当前位置:首页 » 地质工程 » 美国地质灾害预测

美国地质灾害预测

发布时间: 2021-02-15 03:04:07

『壹』 北美洲的地质灾害有哪些

龙卷风!美国多地。。。。雪灾 。加拿大。。。。泥石流~~~~~~美国某些地方。
地震多在美国西岸。。。。

『贰』 国内外地质灾害风险研究开展情况

一、国外地质灾害风险研究概述

区域地质灾害风险评估是以区域地质灾害为研究对象,以地质灾害的区域危险性空间分布规律和承灾体的易损性评估为主要研究内容,是建立地质灾害区域空间预警系统工程的必要环节,主要为制定合理的防灾减灾决策和区域土地规划政策及为减灾防灾管理服务。

自20世纪60年代末或70年代初就开始了以滑坡灾害为主体的地质灾害危险性区划研究,如:60年代末,美国西部多滑坡的加利福尼亚州的滑坡敏感性预测区划及县行政级别的斜坡土地使用立法研究;70年代法国提出的斜坡地质灾害危险性分区系统(ZERMOS)等。进入80年代,世界许多国家和地区都开始了区域地质灾害危险性分区及预测问题研究,如意大利、瑞士、美国、法国、澳大利亚、西班牙、新西兰、印度等。从90年代起,为了推进广泛的国际协调与合作,联合国在1987年通过决议,确定在20世纪最后十年开展“国际减轻自然灾害十年”活动。1991年,联合国国际减灾十年(IDNDR)科技委员会提出了《国际减轻自然灾害十年的灾害预防、减少、减轻和环境保护纲要方案与目标》(PREEMPT),在规划的三项任务中的第一项就是进行灾害评估,提出:“各个国家对自然灾害进行评估,即评估危险性和易损性。主要包括:①总体上哪些自然灾害具有易损性;②对每一种灾害威胁的地理分布和发生间隔及影响程度进行评估;③估计评估最重要的人口和资源集中点的易损性。”把自然灾害评估纳入实现减灾目标的重要措施。围绕国际减灾十年计划行动,北美及欧洲许多国家在已有地质灾害危险性分区研究基础上,开展了地质灾害危险性与土地使用立法的风险评估研究,把原来单纯的地质灾害危险性研究拓展到了综合减灾的系统研究。

美国于1970年开始,对加利福尼亚州的地震、滑坡等10种自然灾害进行了风险评估,1973年完成,得出1970~2000年加利福尼亚州10种自然灾害可能造成的损失为550亿美元。与此同时,由美国地调局和住房与城市发展部的政策发展与研究办公室,联合支持对洪水、地震、台风、风暴潮、海啸、龙卷风、滑坡、强风、膨胀土等9种自然灾害进行预测评估,对美国各县发生的灾害建立了一套预测模型,估算9种灾害到2000年的期望损失。美国组成了一个由10位成员组成的专门委员会,制定了减灾十年计划,把自然灾害评估列为研究的重要内容,要求开展单类的或者综合的灾害风险评估工作。日本、英国等一些国家近年来也陆续开展了地震、洪水、海啸、泥石流、滑坡等灾害风险分析或灾害评估,并把有关成果作为确定减灾责任与实施救助的重要依据。

瑞士是世界上开展地质灾害风险区划研究十分成功的国家之一。为了确保农业用地、建筑用地的安全,预防自然灾害的损失,瑞士联邦政府1979年从立法的高度提出:“在保障国家土地完整性和协调发展的前提下实现土地的合理使用”,并颁布了联邦政府土地管理法(Loi Fédéral sur l’Aménagement Territoire),该法律第22条规定:“各州需要调查并确定处于受自然动力严重威胁的土地范围”。以联邦政府法律为依据,各州政府制定了相应的州政府法律。如沃州(Vaud)1987年制定的土地管理法律第89条规定:“受自然灾害,如雪崩、滑坡、崩塌、洪水威胁的土地,在未得到专家评估、充分论证或危险排除之前,禁止在灾害危险区进行任何建筑活动”。随后制订计划并开展了1∶25000比例尺的斜坡地质灾害风险区划图和1∶10000比例尺危险性区划图的编制和研究工作。瑞士已形成了以国家宪法为指导、州制定具体法、县级政府必须实施的灾害风险评估与预防体系。灾害高危险区域内的建筑一方面属于违法,另一方面作为高风险财产范畴,保险公司绝对拒绝接纳灾害高危险区的财产保险业务,从而保证了瑞士全国范围内对自然灾害的最有效控制。瑞士灾害的风险区划不仅直接服务于建筑规划、政府决策,而且也间接服务于社会保障系统。虽然瑞士是世界上滑坡、崩塌等地质灾害最严重的国家之一,无论是最后一次冰川作用以来,还是近一、二百年以来,瑞士都发生过较为重大的滑坡灾害事件(Flims、Elm、Handa等特大滑坡事件),但由于得益于全国灾害风险区划体系,使其近二、三十年来的灾害损失却是世界上较少的国家之一。

法国是洪水、滑坡、崩塌、雪崩等灾害较为严重的国家之一,早在20世纪70年代就开始全国范围的自然灾害危险性区划研究,区划图直接服务于减灾和防灾工作,从而最大限度地减少了自然灾害的损失。法国在1977年制定的城市发展规划法(Code del’Urbanisme)规定:洪水、水土流失、滑坡、雪崩等灾害危险区的建筑必须受到严格限制。1981年该规划法对自然灾害易发区的土地使用方法又作了具体限制,例如,滑坡灾害危险区分为两类,一类是建筑活动必须禁止的严重危险区,另一类是必须经过充分论证方可从事建筑活动的较危险区。1982年,法国又颁布了自然灾害防治法,并制定了洪水、雪崩、滑坡和地震四种主要自然灾害防治计划。为了进一步预测和尽可能减少灾害所造成的损失,根据该防治计划编制了灾害易发区危险性区划图,包括红色区域(高危险性区)、白色区域(以一种灾害为主的危险区)、蓝色区域(虽然有灾害,但可以预防)。在红色区域,一切新开工的建筑活动是绝对禁止的,而在蓝色区域,进行建筑需要提供充分的论证及灾害后果可靠性评估报告,如果五年之内不采取相关防治措施,财产保险公司可以对建筑方因自然灾害所造成的人员伤亡和财产损失不予赔偿。到1989年,根据全法国的灾害危险性区划结果,法国共有 15600个乡镇受到洪水、雪崩、滑坡和地震四种主要自然灾害的威胁,约占全国乡镇总数的三分之一。由于采取了灾害区划及相应的防治措施,法国的灾害损失得到了有效的控制。

二、国内地质灾害风险研究概述

近20年来,国家十分重视减灾工作,如《中国21世纪议程》关于防灾减灾行动指出:“开展全国自然灾害的风险分析,包括风险辨识、风险估算、风险评估三个部分”。这表明我国已把灾害风险评估作为防灾减灾建设的重要内容,并将之纳入国家可持续发展体系。大多数地方的21世纪议程都把防灾减灾作为可持续发展能力建设的重要任务之一,提出了灾害风险评估行动方案。在我国研究比较系统深入的灾害风险评估是地震灾害。其代表性的工作成果是由国家地震局先后完成的三代《中国地震烈度区划图及使用规定》。该图在对全国区域地震危险性评估基础上,确定了不同地区一般场地条件下在未来一定期限内可能遭遇超越概率为10%的烈度值,即地震基本烈度。综合性自然灾害风险研究也取得了一些研究成果。例如,黄崇福等用模糊集方法建立了城市地震灾害风险评估的数学模型。水利、农林、气象等部门的一些专家分别开展了一些区域性的洪水灾害、森林火灾、台风灾害等风险分析或灾情预测评估研究,编制了风险图,提出了灾情评估或风险评估的方法和技术。虽然这些工作还不够深入和系统,但对指导行业减灾、提高灾害风险管理水平发挥了积极的作用。

我国地质灾害管理工作,自1999年国土资源部发布《地质灾害防治管理办法》,标志着我国地质灾害防治工作逐步走向法制化轨道,为进一步贯彻落实好《地质灾害防治管理办法》,从源头上抓好地质灾害防治,国土资源部发布了《关于实行建设用地地质灾害危险性评估的通知》。通过几年的管理实践,以及适应全社会减灾防灾的需要,2004年3月1日,国务院正式发布《地质灾害防治条例》,使我国地质灾害防治工作有了法律保证。该《条例》规定,在地质灾害易发区内进行工程建设应当在可行性研究阶段进行地质灾害危险性评估,并将评估结果作为可行性研究报告的组成部分;明确要求“在编制地质灾害易发区内的城市总体规划、村庄和集镇规划时,应当对规划区进行地质灾害危险性评估”。明确了评估的主要地质灾害种类,包括崩塌、滑坡、泥石流、地面塌陷、地裂缝和地面沉降。随着我国地质灾害风险评估和灾害防治管理向科学化、法制化方向的逐步发展,我国土地资源的合理与安全使用得到进一步优化,为控制和减少人为诱发的地质灾害起到了重要的作用。

我国地质灾害的风险评估(价)研究工作自20世纪90年代开始兴起,在这一领域的研究中,已经取得了较为丰富的成果,为减灾管理发挥了重要作用。例如,苏经宇(1993)提出了判别泥石流危险性分布的标志和方法。刘希林等(1988)对区域泥石流风险评估进行了研究,给出了区域泥石流危险性评估的8个指标和人与财产的易损性计算公式,并提出了判断泥石流危险性程度和评估泥石流泛滥堆积范围的统计模型,对云南和四川省泥石流灾害风险进行了评估。张梁(1994)等根据环境经济学理论,初步论证了地质灾害的属性特征和风险评估的经济分析方法。张业成(1995)对云南省东川市泥石流灾害进行了风险分析。张梁、张业成、罗元华及殷坤龙、晏同珍等对滑坡灾害危险性和斜坡不稳定性的空间预测与区划进行了系统研究,先后提出了定量评估的信息分析模型、多因素回归分析模型、判别分析模型等,并对秦巴山区和三峡库区滑坡灾害进行了危险性分析与区划。朱良峰(2002)等研究开发了基于GIS的区域地质灾害风险分析系统,对全国范围的滑坡泥石流灾害进行了危险性分析、易损性分析和最终的风险分析。殷坤龙等经过多年研究,开发出MapGIS的滑坡灾害风险分析系统(IASLH)。在该系统中,提出了滑坡灾害危险性分析的信息量模型。该模型根据滑坡分布信息与各滑坡影响因素之间的关系,计算出产生滑坡的信息量,据此,进行滑坡危险性区划,并应用IASLH系统对中国汉江流域旬阳地区的滑坡灾害以及中国滑坡灾害进行了评估。

当前,地质灾害风险研究正处于方兴未艾之时,今后将得到更加迅速的发展,其研究内容将更加广泛,理论方法更加丰富、先进。可以预见,不久的将来,它将成为一项具有完善理论和技术方法的新兴领域。其基本趋势是:向着评估定量化、综合化、管理空间化的方向发展。主要表现为:

(1)从历史与现状分析趋向预测与研究相结合;

(2)从个体分析趋向个体与区域研究相结合;

(3)从定性分析趋向定量化评估;

(4)从单项要素分析趋向综合要素评估;

(5)从单纯的风险评估理论研究发展为风险评估与减灾管理相结合,风险评估与防治相结合,风险评估的目的是为了服务于社会经济建设和减灾管理;

(6)以GIS空间化技术为支撑的多因素信息模型化评估与空间化管理空前发展,将逐步取代传统的调查统计和手工制图,并向网络技术化发展;

(7)研究理论与方法趋向于内容更丰富,形成多学科的融合与交叉,特别是与社会学紧密相结合。

尽管经过20多年的发展,国内外的地质灾害风险研究与评估在理论和实践方面都取得了较为丰富的成果,然而还未形成系统完善的理论与方法体系,也没有统一的评估标准,国内在这一领域的研究还很薄弱,地质灾害的各专业灾害评估仍处于日益深入的探讨和总结过程。主要存在的问题包括:

(1)目前滑坡泥石流灾害破坏损失只考虑了直接的经济损失,对其间接经济损失评估方法的研究很少;

(2)现有的滑坡泥石流灾害风险评估框架与指标体系的目标和构成都不够明确,指标体系不够完整,各分析层面之间的逻辑关系,不同的学者有不同的表述,缺乏普遍共识的评估框架体系;

(3)对于滑坡泥石流灾害的风险可接受水平的研究非常薄弱,没有令人信服的标准体系;

(4)滑坡泥石流灾害风险评估理论和方法还不完善;

(5)滑坡泥石流灾害风险评估中的易损性分析还是一个相当薄弱的环节。在易损性分析中,一般仅考虑了滑坡泥石流灾害的历史灾情中的人员伤亡,而对历史灾情中的经济财产和资源环境的损失很少予以考虑。

『叁』 地质灾害易发区国内外研究现状

4.1.1 国外现状

由于研究的地域范围不同和对地质环境认识的差异,国内外研究者对地质灾害易发区的理解也有不同。

国外对地质灾害敏感性评价类似我国的地质灾害易发程度评价。美国灾害敏感性评价以地质、地形条件和以往发生的灾害空间分布情况为依据进行评价(Nilsen,1977;Shek,1977;Carrara,1983,Brabb,1984,Brand,1988;Cross,1998等)。美国地质调查局在《美国国家滑坡减灾战略——减少损失的框架》(2003)中认为,可供规划和决策使用的滑坡编目和滑坡敏感度图对全国滑坡多发区是绝对必要的。

欧洲国家在阿尔卑斯山较多地开展了滑坡敏感度和危险性评价,并把评价结果应用于滑坡灾害的减灾管理。意大利P.Aleollt(2000)采用GIS技术对意大利北部阿尔卑斯山前缘的Piedmont地区的滑坡、洪水、雪崩、山谷口堆积等灾害的敏感性、危险性及总的风险进行了区划性制图研究。A.Car-rara,M.Cardinali和F.Guzzetti等(1991)利用GIS技术将统计模型应用于意大利中部某小型汇水盆地的滑坡敏感性和危险性评估。亚洲国家,如日本、韩国在一些滑坡地质灾害多发区也开展了滑坡敏感度和危险性评价,H.Haruyama和H.Kawakami(1984)利用数学统计理论对日本活火山地区由降雨引起的滑坡灾害进行了敏感性和危险性评价,Saro Lee对韩国的一些地区分别应用多元统计和神经元网络模型进行了滑坡灾害敏感性和危险性评价。一些国家,如澳大利亚直接开展斜坡地质灾害风险评价,其中敏感性和危险性评价是其基础,如M.Michael-leiba等(2000)在澳大利亚的一项城市发展规划项目的斜坡地质灾害研究中,把斜坡灾害的敏感性、危险性、易损性、风险评价作为一体,以GIS软件为技术平台,分别采用平面和三维评价系统,对Cairns地区进行了斜坡地质灾害的敏感性、危险性和风险评价。Mario Mejia-Navarro和Ellen E.Wohl(1994)在分析哥伦比亚的Medellin地区滑坡、泥石流等斜坡不稳定性引起的区域地质灾害敏感性和土地及生命易损性的基础上,利用GIS技术将两者合成制作了风险评价分区图。

4.1.2 国内现状

进入21世纪以后,在原有研究的基础上,我国在全国范围内有计划地开展了全面的地质灾害调查与防治,积极吸取国际地质灾害防治研究的先进方法,并公布实施了《地质灾害防治条例》,将地质灾害易发区的研究纳入了国家法制的轨道。

1)1999年以来,在全国地质灾害严重区开展了以县(市)为单元的“县(市)地质灾害调查与区划”工作。调查灾种为崩塌、滑坡、泥石流、地面塌陷、地裂缝等,截至2005年,共进行了700个县(市)地质灾害的调查与区划工作。中国地质环境监测院已完成545个县(市)信息系统的集成和综合研究。

在各调查县(市),根据野外调查的结果和地质环境资料,结合灾害点和灾害隐患点的密度,划分地质灾害易发区并编制“地质灾害分布与易发区图”是其主要任务之一。《县(市)地质灾害调查与区划实施细则》明确指出“地质灾害易发区”是指容易产生地质灾害的区域。基于地质灾害现状,地质灾害易发区可划分为高易发区、中易发区、低易发区和不易发区四类。

2)从2002年开始,各省陆续开展了分省地质灾害防治规划工作,主要依据1∶50万环境地质调查和县(市)地质灾害调查成果,对省内地质灾害易发区进行了初步划分,22个省编制了分省地质灾害易发区图(1∶50万~1∶200万)。

3)张梁等(2002)将地质灾害易发区表述为地质灾害危险性评估,并认为地质灾害危险性(易发程度)评估就是研究不同地层单元组合、区域地质构造单元特征、地形地貌条件下的区域地质灾害规律,以及气象、人类活动方式条件下的区域地质灾害诱发规律和时间活动规律。前三类因素是决定地质灾害区域分布规律的背景因素组合,这些因素具有空间上的分布规律,而且随时间的变化性极小,属于稳定型的控制因素,是地质灾害易发程度的背景条件。后两类因素属于地质灾害的触发因素,随时间的动态变化较大,它们与背景条件的组合状况决定了地质灾害的时空规律。

4)岑嘉法(2003)认为,地质灾害易发区是指地质环境条件脆弱,具备发生地质灾害条件,容易产生地质灾害的区域。如在地球内动力作用强烈地区(高地震烈度区、活动断裂区、区域构造交会处等)、地球外部营力作用强烈带(如暴雨中心区、河流侵蚀带、岩土体松散分布区等),以及人类工程经济活动剧烈地区(如人口密度大,工业、农业、城镇、交通建设强度大区)等。只要有触发因素,即可产生地质灾害。该区的确定,主要通过较大比例尺的环境地质与灾害综合调查后实际圈定,经济建设与工程安排应尽量避免在易发区内。如果需在易发区内建设,要进行工程项目地质灾害危险性评估工作。对工程建设作出地质灾害现状、工程建设可能诱发或加剧地质灾害的预测和综合评估,并提出地质灾害防治措施对策。现进行的县(市)地质灾害调查与区划,就是要实地圈定地质灾害易发区范围。

5)刘传正等(2003)提出的“潜势度”是某一地区在没有任何降雨、地震、人类活动等情况下发生地质灾害的潜在条件的量化指标,具体是指地质灾害基础因子(地形地貌、地表植被、地层岩性和地质构造)与响应因子的综合表现,并编制了三峡库区地质灾害潜势度、危险度等图。

6)全国山洪灾害防治规划编写组和水利部长江水利委员会进行的山洪灾害易发程度评价,是利用各省(区、市)1∶50万或1∶100万泥石流、滑坡分布图,以泥石流、滑坡的“线密度”和“规模”所反映的“可能成灾点”的多少进行评价,即“可能成灾点”越多,灾害易发程度越高;“可能成灾点”越少,灾害易发程度越低。在参考相关部门成果及进行实地调查的基础上,以小流域为单元,划分出了泥石流或滑坡灾害高易发区以及中易发区和低易发区。各区的划分具体指标如表4.1所示。

在上述工作的基础上,编制各省(区、市)1∶50万或1∶100万山洪诱发的泥石流、滑坡灾害易发程度分布图。该图除反映泥石流、滑坡灾害的易发程度以外,还通过编绘地形坡度分区和地层岩性分区,标示地貌区划和区域构造形迹,综合反映了由山洪诱发的泥石流、滑坡灾害易发程度区划与地形地貌、地层岩性及地质构造的相互关系。从而可以通过图件,分析出不同区域地质背景与地形地貌条件下,泥石流、滑坡灾害高、中、低易发区的分布规律。并以此进行逆向校核、修正,使泥石流、滑坡灾害易发程度区划图更为科学、合理、可靠。

表4.1 山洪诱发泥石流、滑坡灾害易发程度分区标准

7)2003年11月,我国国务院公布了《地质灾害防治条例》(中华人民共和国国务院令第394号),并规定2004年3月起施行。该条例要求“实行地质灾害调查制度”,并在此基础上编制地质灾害防治规划,规划所包括的5项内容之一就有“地质灾害易发区、重点防治区”。2004年颁布的《地质灾害防治条例释义》进一步明确指出,地质灾害易发区,是指具备地质灾害发生的地质构造、地形地貌和气候条件,容易或者可能发生地质灾害的区域。地质灾害易发区必须经过地质灾害基础调查才能划定。易发区是一个相对的概念,并且可按照灾害种类划定,不同灾种其易发区范围不同。

『肆』 美国地震灾难片有哪些

《2012》《末日崩塌》算算比较经典的两部,《纽约大地震》《浩劫惊魂》《加州大地震》

『伍』 美国和日本等国地质灾害预警服务

目前,实现地质灾害预警的国家和地区,一般具备如下条件:

1)模型方法方面:对降雨和地质灾害的发生进行深入研究,获得了地质灾害预警的理论模型方法。

2)降雨监测和降雨预报方面:一是降雨预报数据,能够实现区域未来一段时间内的降雨预报;二是实时降雨监测数据,该数据一般可以通过两种方式获得:

a)雨量计,通过在区域上埋设一定数量的雨量计,实时精确掌握点上的降雨情况,从而实现区域上实时降雨的获得。通过安装自动遥测雨量监测仪(截至1995年,在旧金山湾地区安装了60台),当雨量每增加1mm时,通过电波自动传送数据到任何可接收到信号的地方(要求有接收器、计算机、数据接收分析显示的软件)。

b)降雨雷达,通过多普勒雷达(通过降雨云层上反射的雷达波)数据来进行降雨实时监测,该方法的难题在于,雷达回波值与地面上的降雨自动遥测值之间的关系确定上。原因有二:一是冰的反射能力远远大于水滴,因此温度成为一个关键的因素,且云中水滴的大小与温度、高度都相关,同时,除了水滴外,粉尘、昆虫、鸟等都能反射雷达的能量,都有回波;二是地面发散,即接近地面的雷达回波存在问题,特别是受到地形的影响。因此,将雷达回波值转换到降雨强度难度较大,且不同地区转换关系又不一样。

3)预警系统:根据降雨引发灾害的理论模型方法,实时进行分析预警。

4)预警信息发布平台:一般通过广播电台或电视台,向公众发布预警信息。

存在不足:理论模型方法需要更多的校验;缺乏有关斜坡岩土体方面的实时监测。

1.4.1 美国

美国是最早开展区域泥石流灾害预警的国家之一。

1.4.1.1 旧金山海湾地区

1985年,美国地质调查局(USGS)和美国气象服务中心(NWS)联合在旧金山海湾地区正式建立了泥石流预警系统。该系统于1986年2月12~21日在旧金山海湾地区的一次特大暴雨灾害中用于滑坡预报,并得到检验。由于技术复杂、机构变动和人员变动等方面原因,该预警系统在1995年被迫停止运行。

基于1982年1月3~5日在美国旧金山海湾地区发生的一次特大暴雨所引起的滑坡灾害数据,这次特大暴雨持续了34h,降雨量616mm,引发了大量的滑坡,造成25人死亡和超过6600万美元的经济损失。Mark&Newman通过对1982年1月的降雨情况分析得出,当前期雨量超过300~400mm,暴雨量超过250mm,即超过年平均降雨量的30%时,滑坡将大规模发生。该系统的基本原理是考虑了临界降雨强度和持续时间,并且考虑地质条件、降雨的空间分布,以及地形条件。美国地质调查局和美国气象服务中心在整个旧金山海湾地区共设计了45个自动降雨记录点,当降雨每增加1mm时,降雨观测点就通过自动方式将数据传送到美国地质调查局的接收中心和计算机系统。同时,为了监测降雨期间地下水压力的变化,工作人员还设置了若干个孔隙水压力计以观测斜坡中地下水压力变化。当降雨量和降雨强度将要超过临界值时,提前进行滑坡灾害的预报,以减少滑坡灾害的损失和可能的人员伤亡。

旧金山海湾地区实时区域滑坡预警系统包括降雨与滑坡发生的经验和分析关系式,实时雨量监测数据,国家气象服务中心降雨预报以及滑坡易发区略图。

1986年2月12~21日的滑坡灾害预警首先由美国地质调查局决定,通过当地电台、电视台以及美国气象服务中心的特别预报的方式来进行的。这次滑坡灾害的预警分为两个阶段:第一阶段是2月14日的6h灾害危险期;第二阶段是17~19日之间的60h的灾害危险期。由于地质条件的复杂性和地形条件的变化,这两次预报主要是针对整个旧金山海湾地区,而不是某一个特定的滑坡灾害地点。根据滑坡灾害发生后的调查,10处滑坡灾害点有目击者能提供精确的时间,其中有8处滑坡所发生的时间与预警的时间段是完全一致的(图1.17)。

图1.17 累计降雨量、滑坡预警时间(水平线段)、滑坡发生时间空心三角为滑坡;实心三角为泥石流

进一步研究要点:

a) 降雨—滑坡关系需精练,要考虑长期中等强度的降雨影响,使降雨与滑坡发生之间有更准确的模型,同时要针对滑坡的临界值,而不仅仅是泥石流;

b) 土体含水量和孔隙水压力的测量方法要更精确、有效;

c) 预警系统需要模式化和自动化,以便在暴雨期能够更快、更有效地得到数据;

d) 与滑坡有关的地形、水文和地质条件等内容,需进一步考虑,以使今后的预警更准确、有效。

作为第一个预警系统,从 4 个方面保证运行:

a) 降雨方面: 国家气象服务中心降雨预报( 未来 6h 预报) ,降雨实时连续监测( 多于 40个实时雨量计) ;

b) 预警方法方面: Canon and Ellen( 1985) 的临界降雨判据;

c) 预警运行上: 美国地质调查局根据降雨预报和实时降雨监测,实时预警系统进行分析;

d) 美国地质调查局和气象服务中心共同确定预警,并向社会发布。

1.4.1.2 俄勒冈州

1997 年,美国的 Oregon 政府建立了泥石流预警系统。该系统,由林业部的气象学家、地调系统( DOGAMI) 的地质学家、交通部( ODOT) 的工程师一起创建的。预警信息和建议通过 NOAA 天气节目和 Law Enforcement Data System 进行广播发布。DOGAMI 负责向媒体和相关地区提供关于泥石流的追加信息; ODOT 负责在更风险时段向机动车辆提供预警,包括在高泥石流风险路段安装预警信号。

1.4.1.3 夏威夷州

1992 年建立了类似的 I-D 的预警模型,并进行了数次实时预报( Wilson 等,1992) 。

1.4.1.4 弗基尼亚州

2000 年建立了类似的 I-D 的预警模型,并进行了数次实时预报( Wieczoic 等,2000) 。

1.4.1.5 波多黎各岛

1993 年,加勒比海的波多黎各岛建立了与旧金山海湾类似的 I-D 的预警模型,并进行了数次实时预报( Larsen & Simon,1993) 。

1.4.2 日本福井县

Onodera et al.( 1974) 通过研究发现,在日本,累计降雨量超过 150 ~ 200mm,或每小时降雨强度超过 20 ~30mm 时,大量滑坡将发生滑动。

日本在泥石流预警系统研制和开发方面处于国际领先地位。以发展具体一条或相邻沟的小规模地区的泥石流预报系统为主,通过上游泥石流形成区降雨资料的统计分析,确定临界雨量值和临界雨量报警线,通过上游雨量实时数据采集、演算和比较判别,自动发出报警信号。

山田刚二等( 1977) 通过滑坡的位移和地下水压力的监测,认为滑坡位移速率以及地下水压力不仅与当天降雨量有关,而且还与以前的降雨量有关,所以用有效雨量来表示雨量,有效雨量可以从下式求得:

中国地质灾害区域预警方法与应用

式中:Rc为有效雨量;R0为当天降雨量;Rn为日前降雨量;α为系数;n为经过的天数。

通过对山阴干线小田—天仪之间403km,400km附近的滑坡研究发现,日有效降雨量、位移速率、地下水压力随时间而变化的曲线,位移速率v,Rc与地下水压力(p)之间关系分别是二次曲线和直线:

中国地质灾害区域预警方法与应用

目前,日本在福井县开展了地质灾害预警预报工作。以点代面,根据区域地形、地貌和环境地质特征以及灾害可能发生的危险程度,在全县范围内布设了 66 个预警预报监测点,实现了定点、定时和灾害程度的预警预报。同时通过该系统还可以了解过去某一时间的雨量情况和发布情况等内容。

1.4.3 巴 西

Guidicini and Iwasa( 1977) 通过对巴西 9 个地区滑坡记录和降雨资料的分析,认为降雨量超过年平均降雨量的 8% ~17%,滑坡将滑动; 超过 20%,将发生灾难性滑坡。

1996 年,里约热内卢( Rio de Janeiro) 州建立了预警系统( Geo-Rio) 。由地质力学所设计并安装了 30 台自动雨量计,向中心计算机( Geo-Rio) 发送数据。中心计算机接收数据,并发布预警。2001 年滑坡灾害中,对里约热内卢的部分地区发布了预警,但在向北 60 km 处的 Petropolis 损失惨重。由于火灾,Geo-Rio 系统于 2002 年 11 月被迫停止。

『陆』 滑坡、泥石流地质灾害气象预警预报

气象因素是诱发滑坡、泥石流等地质灾害的关键因素,开发基于Web-GIS和实时气象信息的实时预警预报系统,实现地质灾害实时预警预报与网络连接的地质灾害预警预报与减灾防灾体系,对可能遭受的地质灾害进行实时预警预报,及时广泛地发布预警信息,有利于实现科学高效、快速地开展灾害防治,从而最大限度地减少灾害损失,保护人民生命财产安全,变被动防治为主动防治地质灾害。

一、滑坡、泥石流地质灾害气象预警预报的主要依据

区域地质灾害(滑坡、泥石流等)空间预测主要是圈定地质灾害易发区,也就是前面论述的地质灾害危险性评估与区划。在区域地质灾害空间预测的基础上,结合实时的气象动态信息,分析研究滑坡、泥石流等地质灾害的主要诱发因素,研究同一地质环境区域,在不同气象条件下发生地质灾害的统计规律和内在机理,通过确定有效降雨量模型、降雨强度模型、降雨过程模型的临界阀值,建立基于实时动态气象信息的区域地质灾害预警预报时空耦合关系,从而对区域性的滑坡、泥石流等地质灾害进行危险性时空预警预报。

根据研究区域的地质条件、灾害调查情况、气象条件等,划分地质灾害易发区等级,统计已发生滑坡、泥石流等地质灾害与有效降雨量、24小时降雨强度的相关性,确定出不同易发区不同等级的临界降雨量(I、II),作为判别分析的阀值,确定降雨量危险性等级。降雨量小于I级临界降雨量的为低危险性,降雨量介于Ⅰ-Ⅱ级临界降雨量之间的为中危险性,降雨量大于II级临界降雨量的为高危险性。

将各单元的有效降雨量与临界有效降雨量进行对比,确定出各单元的降雨量危险性等级,将降雨量危险性等级和地质灾害易发区等级进行叠加,叠加结果见表3-4和图3-2,对应于4个不同的易发区把地质灾害预警预报等级划分为5级:其中,3级及3级以上为预警预报等级,5级为预警预报区的最高等级,1级和2级为不预警区,不同的预警预报等级采用不同的颜色予以表示。3级预警区是指应加强对灾害点的监测地区;4级预警区是指应密切加强对灾害点监测的地区,采取一定的防范措施;5级预警区是指应全天对灾害点进行监测,直接受害对象尤其是住户和人员在必要时应该采取避让措施。在预警预报中,3级为注意级,4级为预警级,5级为警报级。

表3-4 地质灾害预警区等级划分表

图3-2 区域地质灾害宏观预警构建思路示意图

我国自2003年开展全国地质灾害气象预警预报工作以来,一些专家学者就致力于预警预报模型方法的研究与探索,主要经历了两个阶段。

第一阶段,2003~2006年,采用的是第一代预警方法,即临界雨量判据法。该方法的主要原理是根据中国地貌格局、地质环境特征及其与降雨诱发型崩滑流地质灾害关系统计分析结果,以全国性分水岭、气候带、大地构造单元和区域地质环境条件,进行一级分区;以区域分水岭、历史滑坡泥石流事件分布密度、地形地貌特征、地层岩性、地质构造与新构造运动、年均降雨量分布等,进行二级分区;将全国划分为7个预警大区、74个预警区;并分区开展历史地质灾害点与实况降雨量之间的统计关系,确定各预警区诱发滑坡泥石流灾害的临界雨量,建立预警预报判据模板(图3-3);利用全国地质灾害数据库和县市调查信息系统中的地质灾害样本和中国气象局提供的降雨资料,通过统计分析,确定地质灾害发生前的1日、2日、4日、7日、10日和15日的临界雨量作为判据模板,建立地质灾害气象预警预报模型,开展地质灾害预警预报。

图3-3 预警预报判据模板

第二阶段,即第二代预警方法。2006~2007年,“全国地质灾害气象预警预报技术方法研究”项目设立,开展了全国地质灾害气象预警预报方法升级换代的研究工作。刘传正教授提出了地质灾害区域预警理论的三分法,即隐式统计预报法、显式统计预报法和动力预报法;并提出了显式统计预警方法(称为第二代预警方法)设计思路。该方法改进了第一代预警方法中仅依靠临界过程雨量方法的局限,实现了临界过程降雨量判据与地质环境空间分析相耦合。2007年该项工作取得初步研究成果,经完善后已在2008年全国汛期预警工作中正式使用。

根据地质灾害区域预警原理和显式预警系统设计思路,具体预警模型建立过程如下:

(1)地质灾害预警分区。将全国分为7个预警大区,分区建立预警模型。

(2)地质灾害气象预警信息图层编制。充分考虑地质灾害发生的地质环境基础信息、地质灾害历史发生实况等,共编制预警信息图层30个。

(3)地质灾害潜势度计算。探索一条计算地质灾害潜势度的计算方法,根据历史地质灾害点分布情况,采用不确定系数法计算地质环境CF值、采用项目组创新提出的权重确定法确定权重,从而计算地质灾害潜势度。

(4)统计预警模型建立。以10km×10km的网格进行剖分,将地质灾害潜势度、历史灾害点当日雨量、前期雨量作为输入因子,地质灾害实发情况作为输出因子,采用多元线性回归方法,建立预警指数计算模型,从而确定预警等级。

二、美国旧金山湾滑坡泥石流气象预警系统

目前世界上滑坡泥石流灾害气象预警主要是依据美国旧金山湾滑坡泥石流预警系统提出的临界降雨阀值的方法。该系统在1985年至1995年期间运行了10年,后因种种原因被迫关闭。它是世界上运行时间最长的滑坡泥石流预警系统,其经验值得思考。

Campbell从1969年开始研究洛杉矶滑坡发生机制,1975年提出了建立基于国家气象局(NWS)降雨预报和(前多普勒)雷达影像的洛杉矶泥石流预警系统的设想。Campbell指出,泥石流预报还是可能的,可通过降雨强度和持续时间的监测,并与根据降雨-滑坡发生概率的关系所建立的临界值进行比较,进行泥石流灾害等级的等级预报。一旦超过临界值,就要对居住在山脚下的居民发出预警,撤离危险地,最大程度地减少灾害损失。Campbell提出的泥石流预警系统由以下方面构成:①雨量计观测系统,记录每小时的降雨量;②具有能够识别暴雨地区降雨强度中心的气象编图系统;将降雨数据标绘在地形(坡度)图及相关滑坡影响图上;③实时采集数据和预警管理和通讯网络。

1982年1月初,灾难性暴雨袭击了旧金山湾地区,引发了数以千计的泥石流及其他类型的浅层滑坡。经济损失达数百万美元,25人死亡。尽管该地区的人们得知暴雨预报,但并没有得到任何关于滑坡、泥石流的警报。尽管Campbell提出的建议没有在旧金山湾地区得以实施,但1982年的这场灾难性事件使得建立泥石流预警系统变得十分紧迫和必要。

图3-4 加州La Honda的泥石流降雨临界线

Cannon和Ellen(1985)建立了加州La Honda的泥石流降雨临界线(图3-4)。他们用年均降雨量(MAP)对临界降雨持续时间和临界降雨强度进行了修正(标准化),即将临界降雨强度修正为临界降雨强度/年均降雨量(MAP)。他们建立的滑坡降雨临界值是旧金山湾地区泥石流预警系统的基础。1986年2月旧金山湾地区连降暴雨,美国地质调查局和国家气象局联合启动了泥石流灾害预警系统,通过NWS广播电台系统发布了两次公共预警。这是美国首次发出的泥石流灾害预警。该次暴雨引发了旧金山湾地区数以百计的泥石流,造成1人死亡,财产损失达1000万美元。如果不是预警系统的准确预报,损失将会更加严重。

1986年的泥石流灾害预警是根据Cannon和Ellen(1985)确定的经验降雨临界值发布的。1989年Wilson等人在该经验降雨临界值的基础上,建立了累积降雨量/降雨持续时间关系曲线,对不同的规模和频率的泥石流确定不同的临界值降雨量。据此USGS滑坡工作组进行泥石流灾害预报。

Wilson自1995年一直研究困扰早期滑坡预警系统的泥石流降雨临界值强烈受局部降水条件(地形效应)影响的难题。

如前所述,Cannon(1985)建立的旧金山湾地区的区域泥石流降雨临界值,试图用长期降雨量(MAP)来修正地形效应的影响。MAP是用来描述长期降雨气候条件最常用的参数,可从标准气象图中获得。Cannon建立MAP标准化临界值,是滑坡预警系统的主要技术基础。然而,正如Cannon本人所说,在早期滑坡预警系统运行过程中,发现降雨少的地区ALERT系统的雨量数据会产生“假警报”,反映了MAP标准化会出现低MAP地区的不一致性问题。后来Wilson(1997)将旧金山湾地区的MAP标准化方法应用到南加州和美国太平洋西北部地区,出现了明显的低估或高估降雨临界值的问题。

降雨量作为参数实际上反映了暴雨规模和频率两个综合作用过程。美国太平洋西北部地区降雨量频率高但每次降雨量小,导致年均降雨量大;而南加州地区则降雨频率小但每次降雨量大,结果是年均降雨量小。年均降雨量标准化方法应识别出那些“极端”的降雨事件,即降雨量远远超过那些频率高但降雨量小的暴雨事件。因此,对于估计泥石流降雨临界值来说,单个暴雨的规模要比降雨频率重要得多。

长期的气候作用使斜坡本身达到了一种重力平衡状态,即斜坡入渗与蒸发及地表排水之间达到了平衡。这种长期的平衡作用过程可能包含着无数已知和未知的机制。斜坡土壤的岩土工程性质、地表排水率及水网分布、本土植被都可能对局部气候产生影响。Wilson用日降雨规模—频率分析,重新检查了年均降水量标准化临界值的不一致性。在年均降雨量低的旧金山湾地区,泥石流的降雨临界值高于MAP标准化的预测值。Wilson提出了参考的泥石流降雨临界值,这有益于研究降雨与地表排水之间的相互作用。Wilson的研究表明,5年暴雨重现率可以代表降雨频率与侵蚀率的优化组合关系。对三个具有明显不同降雨气候模式的不同地区(南加州洛杉矶地区、旧金山湾地区、太平洋西北部地区),采集了触发致命泥石流灾害事件的历史雨量数据,建立了(引发广泛泥石流发生)历史上触发大范围泥石流的24小时峰值暴雨降雨量与参考降雨值(5年暴雨重现值)之间的关系曲线(图3-5)。该关系曲线可用来估计泥石流的降雨临界值,与Cannon的MAP标准化降雨临界值相比,特别是可以在更加可靠点的范围内通过插值估计出特定地点(特别是受地形效应影响的山区)的临界值。

图3-5 历史触发大范围泥石流的24小时峰值暴雨降雨量与

尽管旧金山湾地区的滑坡泥石流气象预警系统在1995年关闭了,但自1995年以来没有停止对降雨/泥石流临界值方面的研究。这些研究加深了对降雨、山坡水文条件、长期降雨气象条件和斜坡稳定性之间相互作用的认识,这将为旧金山湾地区乃至世界其他地区的滑坡气象预警工作奠定很好的科学基础。

三、降雨监测与预报

旧金山湾地区滑坡预警系统运行的十年间,当地NWS的天气预报主要依靠1987年2月发射的气象卫星GOE-7(1997年被GOES-10所取代)。每隔30分钟,GOES气象卫星传送覆盖从阿拉斯加湾至夏威夷的北美西海岸云团图像。根据这些图像,当地NWS可以估计出大暴雨的速度、方向和强度。图像中的红外波谱图像还能指示云团的温度,它是估计降雨强度的重要信息。另外,地面气象观测站可获得大气压、风速、温度、降雨数据,与卫星气象数据雨季NWS国家气象中心提供的长期天气趋势预报信息相结合,当地NWS天气预报办公室综合分析这些数据,准备和提供定量天气预报(QPT),一天发布两次加州北部和南部地区未来24小时天气预报。

雨量监测(ALERT)系统能远距离自动采集高强度降雨观测数据,并将数据传送到当地实时天气预报中心。到1995年,旧金山湾地区ALERT系统已建立了60个雨量观测站点(图3-6)。尽管每个站点的建立得到了NWS的支持,但每个站点的设备购买、安装和维护则由其他联邦、州和地方政府机构负责。从1985年到1995年滑坡预警系统运行期间,USGS一直负责维护设在加州Menlo公园的ALERT接收器和数据处理微机系统。

要评估即将到来的暴雨是否会引发泥石流灾害,要考虑两个临界值:①前期累积降雨量(即土壤湿度);②临近暴雨的强度和持续时间的综合分析。为此,USGS滑坡工作组在La Honda研究区安装了浅层测压计,并对土壤进行了监测。如果测压计首先显示出对暴雨的强烈反应,即认为已达到前期临界值。通常冬至后需几个星期的时间才能使土壤湿度超过前期临界值,之后要随时关注暴雨强度和持续时间是否足以触发泥石流灾害。

图3-6 1992年旧金山湾滑坡预警雨量监测系统—ALERT

四、泥石流灾害预警的发布

当暴雨开始时,开始监测降雨强度,估计暴雨前锋到来的速度。根据观测的降雨量,结合当地NWS的定量降雨预测(QPF);与建立的泥石流降雨临界值进行对比分析,确定泥石流灾害的类型和规模。NWS和USGS的工作人员共同参与该阶段的工作,向公众发布三个等级的泥石流灾害预警:即①城市和小河流洪水劝告(urban and small streamsflood advisory);②洪水/泥石流关注(flash-flood/debris-flow watch);③洪水/泥石流警报(flash-flood/debris-flow warning)。在1986年至1995年间,多次发布了不同级别的泥石流灾害预警。

五、小结

滑坡和泥石流灾害的危险性预测主要是通过灾害产生条件分析,预测区域上或某斜坡地段将来产生滑坡泥石流灾害的可能性,圈定出可能产生滑坡泥石流灾害的影响范围及活动强度。滑坡泥石流灾害危险性预测的指标体系结构层次如图3-7所示,根据滑坡泥石流灾害危险性预测的研究对象的差异性,可从三种研究尺度建立滑坡泥石流灾害危险性预测指标体系。

图3-7 地质灾害空间预测指标体系结构层次图

区域性滑坡泥石流灾害危险性预测就是通过分析滑坡泥石流灾害在区域空间分布的聚集性及规律性,圈定出滑坡泥石流灾害相对危险性区域,从而为国土规划、减灾防灾、灾害管理与决策提供依据。不同的预测尺度对应于不同的勘察阶段和研究精度。滑坡泥石流灾害危险性区划对应于可行性研究阶段,要求对拟开发地域工程地质条件的分带规律进行初步综合评价,确定滑坡泥石流灾害作用发生的可能性及敏感性,提交的成果是区域工程地质条件综合分区图和地质灾害预测区划图。

『柒』 美国和中国共同都有什么地质灾害

地震,洪灾,泥石流,火山等等

『捌』 美国夏威夷州地震灾情如何

据美国地质勘探局地震信息网消息,美国夏威夷州北京时间5日6时32分发生6.9级地震,震中位于北纬19.61度,西经155.00度。

当地居民杰里迈亚·奥苏纳用无人驾驶飞机摄像头捕捉到熔岩流在林间穿行、铺出一路“火光地毯”的画面。他告诉檀香山市KHON电视台,熔岩流不仅造成视觉冲击,还发出惊人声音,“好比把一堆石块扔进烘干机里,再开到最大功率。”

民防局5月1日即下令封闭火山口附近区域,禁止私营旅行社带游客前往,警告居民注意落石和森林火灾等风险。3日下午,附近地面出现更多裂缝,高温气体和熔岩随之喷出。美国地质勘探局下属夏威夷火山监测站说,无法判断这次喷发会延续多长时间。当时,地方政府下令强制疏散“莉拉妮地产”小区全部居民大约1700人,其他居民区大约1万人可能受影响,可自愿疏散。疏散人员可前往帕霍阿镇体育馆和周边社区活动中心等安置点避险。

基拉韦火山大多数喷发并非“爆炸式”。从1983年1月开始,这座火山30多年来断断续续喷发数十次,熔岩流总计覆盖大约125平方公里面积。

『玖』 地质灾害防治效益分析的国内外研究现状

12.1.1 国际研究现状

美国是自然灾害比较严重的国家之一,面临的灾害主要包括洪水、风暴潮、海啸、地震、膨胀土、滑坡、强风、台风、龙卷风等。为减轻这些灾害的损失,开发了很多减灾技术,并通过联邦、州和地方的公共政策付诸实施。保险机构和其他团体的资助,使灾区人们的生产和生活得以维持和恢复。现以美国为例说明地质灾害效益分析研究现状。

美国由联邦应急管理局(FEMA)和保险业牵头,汇编并评估滑坡灾害对经济影响的信息。虽然滑坡和其他自然灾害造成的损失是经常的、广泛的,但并未经常汇总,很难查到。每逢发生滑坡或其他自然灾害之后,不同的机构和组织都可以提出灾情评估,但这些评估差异很大,统计的损失范围不同,而且随着时间不同而有变化。美国国家研究理事会在其1999年提交的《自然灾害的影响:损失评估框架》中得出结论说,目前还没有一个被广泛接受的评估自然灾害,包括滑坡和其他地面滑动灾害损失的框架。由于缺乏这种信息,所以很难制定应对这些灾害的政策,也很难衡量决策的成本-效益以及减灾措施的效果。灾害损失数据库对于帮助政府机构掌握趋势和查明滑坡减灾的进展,是十分必要的。

现介绍Petak和Atkisson根据美国各州的统计数据建立的一套评估方法:针对以上所列9种自然灾害,主要采取5类减灾方法,分别为避灾、区域防护、建筑物加固、建筑物搬迁和场地处理,每一措施都可通过制定或修改公共投资、土地利用、灾害救济、建筑规范等政策予以实施。然而,对任何人、任何地方、任何情况下采取的任何措施都需要有相应的投入,所以必须对每一策略进行减灾效益和费用分析,以评价其综合效果。

具体做法是对每一种灾害选择一组减灾措施,估算可能的减灾效果和费用,即可计算出减灾率(采取措施后减少的损失值与期望损失值之比),其中损失值是指不采取任何减灾措施时估算的损失值。洛杉矶市的经验表明,推行场地平整和土壤分析规范收到了较满意的效果(表12.1)。

表12.1 美国洛杉矶市减灾率估算举例

12.1.2 国内研究现状

我国在一些领域进行的灾害评估,已经在减灾、防灾中发挥了重要作用。例如,我国在一些区域或城市完成的洪水灾害评估、地震灾害评估等,不但为国家经济规划和工程建设提供了重要的依据,而且直接指导了减灾工作。然而,在地质灾害领域,20世纪80年代以前,地质灾害研究主要局限于对灾害分布规律、形成机理、趋势预测等方面的研究,基本依附于水文地质、工程地质和有关的研究工作。20世纪80年代以后,地质灾害风险评估才开始起步,而防治效益评估正是地质灾害风险评估的一部分。经过20多年的发展,我国地质灾害防治效益评估工作在理论和实践方面都取得了一定的成果,但还存在以下几方面问题:

1)没有形成一套完善的效益评估指标体系。

2)由于我国各地区地质灾害特征不同,经济发达程度存在差异,造成经济效益统计标准不同,很难统一。

3)对已经完成的治理工程没有很好地进行总结分析,很难对今后的规划和防治工作起指导作用。

由此,应该说我国地质灾害防治效益评估工作还处于探索阶段。

『拾』 地质灾害调查

进入世纪以后,在社会变革和科技进步的双重驱动下,全球经济进入快速发展阶段。与此同时,自然灾害发生频次不断增加,环境污染日益扩大,成为威胁经济社会发展的重大问题。据联合国国际减灾战略机构统计,重大地质灾害从1900~1909年的40次增长到2000~2009年的358次(图6-3)。为了应对日益增多的自然灾害所带来的巨大挑战,20世纪80年代末,联合国大会上通过关于成立国家减灾委员会的决议,提出“国际减轻自然灾害十年”计划,由此推动各国政府把减轻灾害列入国家发展规划。针对地质灾害,专门成立了国际滑坡研究组等组织,实施全球地质灾害编图计划。2000年联合国通过了国际减灾战略,成立了相应的国际减灾战略机构,继续推进各国的减灾行动。2005年1月,第二届世界减灾大会在日本神户召开,与会专家学者们一致呼吁加强区域综合减灾能力建设,提高应急管理水平,从而实现区域的可持续发展。目前,各个国家的地质调查部门均把地质灾害的调查、监测和防治作为其重要的工作内容。

图6-3 1900~2009年世界地质灾害发展趋势示意图

美国地质调查局长期致力于滑坡、地震、火山等地质灾害的研究和预警预报工作。经过长期的积累与努力,美国地质调查局成为世界公认的滑坡灾害权威机构,设有国家滑坡信息中心,负责滑坡灾害研究并提供实时灾害信息。2000年,美国地质调查局制定了《国家滑坡灾害减灾战略》,确定了美国减轻滑坡灾害的重点工作方向,包括滑坡过程与发生机制研究、灾害填图与评估、实时监测、信息收集传输与解译、指导与培训、公众教育、灾害防治、应急反应与救灾9大方向[8]。目前,正在执行滑坡灾害项目2005~2010年规划,强调采用新的机理模型和监测技术来研究滑坡灾害。挪威地质调查局和挪威岩土工程研究所等机构联合开发建立国家滑坡灾害数据库,对挪威境内的滑坡进行登记入库,包括灾害分布图、危险性分区图、滑坡历史数据、灾害评价资料等。从2004年开始,挪威地质调查局负责进行全国的滑坡灾害填图。澳大利亚1994年启动的国家环境地质科学填图协议,把灾害调查、灾害风险评估作为其中一项重要的内容。澳大利亚地球科学机构与地方政府合作进行滑坡灾害调查与评估工作,重点对发生滑坡的区域开展灾害预测,对滑坡易发区进行灾害风险评估。日本泥石流灾害发生频繁,不得不投入大量的人力、财力进行泥石流灾害研究,取得了显著的成效。近年的研究工作重点强调利用先进技术建立泥石流原型综合观测系统,同时进行一系列规模大小不一的模拟实验,开展泥石流产生、搬运和堆积机理的理论研究[9]

近年来,国外地质灾害调查的主要研究集中在以下几个方面:

(1)地质灾害数据库及灾害的风险填图。例如,意大利建立了GEOS数据库,收集的数据包括岩石、古今滑坡、对人造建筑的损害、土壤最易过饱和和滑动的地区、河道特征等。根据需要,可以绘制各种1∶10万至1∶25万比例尺的图件,如脆弱性图、洪水多发区图等。加拿大启动了自然灾害填图项目,目的是提供加拿大自然灾害的背景信息,包括历史事件数据和风险图等。美国编制了自然灾害风险图,表明了易受各类自然灾害危险的地区。

(2)地质灾害预测和预警系统。在进行灾害预警系统研究中,广泛采用了现代化的技术方法。例如美国采用GIS技术确定各个地区对地震灾害的脆弱性,并实时监控地质活动带获取相关数据。

(3)先进技术在地质灾害调查中的应用。例如,采用遥感技术对中小流域地质灾害进行区域性评价,查明地质灾害时空分布规律,结合地面调查划分地质灾害危险性等级。同时将灾害危险性等级与土地资源的可利用性联系起来,使地质灾害研究成果更容易为公众所接受,扩大成果的应用服务。

(4)灾害系统和灾害链的研究。研究表明,各种地质灾害的发生有着成生联系,往往会发生连锁反应,例如大洪水常伴生有滑坡、泥石流、地面塌陷等灾害。由于灾害的共生性使灾害事件和灾害系统非常复杂,对单一灾害的研究往往不能解决实质性的问题,各国加强了对地质灾害系统的研究。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864