当前位置:首页 » 地质工程 » 管道地质灾害案例

管道地质灾害案例

发布时间: 2021-02-15 05:58:07

⑴ 管道穿越河流可能产生的灾害及其防治方法

7.5.1管线穿越河流在施工设计阶段应注意的问题

穿越工程是长距离管线埋设的一个重要环节,其质量的好坏,直接影响到长输管线的安全运营。穿越工程的设计、施工和维护涉及到水文、地质、水利、施工场地等多方面的因素。因此,在管道埋设前需调查收集河道的一些基本资料:

(1)穿越河段河流的地貌形态,成因类型,河道演变情况,河床冲淤规律。

(2)河道水流特征及洪水淹没情况。包括多年最高洪水位,枯水位,常年水位及其相应水位之流速,流量,水面宽度,水力坡降,流速分布规律,流向等。

(3)河床的基本地质构造,岩性特征,土壤性质(粒径的差异),分布规律及抗冲刷能力。

(4)影响管道安全的有关物理现象,如河流的封冻期,解冻期,解冻流冰期,冰层厚度,水的腐蚀性能及容量。

(5)施工场地条件情况(河漫滩地形成地质情况)。

水下穿(跨)越工程应依管线的重要程度,穿越长度,施工的难易程度及穿(跨)越河流的特征,河床地质条件等,划分成不同等级,分别提出不同的设计要求。根据我国的设计和施工的经验,初步定的等级划分标准如表7-1所示。它是河流特征的主要依据,并结合管径大小制定的。

表7-1 穿越工程等级

根据上述穿越工程的等级,在设计建筑穿越管线时要求考虑穿越工程的设计洪水标注,应根据工程等级按表7-2采用。

表7-2 设计洪水标准

若无水文资料,可根据调查洪水推算或经验公式推算。

7.5.2管道穿越河流穿越点的选择

穿越工程的最佳方案首先决定于穿越点的位置选择是否合理。国内外实践表明,选择点不合理常导致穿越管道处理困难,耗资巨大,以致管道损坏断裂。因此,穿越工程设计,选点是关键。穿越点的选择涉及到河流的特征、水文的地质状况,施工条件及技术和其他水工构筑的影响等多种因素。长输油、气管道无论是穿越或是跨越都应以垂直河流方向为主,万不得已,不采用斜交河流方向穿越。斜交河流方向穿越不仅增加了穿越段的长度,而且也增加了水工保护的难度和工程量。较优的穿越位置一般符合下列条件:

(1)符合线路的走向要求,对于中小型穿越,施工容易,在整个管线埋设工程所占的投资比重较小,穿越点的位置应服从线路的总走向。对于大型穿越工程,受客观地形、地质、交通、施工等多方面的影响,技术条件复杂,投资较高,穿越点的位置不能随意移动,线路走向应在局部服从穿越要求。

(2)河段自然边界条件基础固定,主槽较稳定,河道顺直。由经验可知,河道顺直段一般处于上下两弯道之间,这种河段流路单一,两岸发育不同程度的边滩,水流较为平顺,水流侧向侵蚀作用较弱。弯道、分汊等河段水流作用复杂,冲淤幅度大,不宜作为穿越点。

(3)河床的断面较规则,以单一对称的“U”字形河床为宜。

常见的河床断面形式有以下几种:

a.两岸对称的“U”字形;

b.两岸不对称的河床;

c.具有分流的复式河床;

d.复式“W”字河床。

各种河床的横断面形式如图7-21所示。

单一对称的“U”形河床,水流动力轴线摆动小,水位变化对水流结构的影响较小,冲淤变化规律性强,变幅小,易作为管道穿越点,但在平原冲积性河流中,这种河床断面形态比较少见,天然情况多为不对称河床或复式河床。

复式分汊河床,涨水时水流漫过江心滩深度加大,自河槽和付流来的两个环流,在江心滩顶部汇合,造成江心滩顶部淤积,而主漕或付流产生冲刷。在落水时,两股环流向江心滩分离,又造成江心滩两侧边坡的冲刷,因此造成整个河床受冲刷(图7-22)。

两岸不对称河床,一般一岸冲刷,一岸淤积,但冲淤不断变化,深泓线位移幅度大,施工困难。“W”形河应一般是出现在江心滩头处,迎着水流容易受顶冲不断崩塌、后退。上述几种横断面在选择穿越点必须予以具体分析,并采取措施,防止管道损坏。

(4)从河床的纵断面看,管道穿越部位以定在逆坡段上较好。

在实际河床中,凡底沙运动达到一定规模的处所,河床表面便形成波状起伏。波峰处水流速度最大,波谷处流速最小,沙波逆坡面由于受漩涡的阻挡作用,坡度较陡。迎坡坡度较平缓,水流较平缓稳定,冲淤变化小。而在背水面,由于波谷处出现漩涡,速度可能变为负值,反而将泥沙向上游输送,使背水面的坡度逐渐达到并超过泥沙的休止角,从而产生滑坡(图7-23),管线设置在迎水的逆坡段较好。

图7-21 河床横断面示意图

图7-22 涨落水时不同环流形态

图7-23 沙坡运动

(5)管道的穿越点宜定在施工容易,两岸具有较宽阔的施工场地的河段。

(6)两岸稳定,无滑坡、崩塌等灾害,并基岩出露,或基岩埋深不大(2m左右),或稳定的原始密实土层,便于水工保护。

(7)急流、沙滩、深槽、桥梁上下游100m,船舶抛锚地段均不得作为穿越的位置。

(8)当深切沟河两岸坡度>60°,高度大于50m,宽度100m以内,输油气管道不宜采用穿越通过,而应选用跨越通过。输油、气管道跨越深切沟河两岸必须有工程地质性能优良的基岩,按铁路、公路的建设条件要求,选定跨越位置。

7.5.3管道穿越河流可能产生的灾害及其工程防护措施

穿河(或临河)管道埋设完成并投入使用后,由于原来设计方面河床演变的长期侵蚀下切、河岸摆动等种种原因,使原处于河床或地面之下的管道有逐渐暴露的趋势或者已经暴露,如河床的横向变形(顶冲、侧蚀)就往往对管线造成很大的威胁。这时就需要考虑采取必要的工程防护措施,维护管道的安全运营。这种工程防护措施有两种,一是河道治理,通过工程措施控制河道的发展,改变河床冲刷的不利局面;二是直接保护管道,免遭水流直接冲刷而导致管线破坏。

一条长距离的输油(气)管道有可能穿越不同地形地物构成地段,一般来说不同的工程保护措施针对不同的河道穿越情况,现有管线工程保护措施的野外调查中发现有这样一种倾向,一个管理部门长期使用某一种工程保护措施治理灾害,则在相应管线上,不管河道地形情况如何,一律采用同样的或类似的工程。实际上,任何一种工程措施都不是万能的,一般都要求有较强的针对性。应当注意工程保护措施方案选择、工程设计还必须考虑河道具体条件差别。

根据管道与河道的位置关系,管线工程措施可以分为护岸工程和护管工程。所谓的护岸工程是指保护岸坡不被冲刷后退而影响管线安全的工程措施。一般来说河道总是在平面上存在摆动,只是根据河道的稳定性差异其摆幅和规模大小不一而已,穿河管道两端为了节省工程和施工方便,一般都采用弹性敷设自然弯曲抬升,因此,河道两岸陆地上的管道埋设高程一般都要远高于河槽内的管道埋设高程,且离开中心越远,则管道埋设高程越高(相对于河槽而言)。一旦河岸发生摆动,河槽移位,原管线弹性辐射爬升段就会暴露于新的河槽内,形成工程保护出险,为了防止河岸摆动,通过护岸工程达到固定河岸防止冲刷位移的目的。对于管线与河岸处于同一方向,当河岸不断冲刷后退,原埋设管道的位置逐渐变成新的河槽位置,导致管道外露(图7-24)。而护管工程则是根据河道中冲刷情况对河道管道进行直接防护措施,一般来说,护管措施大多用在控制河道的垂直冲刷(即侵蚀基准面),而护岸工程则大多在控制河道的横向摆动所造成的安全问题。

图7-24 河道横向摆动引起的管道安全问题

7.5.3.1护岸工程

护岸工程是针对河岸的横向摆动而言的,主要防护穿河管道或临近河岸的地下埋管安全。如图7-25所示,护岸工程不仅用于防止河岸摆动对穿河管道的危害,而且对平行于河岸但由于离河岸较近而产生管线暴露隐患的情况也可适用。

图7-25 管道埋设与河道护岸的关系

护岸工程作为河道治理的重要措施之一,在水利水电工程建设中被广泛采用,在世界治河史上已有很长的历史,其形式多样,常见的有以点为重点的丁坝、以线为重点的顺坝、以面为重点的铺盖护岸等,概括起来可分为3类:

(1)平顺护岸,采用一定的抗冲材料直接覆盖在河岸上,阻止水流对河岸的直接冲刷;

(2)丁坝护岸,仍然采用一定的抗冲材料,在需要保护的河岸上游修建自河岸向水流以凸出的丁字形坝体型,将水流挑离河岸,达到保护河岸的目的;

(3)上述两种方式的综合工程。

7.5.3.2护岸形式

1)抛石护岸

抛石护岸具有就地取材,施工简易以及可以分期施工逐年加固等特点,被广泛用于河道整治工程中。抛石的方法在护岸河护底两个方面都可以运用,通过抛石加大河床或河岸物质的抗冲刷能力,对于护底来说,防止河床进一步下切;对于护岸来说,防止河岸进一步横向摆动和河岸坡脚进一步冲刷。大量工程实践表明,抛石护岸工程发挥作用的关键在于维护河岸或河床的稳定,那么首先就要求抛石的自身稳定。为了达到这一点,抛石工程中有几点需要注意:抛石的范围,抛石层的厚度,抛石量,抛石尺寸,抛石的位置等。

2)砌石护岸

在管道穿越河道工程中,枯水位以上的护岸工程采用于砌块石或浆砌块石护坡。此护岸工程需注意护坡工程的基础因位于最大冲刷深以下1m的基岩上,防止由于护坡工程基础被水流掏蚀破坏,块石护体直接积压在穿河管道上,造成额外的负荷。

3)丁坝护岸

丁坝由坝头、坝身河坝根组成,一般坝根与河岸相接,坝头伸向河槽,坝头与坝身之间的主体部分为坝身,整个工程在平面上与河岸相接形成丁字形的护岸工程。其护岸机理为通过局部水流控制,防止水流集中作用于河岸的某一局部位置,导致河岸急剧后退,威胁管线安全,达到防止管线外露的目的。

工程设计和施工中应注意两点:一是工程本身的稳定性;二是控制水流的程度。

4)混凝土连锁板护岸

混凝土连锁板是一种近年提出的新型护岸形式,它具有结构简单,施工灵活方便,河岸土质适应性强等特点,预制结构混凝土板连组装,相临板块之间具有一定的调整弹性,对于我国北方一些土质松软,水土流失强的河岸值得推广。

在施工中混凝土连锁板的连接形式有多种结构,目前采用较多的主要有套挂式结构、铰接式结构几种。套挂式结构的基本形式为正方形板块,两侧对称布置连锁挂钩,体内预留连锁套孔,在实际运用中,两块以上的板块挂钩与套的组合形成连锁的护面板;铰接式结构由全对称形主板块和铰轴组成。

7.5.3.3护底工程

护底工程方式针对河床的垂直冲刷导致管线外露的工程措施,防护措施主要有抛石、桩管、固床坝等,这些方法各有优缺点,在实际应用中应视具体情况区别采用。

图7-26 固床坝控制河床侵蚀基准面示意图

从加固机理来说抛石和固床坝(图7-26)都是稳定和提高现有的河床侵蚀的基准面来达到保护管道不被流水冲刷而暴露在外;桩管是采用套管与每隔一定距离打管桩加固管道(图7-27)。

图7-27 稳桩固管示意图

7.5.4管道穿越河流产生的地质灾害的防护措施

以下具体地就管道穿越河流可能产生的地质灾害进行讨论。

(1)位于凹岸,再加上河道狭窄,在雨季河流洪水爆发时,河流顶冲,在河道拐弯处,容易造成保护管道的河堤被水流冲毁,形成露管,对管道的安全造成危害(图7-28)。

对于管道沿河岸铺设的,在管道通过凹处,存在河流冲刷的地方所产生的灾害,其防治对策为:

图7-28 管道从河道凹岸通过示意图

图7-29 管道从河道凹岸通过挡水墙防治方案布置示意图

在河岸凹处建挡水墙以防止河水的侧蚀,以确保管道的安全。修建挡水墙时应注意挡水墙的基础至少应位于最大冲刷深度以下1m 处,确保挡水墙的基础不被掏蚀(图7-29)。抗水挡墙应紧贴斜坡,基础嵌入坚硬岩石0.5m 内。若基岩埋藏太深,基础应深入河床侵蚀基准面以下1m以上。否则挡水墙的稳定性得不到保证。若山体边坡发育坡的基本特征已基本形成,则挡水墙的设计标准要提高,按抗滑挡墙的标准进行设计。挡水墙的结构尺寸在设计时要考虑河流的流速、水位等因素。

防止顶冲的另外一个工程措施为采用丁坝工程保护管道。丁坝的作用是改变河流的流向,使管道所处的边坡前缘避免遭河水顶冲。其办法是在遭河水顶冲的上游侧适当位置修建丁坝(图7-30)。

丁坝与河流流向的夹角不得小于120°。丁坝的一端与斜坡基岩相接。若无基岩出露,应伸进岸坡内2m以上。并在坝肩两侧(上、下游)5~10m范围内做挡水保护坡墙。丁坝的基础应深入河床侵蚀基准面以下1m左右。丁坝的另一端向河成30°倾覆。有利坝的安全稳定。丁坝的结构尺寸在设计时要考虑河流的流速、水位等因素。

(2)在管道穿越河流部分,要防止防护工程下游侧形成跌水(图7-31),由于跌水的作用,不断掏蚀已有防护工程的基础,防护工程的损坏就直接导致管道暴露在河道中,直接承受河水的冲刷和由河水搬运的石块撞击,为今后的正常运营埋下了隐患。

图7-30 管道从河道凹岸通过丁坝防治方案布置示意图

图7-31 管道穿越河流时出现跌水池示意图

对于管道穿越河流防护工程下游形成跌水的防治对策(图7-32):

图7-32 下游跌水防治对策布置示意图

(1)在管道上游侧建固床坝,坝体顶面高度略高于河床底,控制河床侵蚀基准面。

(2)在管道下游侧建滚水固床坝,防止水流对管道上部防护层的淘蚀,形成跌水池。

固床坝的修建注意事项:坝间距不可太近,一般控制在10m左右比较适中,固床坝的高度以略微高出河床为准。防护工程最好不要超过现在的侵蚀基准面,防止形成由于防护工程高于侵蚀基准面而产生的灾害。固床坝的结构尺寸在设计时要考虑河流的流速、水位等因素。

(3)对于河道比降较大的河流,由于河道比降较大,因此管道在横穿河流时,受到河流和沙石的冲刷时,作用力也相应较大。虽然管道上面已经用了相应的防护措施,但是由于河流的冲刷、对防护工程基础的掏蚀,原有的管道防护工程将有可能受到损坏,这将给管道造成极大的安全隐患。

对于河道比降较大的河流,在管道通过段上、下游沿河道多修建几道固床过水坝,来降低河水在管道通过段的能量,控制河床的侵蚀基准面(图7-33)。

图7-33 管道穿越大比降河道防治对策布置示意图

(4)对于用悬索方式通过河流的,应当注意对悬索桥墩的保护,注意对桥墩周围的水工措施的完善。在悬索跨越桥墩下部,由于施工的扰动和对周边植被的破坏,如若桥墩的周围未作排水措施或水工保护措施不善,在降雨量较大的时候地表水不能很快的排到河谷中,降雨在地表形成径流,地表径流在悬索桥墩周围形成的冲蚀沟对桥墩的基础有掏蚀作用,如若不及时进行处理,任由地表径流对基础的掏蚀,长久将危及桥墩的稳定,进而给投入运营中的管理道埋下安全隐患;地表径流沿管沟流入悬索桥墩下部,引起斜坡表层粘土、粉土层被冲蚀,形成冲沟,在冲沟两侧发生小型坍滑。另外,地表径流还对索跨两边山坡上的管沟也有冲蚀作用,容易造成露管,危及管道的安全。

对于用悬索方式通过河流的,防止桥墩周围的水土流失的防止对策:

(1)在管道进入河谷的斜坡地段建截水墙。

(2)在悬索桥的桥墩外围建截水沟。

(3)在桥墩已形成的冲沟处建挡墙,防止冲沟扩大,影响桥墩基础。

(4)已形成的冲沟处应及时回填,恢复植被。

⑵ 管道沿线崩塌灾害防治方法

对崩塌体的防治可采取锚固、顶挡、卸荷、防护等方法。在具体不同崩塌点的防治时,应结合工程实施条件,采用一种或多种防治方法。

7.2.1锚固

崩塌锚固技术是目前应用非常广泛而且非常有效的一项技术。主要是通过对崩塌体或危岩体进行锚杆或锚索的锚固,使其处于稳定或相对稳定的状态,减少或防止对崩塌体(危岩体)下方的管道产生威胁或危害。因此在兰—成—渝输油管道和忠—武输气管道均采用了该项技术,取得了良好的效果。

崩塌体锚固技术在材料上分为锚杆和锚索两种。在受力条件上分为预应力和非预应力。在管道沿线治理施工中应用最多的是全黏结性锚杆和预应力锚杆两种类型。其特点是施工简单方便而且效果较好,经济上也比较合理。

7.2.2顶挡

在基岩地区,受岩石风化或节理裂隙的控制,形成了较危险的悬空状态的岩体,如不治理将危及管道线的安全,但用常规方法难于治理,特别是所处位置地面高差较大,无法锚固,也不能卸荷,采用顶挡的方式是既经济又简单的一种方法。忠武管道张家沟为岩体就是用这种方法将以大型岩块固定,取得了非常好的效果。

7.2.3卸荷

崩塌体卸荷实际上是人为的将崩塌进行“拆除”,使摇摇欲坠的崩塌在没有灾害的情况下,或在人的干扰下倒塌,既防止了灾害的发生又达到了治理的效果。

在管线保护和地质灾害治理施工过程中,卸荷往往是局部使用的一种方法,一般情况下配合锚固和挡墙等工程措施,达到整体的治理效果。

7.2.4防护

防护是一种被动的地质灾害防治方式,为了减轻山体上部岩体落石对在自由落体作用下对管道的损害,将管道采用整体形式进行防护,是忠—武输气管道常用的一种地质灾害防治方式。

由于管道分布的线路较长,而且一般沿山体根部通过,在基岩地区随时都有风化剥落的岩块掉下来,即使较小的块石,在重力加速度的作用下,都将对管道产生影响,甚至砸坏管道。因此采用被动防护的方式,将避免这种灾害的发生,并降低工程治理的难度,同时可以节约大量的工程投入。常用的方法有增加管道上部防护层的厚度和在崩塌下部建防护网等方法。

⑶ 管线地质灾害危险性综合分区评估

根据上述分区原则与量化指标分区标准,将山西段输油管线划分为 18个危险性区段。各区段分区评估涉及地质环境条件、存在的地质灾害、拟建工程施工过程中可能诱发、加剧和遭受的地质灾害,综合评估的量化指标数值、危险性等级、危害程度等内容,列于表9-19中。

18个区段中,地质灾害危险性大的有6个区段,长度130.5km,占线路总长度的25.7%;地质灾害危险性中等的有4个区段,长度97.5km,占线路总长度的19.2%;地质灾害危险性小的有8个区段,长度280km,占线路总长度的55.1%。综合分区评估图见图9-17。地质灾害危险性大、中等、小等级的区段,其建设用地适宜性相应为适宜性差、基本适宜和适宜。现从起点到末站分述如下:

1.K0+0~K2+300区段地质灾害危险性小区(C1)

分布于陕西省潼关县秦东镇沙坡村西南至黄河漫滩,全长2.3km,风陵渡分输站即位于起点。

管道横穿黄河Ⅰ级阶地,阶地平坦,沟谷不发育,地面高程350~360m,地下水位埋深15~18m,阶地前缘坡高约10m,坡度600~800,坡体不稳定,有崩滑迹象(W1),拟建工程开挖时易引发坡体失稳,危害程度小,地质灾害危险性较小。

该区段环境地质条件较简单,地质灾害类型单一,不稳定斜坡体1处。灾害点密度0.4个/km,灾害段分布长度比例4m/km,综合评估该区段地质灾害危险性小。

2.K2+300~K3+800区段地质灾害危险性大区(A1)

分布于陕西省潼关县秦东镇沙坡村西至山西省芮城县风陵渡镇东王村东lkm。全长1.5km。

管道横穿黄河河漫滩、河床区,黄河在此段河水面宽约1km左右。两侧漫滩宽约300~500m,宽阔平坦,地面高程340m左右,地下水水位埋深约1~2m,有轻微盐渍土分布,地表粉土略呈白色,对管道的危害主要是盐胀和侵蚀,其危险性小。近河床一带由于黄河水长年冲蚀岸边易坍塌,附近护堤工程已遭破坏。由于拟建工程穿越黄河采用深部定向穿越,该灾害对工程无危害,危险性小。该区黄河及漫滩区由于存在地震液化潜在危害,预测评估地质灾害危险性大。

该区段地质环境条件简单—中等,总计有3种地质灾害,岸边坍塌2处,液化砂土分布1.5km,盐清土分布约1km。灾害点密度0.5个/km,灾害段分布长度比例1000m/km,综合评估该区段地质灾害危险性大。

3.K3+800~K8区段地质灾害危险性小区(C2)

分布于芮城县风陵渡镇东王村东1km至东章村东500m。全长4.2km。

地貌类型为黄河左岸Ⅰ级阶地,阶地较为平坦,由北向南微倾,地面高程350~390m,冲沟较发育,较大的东章河有轻微洪水冲蚀,阶地前缘地形较破碎,坡体高约 10m左右,坡度50°~900,坡体岩性上部为粉砂土,厚5~8m,下部为巨厚层砂层,坡体易沿岩性触面崩塌,另外,当地百姓取土挖砂严重破坏了自然坡体并形成多处不稳定直立边坡(W2、W3、W4),拟建工程在施工开挖过程中极易诱发崩塌,地质灾害危险性小。

该区段地质环境条件简单,总计有2种地质灾害,不稳定斜坡体3处,洪水冲蚀2处。灾害点密度0.90/km,灾害段分布长度比例5m/km,综合评估该区段地质灾害危险性小。

4.K8~K23区段地质灾害危险性中等区(B1)

分布于芮城县风陵渡镇东章村东至永济市韩阳镇韩家坡村,全长15km。

K8~K20区段地貌类型为芮城盆周隆起黄土侵蚀台地,地面标高一般400~800m,地形起伏较大,冲沟发育,地形支离破碎,沟谷发育密度大,沟深谷长梁窄,沟谷形态多呈深“V”型,近沟口呈深“U”型。管道七次穿越大型深切沟谷,沟坡坡度多超过400,大部分近直立。边坡大部分为不稳定斜坡。坡体岩性上部为第四系上更新统黄土,具大孔隙,垂直节理发育,为中等~强湿陷性黄土,中部为中更新统黄土,下部为新近系上新统粘土。坡体易沿岩性接触面和重力剪切面崩滑,是崩塌滑坡易发区,拟建工程在施工开挖过程中极易引发坡体失稳并遭其危害,地质灾害危险性中等。同时该区段也易遭受洪水冲蚀,地质灾害危险性小—中等。

K20~K23区段地貌类型为断块剥蚀高中山中条山西部区。管线基本沿山脊附近敷设,在近山下时穿越沟谷两次。该区段出露地层为太古界涑水群以斜长角闪片麻岩为主的变质岩,有侵入岩脉分布,构造发育中等,岩体风化中等~强烈,山高坡陡。拟建工程在施工开挖过程中容易诱发基岩崩塌,地质灾害危险性中等,在近山前地段拟建工程可能加剧并遭受H1滑坡地质灾害,危险性中等。

总之,该区段地质环境条件复杂程度中等,总计有6种地质灾害,滑坡1处,不稳定斜坡11处,黄土塌陷3处,湿陷性黄土分布区段10km。灾害点密度0.8/km,灾害段分布长度比例660m/km。综合评估该区段地质危险性中等。

5.K23~K125+200区段地质灾害危险性小区(C3)

分布于永济市韩阳镇朝家坡村至夏县水头镇上牛村。管线呈北东向穿越运城盆地冲湖积平原区,全长102.2km。

该区段总体地形开阔平坦,地势总体由北东向西南倾斜,第四系松散堆积物厚度较大,边山发育活动性断裂,地面高程在340~480m之间。其中K34~K44区段及K105~K115区段为黄土台地区,高出盆地30~50m不等,前者为涑水河盆周隆起黄土台地,地面高程为360~370m,后者为涑水河与其支流姚暹渠之间隆起的黄土台地,地面高程380~480m,两台地冲沟相对不发育,沟谷较浅,地表岩性为第四系中更新统粉土。为中等湿陷性黄土,其危害小,地质灾害危险性小。在K105右2km处GL1地裂缝延伸方向距管线约4km,预测地质灾害危险性小。

在永济市东北K48至K54区段,穿越涑水河下游的伍姓湖区,分布6km长的盐渍土和软土,地下水水位埋深0~3m,盐渍土对管道工程存在盐胀和侵蚀作用,其危险性小;该区段下部存在一定厚度的淤泥质粘土,淤泥、软土,工程地质性质较差,易产生不均匀沉降,对管道形成危害,其地质灾害危险性小。

在K33+250处,管道第一次穿越涑水河,涑水河束流归渠排污,渠宽约10m,水宽5m,深1.0m,两侧河床宽阔,无洪水冲蚀威胁,地下水水位小于3m,无盐渍土分布。在K119处,管道第三次穿越涑水河,河床浅而窄,无水流,洪水冲蚀可能性小。

运城分输站位于K95附近,地形平坦,无灾害发育,也无潜在地质灾害威胁,综合评估站址区地质灾害危险性小。

总之,该区段地质环境条件复杂程度较简单,总计有4种地质灾害,盐渍土、软土分布区段6km,湿陷性黄土分布区段20km,地裂缝1条,灾害点密度0.04个/km,灾害点分布长度比例250m/km。综合评估该区段地质灾害危险性小。

6.K125+200~K164+700区段地质灾害危险性中等区(B2)

分布于夏县水头镇上牛村至侯马市上马镇西阳,呈西南,全长39.5km。

该区段穿越峨眉山断隆黄土台地区东部,地面高程500~660m。地表岩性为第四系中上更新统黄土类土。地处侵蚀作用最为强烈的地段,冲沟极为发育,沟壑纵深,地形支离破碎,切割深度30~100m,穿越大沟谷20余条。沟谷形态多呈深“V”字型,近沟口呈“U”字型,沟坡坡度30°~70°,有的近直立。拟建工程在施工开挖过程中易诱发崩塌、滑坡,并加剧已有不稳定斜坡失稳而遭受其危害,其地质灾害危险性中等。

该区段地表岩性为第四系上更新统风积坡洪积黄土,属中~强湿陷性黄土,黄土湿陷地质灾害危险性小—中等。穿越沟谷均易遭受洪水冲蚀,地质灾害危险性中等。

总之,该区段地质环境条件复杂程度中等,总计有3种地质灾害类型,湿陷性黄土分布区段长度30km,不稳定斜坡21处,滑坡4处,洪水冲蚀多处,灾害点密度0.6个/km,灾害点分布长度比例750m/km。综合评估该区段地质灾害危险性中等。

7.K164+700~K170、K180~K258、K261+500~K278区段地质灾害危险性小区(C4、C5、C6)

分布于侯马市上马镇西阳呈西南至洪洞县明姜镇晋家庄,全长99.8km。

管线近南北向穿越临汾盆地西部,地势总体北高南低且由西部微向东倾斜,地形较平坦开阔,地面高程400~500m,松散堆积物厚度大,最深达2000m,由于基底隐伏断裂发育,新构造运动强烈,地震动峰值加速度为0.20g,对应基本烈度为Ⅷ度,发育多条地裂缝,调查区范围内有两条(GL2、GL3),延伸方向距离管线分别为2.5km、4.2km,目前较稳定。预测评估地质灾害危险性小。

K223+500~K242+500区段为汾河盆周隆起黄土台地,台面高程440~510m,南部高出盆地30m左右,北部与冲洪识倾斜平原接壤,冲沟较发育,其穿越五条大沟,沟谷形态多呈宽“U”型,坡高10m左右,坡体基本稳定,拟建工程在开挖过程中引发坡体失稳可能性小,地质灾害危险性小。该段地面岩性为风积黄土,湿陷系数介于0.03~0.07之间,为中等湿陷性黄土。

K200~K278区段,管线基本沿冲洪积倾斜平原敷设,地面高程500~600m,冲沟发育一般,较大型沟谷9条,其沟谷形态多呈宽“U”型,边坡一般基本稳定,直立高陡的稳定性差,拟建工程在施工开挖过程中较易诱发边坡失稳,地质灾害危险性小,较大的沟中多堆积有全新统冲洪积物,多数沟具洪水冲蚀威胁,但危险性较小,三条沟由于人类工程活动强烈,人工松散堆积物贮量丰富,为泥石流的发生提供了物质来源,为潜在泥石流沟,中等易发,洪水冲蚀和潜在泥石流地质灾害危险性小。

侯马、洪洞分输站分别位于K168、K254附近,侯马分输站至侯马油库分支线约4km。两个站址区及分支线无地质灾害发育,也无潜在地质灾害威胁,综合评估地质灾害危险性小。

总之,该区段地质环境条件复杂程度中等,总计有3种地质灾害类型,湿陷性黄土分布区段19km,潜在泥石流沟3条,地裂缝2处,灾害点密度0.07个/km,灾害点分布长度比例200m/km,综合评估该区段地质灾害危险性小。

8.K170~K180和K258~K261+500区段地质灾害危险性大区(A2、A3)

分布于汾河及漫滩区,长度13.5km。

管道两次穿越汾河,并沿汾河漫滩敷设。汾河河床宽约300~500m,水面宽20~60m,水深2~5m,岸边由于洪水冲蚀发育一些小型的坍塌。地质灾害危险性小。另外汾河河床及漫滩地段地下水水位埋藏较浅,约1~3m。地层中发育较厚的中、细粉砂层,据临近标贯试验确定Ⅷ度地震烈度下存在砂土液化,液化等级为 Ⅲ—Ⅱ级。据史料记载临汾盆地发生过多次地震液化事件,预测地质灾害危险性大。

总之,该区段地质环境条件复杂程度中等,总计有3种地质灾害,不稳定斜坡1处,岸边坍塌4处,砂土液化2处,灾害点密度0.5个/km,灾害点分布长度比例1000m/km,综合评估该区段地质灾害危险性大。

9.K278~K335区段地质灾害危险性大区(A4)

分布于洪洞县明姜镇晋家庄至灵石县马和乡杨家源村东,全长57km。

管线近南北向穿越霍州盆周隆起侵蚀黄土台地和灵石褶皱断块侵蚀低山区,该区段人类工程活动强烈,主要以采煤为主。

本区段属霍西煤田区,各煤矿区上部2号煤已基本采空,正在向下开采9、10、11号煤层。形成了大面积新、老采空区。局部地区为多层采空区。已导致地表形成采空塌陷型地裂缝地质灾害,规模较大,小型煤矿区主要形成中、小型塌陷和地裂缝。该区段共调查采空导致的地裂缝40条,大型的16条,中型的40条,小型的4条,塌陷6处,目前均处于不稳定状态。由于今后开采规划的范围扩大和下层煤的复采,将会扩大和加剧地面变形破坏,对管道危害程度大,预测地质灾害危险性大。

K278~K290区段为黄土台地区,松散覆盖层厚,地形虽然较为平整,但所处地貌位置为冲沟向上源侵蚀较发育区,预测地质灾害危险性小。表层黄土具中等~强湿陷性,预测黄土湿陷地质灾害危险性中等一大。

K315~K335为低山区,地形切割强度,冲沟发育,相对高差大,沟深坡陡,形态多呈深“V”型,沟深100m左右,上部岩性为垂直节理发育的第四系上更新统黄土,厚10余m,中部为中更新统粉质粘土,其下为新近系上新统粘土,有的沟底出露二叠系砂岩。沟坡坡度一般为 50~90°,不稳定斜坡广布,是滑坡、崩塌易发区。拟建工程在施工开挖过程中易引发坡体失稳,并遭受其危害,地质灾害危险性中等~大。另外,该区段洪水冲蚀和泥石流的地质灾害危险性小~中等。

综上所述,该区段地质环境条件复杂,人类工程活动强烈。总计有8种地质灾害类型,地裂缝40条,塌陷6处,不稳定斜坡12处,滑坡2处,崩塌4处,泥石流沟2处,洪水冲蚀多处,黄土湿陷性段20km。综合评估,灾害点密度1.1个/km,灾害点分布长度比例800m/km。综合评估该区段地质灾害危险性大。

10.K335~K365区段地质灾害危险性中等区(B3)

分布于灵石县马和乡杨家源村东—介休市三佳乡南两水,全长30km。

管线北北东向穿越盆周隆起黄土台地进入太原盆地,地面高程770~1030m,总体地势由南向北逐渐降低,台地沟谷较发育,沟谷形态呈“V”型,少量呈窄“U”型,沟深一般10~50m,谷坡300~600,崩塌、不稳定斜坡发育,地质灾害危险性小~中等,洪水冲蚀轻微—中等,N6泥石流对管道危害小,预测地质灾害危险性小。另外在进入盆地区介休市龙头镇—三佳镇一带,管线穿越由于超量开采松散岩类孔隙水而引发的地面沉降边缘区,目前沉降边缘区尚未发现土地及民房变形损坏现象,预测地质灾害危险性小。另外该段台地区,黄土湿陷系数位于0.03~0.07之间,为中等湿陷性黄土。

总之,该段地质环境条件复杂程度中等,总计有6种地质灾害类型,其中,崩塌5处,泥石流1处,洪水冲蚀4处,不稳定斜坡3处,地面沉降区段5km,湿陷性黄土分布区段10km,灾害点密度0.5个/km,灾害点分布长度比例400m/km。综合评估该区段地质灾害危险性中等。

11.K365~K394+800区段地质灾害危险性小区(C7)

分布于介休三佳乡南两水~平遥县沿村堡乡东大间村东,全长29.5km。

管线近北东向穿越冲洪积倾斜平原区,地面高程760~770m,总体地势东南高,西北低,冲沟不发育,仅有一条沟谷有洪水冲蚀现象,地质灾害危险性小,地表岩性为第四系中更新统冲洪积粉土,湿陷性弱或无。

总之,该区段地质环境条件复杂程度简单,地质灾害类型单一,综合评估该区段地质灾害危险性小。

12.K394+500~K430区段地质灾害危险性大区(A5)

分布于平遥县沿村堡乡东大间村东至祁县晓义乡张家堡东,全长35.5km。

管线近北东向穿越冲洪积倾斜平原区,地势开阔平坦,地面高程760~770m之间,总体地势北高南低,冲沟不发育,仅有一条大河——昌源河从K412+200处通过,由于上游建有子红水库,洪水冲蚀危险性小。

该区段基底隐伏断裂发育,并处于断裂构造转折部位,主要地质灾害是受构造控制的地裂缝,其发育密度集中,规模也大。断续延伸,共发育9条,最长达20余公里,最短几十米,最宽1.5m,窄者春夏季开裂,冬季闭合,宽者形成壕沟,局部地段下错20~50cm,导致地面起伏,水井破坏,所经之处已导致公路下错,房屋毁损弃住,土地不能正常耕种,危害巨大,损失严重。据调查每年都有新的发展,处于不稳定状态,预测评估地质灾害危险性大。

祁县分输站位于K425处,到东观油库分支线长约4km,站址及分支线均位于地裂缝发育区域,工程建成后预测遭受地质灾害危险性大。预测评估地质灾害危险性大。

该区地质灾害类型单一,但地裂缝地质灾害危险性大,灾害点密度0.2个/km,灾害点分布长度比例800m/km,综合评估该区段地质灾害危险性大。

13.K430~K472区段地质灾害危险性小区(C8)

分布于祁县晓义乡张家堡东至榆次区鸣谦镇北砖井村东,全长42km。

管线近南北向,主要穿越于冲积平原区,宽阔平坦,最北部为冲洪积倾斜平原区,地势北高南低,地面高程介于770~840m之间,最低点位于乌马河、潇河和张花营至西荣一带,地面高程为771~772m之间,乌马河和潇河由于近下游区,一般无水,洪水冲蚀可能性小。K451~K464张花营至西荣地形较低,地下水位为0.20~3m,为盐渍土分布区,分布面积50km2,管线上分布区段 13km,该盐渍土为轻微盐渍土,对管道具有盐胀和侵蚀作用,其危害程度小,预测地质灾害危险性小。

总之,该区段地质环境条件简单,地质灾害类型单一,灾害点密度0.025个/km,灾害点分布长度比例为300m/km。综合该区段评估地质灾害危险性小。

14.K472~K495区段地质灾害危险性大区(A6)

分布于榆次区鸣谦镇北砖井村东至太原市杏花岭区西岗村,全长23km。

管线近南北向穿越太原东山褶皱断块侵蚀中低山区和黄土丘陵台地区,地形起伏不平,相对高差较大,沟谷深切,管线穿越地面高程840~1058m,沟谷形态多呈“V”字型,边坡坡度25°~60°间。出露基岩多为二叠系砂页岩,风化强烈,地质构造较发育。

该区段人类工程活动强烈,主要以采煤为主。分布大、中型煤矿5座,小型煤矿十几座。3煤已基本采空,现主采15煤,已形成大面积采空区,引发的地裂缝、塌陷灾害比比皆是,本次粗略调查地裂缝20条,塌陷20处。大矿引发的地裂缝规模较大,形成裂缝塌陷区,小煤矿形成的地裂缝规模较小、塌陷多为中、小型。地裂缝大型的6条,中型的7条,小型的7条,已造成土地弃耕、房屋损坏、村庄搬迁等危害,损失巨大。目前均处于未稳定状态,对管道危害程度大,预测地质灾害危险性大。

该区段滑坡、崩塌也较发育,拟建工程在施工开挖过程中易引发边坡失稳,对工程施工构成威胁。预测地质灾害危险性中等。该区段黄土为中等—强湿陷性,局部已引发路基变形开裂,另外在K473~474+100区段存在20世纪三四十年代修建的防空洞,埋深3~10m,断面面积2m×2m,分布面积约1km2,拟建工程在施工开挖过程中和建成运营后可能引发和遭受其塌陷灾害。预测地质灾害危险性小。

总之,该区段地质环境条件复杂,地质灾害类型有8种,其中采空地裂缝20条,塌陷20处,湿陷地裂缝1条,滑坡12处,崩塌2处,不稳定斜坡3处,湿陷性黄土分布区段约8km,人工洞穴段1km,岩溶塌陷3处。灾害点密度37个/km,灾害点分布长度比例 840m/km,综合评估该区段地质灾害危险性大。

15.K495~K508末站及油库区段地质灾害危险性中等区(B4)

分布于太原市杏花岭区西岗至北郊区赵家山末站至西焉村油库区,全长13km。

管线穿越地貌类型为梁状黄土丘陵和盆周隆起黄土台地区,地表岩性多为黄土,地形起伏不平,地面高程850~980m,沟谷发育,沟深一般10~30m,边坡坡度为30°~70°,坡体不稳定,易形成崩塌和滑坡,拟建管线施工开挖过程中易引发和加剧边坡失稳而遭危害,地质灾害危险性小。另外,地表黄土湿陷系数介于0.03~0.075之间,为中等—强湿陷性。地质灾害危险性小—中等。

管道于K501+500处,穿越汾河一级支流杨兴河,洪水冲蚀的可能性小,其北部支沟为太原垃圾场,管线穿越时要避开垃圾土敷设,预测地质灾害危险性小。

末站位于赵家山村西,地形较复杂,冲沟发育,边坡高8~15m,坡度较陡,边坡易坍塌,工程建设和运营过程中易诱发坡体失稳,预测地质灾害危险性中等,综合评估地质灾害危险性中等。

总之,该区段地质环境条件复杂程度中等,地质灾害类型有2种,不稳定斜坡4处,湿陷性黄土分布区段8km,地质灾害点密度0.4个/km,灾害点分布长度比例660m/km,综合评估该区段地质灾害危险性中等。

⑷ 油气管道沿线地质灾害危险性分段与预测

油气管道沿线地质灾害危险性分段及危险度预测是通过对各段灾害发育条件的比较分析,确定不同因素对灾害发生的作用,运用区域地质灾害危险性评价的理论和方法,确定管道各种地质灾害的危险度。

4.2.1危险性分段与危险度预测依据

(1)查明管道沿线与灾害发育相关的环境条件;

(2)灾害的分布规律、规模与成因类型;

(3)管道沿线灾害发生的原因,相似管道段的分布;

(4)掌握管道沿线发生灾害的主要诱发因素及其出现规律及原因。

4.2.2评价因子与评价指标

管道沿线地质灾害危险性分段与预测评价因子有:灾害发生的基本环境条件——主控因子(Si)、影响管道灾害的诱发因素——次要因子(Bi)、管道已发生灾害——现状因子(Gi)等三类,并从各类因素中选取对灾害起控制作用的条件作为预测评价的主要因子(图4-5)。

图4-5 管道分段危险度预测框图

评价因子指标的确定内容较多,下面仅将各类因素中的典型因子指标确定进行介绍。

4.2.2.1主控因子评价指标(Si)

(1)管道所处斜坡坡度(S1):25°~45°产生的灾害最多(表4-4)。

表4-4 管道所处斜坡坡度判别因子(S1

(2)斜坡坡形及变形(S2):斜坡坡形及变形判别因子评价指标见表4-5。

(3)管道所在斜坡岩性(S3):管道所在坡体岩性评价指标见表4-6。

表4-5 斜坡坡形及变形判别因子(S2

表4-6 斜坡岩性判别因子(S3

(4)斜坡结构(S4):斜坡中的结构面是产生斜坡不稳定的基础因素,结构面的产状和不同结构面的组合控制了灾害的发生(表4-7)。

4.2.2.2次要因子评价指标(Bi)

地质灾害发生的常见诱发因素主要有降雨量、地震、人为活动。其中降雨量是诱发灾害发生的主要因素。

(1)降雨诱发灾害的判别因子(B1)评价指标(表4-8)。

(2)斜坡地下水动态变化判别因子(B5)评价指标(表4-9)。

地震危险判别因子常考虑的因素。与斜坡破坏有关的地震参数是:地震烈度、加速度、地震周期、地震历时、最大震中距。目前使用较广的判别指标仅为地震烈度。

表4-7 斜坡结构面判别因子(S4)

表4-8 降雨量判别因子(B1

表4-9 坡体地下水动态变化判别因子(B5

4.2.2.3管道沿线灾害发育现状判别因子指标(Gi)

管道沿线灾害发育现状判别因子(表4-10)包括已发生的灾害分布数量、已发生的灾害规模,已发生灾害的危害程度。管道已发生灾害是预测危险度的依据之一。

表4-10 管道沿线灾害发育现状判别因子(Gi

4.2.3管道危险度分段预测方法

灾害危险度分段预测是按地貌和环境条件相似性进行分段,然后对管道各段发生的因子进行取样,确定管道各段内不同因子对发育灾害发生的危险程度,并对所取因子按照一定的数学方法进行叠加,求出危险度。危险度值越大,表明危险性越大。

(1)将管道按地貌条件划分成若干段,并将具有相似的地貌条件和灾害发育条件相似划归一类;

(2)选定各段的判别因子,并按照各因子所处的等级赋值,单因子危险度为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ时,分别赋值5、4、3、2、1。当管道各段内不具备某种因素时,设定该判别因子取值为1,然后将各因子取值进行归一化处理;

(3)分段采样,由于被评价的区域是不确定的数(指区域面积),各区域内的地质灾害相关因素也有一定差异,所以总体危险度等级的判别指数应根据具体区域统计的结果,并结合实际情况确定。

将上述归一化处理后的判别因子值代入下式,把因子值进行叠加平均:

山区油气管道地质灾害防治研究

式中:

——危险度预测判别因子的单因子样本;

n——总样本数;

P——各段中因子的平均值。

(4)对各段因子判别值分别进行统计,得出各段危险度预测判别统计值。确定综合评价因子指标

山区油气管道地质灾害防治研究

式中:

——综合评价因子指标;

[ai]——评价因子权重。

危险性分段数据的采集和分析是本项目研究的难点,采用GIS技术系统进行统计、分析、评价与制图,评价因子按不同的权重赋值于网格进行采样统计,综合因素数字集求中位数的统计方法。即:

平均样本值:

山区油气管道地质灾害防治研究

通过以上工作,最后进行管线沿线地质灾害危险度区划,确定不同灾害对管线的影响程度。

⑸ 近年来,湖南发生了哪些地质灾害

我国湖南省东西南三面环山,中北部地势较低,且错落分布着湘江、资江、沅江、澧水四大主要河流,北部为洞庭湖平原。这一地形特点在很大程度上给湖南带来了地质灾害隐患,主要灾害有泥石流、滑坡、崩塌、塌陷等。下面对湖南省近年来发生的地质灾害事件进行一个大致的盘点,帮助人们对湖南省地质灾害有一个更为清晰的了解,能够做出准确的分析并做好以后的预防工作。
泥石流
2016年7月4日,湖南怀化驻地溆浦县大江口镇土桥乡白水溪村因山洪引发泥石流,数十名群众被困,其中一户人家共5口人全被掩埋在泥石流中,后经过武警怀化支队的紧张救援,成功转移受困群众15人,成功解救被泥石流掩埋人员4名,但仍有1人不幸遇难。
2016年6月20日,湖南湘西龙山县,在经历强降雨之后,引发山洪泥石流,整个县城被围困在洪水泥淖之中,逾4万多人受灾。
2016年5月9日,湖南安化县仙溪镇一载有3名小学生的校车在途径大桥村和山漳村交界处时突遇山体滑坡,校车被泥石流推入河床,3名学生和1名司机顺利救出,仅1名学生受轻微伤。照管员殷胜群因保护学生不幸去世。

2015年11月16日,云南锡业郴州矿冶有限公司屋场坪锡矿尾矿库因连日来持续强降雨导致山洪暴发,并引发泥石流,山洪直泄尾矿库,致使尾矿库排水竖井上部坍塌,库内积水及部分尾矿经排洪涵洞下泄,致使排洪出口杨家河两岸居住人员4人失联。
2015年7月7日,湖南特大暴雨导致怀化、湘西州、邵阳、娄底、衡阳、株洲、郴州7市州50县区约109万人因暴雨洪涝受灾,死亡2人(泸溪县1人,南岳区1人,均为滑坡泥石流掩埋),紧急转移安置人口2.6万余人,需紧急生活救助1万余人,农作物受灾面积57千公顷,绝收8.2千公顷,倒塌房屋596户1670间,严重损房1028户2211间,一般损房2261户5306间,直接经济损失12.5亿元。
滑坡
2016年7月8日,邵阳市隆回县金石桥镇树仁村3组出现重大滑坡险情,威胁29户105人。隆回县政府、国土资源局和地勘局技术人员赶赴现场进行应急处置。经认定,险情有继续发展扩大的趋势。
2016年7月3日,湖南安化县由于连降暴雨致使原BOT常安公司管理建设的仙溪洢水1号特大桥部分桥体被巨大山体滑坡冲垮,临近的207国道也被水流冲毁。所幸此次山体滑坡未造成人员伤亡和设备受损。

2016年3月21日,新邵县大新乡磁溪村集市附近一处山体突然滑坡,土石迅速掩埋了正停在山脚下的四台车辆。所幸的是,当时车内并无人员,此次山体滑坡没有造成人员伤亡。
崩塌
2016年7月4日,长沙宁乡县双江口镇槎梓桥村涧溪、槎子片区1500亩农田瞬间被漫过路面的洪水淹没,且造成河堤崩塌,原本就汹涌的“翻堤水”更加肆意的翻越堤岸经堤外的低洼田注入下游的团头湖,造成湖水迅速上涨,危及望城区格塘镇的柏叶、青山、和平等村数千亩稻田和数十栋民房。次日,在经过奋战抢险之后,河堤已经成功合拢。

2016年5月31日,湖南省新宁县安山中学发生水塔坍塌事故,造成2死4伤,死伤人员均为在校学生。
2016年3月28日,湖南省邵阳市湘西南物流中心一建筑物发生坍塌事故。该建筑目前尚在施工阶段,事故导致13名施工人员受伤送医。
塌陷
2016年7月7日,湖南长沙书香路与黑石铺路的十字路口发生塌陷,路面出现一个直径近5米的大洞,一辆吉普车正好经过此处,轮胎报废,司机成功逃生。经过市住建委专业人员通过现场勘测,初步分析造成塌陷原因主要是深埋于道路交叉口以下的东西向农排老管道塌陷所致,并指导天心区市政部门制定维修施工方案,确保现场安全。
2015年12月21日,湖南邵东县黄陂桥乡出现“天坑”,并伴随有房屋开裂倾斜、桥体塌陷、池塘水井干涸等一系列地质异常现象,其中坍塌点共50多处,总面积超90亩,原因疑石膏矿开采所致。

⑹ 管道地质灾害在主汛期应该怎么做好宣传工作

地质灾害防治宣传标语

1、预防地质灾害,确保人民生命财产安全。
2、实行预防为主回,避让与治理相结合的答地质灾害防治方针。
3、房前屋后,高陡边坡是地质灾害的高发、易发区。
4、边坡隐患险于明火,防治避让胜于救灾。
5、人为削坡和连续降雨是诱发地灾的主要影响因素。
6、加强监测,预防地质灾害。
7、地质灾害防治的重点在农村。
8、防治地质灾害,建设美好家园。
9、认识地质灾害,预防地质灾害。
10、地质灾害猛如虎。
11、监测避让,群测群防。
12、群测群防,防治地质灾害。
13、地质灾害防治以避让为先。
14、地质灾害防治从宣传开始。
15、普及地质灾害防治知识。
16、提高地质灾害防治能力。
17、防治地质灾害人人有责。
18、以人为本防地灾,预防为主保平安。
19、贯彻地质灾害防治条例 保护人民生命财产安全。
20、山谷易发泥石流,高陡边坡易滑坡。
21、暴雨易发地质灾害,雨过仍是关键时期。
22、泥石流、滑坡、崩塌有前兆,雨天留心要防范。

⑺ 管线工程地质灾害危险性综合分区评估

依据地质抄灾害危险性等级袭划分的标准,管线工程划分为28个区段(包括支线在内)(图7-8)。现将综合评估结果列于表7-7中。由表列可知,地质灾害危险性大的有6段,全长74km;危险性中等的有10段,全长178km;危险性小的有12段,全长546km。它们占河南段总长的比例分别为9.3%、22.3%和68.4%。因此河南段管线工程绝大多数建设用地是适宜和基本适宜的。

⑻ 管线工程地质灾害危险性综合分区段评估

依据国土资发〔2004〕69号文件附件《地质灾害危险性评估要求》,按照危险性大、危险性中等、危险性小三级进行综合分区(以代号A、B、C区分),并进一步分为不同地段(以阿拉伯数字1、2、3……区分)。按以上综合评估原则,甘肃段共划分出17个不同的危险性区段,其中危险性大的4段,危险性中等的6段,危险性小的7段,详见图5-8及表5-31。

(一)危险性大的区段(A)

在切割强烈的黄土丘陵区、黄土梁峁区和中低山区分布有众多中、小型崩塌、滑坡和泥石流。崩塌和危岩体大多是采石、取土形成;滑坡前缘的工程,都有不同程度的破坏,以老滑坡为主;泥石流沟主要在沟谷狭窄、沟床坡度大、边坡松散物多、植被覆盖度低的支沟中,危害严重、危险性大。黄土丘陵区和黄土梁峁区基本为自重湿陷性黄土分布区,切沟、冲沟、落水洞、黄土柱、黄土桥皆有所发现。

根据地质灾害体的分布规律、危害及危险性程度确定出危险性大的有4段,长152.8km,占管线总长的34.3%。分段说明如下:

图5-8 甘肃段地质灾害危险性分区图

1.兰州市西固小坪子—兰州市直沟门段(A1)

位于皋兰山前三、四级阶地及黄土丘陵区,地形起伏较大,多见高边坡及冲沟、泥石流沟。段内管线长29.0km,占管线总长度的6.5%。主要的地质灾害为崩塌、滑坡、泥石流、黄土湿陷和潜蚀。综合评估危险性大。

2.通渭县碧玉—秦安县莲花城段(A2)

该段属于黄土垄岗细梁与深沟地段,梁顶狭窄但相对平坦,梁脊长且略有弯曲,坡地中常发育黄土滑坡或黄土—泥岩滑坡,多为老滑坡。梁间沟谷深切,支沟多为泥石流沟。段内管线长44.0km,占管线总长的9.9%。主要的地质灾害为滑坡、泥石流、黄土湿陷和潜蚀。综合评估危险性大。

3.张家川县龙山镇—张家川县赵家沟段(A3)

属于黄土梁峁及沟谷地段,地形起伏较大,沟谷深切。段内管线长 11.0km,占管线总长的2.5%。主要的地质灾害为崩塌、滑坡、泥石流和黄土湿陷、潜蚀。综合评估危险性大。

4.张家川县韩家硖—天水市北道支线段(A4)

该段属于黄土垄岗细梁与深沟地段,梁顶狭窄但相对平坦,梁脊长且略有弯曲,坡地中常发育黄土滑坡或黄土—泥岩滑坡,多为老滑坡。梁间沟谷深切,支沟多为泥石流沟。段内管线长68.8km,占管线总长的15.5%。主要的地质灾害为滑坡、泥石流、黄土湿陷和潜蚀。综合评估危险性大。

(二)危险性中等的区段(B)

在切割较为强烈的黄土丘陵区、黄土梁峁区和中低山区分布有一定程度的中小型滑坡、崩塌和泥石流等地质灾害体,危害中等,危险性中等。

根据地质灾害体的分布规律、危害及危险性程度确定出危险性中等的6段,合计长135.7km,占总长的30.5%。分段说明如下:

1.兰州直沟门—榆中县乔家营(B1)

处于兴隆山前,地形起伏较大,属于中等切割的黄土丘陵区,多见高边坡及崩塌。区段内管线长16.0km,占管线总长的3.6%。主要的地质灾害为崩塌、泥石流、黄土湿陷和潜蚀。综合评估危险性中等。

2.榆中县方店子—榆中县稠泥河(B2)

属于中等切割的黄土丘陵区,地形起伏较大,多见高边坡及崩塌。段内管线长13.0km,占管线总长的2.9%。主要的地质灾害为崩塌、泥石流、黄土湿陷和潜蚀。综合评估危险性中等。

3.榆中县高崖—定西市符川段(B3)

处于宛川河与关川河西支沟分水岭段,地形起伏较大,属于中等切割的黄土丘陵区,多见高边坡及崩塌。段内管线长19.5km,占管线总长的4.4%。主要的地质灾害为崩塌、泥石流和黄土湿陷、潜蚀。综合评估危险性中等。

4.定西市红土窑—通渭县碧玉段(B4)

处于关川河东支沟与牛谷河段,地形略有起伏,以河谷平原为主,河谷两侧泥石流及河岸崩塌发育。全长63.5km,占管线总长的14.3%。主要的地质灾害为崩塌、滑坡、泥石流和黄土湿陷。综合评估危险性中等。

5.张家川县上磨村—张家川县马鹿前庄段(B5)

处于关山西部低山丘陵区,出露闪长岩、片麻岩、变质砂岩,上覆薄层黄土,基岩风化破碎十分强烈,地形起伏较大,沟谷切割较深。公路沿线多见崩塌与泥石流沟,地质环境相对脆弱。区内管线长20.5km,占管线总长的4.6%。主要的地质灾害为崩塌、泥石流和黄土湿陷。综合评估危险性中等。

6.张家川县马鹿官山沟口—张家川县老爷庙段(B6)

处于关山林区,马鹿牧场,植被覆盖率高。由闪长岩、片麻岩、变质砂岩构成,上覆薄层坡残积,边坡处基岩风化破碎十分强烈,地形起伏较大,沟谷深切,官山沟沟口多见采石场崩塌,地质环境脆弱。段内管线长3.2km,占管线总长的0.7%。主要的地质灾害为崩塌、洪水冲蚀。综合评估危险性大。

(三)危险性小的区(C)

在冲洪积平原区、榆中盆地和部分黄土丘陵区分布有一定程度的小型崩塌和泥石流等地质灾害体,其危害及危险性小。

根据地质灾害体的分布规律、危害及危险性程度确定出危险性小的7段,合计长156.5km,占总长的35.2%。分段说明如下:

1.兰州市西固首站—兰州市西固小坪子段(C1)

位于兰州盆地一—二级阶地,地形平坦,段内管线长2.0km,占管线总长的0.4%。主要的地质灾害为黄土湿陷,局部可能有地面塌陷。综合评估危险性小。

2.榆中县乔家营—榆中县方店子(C2)

处于榆中盆地,地形平坦开阔,局部略有起伏。段内管线长17.2km,占管线总长的3.9%。主要的地质灾害为泥石流和黄土湿陷。综合评估危险性小。

3.榆中县稠泥河—榆中县高崖段(C3)

处于关川河河谷平原,地形平坦开阔,局部略有起伏。段内管线长 16.0km,占管线总长的3.6%。主要的地质灾害为泥石流和黄土湿陷。综合评估危险性小。

4.定西市符川—定西市红土窑段和定西市景台上—定西市安定区(C4)

该段处于关川河东、西支流河谷平原区,Ⅰ—Ⅱ阶地发育,地形平坦开阔。段内管线长59.8km,占管线总长的13.5%。主要的地质灾害为泥石流和黄土湿陷。综合评估危险性小。

5.秦安县莲花城—张家川县龙山镇段(C5)

位于清水河河谷平原区,Ⅰ阶地发育,地形平坦开阔,左岸山坡多见中—大型老滑坡,距管道1~3km。段内管线长48.0km,占管线总长的10.8%。主要的地质灾害为泥石流和黄土湿陷。综合评估危险性小。

6.张家川县赵家沟—张家川县上磨村段和张家川县城关镇—张家川县韩家硖支线段(C6)位于后川河河谷平原区,Ⅰ—Ⅱ阶地发育,地形较为平坦。段内管线长8.5km,占管线总长的1.9%。主要的地质灾害为泥石流和黄土湿陷。综合评估危险性小。

7.张家川县马鹿前庄—张家川县官山沟沟口段(C7)

属于关山山间盆地,Ⅰ阶地发育,地形相对平坦开阔。段内管线长5.0km,占管线总长的1.1%。主要的地质灾害为洪水冲蚀和黄土湿陷。综合评估危险性小。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864