当前位置:首页 » 地质工程 » 岩体工程地质岩组

岩体工程地质岩组

发布时间: 2021-02-14 16:16:59

⑴ 岩体地质工程施工问题

现在来简要地谈谈地质监控施工法基本内容,扼要地说,地质监控施工法的基本内容可用下面45条表述:

(1)岩体地质工程是地质工程的一种类型,它和其他类型地质工程一样,是严格地受地质条件控制的。地质工程的基础理论是地质控制论,岩体地质工程的基础理论也是地质控制论。

(2)在地质控制论指导下进行地质工程建筑的施工方法称为地质监控施工法。地质监控施工法是岩体地质工程建筑的基本方法,岩体地质工程设计和施工都必须运用这一方法作指导。

(3)岩体地质工程施工既是按图施工,又是工程地质勘察的继续。施工前的设计只是方案设计,在施工过程中应该根据新取得的资料和认识及时修改设计。按图施工不是目的,确保建成的工程安全稳定投入运用才是目的。

(4)岩体地质工程施工设计必须运用岩体力学理论做指导进行分析判断,修改施工设计。

(5)岩体力学是为岩体地质工程建设服务的,岩体力学为岩体地质工程建设服务不是仅靠岩体力学计算分析,而最重要的是靠正确和准确的岩体力学概念和经验判断,岩体力学和岩体地质工程工作者必须正确和准确地掌握岩体力学概念。

(6)为了进行岩体力学分析,在岩体地质工程施工设计前必须获取岩体结构、地应力、地下水和岩体力学参数,并以此为依据进行岩体稳定性力学分析,修改施工设计。

(7)在进行岩体地质工程力学分析时,必须在准确地查清工程岩体的工程地质条件,准确地判断岩体力学介质和正确地抽象给定岩体力学模型,准确地取得工程岩体力学性质指标基础上,正确地选用岩体力学分析方法进行分析才能给出比较符合实际的结果。

(8)岩体力学分析不能仅考虑岩体自然条件,还必须把岩体改造措施加进力学模型内一起考虑,否则力学分析结果是不符合实际的。

(9)判断岩体力学模型时,除了要正确地判断岩体力学介质和岩体工程结构外,还必须正确判定岩体内结构面分布规律。结构面分布规律即是鉴别岩体力学介质和抽象岩体力学模型的必须充分考虑的地质条件,也是进行地质超前预报的重要依据。

(10)对岩体地质工程来说,地质监控施工法有4项重要技术:①地质超前预测、预报;②岩体改造;③爆破技术;④变形监测和监控技术。这4项技术都是受地质条件控制的。

(11)地质超前预测是指施工前,设计阶段的工程地质勘察工作,是对工程建设区的地质背景进行判断预测,但它的准确度是不高的。

(12)获取地质结构、地应力和地下水的最有效方法是边施工边勘察及进行施工地质超前预报。

(13)为了确保施工地质超前预报工作的兑现,应将施工地质超前预报作为施工的一道工序,纳入施工程序之中。

(14)施工地质超前预报的主要工作内容有:施工掌子面地质素描、钻进速度测试、变形监测、掌子面地下水特征监测等。

(15)地质超前预报是在施工过程中,一般来说,预报范围超前5~10m即可。它可以较高的准确度获取掌子面前方地质信息,对施工进行监控,采取科学的防灾措施,实现岩体工程施工科学化,减少施工事故,降低建筑成本。预报内容包括:①掌子面前方地质条件预报;②成灾可能性预报;③防灾措施方案预报。

(16)掌子面前方地质超前预报是根据地质素描和风钻孔测试资料,运用地质规律进行判断,主要的地质规律有3条,即:①结构面发育规律;②地应力的地质标志;③岩体水力学规律。

(17)地质素描的主要内容为断层、大节理、岩脉、软弱夹层、节理密度统计、结构面闭合和充填状况等,这些资料对确定岩体力学模型及力学参数十分重要。

(18)施工设计中应该努力寻找关键块体,对易产生冒落的关键块体应该采取超前防护。

(19)钻进速度测试可利用钻速仪,亦可通过给进把感觉获得,它对于判断掌子面前方平行于掌子面的破碎带、软弱结构面和软弱夹层十分有用。

(20)变形监测既可以判断施工过程中岩体稳定性用作施工安全监测,亦可通过反分析方法用作分析岩体力学参数和地应力状况。

(21)掌子面开挖后通过变形监测或根据地质素描结果进行块体稳定性分析,发现掌子面附近存在有不稳定岩体时,必须及时进行临时支护。常用的支护技术有喷射混凝土和砂浆锚杆,喷射混凝土的喷层厚度要根据围岩岩性来定,对软弱岩体喷层厚度不能小于30cm,锚杆长度应穿过形成块体的软弱结构面。

(22)施工暴露的工作面上出现的地下水不仅可以判断掌子面前方地下水状况,亦可作为判断地应力状况。

(23)简单地说,高地应力地区一般岩体渗透性很低,不出现出水现象,即有出水点时不是高地应力地区,没有出水点时可能是高地应力地区,地下水呈线性分布时地下水的滴水线方向常常与地应力的最大主应力方向垂直。

(24)在掌子面钻进过程中如果出现飙水现象时应该特别注意,这表明掌子面前方存在高压地下水,有可能出现突水现象。这时不应该急于爆破掘进,而应该迅速地进行地下水压测量,根据地下水压测量结果及前方地质结构和地质体力学性质,判断产生突水可能性,进行突水预报。

(25)在出现有突水可能时,应停止掘进,采取防突措施。

(26)防止突水措施有两项技术,一种是疏干掌子面前方地下水,导洞和超前钻孔可用作疏干掌子面前方地下水;另一种技术是灌浆增加地质体抗拉强度,一般可采取超前灌浆30m,掘进10~15m,步步为营地前进。至于一次超前灌浆多少,掘进多少,要视掌子面前方岩体材料特征来定,即可以通过预报灌浆体作防突层厚度来确定。

(27)掘进的掌子面由软弱岩体组成时,掌子面出水会使掌子面形不成形状,连续产生塌方,应急的措施是疏干掌子面前方的地下水或降低掌子面前方的地下水压力。

(28)高地应力地段容易出现岩爆或塑性变形,岩爆既可以出现在地下洞室施工中,亦可以出现在地面工程施工中。制止岩爆的方法可以采用超前向围岩内打钻孔,进行围岩内应力转移,或采用预埋锚杆防止地面岩爆。

(29)低地应力地段容易产生塌方,必要时应对掌子面前方地应力情况进行快速测量或利用地应力的地质标志进行判断,对产生塌方地段应采取超前防治措施。

(30)施工设计中应该努力寻找应力控制点或应力集中点,施工开挖顺序应该使应力集中点的应力分散,降低地应力集中程度,减少地质体中主应力差,防止地质体产生破坏,产生施工事故。

(31)岩体改造不仅是为岩体工程加固服务,有时为了易于开挖或岩体放落,也要对岩体进行弱化处理,所以岩体改造有强化处理和弱化处理。

(32)根据成灾超前预报结果,对施工开挖可能出现破坏地段,必须作出防灾措施方案预报。防灾措施方案预报内容包括:①防止施工过程中诱发产生灾害对施工提出的要求,如防止大的爆破振动,防止掌子面暴露时间过长等;②防止开挖后产生塌方、突水灾害。常用的防护技术有:采取超前支护,超前疏干,超前注浆,喷锚支护等。

(33)几乎所有的岩体工程施工过程中都要使用爆破,爆破会损伤岩体,一旦岩体被损伤就不可能复原,而变成破碎岩体,岩体质量大大下降。岩体爆破一定要根据岩体结构特征和岩体工程要求进行设计,岩体工程施工一定要使用控制爆破,禁止使用大爆破。

(34)为了防止岩体工程失稳,最好在岩体接近极限平衡状态时,按岩体改造原理对岩体进行加固,这是岩体加固的最佳时期;不然的话,如果岩体失稳后再采取补救措施,必然拖延工期,工程投资亦必将大大增加。

(35)岩体加固和支护必须充分利用岩体变形发展过程特征。岩体加固支护要利用积极弹性变形和充分利用粘性变形发展的一定过程,这是岩体工程加固和支护的艺术。

(36)因为岩体具有一定的粘性,岩体工程开挖后,即使是在力学上处于不稳定状态,它也不是立即产生破坏,其破坏需要经历一定的变形过程,即经历一段时间,这段时间称为岩体自稳时间,岩体工程加固工作必须在这段时间内完成。

(37)岩体自稳时间随岩体质量不同而不同。岩体质量愈好,自稳时间愈长;岩体质量愈差,自稳时间愈短。铁道围岩分类中Ⅰ~Ⅱ类围岩,如果有地下水活动的话,则不能自稳,必须采取管棚超前支护处理再开挖;Ⅱ类围岩无地下水活动时,自稳时间约为4~8h,甚至可长至2~3d,它主要决定于围岩内粘性成分含量和含水情况;Ⅲ类围岩自稳时间可长达1周至数月;Ⅳ、Ⅴ类以上围岩,除产生块体塌方外,一般可较长时期稳定。

(38)为了保护地质体,在地质工程施工过程中,严禁采用大爆破。大爆破可以加快掘进速度,但由于爆破震动使地质体遭到破坏,比进行地质体加固和推迟掘进进度带来的损失更大,特别是接近设计境界时绝对禁止采用大爆破进行施工。

(39)对于特殊的地质体,在施工过程中应该采取特殊的保护措施,如遇到膨胀岩时,应该对新开挖出来的掌子面尽快采取封闭措施,防止风化;同时,对这种地质体尽量少扰动,扰动会增加其膨胀性。

(40)对软弱地质体掘进时应尽量采用短进尺,快支护措施,对有水的掌子面应注意留排水孔。

(41)变形监测是监控施工的基础工作之一,是预防岩体地质工程施工过程中产生地质灾害事故和保证岩体地质工程施工安全的重要技术,它是施工人员的眼睛。根据监测结果分析,及时修改设计和及时采取防灾措施。聪明的地质工程建设者都清楚这一点,但是,很多人并不认识这一点,只是在出了事故后后悔,这是不应该的。

(42)变形监测技术应力求可靠,不要片面地追求精度,简易可行的技术往往是可靠的,可保证工程顺利进展。愈是精密的仪器对环境条件要求愈是严格,而岩体工程现场往往满足不了它的使用条件要求,反而弄巧成拙。

(43)为了取得位移反分析的完整资料,变形监测不仅要在施工过程中做,在施工前和后的一定时间内也应该做。这有利于资料分析,特别是位移反分析和工程质量检查工作。

(44)位移反分析是获取岩体力学参数的重要手段之一。位移反分析结果的可靠性,除取决于监测资料的可靠性外,更重要的是取决于岩体力学模型抽象的正确性。位移反分析不应该简单地一律都采用连续介质力学模型,应该根据岩体结构、岩体工程结构特征、地应力状况及工程变形特点和经验,选用反分析力学模型。

(45)注重变形监测结果,当日变形率小于允许日变形率时,才可以施作永久衬砌。

上列45条内容的基础是地质,必须根据地质情况灵活运用。

⑵ 岩土体的工程地质分类和鉴定

一、岩体

(一)岩体(岩石)的基本概念岩体(岩石)是工程地质学科的重要研究领域。岩石和岩体的内涵是有区别的两个概念,又是密不可分的工程实体。在《建筑岩土工程勘察基本术语标准》(JG J84-92)中给出的岩石定义是:天然产出的具有一定结构构造的单一或多种矿物的集合体。岩石的结构是指岩石组成物质的结晶程度、大小、形态及其相互关系等特征的总称。岩石的构造是指岩石组成物质在空间的排列、分布及充填形式等特征的总称。所谓岩体,就是地壳表部圈层,经建造和改造而形成的具有一定岩石组分和结构的地质体。当它作为工程建设的对象时,可称为工程岩体。岩石是岩体内涵的一部分。

岩体(岩石)的工程分类,可以分为基本分类和工程个项分类。基本分类主要是针对岩石而言,根据其地质成因、矿物成分、结构构造和风化程度,用岩石学名称加风化程度进行分类,如强风化粗粒黑云母花岗岩、微风化泥质粉砂岩等。岩石的基本分类,在本书第一篇基础地质中有系统论述。工程个项分类,是针对岩体(岩石)的工程特点,根据岩石物理力学性质和影响岩体稳定性的各种地质条件,将岩体(岩石)个项分成若干类别,以细划其工程特征,为岩石工程建设的勘察、设计、施工、监测提供不可缺少的科学依据,使工程师建立起对岩体(岩石)的明确的工程概念。岩石按坚硬程度分类和按风化程度分类即为工程个项分类。

在岩体(岩石)的各项物理力学性质中,岩石的硬度是岩体最典型的工程特性。岩体的构造发育状况体现了岩体是地质体的基本属性,岩体的不连续性及不完整性是这一属性的集中反映。岩石的硬度和岩体的构造发育状况是各类岩体工程的共性要点,对各种类型的工程岩体,稳定性都是最重要的,是控制性的。

岩石的风化,不同程度地改变了母岩的基本特征,一方面使岩体中裂隙增加,完整性进一步被破坏;另一方面使岩石矿物及胶结物发生质的变化,使岩石疏软以至松散,物理力学性质变坏。

(二)岩石按坚硬程度分类

岩石按坚硬程度分类的定量指标是新鲜岩石的单轴饱和(极限)抗压强度。其具体作法是将加工制成一定规格的进行饱和处理的试样,放置在试验机压板中心,以每秒0.5~1.0M Pa的速度加荷施压,直至岩样破坏,记录破坏荷载,用下列公式计算岩石单轴饱和抗压强度:

深圳地质

式中:R为岩石单轴饱和抗压强度,单位为MPa;p为试样破坏荷载,单位为N;A为试样截面积,单位为mm2

对岩石试样的几何尺寸,国家标准《工程岩体试验方法标准》(GB/T50266-99)有明确的规定,试样应符合下列要求:①圆柱体直径宜为48~54mm;②含大颗粒的岩石,试样的直径应大于岩石的最大颗粒尺寸的10倍;③试样高度与直径之比宜为2.0~2.5。

在此标准发布之前,岩石抗压强度试验的试样尺寸要求如下:极限抗压强度大于75M Pa时,试样尺寸为50mm×50mm×50mm立方体;抗压强度为25~75MPa时,试样尺寸为70mm×70mm×70mm立方体;抗压强度小于25MPa时,试样尺寸为100mm×100mm×100mm立方体。

(G B/T 50266-99)的规定显然是为了方便取样,以金刚石钻头钻探,取出的岩心进行简单的加工,即可成为抗压试样。岩样的尺寸效应对岩石抗压强度是略有影响的。

岩石按坚硬程度分类,各行业的有关规定,虽然各自表述方式有所区别,但其标准是基本一致的(表2-2-1)。

表2-2-1 岩石坚硬程度分类

除了以单轴饱和抗压强度这一定量指标确定岩石坚硬程度外,尚可按岩性鉴定进行定性划分。国标:建筑地基基础设计规范(GB50007-2002)按表2-2-2进行岩石坚硬程度的定性划分。其他规范的划分标准大同小异。

表2-2-2 岩石坚硬程度的定性划分

岩石坚硬程度的划分,无论是定量的单轴饱和抗压强度,还是加入了风化程度内容的定性标准,都是用于确定小块岩石的坚硬程度的。岩石的单轴饱和抗压强度是计算岩基承载力的重要指标。

(三)岩石按风化程度分类

关于岩石风化程度的划分及其特征,国家规范和各行业的有关规范中均有规定,其分类标准基本一致,表述略有差异。表2-2-3至表2-2-10是部分规范给出的分类标准。

表2-2-3《工程岩体分级标准》(GB50218-94)岩石风化程度划分表

表2-2-4《岩土工程勘察规范》(GB50021-2001)岩石按风化程度分类表

续表

表2-2-5《公路桥涵地基与基础设计规范》(JTJ024-85)岩石风化程度划分表

表2-2-6《水利水电工程地质勘察规范》(GB50287-99)岩体风化带划分表

《港口工程地质勘察规范》(JTJ240-97)、《港口工程地基规范》(JTJ250-98)岩体风化程度的划分按硬质、软质岩体来划分,硬质岩石岩体风化程度按表2-2-7划分。软质岩石岩体风化程度按表2-2-8划分。

表2-2-7 硬质岩石岩体风化程度划分表

表2-2-8 软质岩石岩体风化程度划分表

表2-2-9《地下铁道、轻轨交通岩土工程勘察规范》(GB5037-1999)岩石风化程度分类表

续表

表2-2-10 广东省《建筑地基基础设计规范》(DBJ15-31-2003)岩石风化程度划分表

国家标准《建筑地基基础设计规范》(GB5007-2002)对岩石的风化只有第4.1.3条作如下叙述:岩石的风化程度可分为未风化、微风化、中风化、强风化和全风化。未列表给出风化特征,但在岩石坚硬程度的定性划分中(表A.0.1)把不同风化程度的岩石归类到了岩石坚硬程度的类别中。

深圳市标准:《地基基础勘察设计规范》(报批稿)关于岩石风化程度的划分标准,基本采用了《地下铁道、轻轨交通岩土工程勘察规范》GB(50307-1999)的表述形成和内容(表2-2-9),文字略有调整。

纵观各类规范对岩石风化程度的划分,可以看出:

1)除个别规范未列出未风化一类外,岩石风化程度的划分均为未风化、微风化、中等(弱)风化、强风化和全风化。特征描述简繁不一,中等风化与弱风化相对应的风化程度略有差别。

2)风化程度的特征描述,主要是岩石的结构构造变化、节理裂隙发育程度、矿物变化、颜色变化、锤击反映、可挖(钻)性等方面来定性划定。部分规范用波速和波速比及风化系数来定量划定是对岩石风化程度确定的有力支撑。

3)从新鲜母岩到残积土的风化过程是连续的,有些规范把残积土的特征描述放在岩石风化程度划分表中,有一定的道理。国际标准:ISO/TC182/SC,亦将风化程度分为五级,并列入了残积土。从工程角度考虑,残积土对母岩而言已经发生了全面质的变化,物理力学性质和对它的理论研究已属松软土,表中对残积土特征的表述对区别残积土与全风化岩是有现实意义的。

4)国家标准:《工程岩体分级标准》中“岩石风化程度的划分”(表2-2-3)看似简单,规范“条文说明”解释了这一现象,表2-2-3关于岩石风化程度的划分和特征的描述,仅是针对小块岩石,为表2-2-2服务的,它并不代表工程地质中对岩体风化程度的定义和划分。表2-2-2是把岩体完整程度从整个地质特征中分离出去之后,专门为描述岩石坚硬程度作的规定,主要考虑岩石结构构造被破坏,矿物蚀变和颜色变化程度,而把裂隙及其发育情况等归入岩体完整程度这另一个基本质量分级因素中去。

5)上述列表中可以看出,某些规范把硬质岩石和软质岩石的风化程度划分区别开来,而《工程岩体分级标准》中“岩石坚硬程度的定性划分”表(2.2-2)将风化后的硬质岩划入软质岩中。这里有两个概念不可混淆:一是从工程角度看,硬质岩石风化后其工程性质与软质岩相近,可等同于软质岩;二是新鲜岩石中是存在软质岩的,如深圳的泥质砂岩、泥岩、页岩等。

6)相邻等级的风化程度其界线是渐变的、模糊的,有时不一定能划出5个完整的等级,如碳酸盐类岩石。在实际工作中要按规范的标准,综合各类信息,结合当地经验来判断岩石的风化等级。

(四)岩体的结构类型

在物理学、化学及其地质学等学科中对“结构”这一术语的概念是明确的,但有各自的含义,如原子结构、分子结构、晶体结构、矿物结构、岩石结构、区域地质结构、地壳结构等等,岩体作为工程地质学的一个主要研究对象,提出“岩体结构”术语的意义是十分明确的。

岩体结构有两个含义,可以称之为岩体结构的两个要素:结构面和结构体。结构面是指层理、节理、裂隙、断裂、不整合接触面等等。结构体是岩体被结构面切割而形成的单元岩块和岩体。结构体的形状是受结构面的组合所控制的。

事实上,所有与岩石有关的工程,除建筑材料外,都是与有较大几何尺寸的岩体打交道,岩石经过建造成岩(岩浆岩的浸入,火山岩的喷出,沉积岩的层状成沉积,变质岩的混合与动力变质)及后期的改造(褶皱、断裂、风化等),使得岩体的完整性遭到了巨大的破坏,成为了存在大量不同性质结构面的现存岩体。为了给工程界一个明朗的技术路线,不妨以建造性结构面和改造性结构面(软弱结构面)为基础,从各自侧面首先对岩体结构基本类型进行研究,其次将两方面的成果加以综合,即可得出关于岩体结构基本类型的完整概念(图2-2-1)。

(1)以建造性结构面为主的岩体结构基本类型的划分(表2-2-11)

表2-2-11 建造性结构面的岩体结构分类

(2)以改造性结构面(软弱结构面)为主的岩体结构类型的划分(表2-2-12)

表2-2-12 改造结构面为主的岩体结构分类

图2-2-1 岩体结构示意图

(3)由建造性结构面和改造性结构面形成的三维岩体

三维岩体表现出了复杂多变的岩体结构特征,将其综合归纳,形成了较系统的岩体结构类型(表2-2-13)。

表2-2-13 岩体结构类型及其特征

表中表述的岩体结构类型及其特征基本上涵盖了深圳地区岩体的全部结构类型。

(4)岩体完整程度的划分

地质岩体在建造和改造的过程中,岩体被风化、被结构面切割,使其完整性受到了不同程度的破坏。岩体完整程度是决定岩体基本质量诸多因素中的一个重要因素。影响岩体完整性的因素很多,从结构面的几何特征来看,有结构面的密度,组数、产状和延展程度,以及各组结构面相互切割关系;从结构面形状特征来看,有结构面的张开度、粗糙度、起伏度、充填情况、水的赋存等。从工程岩体的稳定性着眼,应抓住影响稳定性的主要方面,使评判划分易于进行。在国标:《工程岩体分级标准》(GB50218-94)中,规定了用结构面发育程度、主要结构的结合程度和主要结构面类型作为划分岩体完整程度的依据,以“完整”到“极破碎”的形象词汇来体现岩体被风化、被切割的剧烈变化完整程度(表2-2-14)。

表2-2-14 岩体完整程度的定性分类表

在1994版的《岩土工程勘察规范》中,未见此表。很明显,此表在《工程岩体分级标准》中出现后,在2001版修订后的《岩土工程勘察规范》中得到了确认和使用。

(五)岩体基本质量分级

自然界中不同结构类型的岩体,有着各异的工程性质,岩石的硬度、完整程度是决定岩体基本质量的主要因素。在工程实践中,系统地认识不同质量的工程岩体,针对其特征性采取不同的设计思路和施工方法是科学进行岩体工程建设的关键。

1994年,国家标准《工程岩体分级标准》(50218-94)给出了岩体基本质量分级的标准(表2-2-15)。在此之前发布的国家标准《岩土工程勘察规范》(GB50021-94),该表是作为洞室围岩质量分级标准的。在2001年修订的《岩土工程勘察规范》(GB50021-2001)中,岩体基本质量分级以表2-2-15的形式来分类,岩体基本质量等级按表2-2-16分类。

表2-2-15 岩体基本质量分级

表2-2-16 岩体基本质量等级分类

(六)岩体围岩分类

地铁、公路、水电、铁路以及矿山工程等行业,均有地下洞室和隧道(巷道)开挖,工程勘察均需对工程所处的围岩进行分类。不同的规范对围岩的分类方法略有不同。

1.隧道围岩

《地下铁道、轻轨交通岩土工程勘察规范》(GB50307-1999)和《公路工程地质勘察规范》(JTJ064-98)规定,隧道围岩分类按表2-2-17划分。

表2-2-17 隧道围岩分类

续表

2.围岩工程地质

《水利水电工程地质勘察规范》(GB50287-99)规定,在地下洞室勘察时,应进行围岩工程地质分类。分类应符合表2-2-18规定。

表2-2-18 围岩工程地质分类

上表中的围岩总评分T为岩石强度、岩体完整程度、结构面状态、地下水和主要结构面产状5项因素之和。各项因素的评分办法在该规范中均有明确规定。围岩强度应力比亦有专门的公式计算。

3.铁路隧道围岩

《铁路工程地质勘察规范》(TB10012-2001)规定,隧道工程地质调绘时,应根据地质调绘、勘探、测试成果资料,综合分析岩性、构造、地下水及环境条件,按表2-2-19分段确定隧道围岩分级。

表2-2-19 铁路隧道围岩的基本分级

续表

该规范还规定,铁路隧道围岩分级应根据围岩基本分级,受地下水,高地应力及环境条件等影响的分级修正,综合分析后确定。关于岩体完整程度的划分,地下水影响的修正,高地应力影响的修正及环境条件的影响,规范中都有明确的规定。

4.井巷工程围岩

矿山工程中的井巷工程,其功能和结构更为多样,所以井巷工程对围岩的分类更加详尽,各种定性和定量指标明显多于其他标准。《岩土工程勘察技术规范》(YS5202-2004、J300-2004)规定,井巷工程评定围岩质量等级按表2-2-20划分围岩类别。

表2-2-20 井巷工程围岩分类

续表

续表

5.工程岩体

国家规范:《锚杆喷射混凝土支护技术规范》(GB50086-2001)从工程岩体支护设计和施工的需要出发,给出围岩分级表,与表2-2-20相比,仅少了Ⅵ、Ⅶ两类,主要工程地质特征少了岩石质量指标RQD和岩体及土体坚固性系数两栏,其他完全相同。

(七)岩质边坡的岩体分类

《建筑边坡工程技术规范》(GB50330-2002)对岩质边坡的岩体分类方法,见表2-2-21

表2-2-21 岩质边坡的岩体分类(GB50330-2002)

续表

表2-2-22 岩体完整程度划分

(八)深圳地区岩体分类、鉴定中存在的问题和改进意见

1)深圳地区的建筑工程除大量的房屋建筑外,公路(道路)桥梁、水利、地铁、铁路等均有大量的投资建设,各行业对岩体质量等级的划分在执行不同规范的分类标准。在当前情况下,这一状况将继续下去。但是,对某一岩体的不同分类标准,仅仅是某一行业的习惯性作法。宏观上看不同分类标准的具体内容并无原则性的区别。无论采用哪种标准都不应该影响岩体评价的正确性。

2)岩体工程特性的评价中,岩体的结构分类应该受到足够的重视。尤其是高大边坡、地质灾害评估等岩体结构对岩体稳定起主导作用的工程项目。只有采取多种科学勘察手段和缜密地进行分析,岩体的结构特征才能弄清楚。

3)岩石风化程度的判断,现场工作除很具经验的野外观察和标准贯入试验外,应多采用岩体波速测试方法,使之成为常用方法之一。准确的波速测试结果,可能比标贯试验所得结果更能准确地判断岩石的风化程度。

4)岩石的风化程度是随埋藏深度的增加而减弱的,风化岩石的强度则是随埋藏深度的增加而增加的。为了充分发挥地基承载力,深圳市地基基础勘察设计规范(送审稿)将厚层花岗岩强风化带分为上、中、下3个亚带,其划分方法见表2-2-23。

表2-2-23 厚层花岗岩强风化带细分

需要指出的是,花岗岩的风化规律一般是上部风化严重,随深度增加而减弱,但也有个别情况,有时随深度增加风化程度并无明显变化,故在划分风化亚带时,应视强风化带的厚度和风化程度改变的深浅,也可以划分一个亚带或两个亚带,不可强求一律划分为3个亚带。

龙岗区的碳酸盐类岩石——灰岩、白云岩、大理岩等基本上不存在全风化和强风化层。由于构造的影响或是其他某种原因(如表面溶蚀剧烈),可能岩石的裂隙比较发育,块度比较小。

二、土体

(一)土体的含义及其工程地质分类

土是泛指还没有固结硬化成岩石的疏松沉积物。土是坚硬岩石经过破坏、搬运和沉积等一系列作用和变化后形成的。土多分布在地壳的最上部。工程地质学把土看作与构成地壳的其他岩石一样,均是自然历史的产物。土的形成时间、地点、环境以及形成的方式不同,其工程地质特性也不同。因此在研究土的工程性质时,强调对其成因类型和地质历史方面的研究具有特殊重要意义。

土的工程地质分类有以下特点:①分类涵盖自然界绝大多数土体;②同类或同组的土具备相同或相似的外观和结构特征,工程性质相近,力学的理论分析和计算基本一致;③获取土的物理力学指标的试验方法基本相同;④工程技术人员,从土的类别可以初步了解土的工程性质。

土的工程地质分类是以松散粒状(粗粒土)体系和松散分散(细粒土)体系的自然土为对象,以服务于人类工程建筑活动为目的的分类。分类的任务是将自然土按其在人类工程建筑活动作用下表现出的共性划分为类或组。

合理的工程地质分类,具有以下实际用途:①根据土的分类,确定土的名称,它是工程地质各种有关图件中划分土类的依据;②根据各类土的工程性质,对土的质量和建筑性能提出初步评价;③根据土的类型确定进一步研究的内容、试验项目和数量、研究的方法和方向;④结合反映土体结构特征的指标和建筑经验,初步评价地基土体的承载能力和斜坡稳定性,为基础和边坡的设计与施工提供依据。

土的工程地质分类有普通的和专门的两类。普通分类的划分对象包括人类工程活动可能涉及的自然界中的绝大多数土体,适用于各类工程,分类依据是土的主要工程地质特征,如碎石土、砂土、黏性土等。专门分类是为满足某类工程的需要,或者根据土的某一或某几种性质而制定的分类,这种分类一般比较详细,比如砂土的密实度分类,黏性土按压缩性指标分类等等。应当指出的是,普通分类与专门分类是相辅相成的,前者是后者的基础,后者是前者的补充和深化。

(二)国外土的工程分类概况

近几十年来,国外在土的工程地质分类研究方面有很大进展,工业和科学技术发达的主要国家,都分别先后制定了各自全国统一的分类标准(表2-2-24)。其中英国、日本、德国的分类均以美国分类为蓝本,结合各自国情适当调整、修改而制定的。

表2-2-24 一些国家的土质分类简况

上述各国的土质分类,都采用了统一分类体系和方法,不仅使各自国内对土质分类有了共同遵循的依据,而且体现了国际统一化的趋势,以促进国际交流与合作。

下列美国的统一分类法(表2-2-25)作为样本,以了解国外分类的标准和方法。

表2-2-25 美国的土的统一分类法

续表

(三)国内土的工程分类

1.统一分类法

1990年,国家标准《土的分类标准》(GBJ 145-90)发布,并于1991年8月起执行。在此之前或之后,水利水电、公路交通等行业土的分类标准与GBJ 145-90标准没有明显区别。(GBJ 145-90)土的分类如表2-2-26和表2-2-27所示。

表2-2-26 粒组的划分

表2-2-27 土质分类表

2.建筑分类法

国标《建筑地基设计规范》(GB50007-2002)土的分类方法(简称:建筑分类法)如表2-2-28。这是从早期《工业与民用建筑地基基础设计规范》(TJ7-74)(试行)到《建筑地基基础设计规范》(GBJ7-89)一直延续下来的土的分类标准。在TJ7-74规范之前,我国一直沿用前苏联规范(HИTY127-55)。建筑分类法在房屋建筑地基基础工程或类似的工程中广泛运用,这在不少行业规范中得以反映,此分类方法也为广大工程技术人员所熟知。目前深圳除公路、铁路行业外,大多采用此分类标准,并纳入到深圳市的地方标准之中。

表2-2-28 土的分类

(四)土的状态分类

土的状态分类属专门分类。对于某种行业或某类工程,土的状态标准是有所区别的,现以《岩土工程勘察规范》(50021-2001)中规定的最常用的分类标准,对碎石土、砂土、粉土的密实度和对粉土的湿度及黏性土的状态进行分类,见表2-2-29至表2-2-34。

表2-2-29 碎石土密实度按M63.5分类

表2-2-30 碎石土密实度按N120分类

表2-2-31 砂土密实度分类

表2-2-32 粉土密实度分类

表2-2-33 粉土湿度分类

表2-2-34 黏性土状态分类

(五)土的现场鉴别方法

1.碎石土密实度现场鉴别方法(表2-2-35)

表2-2-35 碎石土密实度现场鉴别

2.砂土分类现场鉴别方法(表2-2-36)

表2-2-36 砂土分类现场鉴别

3.砂土密实度现场鉴别方法(表2-2-37)

表2-2-37 砂土密实度现场鉴别

4.砂土湿度的现场鉴别方法(表2-2-38)

表2-2-38 砂土湿度现场鉴别

5.粉土密实度现场鉴别方法(表2-2-39)

表2-2-39 粉土密实度现场鉴别

6.粉土湿度现场鉴别方法(表2-2-40)

表2-2-40 粉土湿度现场鉴别

7.黏性土状态现场鉴别方法(表2-2-41)

表2-2-41 黏性土状态现场鉴别

8.有机质土和淤泥质土的分类

土按有机质分类和鉴定方法,《岩土工程勘察规范》(GB50021—2001)的分类方法见表2-2-42。深圳市沿海近岸地区存在大量淤泥或淤泥质土,在上更新统(Q3)的杂色黏土中,有一层泥炭质土,局部有泥炭层发育。

表2-2-42 土按照有机质分类

(六)土的定名和描述

1.统一分类法定名

1)巨粒土和含巨粒的土、粗粒土按粒组、级配、所含细粒的塑性高低可划分为16种土类;细粒土按塑性图、所含粗粒类别以及有机质多寡划分16种土类。

2)土的名称由一个或一组代号组成:一个代号即表示土的名称,由两个基本代号构成时,第一个代号表示土的主成分,第二个代号表示副成分(土的级配或土的液限);由3个基本代号构成时,第一个代号表示土的主成分,第二个代号表示液限;第三个代号表示土中微含的成分。

《土的分类标准》(G B J145-90),对特殊土的判别,列出了黄土,膨胀土和红黏土。对花岗岩残积土并没有特别加以说明。根据深圳有关单位的经验,花岗岩残积土中的砾质黏性土相当于G B J145-90中的含细粒土砾,代号GF;砂质黏性土相当于细粒土质砾,代号GC-GM;黏性土相当于高液限粉土一低液限粉土,代号M H-M L。对淤泥和淤泥质土,G B J145-90分的不细,从工程需要出发,淤泥和淤泥质土的分类宜按建筑行业标准。

2.建筑行业定名

建筑行业定名依照下列几个标准:

1)土名前冠以土类的成因和年代。

2)碎石土和砂土按颗粒级配定名。

3)粉土以颗粒级配及塑性指数定名。

4)黏性土以塑性指数定名。

5)对混合土按主要土类定名并冠以主要含有物,如含碎石黏土,含黏土角砾等。

6)对同一土层中有不同土类呈韵律沉积时,当薄层与厚层的厚度比大于三分之一时,宜定为“互层”;厚度比为十分之一至三分之一时,宜定为“夹层”;厚度比小于十分之一的土层且多次出现时,宜定为“夹薄层”。当土层厚度大于0.5m时,宜单独分层。

3.土的描述内容

(1)当按统一分类法(GBJ145-90)定名时,应按下列内容描述

1)粗粒土:通俗名称及当地名称;土颗粒的最大粒径;巨粒、砾粒、砂粒组的含量百分数;土颗粒形状(圆、次圆、棱角或次棱角);土颗粒的矿物成分;土颜色和有机质;所含细粒土成分(黏土或粉土);土的代号和名称。

2)细粒土:通俗名称及当地名称;土颗粒的最大粒径;巨粒、砾粒、砂粒组的含量百分数;潮湿时土的颜色及有机质;土的湿度(干、湿、很湿或饱和);土的状态(流动、软塑、可塑或硬塑);土的塑性(高、中或低);土的代号和名称。

(2)当按建筑分类法(GB50007-2002)定名时,应按下列内容描述

1)碎石土:名称、颗粒级配、颗粒排列、浑圆度、母岩成分、风化程度、充填物的性质和充填程度、胶结性、密实度及其他特征。

2)砂土:名称、颜色成分、颗粒级配、包含物成分及其含量、黏粒含量、胶结性、湿度、密实度及其他特征。

3)粉土:名称、颜色、包含物成分及其含量、湿度、密实度、摇振反应及其他特征。

4)黏性土:名称、颜色、结构特征、包含物成分及其含量、摇振反应、光泽反应、干强度、韧性、异味及其他特征。

5)特殊性土:除应描述上述相应土类的内容外,尚应描述其特征成分和特殊性质,如对淤泥尚需描述臭味、有机质含量;对填土尚需描述物质成分、堆积年代、密实度和均匀程度等。

6)互层(夹层)土:对具有互层、夹层、夹薄层特征的土,尚应描述各层的厚度及层理特征。

⑶ 岩土体工程地质类型分区

平原区广泛分布以冲洪积成因为主的第四系堆积物,低山丘陵区出露多种类型的岩组,沂沭断裂带西侧的鄌郚-葛沟断裂、沂水-汤头断裂纵贯南北,总体看工程地质条件较复杂(图1-8-3)。

图1-8-3 昌乐县岩土体工程地质类型分区略图

(一)岩体工程地质类型

1.坚硬的块状侵入岩岩组

分布于营邱—河头一带,为古元古代吕梁期侵入岩,岩性以弱片麻状中粒含角闪二长花岗岩、弱片麻状中粒含黑云二长花岗岩,岩石坚硬,力学强度高,工程地质性质良好,山区风化带厚度<3m,丘陵及准平原区20~30m,fc=130~170MPa,fr=90~130MPa(fc为岩石极限干抗压强度,fr为岩石饱和极限抗压强度)。

2.坚硬的块状-似层状喷出岩岩组

主要分布在南郝—崔家埠—五图一线以南、鄌郚-葛沟断裂以西地区,为新近纪临朐群牛山组、尧山组火山喷出岩,岩性为玄武岩。岩石坚硬,柱状节理发育,工程地质性质良好。风化带厚20~30m,fc=140~160MPa。

3.坚硬的块状变质岩岩组

主要分布在鄌郚—阿陀一带,为新太古代泰山岩群山草峪组黑云变粒岩,岩石坚硬,风化带厚度30~40m,fc=180~200MPa。

4.坚硬较坚硬的中厚-厚层状灰岩岩组

仅分布于朱刘街道、五图街道一带,主要为寒武纪长清群朱砂洞组、馒头组、九龙群张夏组、崮山组和炒米店组白云质灰岩、泥灰岩、泥质条带灰岩和生物碎屑灰岩等,局部夹细砂岩。灰岩坚硬,力学强度高,泥灰岩强度低。白云质灰岩fc=50~190MPa;灰岩fc=90~160MPa,fr=70~120MPa。

5.较坚硬的中厚—厚层碎屑岩岩组

主要分布在鄌郚-葛沟断裂带与沂水-汤头断裂带,以及五图煤矿一带,岩性为白垩纪淄博群三台组砂岩、砾岩,莱阳群城山后组角砾岩、砂砾岩、砂岩,青山群八亩地组凝灰岩、集块角砾岩、粉砂岩,大盛群马郎沟组粉砂岩、细砂岩,田家楼组泥质粉砂岩、细砂岩、黏土岩,古近纪五图群朱壁店组砾岩、砂砾岩、砾岩,李家崖组黏土岩、砂岩、黏土岩、油页岩等。风化带厚度<40m,砂岩和砾岩fc=30~80MPa,fr=20~50MPa。

6.较坚硬的薄层状页岩夹灰岩岩组

局限分布在阿陀东北部,岩性为中寒武系、下寒武系及元古宇土门群页岩、博层灰岩、泥灰岩。页岩夹泥灰岩fc=30~40MPa,fr=10~15MPa。

(二)土体工程地质类型

1.北部冲洪积上层黏性土多层或双层结构

分布于北部山前平原地区,以上层黏性土多层结构为主,上层黏性土厚<5m或5~10m,仅局部>10m,黏性土岩性以粉质黏土、黏土为主,中等压缩性。砂性土为粉细砂、中细砂,其次粗砂、砾石,砂层颗粒自北至南变粗,工程地质性质良好。黏性土fk=120~180kPa,砂性土fk=140~200kPa(fk为地基承载力标准值)。

2.山前及河谷平原冲洪积上层黏性土双层、多层结构及黏性土单层结构

分布于山前坡麓、山间河谷地区,上部黏性土为粉质黏土、粉土、黏土,厚度5m左右,中等压缩性。下部砂性土为中粗砂、细砂、砂砾石,紧密状态,厚>5m。黏性土fk=140~220kPa,砂性土fk=160~250kPa。

3.山麓地区坡洪积及残坡积黏性土单层结构或上层黏性土双层结构

分布于南部低山丘陵坡麓地带,以黏性土单层结构或上层为黏性土双层结构为主。黏性土厚<5m或5~10m,以黄褐色至棕红色粉质黏土及黏土为主,含铁锰质及钙质结核,可塑—硬塑,中等压缩性,部分地区分布湿陷性黄土。下部夹透镜体状碎石土及泥钙质胶结砾岩,紧密状态,工程地质性质良好。黏性土fk=160~220kPa,碎石土fk=200~500kPa。

总之,昌乐县工程地质主要问题是沂沭断裂带的活动性,其次是地面沉陷、岩溶塌陷、局部黄土湿陷等问题。

⑷ 什么是地质岩组

组是一个比较小的单元。。是个地质分层的单位,比如
东营凹陷

沙河街组
、东营组、馆陶组,,泌阳凹陷下
第三系
的核桃园组等等,,岩性就是该组内的岩石(或岩屑)的特性。。

⑸ 地层岩性及岩土工程地质背景

西南地区地质构造复杂,地层出露齐全,自元古宇至新生界均有出露,总厚度回可达58433m(表1-5)。工程地答质岩土类型可划分为岩浆岩、碎屑岩、碳酸盐岩和变质岩4种类型。根据岩石性质、岩体结构、岩石强度及岩性组合特征划分岩组,其工程特征与岩组见表1-6。

土体主要按颗粒级别划分为黏性土、砾卵石土及砂砾,特征见表1-7。

表1-5 西南地区地层

续表

表1-6 岩体工程地质类型及特征

图1-3 青藏高原及邻区主要断裂带及强震分布图

(据焦淑沛,1985)

Ⅰ—喜马拉雅山前陆壳俯冲带;Ⅱ—西昆仑—阿尔金山前陆壳俯冲带;Ⅲ—祁连山前陆壳俯冲带;Ⅳ—龙门山山前陆壳俯冲带

(1)喜马拉雅主断裂活动带;(2)雅鲁藏布江—印度河主断裂活动带;(3)班公湖—澜沧江主断裂活动带;(4)约基台错—金沙江主断裂活动带;(5)昆仑山南缘主断裂活动带;(6)祁连山主断裂活动带;(7)阿尔金主断裂活动带

表1-7 土体工程地质类型及特征

⑹ 中华人民共和国 《工程岩体分级标准》(GB —)

1 总则

1.0.1 为建立统一的评价工程岩体稳定性的分级方法;为岩石工程建设的勘察、设计、施工和编制定额提供必要的基本依据,制定本标准。

1.0.2 本标准适用于各类型岩石工程的岩体分级。

1.0.3 工程岩体分级,应采用定性与定量相结合的方法,并分两步进行,先确定岩体基本质量,再结合具体工程的特点确定岩体级别。

1.0.4 工程岩体分级所必需的地质调查和岩石试验,除应符合本标准外,尚应符合有关现行国家标准的规定。

2 术语、符号(略)

3 岩体基本质量的分级因素

3.1 分级因素及其确定方法

3.1.1 岩体基本质量应由岩石坚硬程度和岩体完整程度两个因素确定。

3.1.2 岩石坚硬程度和岩体完整程度,应采用定性划分和定量指标两种方法确定。

3.2 岩石坚硬程度的定性划分

3.2.1 岩石坚硬程度,应按表3.2.1进行定性划分。

表3.2.1 岩石坚硬程度的定性划分

3.2.2 岩石坚硬程度定性划分时,其风化程度应按表3.2.2确定。

表3.2.2 岩石风化程度的划分

3.3 岩体完整程度的定性划分

3.3.1 岩体完整程度,应按表3.3.1进行定性划分。

表3.3.1 岩体完整程度的定性划分

注:平均间距指主要结构面(1~2组)间距的平均值。

3.3.2 结构面的结合程度,应根据结构面特征,按表3.3.2确定。

表3.3.2 结构面结合程度的划分

3.4 定量指标的确定和划分

3.4.1 岩石坚硬程度的定量指标,应采用岩石单轴饱和抗压强度(R c)。R c 应采用实测值。当无条件取得实测值时,也可采用实测的岩石点荷载强度指数(Is(50))的换算值,并按下式换算:

地质工程学原理

3.4.2 岩石单轴饱和抗压强度(R c)与定性划分的岩石坚硬程度的对应关系,可按表3.4.2确定。

表3.4.2 R c 与定性划分的岩石坚硬程度的对应关系

3.4.3 岩体完整程度的定量指标,应采用岩体完整性指数(K v)。K v 应采用实测值。当无条件取得实测值时,也可用岩体体积节理数(Jv),按表3.4.3确定对应的Kv值。

表3.4.3 J v 与K v 对照表

3.4.4 岩体完整性指数(K v)与定性划分的岩体完整程度的对应关系,可按表3.4.4确定。

表3.4.4 K v 与定性划分的岩体完整程度的对应关系

3.4.5 定量指标K v、J v的测定,应符合本标准附录A的规定。

4 岩体基本质量分级

4.1 基本质量级别的确定

4.1.1 岩体基本质量分级,应根据岩体基本质量的定性特征和岩体基本质量指标(BQ)两者相结合,按表4.1.1确定。

表4.1.1 岩体基本质量分级

4.1.2 当根据基本质量定性特征和基本质量指标(BQ)确定的级别不一致时,应通过对定性划分和定量指标的综合分析,确定岩体基本质量级别。必要时,应重新进行测试。

4.2 基本质量的定性特征和基本质量指标

4.2.1 岩体基本质量的定性特征,应由表3.2.1和表3.3.1所确定的岩石坚硬程度和岩体完整程度组合确定。

4.2.2 岩体基本质量指标(BQ),应根据分级因素的定量指标Rc的兆帕数值和Kv,按下式计算:

地质工程学原理

注:使用(4.2.2)式时,应遵守限制条件:①当Rc>90Kv+30 时,应以Rc=90Kv+30 和Kv 代入计算BQ值。②当Kv>0.04Rc+0.4时,应以Kv=0.04Rc+0.4和Rc 代入计算BQ值。

5.工程岩体级别的确定

5.1 一般规定

5.1.1 对工程岩体进行初步定级时,宜按表4.1.1规定的岩体基本质量级别作为岩体级别。

5.1.2 对工程岩体进行详细定级时,应在岩体质量分级的基础上,结合不同类型工程的特点,考虑地下水状态、初始应力状态、工程轴线或走向线的方位与主要软弱结构面产状的组合关系等必要的修正因素,其中边坡岩体,还应考虑地表水的影响。

5.1.3 岩体初始应力状态,当无实测资料时,可根据工程埋深或开挖深度、地形地貌、地质构造运动史、主要构造线和开挖过程中出现的岩爆、岩心饼化等特殊地质现象,按本标准附录B作出评估。

5.1.4 当岩体的膨胀性、易溶性以及相对于工程范围,规模较大、贯通性较好的软弱结构面成为影响岩体稳定性的主要因素时,应考虑这些因素对工程岩体级别的影响。

5.1.5 岩体初步定级时,岩体物理力学参数,可按本标准附录 C中表C.0.1选用。结构面抗剪断峰值强度参数,可根据岩石坚硬程度和结构面结合程度,按本标准附录C中表C.0.2选用。

5.2 工程岩体级别的确定

5.2.1 地下工程岩体详细定级时,如遇有下列情况之一时,应对岩体基本质量指标(BQ)进行修正,并以修正后的值按表4.1.1确定岩体级别。

5.2.1.1 有地下水;

5.2.1.2 岩体稳定性受软弱结构面影响,且由一组起控制作用;

5.2.1.3 存在本标准附录B表B.0.1所列高初始应力现象。

5.2.2 地下工程岩体基本质量指标修正值([BQ]),可按附录D计算。

5.2.3 对跨度等于或小于20m的地下工程,当已确定级别的岩体,其实际的自稳能力,与本标准附录E相应级别的自稳能力不相符时,应对岩体级别作相应调整。

5.2.4 对大型的或特殊的地下工程岩体,除应按本标准确定基本质量级别外,详细定级时,尚可采用有关标准的方法,进行对比分析,综合确定岩体级别。

5.2.5 工业与民用建筑地基岩体应按表4.1.1规定的基本质量级别定级。

5.2.6 工业与民用建筑地基岩体基岩承载力可按下列规定确定:

5.2.6.1 各级岩体基岩承载力基本值(f 0)可按表5.2.6-1确定。

表5.2.6-1 基岩承载力基本值(f 0

5.2.6.2 考虑基岩形态影响时,基岩承载力标准值(f k)可按下式确定。

地质工程学原理

5.2.6.3 基岩形态影响折减系数(η),可按表5.2.6-2选用。

表5.2.6-2 基岩形态影响折减系数η

注:基岩内结构面倾向与基岩面坡向大致相同为顺坡型,相反为反坡型。

5.2.7 边坡工程岩体详细定级时,应按不同坡高考虑地下水、地表水、初始应力场、结构面间组合、结构面的产状与边坡面间的关系等因素对边坡岩体级别的影响进行修正。

附录A K V、J V 测试的规定

A.0.1 岩体完整性指数(KV),应针对不同的工程地质岩组或岩性段,选择有代表性的点、段,测定岩体弹性纵波速度,并应在同一岩体取样测定岩石弹性横波速度。Kv值应按下式计算:

地质工程学原理

式中:Vpm为岩体弹性纵波速度(km/s);Vpr为岩石弹性横波速度(km/s)。

A.0.2 岩体体积节理数(J v),应针对不同的工程地质岩组或岩性段,选择有代表性的露头或开挖壁面进行节理(结构面)统计。除成组节理外,对延伸长度大于1m的分散节理亦应予以统计。已为硅质、铁质、钙质充填再胶结的节理不予统计。

每一测点的统计面积,不应小于2×5m2。岩体Jv 值,应根据节理统计结果,按下式计算:

地质工程学原理

式中:Jv为岩体体积节理数(条/m3);Sn为第n组节理每米长测线上的条数;Sk为每立方米岩体非成组节理条数。

附录B 岩体初始应力场评估

B.0.1 在无实测成果时, 可根据地质勘察资料, 按下列方法对初始应力场作出评估:

(1)较平缓的孤山体,一般情况下,初始应力的垂直向应力为自重应力,水平向应力不大于γH·ν/(1-ν)。

(2)通过对历次构造形迹的调查和对近期构造运动的分析,以第一序次为准,根据复合关系,确定最新构造体系,据此确定初始应力的最大主应力方向。

当垂直向应力为自重应力,且是主应力之一时,水平向主应力较大的一个,可取(0.8~1.2)γH或更大。

(3)埋深大于1000m,随着深度的增加,初始应力场逐渐趋向于静水压力分布,大于1500m以后,一般可按静水压力分布考虑。

(4)在峡谷地段,从谷坡至山体以内,可区分为应力释放区、应力集中区和应力稳定区。峡谷的影响范围,在水平方向一般为谷宽的1~3倍。对两岸山体,最大主应力方向一般平行于河谷,在谷底较深部位,最大主应力趋于水平且转向垂直于河谷。

(5)地表岩体剥蚀显著地区,水平向应力仍按原覆盖厚度计算。

(6)发生岩爆或岩心饼化现象,应考虑存在高初始应力的可能,此时,可根据岩体在开挖过程中出现的主要现象,按表B.0.1评估。

注:H为工程埋深(m),γ为岩体重力密度(kN/m3),ν为岩体泊松比。

表B.0.1 高初始应力地区岩体在开挖过程中出现的主要现象

注:σmax为垂直洞轴线方向的最大初始应力。

附录C 岩体及结构面物理力学参数

C.0.1 岩体物理力学参数可按表C.0.1选用

表C.0.1 岩体物理力学参数

C.0.2 岩体结构面抗剪断峰值强度参数可按表C.0.2选用

表C.0.2 岩体结构面抗剪断峰值强度

附录D 岩体基本质量指标的修正

D.0.1 岩体基本质量指标修正值([BQ]),可按下式计算:

地质工程学原理

式中:[BQ]为岩体基本质量指标修正值;BQ为岩体基本质量指标;K1 为地下水影响修正系数;K2 为主要软弱结构面产状影响修正系数;K3 为初始地应力状态影响修正系数。

K1、K2、K3值,可分别按表D.0.1-1、D.0.1-2、D.0.1-3确定,无表中所列情况时,修正系数为零。[BQ]出现负值时,应按特殊问题处理。

表D.0.1-1 地下水影响修正系数K 1

表D.0.1-2 主要软弱结构面产状影响修正系数K 2

表D.0.1-3 初始应力状态影响修正系数K 3

附录E 地下工程岩体自稳能力

E.0.1 地下工程岩体自稳能力,应按表E.0.1确定。

表E.0.1 地下工程岩体自稳能力

续表

①小塌方:塌方高度<3m,或塌方体积<30m3

②中塌方:塌方高度3~6m,或塌方体积30~100m3

③大塌方:塌方高度>6m,或塌方体积>100m3

⑺ 岩体地质工程设计问题

著者曾提出地质工程基础理论是地质控制论,也就是说,地质工程作用的规律是受地质规律控制的,如地质环境和地壳稳定性是受大地构造特征控制的,岩体质量是受岩体结构和岩体赋存环境条件控制的,岩体力学作用和岩体力学性质也是受岩体结构和岩体赋存环境条件控制的,地质体改造实际上是岩体力学作用改造,也受岩体结构和岩体赋存环境条件控制,岩体地质工程设计和施工必须在地质控制思想指导下进行。这是岩体地质工程建设的基本指导思想,因此在进行岩体地质工程工作中最重要的是查清工程地质条件,否则的话,必将造成失败,这就是著者一再强调的地质工程必须以地质为基础,一刻也离不开地质,这是岩体地质工程工作的一条重要定理。

一般来说,地质是有规律的,地质体特性是有规律的,是可以掌握的,但在实际工程中,想靠地质勘察一次性地搞清楚地质结构、岩体赋存环境条件和岩体力学特性是很难的。解决这个问题的有效方法是在施工过程中继续进行地质勘察和地质超前预报,根据勘察和预报结果,及时修改设计,这一方法又称为信息反馈设计或地质监控施工,通俗地称为“三边方针”,即边勘察、边设计、边施工、边勘察……这第二个边勘察包括补充勘察和施工地质超前预报,这是比较有效的方法。

岩体地质工程设计的基本原则和其他工程设计一样,其基本原则是为保证建成的工程安全稳定、技术可行、经济合理,既要防止工程地质灾害发生,又要节省投资,还要施工技术可能做到。这里经常涉及工程选线、选址和工程选型问题,这两个问题往往是由工程规划、工程运营条件和投资经济决定。不是仅靠地质体自身稳定能力决定的,如长江三峡工程船闸边坡下部是根据工程需要选用直立边坡,上部边坡则根据地质体自稳能力和施工要求改用斜坡,设计的任务就是采取岩体改造措施,保证总边坡安全稳定。

为了保证地质工程稳定性,设计的任务就是采取地质体改造措施,减小岩体内的主应力差、地下水压或提高岩体强度,保证岩体地质工程稳定性。判断岩体地质工程稳定性有三个重要的技术问题:①岩体结构和力学模型;②岩体力学参数;③岩体稳定性分析方法。其中最关键的问题是抓岩体结构。解决岩体地质工程十分关键的问题有4个工程地质条件:①岩体结构;②地应力;③地下水;④岩体力学参数。

1.岩体结构

关于岩体结构从理论上讲可以划分为若干种类型,可是在实践中如何确定岩体结构类型是很难的。不得不采取模糊的办法来处理,按几种可能的力学模型来试。岩体力学模型有的是随机的,有的是具有确定模型的,比较容易鉴别的有4种力学模型:①连续介质力学模型,它对于结构面分布具有随机特征的岩体比较适用;②碎裂介质力学模型,在低地应力条件下的碎裂结构岩体具有这种力学模型特性;③块裂介质力学模型,在断层、长大节理或层间错动面切割成块体的岩体具有这种力学模型;④板裂介质力学模型,在结构面单组发育或与最大主应力平行分布时或层间错动极发育的岩体具有这种力学模型,还有一种情况是,高地应力地区的高边墙地下洞室边墙围岩极易产生板裂化,在力学模型上也属于板裂介质。在实际岩体地质工程稳定性分析时,要对这4种力学模型仔细诊断,选择应用。用单一的连续介质力学模型分析所有的岩体地质工程稳定性是不符合地质实际的。如地下洞室施工中出现破坏概率最大的是块体塌方,可是用连续介质力学是解决不了这个问题的,必须采用块裂介质岩体力学方法进行分析才行。岩体稳定性分析工作中关键是岩体结构鉴别问题,而这个问题是很难在施工掘进之前作出明确的判断的,要在施工过程中通过补充勘察和地质超前预报最后确定。

2.地应力

地应力也是比较复杂的问题,地应力测量结果只能代表测点的地应力状况。由于岩体结构十分复杂,有的部位破碎,有的部位完整,有的部位含水,有的部位不含水,对于岩体地质工程来说不是仅涉及一小块岩石,而是涉及包含有完整岩体和破碎岩体,有的含水,有的不含水,有的部位地应力高,有的部位地应力低的这样一种复杂的地应力体系。在这种情况下,如何确定地应力大小,是比较难的。我们常常在谈到地应力场时,习惯上用一个确定数表示地应力场特征,实际上它不是一个确定数,而是与岩体弹性模量和岩体抗压强度有关的。从地应力绝对值来说,不是一个常数,而是有大有小的分布密度不等的云状分布状态,应该采用一种分布函数来表征地应力场特征。在岩体力学分析时应该给出变形破坏的分布概率,采用概率概念进行岩体地质工程设计,这是由地质结构的复杂性决定的。

3.地下水

地下水同样也是地质工程设计中必须考虑的一个重要因素,我们经常遇到在岩体地质工程设计中,对地下水的处理具有很大盲目性。对地下水补给、排泄渠道,对地下水量、水压及其动态并不清楚。如目前在滑坡防治地质工程设计中如何进行排水设计,如何布置地表排水系统和地下排水系统,只是根据经验或主观判断,缺乏理论依据,因此所设计的工程防治效果也是带有很大的盲目性。在岩体地质工程设计时,必须对地下水状态有一个明确的认识,因为它是岩体地质工程变形破坏的重要影响因素。

4.岩体力学参数

岩体地质工程稳定性分析工作中,困难的问题是岩体力学参数选择。岩体力学参数选取得是否符合实际,是影响岩体地质工程设计成败的关键因素之一。目前岩体地质工程设计多数是保守的,个别的也有冒险的,这里蕴藏着巨大的浪费,关键在于岩体力学参数选取不符合地质实际。岩体力学参数取值与选用什么力学判据密切有关,在选用岩体力学参数之前必须正确选择力学判据,有了力学判据才能确定岩体力学参数。这是岩体力学测试之前必须首先解决的问题。可是目前对这个问题还不够明确,不管岩体变形、破坏机制如何,一律采用杨氏法则、库仑莫尔定律作为变形破坏判据,实际上并不完全符合实际。这也是目前岩体地质工程稳定性分析结果不符合实际的原因之一。著者在(1998)里曾提出了修正的杨氏法则和岩体破坏判据体系,为解决这个问题提供了依据,可供选用岩体力学判据参考。目前在岩体力学参数选取上有三种方法:①根据试验结果取值;②利用变形监测反分析结果取值;③利用类比分析方法取值。尽管这样,也很不容易取得符合实际的岩体力学参数。因为在根据试验结果取值中存在一个尺寸效应和地应力效应改正问题很难处理,同时,在利用试验结果取值中常用统计分析方法,也不尽合理,因为岩体力学参数有的是随机的,有的是具有确定模型的,不能一概都用随机原理进行统计分析;在变形监测反分析中,反分析的力学模型选择是否符合地质实际,对分析结果是否符合实际具有很大影响;工程类比分析中地质模型是否具有可比性,如地质结构、地应力条件、地下水条件等是否有可比性在进行类比分析中是至关重要的。对岩体来说,岩体力学性质中最重要的有三个参数,即岩体变形模量、岩体强度、结构面强度。它们都具有明显的尺寸效应,图3-16是著者总结整理成的岩体强度尺寸效应与地应力效应关系图。这个资料对根据试验结果进行岩体力学参数取值是比较有用的。

地质工程设计中另一个重要问题是确定地质体改造技术问题,关于这个问题著者在地质体改造原理、技术和方法部分里已经谈了很多,不再重复。

⑻ 有一门“岩体工程地质力学”。我没搞明白研究的主题是什么内容能介绍一下吗

研究内容
1.工程地质岩组的划分及其特征;
2.岩体结构及其类型划分;回
3.褶皱断裂系统和构造应力场的答地质力学分析;
4.软弱结构面的形成过程及其特性;
5.岩石和岩体的基本力学特性;
6.岩体的裂隙渗透特性;
7.岩体的变形,破坏机制;
8.岩体的应力状态和稳定性分析;
9.岩体动力学特性;
10.测试技术及方法研究。
岩体工程地质力学研究的最终目的
评价和研究岩体的稳定性。岩体稳定性是个相对概念,即不同的工程建筑所要求的稳定标准是不一样的。稳定性研究涉及范围很广,稳定性评价研究工作还包括预测预报的研究。

⑼ 什么是地质岩组和地质岩性有什么区别

组是一个比较小的单元.是个地质分层的单位,比如东营凹陷的沙河街组、东营版组、馆陶组,泌阳凹陷下权第三系的核桃园组等等,岩性就是该组内的岩石(或岩屑)的特性.
地质岩性指岩石的软硬程度及成因,如:花岗岩、大理岩、沉积岩、泥岩等,是划分岩石等级的主要依据.

⑽ 中华人民共和国《工程岩体分级标准》(GB—)

1 总则

1.0.1 为建立统一的评价工程岩体稳定性的分级方法;为岩石工程建设的勘察、设计、施工和编制定额提供必要的基本依据,制定本标准。

1.0.2 本标准适用于各类型岩石工程的岩体分级。

1.0.3 工程岩体分级,应采用定性与定量相结合的方法,并分两步进行,先确定岩体基本质量,再结合具体工程的特点确定岩体级别。

1.0.4 工程岩体分级所必需的地质调查和岩石试验,除应符合本标准外,尚应符合有关现行国家标准的规定。

2 术语、符号(略)

3 岩体基本质量的分级因素

3.1 分级因素及其确定方法

3.1.1 岩体基本质量应由岩石坚硬程度和岩体完整程度两个因素确定。

3.1.2 岩石坚硬程度和岩体完整程度,应采用定性划分和定量指标两种方法确定。

3.2 岩石坚硬程度的定性划分

3.2.1 岩石坚硬程度,应按表3.2.1进行定性划分。

表3.2.1 岩石坚硬程度的定性划分

3.2.2 岩石坚硬程度定性划分时,其风化程度应按表3.2.2确定。

表3.2.2 岩石风化程度的划分

3.3 岩体完整程度的定性划分

3.3.1 岩体完整程度,应按表3.3.1进行定性划分。

表3.3.1 岩体完整程度的定性划分

3.3.2 结构面的结合程度,应根据结构面特征,按表3.3.2确定。

表3.3.2 结构面结合程度的划分

3.4 定量指标的确定和划分

3.4.1 岩石坚硬程度的定量指标,应采用岩石单轴饱和抗压强度(Rc)。Rc应采用实测值。当无条件取得实测值时,也可采用实测的岩石点荷载强度指数(Is(50))的换算值,并按下式换算:

地质工程学原理

3.4.2 岩石单轴饱和抗压强度(Rc)与定性划分的岩石坚硬程度的对应关系,可按表3.4.2确定。

表3.4.2 Rc与定性划分的岩石坚硬程度的对应关系

3.4.3 岩体完整程度的定量指标,应采用岩体完整性指数(Kv)。Kv应采用实测值。当无条件取得实测值时,也可用岩体体积节理数(Jv),按表3.4.3确定对应的Kv值。

表3.4.3 Jv与Kv对照表

3.4.4 岩体完整性指数(Kv)与定性划分的岩体完整程度的对应关系,可按表3.4.4确定。

表3.4.4 Kv与定性划分的岩体完整程度的对应关系

3.4.5 定量指标Kv、Jv的测定,应符合本标准附录A的规定。

4 岩体基本质量分级

4.1 基本质量级别的确定

4.1.1 岩体基本质量分级,应根据岩体基本质量的定性特征和岩体基本质量指标(BQ)两者相结合,按表4.1.1确定。

表4.1.1 岩体基本质量分级

4.1.2 当根据基本质量定性特征和基本质量指标(BQ)确定的级别不一致时,应通过对定性划分和定量指标的综合分析,确定岩体基本质量级别。必要时,应重新进行测试。

4.2 基本质量的定性特征和基本质量指标

4.2.1 岩体基本质量的定性特征,应由表3.2.1和表3.3.1所确定的岩石坚硬程度和岩体完整程度组合确定。

4.2.2 岩体基本质量指标(BQ),应根据分级因素的定量指标Rc的兆帕数值和Kv,按下式计算:

地质工程学原理

注:使用(4.2.2)式时,应遵守限制条件:①当Rc>90Kv+30时,应以Rc=90Kv+30和Kv代入计算BQ值。②当Kv>0.04Rc+0.4时,应以Kv=0.04Rc+0.4和Rc代入计算BQ值。

5.工程岩体级别的确定

5.1 一般规定

5.1.1 对工程岩体进行初步定级时,宜按表4.1.1规定的岩体基本质量级别作为岩体级别。

5.1.2 对工程岩体进行详细定级时,应在岩体质量分级的基础上,结合不同类型工程的特点,考虑地下水状态、初始应力状态、工程轴线或走向线的方位与主要软弱结构面产状的组合关系等必要的修正因素,其中边坡岩体,还应考虑地表水的影响。

5.1.3 岩体初始应力状态,当无实测资料时,可根据工程埋深或开挖深度、地形地貌、地质构造运动史、主要构造线和开挖过程中出现的岩爆、岩心饼化等特殊地质现象,按本标准附录B作出评估。

5.1.4 当岩体的膨胀性、易溶性以及相对于工程范围,规模较大、贯通性较好的软弱结构面成为影响岩体稳定性的主要因素时,应考虑这些因素对工程岩体级别的影响。

5.1.5 岩体初步定级时,岩体物理力学参数,可按本标准附录C中表C.0.1选用。结构面抗剪断峰值强度参数,可根据岩石坚硬程度和结构面结合程度,按本标准附录C中表C.0.2选用。

5.2 工程岩体级别的确定

5.2.1 地下工程岩体详细定级时,如遇有下列情况之一时,应对岩体基本质量指标(BQ)进行修正,并以修正后的值按表4.1.1确定岩体级别。

5.2.1.1 有地下水;

5.2.1.2 岩体稳定性受软弱结构面影响,且由一组起控制作用;

5.2.1.3 存在本标准附录B表B.0.1所列高初始应力现象。

5.2.2 地下工程岩体基本质量指标修正值([BQ]),可按附录D计算。

5.2.3 对跨度等于或小于20m的地下工程,当已确定级别的岩体,其实际的自稳能力,与本标准附录E相应级别的自稳能力不相符时,应对岩体级别作相应调整。

5.2.4 对大型的或特殊的地下工程岩体,除应按本标准确定基本质量级别外,详细定级时,尚可采用有关标准的方法,进行对比分析,综合确定岩体级别。

5.2.5 工业与民用建筑地基岩体应按表4.1.1规定的基本质量级别定级。

5.2.6 工业与民用建筑地基岩体基岩承载力可按下列规定确定:

5.2.6.1 各级岩体基岩承载力基本值(f0)可按表5.2.6-1确定。

表5.2.6-1 基岩承载力基本值(f0

5.2.6.2 考虑基岩形态影响时,基岩承载力标准值(fk)可按下式确定。

地质工程学原理

5.2.6.3 基岩形态影响折减系数(η),可按表5.2.6-2选用。

表5.2.6-2 基岩形态影响折减系数η

5.2.7 边坡工程岩体详细定级时,应按不同坡高考虑地下水、地表水、初始应力场、结构面间组合、结构面的产状与边坡面间的关系等因素对边坡岩体级别的影响进行修正。

附录A KV、JV测试的规定

A.0.1 岩体完整性指数(KV),应针对不同的工程地质岩组或岩性段,选择有代表性的点、段,测定岩体弹性纵波速度,并应在同一岩体取样测定岩石弹性横波速度。Kv值应按下式计算:

地质工程学原理

式中:Vpm为岩体弹性纵波速度(km/s);Vpr为岩石弹性横波速度(km/s)。

A.0.2 岩体体积节理数(Jv),应针对不同的工程地质岩组或岩性段,选择有代表性的露头或开挖壁面进行节理(结构面)统计。除成组节理外,对延伸长度大于1m的分散节理亦应予以统计。已为硅质、铁质、钙质充填再胶结的节理不予统计。

每一测点的统计面积,不应小于2×5m2。岩体Jv值,应根据节理统计结果,按下式计算:

地质工程学原理

式中:Jv为岩体体积节理数(条/m3);Sn为第n组节理每米长测线上的条数;Sk为每立方米岩体非成组节理条数。

附录B 岩体初始应力场评估

B.0.1 在无实测成果时,可根据地质勘察资料,按下列方法对初始应力场作出评估:

(1)较平缓的孤山体,一般情况下,初始应力的垂直向应力为自重应力,水平向应力不大于γH·ν/(1-ν)。

(2)通过对历次构造形迹的调查和对近期构造运动的分析,以第一序次为准,根据复合关系,确定最新构造体系,据此确定初始应力的最大主应力方向。

当垂直向应力为自重应力,且是主应力之一时,水平向主应力较大的一个,可取(0.8~1.2)γH或更大。

(3)埋深大于1000m,随着深度的增加,初始应力场逐渐趋向于静水压力分布,大于1500m以后,一般可按静水压力分布考虑。

(4)在峡谷地段,从谷坡至山体以内,可区分为应力释放区、应力集中区和应力稳定区。峡谷的影响范围,在水平方向一般为谷宽的1~3倍。对两岸山体,最大主应力方向一般平行于河谷,在谷底较深部位,最大主应力趋于水平且转向垂直于河谷。

(5)地表岩体剥蚀显著地区,水平向应力仍按原覆盖厚度计算。

(6)发生岩爆或岩心饼化现象,应考虑存在高初始应力的可能,此时,可根据岩体在开挖过程中出现的主要现象,按表B.0.1评估。

注:H为工程埋深(m),γ为岩体重力密度(kN/m3),ν为岩体泊松比。

表B.0.1 高初始应力地区岩体在开挖过程中出现的主要现象

附录C 岩体及结构面物理力学参数

C.0.1 岩体物理力学参数可按表C.0.1选用

表C.0.1 岩体物理力学参数

C.0.2 岩体结构面抗剪断峰值强度参数可按表C.0.2选用

表C.0.2 岩体结构面抗剪断峰值强度

附录D 岩体基本质量指标的修正

D.0.1 岩体基本质量指标修正值([BQ]),可按下式计算:

地质工程学原理

式中:[BQ]为岩体基本质量指标修正值;BQ为岩体基本质量指标;K1为地下水影响修正系数;K2为主要软弱结构面产状影响修正系数;K3为初始地应力状态影响修正系数。

K1、K2、K3值,可分别按表D.0.1-1、D.0.1-2、D.0.1-3确定,无表中所列情况时,修正系数为零。[BQ]出现负值时,应按特殊问题处理。

表D.0.1-1 地下水影响修正系数K1

表D.0.1-2 主要软弱结构面产状影响修正系数K2

表D.0.1-3 初始应力状态影响修正系数K3

附录E 地下工程岩体自稳能力

E.0.1 地下工程岩体自稳能力,应按表E.0.1确定。

表E.0.1 地下工程岩体自稳能力

续表

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864