始放射性同位素原子核数(N0)的减少是按指数规律进行的。

描述放射性核衰变的特征值是半衰期。所谓半衰期是指具有一定数目的放射性原子核衰变到一半时所花费的时间,通常以T表示,当t=T时,

代入上式得:

水文地球化学基础

另一个描述放射性核衰变的特征值是平均寿命。所谓平均寿命是指放射性原子的平均概率寿命,并用τ表示。τ被定义为:

水文地球化学基础

据前式—dN/dt=λN,代入则有:

水文地球化学基础

又知

,则有:

水文地球化学基础

即τ=T/0.6931=1.443T

由此可见,平均寿命τ就等于衰变常数的倒数,它是半衰期T的1.443倍,因此放射性衰变即可用半衰期,也可用衰变的平均寿命来描述,但通常多用半衰期来描述。在水文地质研究中常用的氚的半衰期为12.262年,14C为5568±30年。

在水文地质工作中,可以通过这种衰变作用来计算地下水的年龄。下面仅以在地下水中研究得较好应用得较多的氚(T)和14C这两种放射性同位素为例加以说明。

(二)放射性同位素氚(T)在水文地质中的应用

是氢的一种宇宙射线成因的放射性同位素,发现于1939年,原子量为3.01605,衰变时发射出β-射线,生成氦

水文地球化学基础

氚的半衰期是12.262年。β-射线的最大能量是0.018MeV(兆电子伏特),最小能量是0.0035MeV。氚在水中以氚水(HTO)形式存在,它是水的组成部分,随水一起运动。在天然水的循环中不会生成易沉淀的化合物,也不易被吸收,是最理想的天然示踪剂。

天然水中的氚是用液体闪烁计数方法测定的,一般用两种单位来度量,即放射性单位和浓度单位。测量放射性的基本单位用贝可(Bq)表示,它的定义为任何放射性核素只要每秒衰变数为1就称为1个贝可(Bq)。氚的浓度单位用氚单位表示,记作TU(Trit-iumunit)。1TU相当于在1×1018个氢原子中含有一个氚原子,即

水文地球化学基础

天然水中氚的主要补给来源有两个:天然氚和人工氚。

天然氚是在大气层上部由宇宙射线产生的快中子

与稳定的14N原子反应形成的。当14N与能量超过400万电子伏特以上的中子作用时,可产生

水文地球化学基础

人工氚主要由空中热核试验产生。据历史资料,1949—1950年大气降水中氚的平均浓度为5—10TU。1952年11月美国在低纬区进行的卡赛尔爆炸(核试验)之后14天,纽约的雨水中氚浓度为1240TU。1953—1963年,由于不断进行核试验,使大量人工氚进入空中,氚的浓度均大大超过天然背景值。1963年北半球大气降水中氚的浓度出现高峰值,可达数千TU。据统计,截止到1968年,由于核试验人们在大气圈内抛下了约220kg人工氚,而天然氚仅5—20kg(据R.Coppen,1969)。

大部分氚在同温层积累,形成氚标记水分子,逐渐扩散到对流层,并以大气降水的方式到达地面。因此,雨水、地表水和浅层的地下水中都含有一定量的氚。

近20年来积累的大量天然水的氚含量分布资料表明,北半球的大气降水中氚含量随纬度增高而增加,而且以每年春末夏初时最高。这是因为在同温层积累的氚,大多在春末夏初由北半球高纬度地区进入对流层,然后被大气降水带至地表的缘故。

河水中氚的含量取决于流域范围内大气降水中氚的含量,以及那里的地质、地理条件。一般说来,河水中的氚含量与当地的大气降水是相当的,但若在河水的补给量中,循环时间较长的地下径流占较大比重时,则每年氚含量高峰值的出现时间会有些滞后。

通过对地下水中氚的研究,可以解决下列水文地质问题:

1.计算地下水的年龄

在空中氚原子生成后,很快就同大气中的氧原子化合生成HTO水分子。然后,HTO与大气水混合并随之一起降落到地表,随普通水分子一起渗入地下,成为地下水的组成部分。由于氚的半衰期为12.262年,其寿命很短,在高空生成到进入地下成为地下水的一部分,在此过程中,氚在不断地进行衰变。也就是说,氚在水中的浓度在不断减低,特别是当氚进入地下以后,其浓度随地下水埋深的增加而减少。这样,根据氚自身的衰变而在地下水中的浓度不断减少的事实,客观上就起到了对地下水的地质计时作用。

用氚法测定地下水年龄称为氚法测龄。氚法测龄是通过测定地下水中氚含量(浓度)来计算地下水的年龄,其计算公式为:

水文地球化学基础

式中:t——地下水的年龄(储留时间);

A0——补给区降水输入的氚含量;

A——排泄点地下水输出的氚含量。

但是由于人工核试验破坏了氚的自然平衡,再加上含水层的埋藏条件十分复杂,致使降水输入含水层的氚含量在时间和空间上有很大变化,要想正确地确定原始氚的输入量(A0)是比较困难的。在我国,缺乏1952年以来降水中氚含量的长期观测记录,更难以得到原始氚输入量的直接数据。此外,含水层中的地下水在径流过程中还可能发生弥散和混合作用,使地下水的氚含量与地下水储留时间之间的关系也发生改变。由此可见,式(5-7)的实际应用范围很小,它仅可以近似地应用于简单水流的年龄计算,否则必须加以修正。修正的方法有P.Huber等提出的数学模拟法和M.Kusakabe提出的衰减比率法等。另外,还可以用经验估算法来大致确定地下水的年龄。据国际原子能委员会(IAEA,1972)同位素水文小组的建议,根据地下水中氚含量的多少,来确定地下水的年龄:

氚含量<3TU的地下水,从补给区到采样点大约是20年(1952—1972年);

氚含量为3—20TU的地下水,含有少量热核试验生成的氚,地下水可能是1954—1961年间补给的;

氚含量>20TU的地下水,是最近形成的。

水中氚含量的多少,与氚的来源有关,也与地区的自然地理及水文地质条件有关。在干旱少雨地区,大气中蓄积了一定数量的氚,导致雨水中氚的富集。蒸发作用强的地区,由于蒸发而引起水中同位素分馏减弱,因此有利于氚在地下水中富集。地层岩性同样也影响着地下水中氚的含量,在黄土状亚粘土和中、细粒砂岩含水层中氚的含量明显减少。

氚(T)法测龄只适用于测定浅部的较年轻的地下水,一般只在50年以内的水,而不适于测定时间较久的深部循环水。

2.确定地下水的流向和渗透速度

根据地下水中氚含量资料可作出氚含量的等值线图(图5-1),从图中确定地下水的流向,分析地下水的径流条件。在某些情况下,若能计算出不同取样点处地下水的年龄,那么还可以计算地下水的渗透速度。

3.确定地下水与地表水之间的水力联系

图5-11975年5月北京市区地下水氚含量等值线图

根据地下水中的氚含量及其动态,与地表水(或大气降水)的资料相对比,可以判断它们相互间补给关系,研究水的来龙去脉。在某些情况下还可以据此进行补给量的计算。

此外,通过测定氚的含量,还可以研究包气带水的运动状况及解决工程地质中的渗漏问题。

(三)放射性同位素14C在水文地质中的应用

自然界存在着六种碳的同位素(10C、11C、12C、13C、14C、15C),主要有三种,它们的丰度分别为98.89%(12C);1.108%(13C);1.2×10-10%(14C)。12C和13C是稳定同位素,14C是碳的一种宇宙射线成因的放射性同位素。自1934年F.N.D.Kurie在耶鲁大学首次提出14C的存在迹象以后,迄今,人们已14C有了清楚认识并对其进行了广泛应用。

14C是由于大气中N、O、C等稳定同位素原子在宇宙射线所产生的慢中子

与稳定的14N之间核反应产生的。其反应为:

水文地球化学基础

式中:P是由核反应发射出的一个质子。产生的14C原子将很快地被氧化并生成

,或者通过与CO2(或CO)分子中的碳稳定同位素发生交换反应而存在于CO2中。

分子随着气体的流动很快混合在CO2中,并均匀地分布在整个大气圈。达到固定的稳定态平衡的浓度。这一平衡状态,一方面在大气中不断产生14C,另一方面又维持着连续的衰变。

14C在衰变时,放出一个电子(β-)重新恢复成14N。其反应为:

水文地球化学基础

式中:β-是β粒子;ν是反微中子;Q是终点能,等于0.156MeV(百万电子伏特)。

14CO2分子通过光合作用和从根部吸收进入植物组织中。活植物中14C的浓度是通过从大气中的连续吸收和连续衰变来维持平衡的。草食动物食用植物或者动物通过大气圈或水圈吸收含碳离子或分子也获得恒定的14C,所以,整个生物圈中都含有14C。由于大部分CO2溶解在海洋水中,形成含有14C的碳酸盐和重碳酸盐,一方面溶解,一方面又释放CO2,二者相互转换。在海洋中部分CO2被海洋生物吸收,二者之间又发生交换循环。由于上述情况,所以碳在整个大气圈—生物圈—水圈中交换循环。

通过对地下水中14C的研究,可以解决下列水文地质问题:

1.计算地下水的年龄

自然界中所有参加碳交换循环的物质都含有14C。但是,如果某一含碳物质一旦停止与外界发生交换,例如生物死亡或水中14C以碳酸钙形成沉淀,与大气及水中的二氧化碳不再发生交换,那么,有机体和碳酸盐所含14C将得不到新的补充,其原始的放射性14C就开始按照衰变定律而减少。根据放射性衰变定律,就可以计算出含碳样品脱离交换系统的时间。

为了研究地下水的年龄,还应当明确两点:

(1)系统应该是封闭的,没有其它放射性碳的补充。

(2)在关闭时刻,系统14C的放射性比度应该与同期大气圈中14C的放射性比度相同。

对于植物的遗体来说,关闭系统的概念是很容易理解的,即在它们死亡以后,被埋藏起来,停止了交换,系统也就被关闭起来。对于地下水中的碳酸盐或重碳酸盐来说,只有承压含水层才可能形成关闭系统。因此,计算地下水的年龄,主要是对承压水而言的。当大气降水进入地下,储存在承压含水层中,可以认为它被关闭起来,构成封闭系统,水中的14C不再得到外界补充。自大气降水进入地下以后,地下水中的14C就开始衰变。据此,来大致确定地下水的年龄。

具体计算地下水的年龄,可按下式进行:

水文地球化学基础

式中:t——地下水年龄(储留时间);

T——14C的衰半期;

——地下水补给区14C初始放射性比度;]]

——待测地下水样品中14C的放射性比度。]]

,即地下水补给区14C的初始放射性比度。一般假定,

是一个常数,而且与大气圈中14C的放射性比度一致。即用地下水补给区大气降水中14C的放射性比度,来作为14C的初始放射性比度。

14C法测定地下水的年龄,一般可测得距今500—50000年以内的地下水年龄。

2.确定地下水的渗透速度

使用14C也可以确定地下水的渗透速度。基本方法是沿着地下水的流向选两个点(a、b),分别取水样测定其14C的含量,代入下式:

水文地球化学基础

式中:tb——b点水样的年龄;

ta——a点水样的年龄;

——b点水样中14C的放射性比度;]]

——a点水样中14C的放射性比度。]]

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864