工程地质学难点
1. 中南大学地质工程系好不好
可以
地球信息专业不是今年新开设的
我校地质工程专业所在学科为国家重点学科,除本科教育外,还设有硕士点、博士点和博士后科研流动站,是我国地质类专业培养高层次人才和开展科学研究的重要基地,目前在国际上处于领先地位。该专业为路桥、市政基础建设,国土、矿产资源勘察,环境地质突害防治等方面培养研究、管理和工程技术人才。该专业培养的人才就业领域广阔,发展空间大。
一、招生计划和报考名额 国家任务本科计划40名,报考名额50名。
二、生源范围 长沙、邵阳、郴州、永州、怀化等五个地(市)。
三、报考条件 除符合教育部颁布的《2007年普通高等学校招生工作规定》中规定的报名条件外,还必须具备下列条件:
(1)专业思想牢固,立志献身祖国的地质事业;
(2)应届高中毕业生;
(3)无色盲、色弱,男生身高不低于1.65米,女生身高不低于1.55米;
(4)高中成绩一贯优良,省属示范性中学的学生语文、数学、英语三科平时成绩要求在年级前50%,一般中学的学生语文、数学、英语三科平时成绩要求在年级前30%;
(5)参加我校举办的单独招生报名资格选拔考试,并取得报名资格。
报名资格选拔考试(点击进入网上报名系统):
考试科目:英语和数学;
考试范围:不超出2007年普通高校招生全国统一考试命题大纲;
报名方式:网上报名与现场确认相结合,网上填报《中南大学单独招生报考登记表》进行网上报名,用A4纸打印并请所在中学教务部门盖章后,在现场确认时和同底一寸照片交户口所在地招生部门。网上报名截止日期:2007年1月12日,现场确认时间及地点与户口所在地招生部门联系,报名费:100元;
考试时间:1月27日上午9:00-11:00(英语),下午1:00-3:00(数学);
考试地点:由长沙、邵阳、郴州、永州、怀化等五个地(市)招生部门指定;
报名资格确定原则:五个地(市)所有考生按总分从高分到低分排序,总分相同时,英语成绩高者优先。前50名同学获得单独招生报名资格,若有人放弃,本人写出放弃声明后,按总分排序依次递补。
四、高考报名 报名参加单独招生报名资格选拔考试的考生要求参加高等学校招生全国统一考试报名,取得单独招生报名资格后再到户口所在地招生部门办理单独招生高考报名手续。
确定参加单独招生考试的考生所在中学应将我校单独招生名额和报考条件在本校公布,并将确定参加单独招生考试的学生名单张榜公示,各中学在审查考生报名条件时,必须坚持实事求是的原则,确保单独招生的生源质量,如发现有弄虚作假行为,取消不符合条件考生的报考资格,并取消该校来年的单独招生报名资格选拔考试的考试资格。
根据教育部规定,每个考生只能报考单独招生或全国统一招生考试中的一种,不能兼报。未被录取时,其它学校以及中南大学单独招生以外的专业均不能录取,参加单独招生的学生必须准确填报中南大学地质工程专业单独招生志愿。各级相关部门在报名和组考过程中要认真组织、规范管理,防止出现差错。我校不承担因报名信息和录取信息有误而导致考生不能正常录取的相关责任。
五、考试 考试科目:3+理科综合,即语文、数学、英语+综合(物理、化学、生物)。考试范围不超出2007年高等学校招生全国统一考试命题大纲。考试时间与2007年高等学校招生全国统一考试的时间一致。考点设在有招生任务的地(市)。命题、制卷、考试、评卷工作由省教育考试院负责。
六、录取 参加单独招生考试的考生在录取时,单独划线,单独录取。录取最低控制分数线根据招生计划和考生成绩统一确定。录取过程中的有关政策和要求执行湖南省教育考试院的统一规定。
七、待遇 地质工程专业学费标准较低,被我校单独招生录取的学生,与统一招生的学生待遇相同。学校设有30余项奖学金,该专业还可享受专业奖学金。优秀本科毕业生可免试攻读硕士学位,硕士期间,成绩优异者可提前攻读博士学位。
今年中南大学在湘招生2289人,其中高职专科招生200人,本科招生文科132人,理科1957人。昨日,中南大学公布了分省份、专业的招生计划以及地质工程专业单独招生简章。
外语成绩高者优先录取 中南大学招生办主任付刚华表示,今年本科生录取中,优先录取第一志愿的考生,对于非第一志愿报考的考生,实行院校志愿分数级差的办法予以录取。进档考生外语类专业口试成绩高者优先录取;文史类和理工类各专业相关科目成绩高者优先录取。此外,对各种增加分数和降低分数投档的考生,在高考文化总分相同的条件下优先录取。艺术类专业的考生,专业测试成绩或文化考试成绩前三名者优先录取;报考艺术设计专业的考生的总成绩按专业测试成绩占60%、文化考试成绩占40%的原则计算;报考工业设计专业的考生的总成绩按专业测试成绩占40%、文化考试成绩占60%的原则计算,数学考试成绩计入文化总分;学校根据考生总成绩从高分到低分录取;同等条件下,外语考试成绩高者优先录取。
地质工程专业单独招生
中南大学地质工程专业今年继续单独招生,今年国家任务本科计划40名,报考名额50名。报考将在长沙、邵阳、郴州、永州、怀化等五个市进行,各地区的报考名额均为10名。报考单独招生的考生要求无色盲、色弱,男生身高不低于1.65米,女生身高不低于1.55米;高中成绩优良,省属重点中学的学生语文、数学、英语三科平时成绩排名要求在年级前50%以内,一般中学的学生语文、数学、英语三科平时成绩排名要求在年级前30%以内。
根据规定,每个考生只能报考单独招生或全国统一招生考试中的一种,不能兼报。参加单独招生的学生必须准确填报中南大学志愿。单独招生考试科目为:语文、数学、英语+综合(物理、化学、生物),考试时间与全国普通高校统一招生考试的时间一致。
招生就业栏目分为招生和就业两大部分,由本科生招生信息、研究生招生信息、成人教育招生信息、网络教育招生信息和中南大学就业网5个子栏目组成。其中,本科生招生信息子栏目全面介绍了本科生招生的最新动态、招生计划、有关政策和历年招生情况等信息,并为广大考生提供了一个咨询和查询的在线平台;研究生招生信息子栏目全面介绍了硕士生和博士生招生的最新动态、招生计划、有关政策、考试参考书目和历年招生情况等信息,同时还启用了博士生网上报名系统;成人教育招生信息和网络教育招生信息这两个子栏目分别介绍了成人教育和网络教育的最新招生情况。学校热忱欢迎有志学子融入中南大学,实现人生理想。
中南大学就业网子栏目为广大学生和众多企事业单位、社会团体提供了双向选择的网上就业与招聘平台,内容包括社会需求、毕业生基本情况、校园招聘、就业指导、历年毕业生就业统计分析等信息。
2. 地质学是研究什么的
地质学是关于地球的物质组成、内部构造、外部特征、各层圈之间的相互作用和演变历史的知识体系。
地球自形成以来,经历了约46亿年的演化过程,进行过错综复杂的物理、化学变化,同时还受天文变化的影响,所以各个层圈均在不断演变。
约在35亿年前,地球上出现了生命现象,于是生物成为一种地质应力。最晚在距今200~300万年前,开始有人类出现。人类为了生存和发展,一直在努力适应和改变周围的环境。利用坚硬岩石作为用具和工具,从矿石中提取铜、铁等金属,对人类社会的历史产生过划时代的影响。
随着社会生产力的发展,人类活动对地球的影响越来越大,地质环境对人类的制约 作用也越来越明显。如何合理有效的利用地球资源、维护人类生存的环境,已成为当今世界所共同关注的问题。
地质学的研究对象
地球的平均半径为6371公里 。其核心可能是以铁、镍为主的金属,称为地核,半径约3400公里。在地核之外,是厚度近2900公里的地幔。地幔之外是薄厚不一的地壳,已知最厚处为75公里,最薄处仅5公里左右,平均厚度约35公里。
地核的内层是固体,也有科学家认为是在强大压力下原子壳层已被破坏的超固体。外层是具有液体性质的物质,还推测有电流在其中运动,被认为是地球磁场的本原。外层的厚度约为2220公里。
地幔下部是含有较多金属硫化物和氧化物的非晶体固体物质;地幔上部成份与橄榄岩大致相当;与地壳相接部分和地壳均具有刚硬的性质,合称为岩石圈,厚度约为60~120公里;在岩石圈之下为一层具有可塑性、可以缓慢流动、厚度约为100公里的软流圈。
地壳表面的海洋、湖泊、河流等水体约占地表总面积的74%。成液态的地表水与冻结在两极地区和高山上的冰川,以及土壤、岩石中的地下水,组成地球的水圈。
地球的外层是大气圈。大气主要集中于高度不超过16公里的近地面中,成份以氮和氧为主。离地越远,大气越稀薄,而且成份也有变化。在100公里外,大气逐渐不能保持分子状态,而以带电粒子的形态出现,其稀薄程度超过人造的真空。带电粒子受到地球磁场的控制,形成能够阻挡来自太阳和宇宙带电粒子流冲击的电磁层。
地球的水圈和大气圈通过水的蒸发、凝结、降水和气体的溶解、挥发等方式互相渗透和影响。固体的地球界面上下,是大气和水活动的场所。岩石圈的物质也不断运动 ,并通过火山喷发的形式进入水圈和大气圈。地球各圈层的相互作用不断改变着地球的面貌。
地球的这些圈层,是由于其组成物质的重力差异作用而逐渐形成的。地球上的任何质点均受到地球引力和惯性离心力的作用,这两种力的合力就是重力。地球表面重力吸住了大气和水,并对他们的运动产生了影响。
矿物和岩石
在地球的化学成分中,铁的含量最高(35%),其他元素依次为氧(30%)、硅(15%)、镁(13%)等。如果按地壳中所含元素计算,氧最多(46%),其他依次为硅(28%)、铝(8%)、铁(6%)、镁(4%)等。这些元素多形成化合物,少量为单质,它们的天然存在形式即为矿物。
矿物具有确定的或在一定范围内变化的化学成分和物理特征。组成矿物的元素,如果其原子多是按一定的形式在三维空间内周期性重复排列,并具有自己的结构,那么就是晶体。晶体在外界条件适合的时候,其形态多表现为规则的几何多面体,但这种情况很少。
矿物在地壳中常以集合的形态存在,这种集合体可以由一种,也可以由多种矿物组成,这在地质学中被称为岩石。
地球中的矿物已知的有3300多种,常见的只有20多种,其中又以长石、石英、辉石、闪石、云母、橄榄石、方解石、磁铁矿和粘土矿物最最多,除方解石和磁铁矿外,它们的化学成分都以二氧化硅为主,石英全为二氧化硅组成,其余则均为硅酸盐矿物。
由硅酸盐溶浆凝结而成的火成岩构成了地壳的主体,按体积和重量计都最多。但地面最常见到的则是沉积岩,它是早先形成的岩石破坏后,又经过物理或化学作用在地球表面的低凹部位沉积,经过压实、胶结再次硬化,形成具有层状结构特征的岩石。
在地壳中,在大大高于地表的温度和压力作用下,岩石的结构、构造或化学成分发生变化,形成不同于火成岩和沉积岩的变质岩。火成岩、沉积岩、变质岩是地球上岩石的三大类别。火成岩中的玄武岩、花岗岩 是地球中最具代表性的岩石,是构成大陆的主要岩石。形成时代最早的花岗岩,年龄达39亿年,而玄武岩是构成海洋所覆盖的地壳的主要物质,均比较“年轻”,一般不超过2亿年。
地层和古生物
地层是以成层的岩石为主体,随时间推移而在地表低凹处形成的构造,是地质历史的重要纪录。狭义的地层专指已固结的成层的岩石,有时也包括尚未固结成岩的松散沉积物。依照沉积的先后,早形成的地层居下,晚形成的地层在上,这是地层层序关系的基本原理,称为地层层序律。
地层在形成以后,由于受到地壳剧烈运动的影响,改变原来的位置,会产生倾斜甚至倒转,但只要能查明其形成和变形的时间,仍可以恢复其原始的层序。在同一时间,地球上各处环境不同,在不同环境中形成的地层各有特点。在地表的隆起部位,不仅不能形成新的地层,还会因受到剥蚀而使已经形成的地层消失。
因此,地层学是研究各地区地层的划分,确定地层的顺序和相邻地区地层在时间上的对比关系的专门学科。它是地质学的基础,也是地质学中最早形成的学科。
古生物是指在地质历史时期,在地球上生存过的各类生物,一般已经绝灭,它们的少量遗体和遗迹形成化石保存在地层中。 通过研究这些化石,可以了解地质历史上生物的形态、构造和活动情况。
对各种古生物进行分类,可以认识生物的演化关系;依据地层中所含化石,可以断定地层的层序,生物演化的不可逆性和阶段性,使这种判断具有可靠的根据;古生物的分布和生活习性,还反映出当时地理环境的特点。古生物的研究是地质学也是生物学的重要组成部分。
地质构造和地质作用
地球表层的岩层和岩体,在形成过程及形成以后,都会受到各种地质作用力的影响,有的大体上保持了形成时的原始状态,有的则产生了形变。它们具有复杂的空间组合形态,即各种地质构造。断裂和褶皱是地质构造的两种最基本形式。
地球的岩石圈,已经并还在发生着全球规模的板块运动。板块构造学是 二十世纪地质学对地质构造及地质作用的新认识。其基本内容是,岩石圈是地球中最刚硬的部分,它飘浮在地幔中具有塑性、局部熔融、密度较大的软流圈之上。岩石圈中存在着许多很深很大的断裂,这些断裂把岩石圈分割成被称为板块的巨大块体,全球可分为六大板块。
一般认为,主要是地球内部热的不均匀分布引起了物质对流运动,使岩石圈破裂成为板块。板块形成后继续运动,发生分离、碰撞等事件。地幔中的熔融物质沿板块间的拉张断裂带挤入,并不断向断裂两侧扩展,形成新的洋壳,而部分板块则随着载荷它的软流圈物质向下移动而消失于地幔之中。
板块运动被认为是使地壳表层发生位置移动,出现断裂、褶皱以及引起地震、岩浆活动和岩石变质等地质作用的总原因,这些地质作用总称为内力地质作用。内力地质作用改变着地壳的构造,同时为地貌的形成打下基础。
地质作用强烈地影响着气候以及水资源与土壤的分布,创造出了适于人类生存的环境。这种良好环境的出现,是地球大气圈、水圈和岩石圈演化到一定阶段的产物。地球形成的初期,大气圈和水圈的成分、质量都和现代大不相同。例如,大气曾经历以二氧化碳为主的阶段,海水是约在10亿年前才具有今天的含盐度,生物最早出现在地球形成约10亿年以后等等。
地质作用也会给人带来危害,如地震、火山爆发、洪水泛滥等。人类无力改变地质作用的规律,但可以认识和运用这些规律,使之向有利于人的方向发展,防患于未然。如预报、预防地质灾害的发生,就有可能减轻损失。中国在古代就有“束水攻沙”,引黄河水灌溉淤田压碱等经验,是利用河流的地质作用取得成功的例子。
地质学的研究特点
地壳是一个极其复杂的研究对象,不但具有复杂的物质成分,不同的化学性质、物理性质和各式各样的结构方式,而且在漫长的时间和广大的空间内,又都受到了一系列物理作用、化学作用甚至生物作用等综合的地质作用影响,不断地发生着错综复杂的物理和化学变化。
这些作用以及它们所呈现的各种地质现象之间,存在着互相制约、互相联系、互相转化的关系。它们的发生、发展和演化的规律,除具有普遍的特点之外,还常有一定的时间变异性和区域特殊性,因而不同地区具有不同的地质特征,蕴藏着不同种类、成分和规模的矿产。
地质学的另一特点是把空间与时间统一起来研究。现在能观察到的地球历史发展记录,主要保存在表层岩石内,按时间顺序层层堆积的地层中。由不同时代岩浆凝结而成的火成岩体,以及由早先形成的岩层岩体演变而成的变质建造,不同时期留下的构造变形遗迹等,是了解地球历史的基本材料。由于经过长期复杂的变动,这些史料已变得凌乱和有缺失,这是地质学研究的难点。
地壳中除了保存着各种地质变化的遗迹之外,还有记载着生物的演化和同位素的蜕变等其他科学方面的珍贵史料,它是地球的一系列复杂运动的结果,而这种运动现在还在进行着。对于地表以下较大深度的地质现象和地质作用,目前还只能通过地球物理等探测技术,来进行间接的推测和研究。
同物理、化学等基础科学比较,地质学研究具有较强的地域性、历史性和综合性。只有根据足够的实际资料,特别是根据足以充分说明空间和时间变化因素的丰富资料总结出来的地质学理论,才能有较广泛的适用性。
地质学的这些特点,决定了一般的地质研究必须通过一定比重的野外实际调查,配合相应的室内研究。野外调查和室内研究,构成一次观察、记录(包括制图)采样、初步综合、试验分析、总结提高以至复查验证的完整的地质研究过程。地质学研究在实质上都是对其研究对象的一次综合性调查研究过程。
随着生产和科学技术的发展,20世纪中叶以来地质学的研究中引入了大量的新技术、新方法,如不同的地球物理勘探方法、地球化学勘察方法、科学深钻技术、同位素地质方法、航空以及遥感地质方法、现代电子计算机技术、高温高压模拟试验等的采用。
物理、化学等基础科学新的成就的引用,地球物理、地球化学、数学地质、宇宙地质学等地质科学中边缘学科的进一步发展,推动了地质学的发展,同时使地质学的方法不断地革新。
地质学的分支分科
人类对地质的认识,首先是从被视为静止物体的矿物和岩石的研究开始的。通过保存在地层中的古生物化石的研究,提出了古生物学的理论与方法,并运用于划分地层,把历史的观念引入了地质学。
天文学的成果,特别是科学的天体演化假说的提出,使人类对地球的现状和历史演变的认识,提高到能够建立一个比较合乎逻辑的完整体系的程度。继天文学、生物学之后,物理学和化学的成果也为地质学的创立和发展提供了条件,使地质学发展成为自然科学的一大支柱。
早期的地质学以研究地壳表层某个地区的岩石为基础,矿物学、岩石学、地层学及古生物学、构造地质学、区域地质学都是在此基础上建立起来的。历史地质学则是概括这些地质实体的发展历史的综合性学科。
地质学与物理学、化学结合而产生的地球物理学、地球化学,是地球科学的重要支柱,也是推动地质学向现代科学水平发展的重要方面。
现代地质学把地球作为一次整体来研究,20世纪60年代出现的板块构造说,就是吸收了地震研究、海洋地质调查和古地碰研究等方面的最新科学成果,较好地解释了全球构造问题。
至20世纪80年代,地质学已发展成为包含有下列分支学科的理论体系。这些分支学科大体可分为两类:一类是探讨基本事实和原理的基础学科;一类是这些基础学科与生产或其他学科结合而形成的学科。
矿物学是研究矿物的化学成分、内部结构、形态、性质、成因、产状,共生组合、变化条件、用途以及它们之间的相互关系的学科。
岩石学是研究岩石的物质成分、结构、构造、形成条件、分布规律、成因、成矿关系以及岩石的演变历史和演变规律的学科。
矿床地质学是研究矿床的特征、成固、分布及其工业意义的学科。
地球化学是研究地球各圈层和各种地质体的化学组成、化学作用和化学演化,探讨化学元素及其同位素的分布、存在形式、共生组合、集中分散及迁移循环的规律的学科。
以地质作用及其留下的形迹为主要研究对象的学科包括下列各分支。
动力地质学是研究各种地质作用,包括引起这些作用的动力在地球各圈层活动的规律的学科。火山地质学、地震地质学、冰川地质学等均属这个学科中有特殊内容的分支。
构造地质学是研究地球岩石圈的构造变形,包括断裂、褶皱等各种构造形迹及不同类型构造单元的分布、形成、演化和发展,是从总体上研究地质体的构造在时间上及空间上的发展规律及成固和动力来源的学科。大地构造学也属于构造地质学范畴。
地貌学是研究地表形态特征及其发生、发展和分布的规律的学科。又称地形学,是地质学与自然地理学之间的边缘学科。
地球物理学是研究各种地球物理场和地球的物理性质、结构、形态及其中发生的各种物理过程的学科,是地质学与物理学之间的边缘科学。地球物理学在狭义上只研究地球的固体部分,又称固体地球物理学;广义的地球物理学还包括对水圈、大气圈的研究。
地质力学是运用力学原理研究地壳构造和地壳运动规律及其起因的学科。
以地质历史为主要研究对象的学科,包括下列分支:
古生物学是研究地球历史上的生物界及其进化过程的学科。主要是对保存在地层中的化石的研究。
地层学是研究成层岩石的时空分布规律,包括地层的层序和时代及其地理分布、地层的分类、对比以及它们之间的关系的学科。
历史地质学是研究地球的发展历史和规律,包括地球上生物的进化历史,古沉积相的分析和古地理面貌的复原,以及地壳地质构造和有关地质作用的演变等方面的研究,是一门综合性的学科。
古地理学是研究地球历史上的海陆分布及其他自然地理特征与发展过程的学科。
地质年代学是研究地质历史时期的顺序及其延续的年代数据,地质年代表是其研究的最终成果。
综合一个地区的地质调查成果,研究阐明该地区地质的总体特征,探讨各种地质作用的相互关系的学科称为区域地质学。
此外,将地球及其他星球作为一个天体来研究,形成了行星地质学、天文地质学。对地球深部的研究,是刚刚开拓的新领域。
地质学为了开发利用地下资源及改善和利用地球环境,解决人类社会发展中的实际问题,形成了既有理论意义又有生产应用价值的下列各分支学科。
水文地质学是研究地下水的形成、分布和运动的规律,以合理开发地下水、防治地下水的危害,以及利用地下水的化学、物理特征找矿、预报地震和防治地方病、保护环境。
工程地质学是以调查研究和解决各类工程建设中的地质问题为任务,包括评价地基的地质条件,预测工程建设对地质环境的影响,选择最佳场所、路线,为工程设计提供可靠的地质依据。
环境地质学是研究地质环境质量和人类活动与地质环境的相互关系的学科。
灾害地质学是研究地质灾害的发生、分布规律、形成机制和对人类的影响及其预测预防的学科。
金属矿产地质学、非金属地质矿产学、石油地质学、煤地质学是把地质学基础理论用于研究这些矿产资源的成因、分布规律等的学科。这些学科具有很强的实用性,同时又有基础研究性质。
找矿勘探地质学是综合运用地质学理论和现有的找矿方法、手段寻找矿藏的学科。
矿山地质学是以解决矿山开发过程中遇到的地质问题为任务的学科。
还有些自成体系、自有理论、与地质学相辅相成,对地质学的发展有重要作用的技术学科,属于广义的地质学或地质科技的范畴。它们包括:运用物理的、化学的方法去取得野外地质资料的地球物理勘探和地球化学勘查;运用钻探或坑探的手段直接向地下取得地质样品的探矿工程;对各种地质样品进行实验测试的实验室技术;为地质调查提供地形底图并绘制地质图件的测绘学;能在远距离处取得地质资料的航空测量技术和遥感技术以及用于处理地质资料的数学方法和计算机技术等。
随着研究深度的增加,新的分支学科还在不断产生各个学科的联系愈来愈紧密,建立一个更加充实、完整的有关地球的知识体系,是发展的必然趋势。
地质学与人类
人类是在地球的发展过程中,生物进化达到高等阶段的产物。人的出现有赖于适宜的自然环境,包括地质水文、气候、生物等方面因素。它们互相依赖和制约,经过长期发展,达到了适于人类生存的相对稳定的生态平衡,如果其中任何一种因素发生重大变化,都将破坏这个平衡,而且有可能使环境不再有利于人类。
当人类的活动符合自然界的客观规律时,便可以得到利益,如凿井得水,开山取矿;相反则会蒙受损失,如过量灌溉导致土壤盐碱化。另一方面,自然界的突发事件或缓慢积累起来的重大变化,也可以给人类带来无法逃避的灾害。地质学正在积极研究人类活动引起的地质环境的变化和地质作用造成的对人的危害。
地质学是提高人类认识自然,增进与环境的协调和求得环境改善的科学。地球表层的生物和人类的大量活动,都与地质条件相关。在生产力还不发达的时期,人类活动对地质环境的影响较弱,灾害性地质作用给人类带来的损失也不如今日这样巨大。
在当代的发达国家里,矿业和以矿产品为基本原料的工业,一般要占到整个工业生产总值的60%左右;进行生产所使用的动力,几乎百分之百地取之于地球资源。
20世纪80年代,人类从地下采出石油的数量,较半个世纪前增长一百倍以上。砂石等非金属材料也成为重要的资源被大量开采,它们一年产出的数量,无论就重量或体积均超过了其他工业矿物原料年产量的总和。
如此大量的开采,就使地质学不仅要找出新的矿产资源以维持社会庞大需求,而且还要担当起指导合理开发、保护矿产资源、防治环境恶化等重任。
现代建设的发展,使人口密集、建筑集中,许多工程规模巨大,这对地质环境的依赖和对环境的影响超过人类史上的任何时期。在现代化的工程建设中,不仅要重视地质作用引起的突发事件,还要注意它的长期影响,比如泥沙淤积、地面缓慢升降等。这些都是地质学应该研究解决的问题。
在现代化的社会中,社会的生产和生活组成一个息息相关的整体,电力、煤气、自来水的供应,一刻不可缺少,交通、电讯必须保持畅通,而地震破坏上述设施造成的后果,可以比地震本身直接造成的危害还要严重。不仅地震,其他如山崩、滑坡、泥石流、塌陷、地震海浪冲蚀等可能造成灾害的地质作用,都必须运用地质学去认识和提出防治意见。同时,人们还须遵循地质学的科学指导,避免因人类的活动而触发灾害,导致地质环境的恶化。
因此,地质学与人类的关系不仅仅在于资源的取用,还在于与人类生存和生活环境的诸多方面直接相关。现在地质学已成为人类社会所普遍需要的科学,参照地质学知识制定矿产资源法、海洋法、水法、环境保护法等,就表现了这种密切的关系。
地质学的发展趋势
未来,地质学能观察和研究的范围和领域将日益扩大。在空间上,不但能通过直接或间接的方法逐步深入到岩石圈深部,而且对月球、太阳系部分行星及其卫星的某些地质特征,将有更多的了解。
数学、物理学、化学、生物学、天文学等其他学科的发展和向地质学的进一步渗透,先进技术在地质工作中的使用,同精细、深入的野外地质工作相结合,会使人们有可能对更多的地质现象和规律作出科学的解释进行更深入和本质性的研究。
实验条件将进一步改进,如将实验室中所能达到的温度压力提得更高,模拟更为复杂的多种可变因素的地质作用,并把时间因素也纳入模拟实验之中。
地质学理论不断得到补充、修正,尤其是各大陆所提供的有关不同地质历史时期的新资料将在很大程度上检验、发展板块构造说,进而会产生一些新的理论和学说。
在地质学的服务领域,一个重要方面是开发地球资源,其中有关矿产资源和新能源的研究,仍处于最重要的地位。同时,由于区域成矿研究的需要,将进一步加强区域地质的综合研究,并促进地层学、古生物学、沉积学、构造地质学、地质年代学 ,以及区域岩浆活动研究、变质地质研究等向新的水平发展。
保障人类良好的生存环境、干旱半干旱地区和沼泽地区的水文地质问题,以及工程地质问题的研究将不断扩大。环境地质学,包括环境地质调查研究,有关的微量测试技术和环境保护的地质措施等的研究日趋重要。
总之,地质学必须加强基础研究,如矿物学、岩石学地层学、古生物学等具有奠基意义的学科的研究,以提高对各种地质体、地质现象及其形成、演化的认识。同时还要充分吸收和利用其他科学技术的新成果,包括社会科学的研究成果,以更全面、本质地认识地球历史和构造,为科学的发展,为人类更合理、有效地开发和利用地球资源,维护生存环境,作出应有的贡献。
3. 你是地大的研究生吗我想考地大宝石学研究生,我是学地质工程的,我问下考宝石学困难吗初试大约要多少
抱歉,不是地大的哈。
4. 岩土工程专业国家重点学科的院校有几个
岩土工程国家重点学科:
2001-2002年第二次评选结果:同济大学、中国内矿业大学、河海大学、浙江大学
2007年第三次评选结容果: 中国矿业大学、河海大学、四川大学 、重庆大学
其中中国矿业大学分北京和徐州两个校区,深部岩土力学与地下工程国家重点实验室设在该校。
5. 岩土工程领域的发展前景
岩土工程领域的发展前景:
①由于岩土工程施工具有复杂性,对各种岩土与土体的性质掌握具有不确定性,所以,针对于此,就需要在岩土工程的未来发展过程中,不断的推向岩土工程走向多样化、多层次化。所以,在进行岩土工程施工之前,针对不同的岩土、不同的土层进行层次化研究、测验,从而利用先进的科学技术进行模拟实验,从而使岩土工程能够在发展的过程中,具有多层次的未来发展趋势。
②现阶段岩土工程是一项科学性很强的学科,是一项在施工过程中追求精确、准确性的严谨性学科。因此,就需要在未来发展的过程中,不断的深入研究,不断的研究岩石工程的有关规律,从而探索新的施工程序,探求新的计算公式,从而将各种有效的计算方法结合,从而满足更为精密的岩土工程施工的需要。因此,在推进岩土工程施工未来发展的过程中,就需要不断的探索新规律,不断地探索新方法,从而得出岩土工程建设过程中的新的受力算法、新求解公式、新的施工程序。
③融人岩土工程科学性研究,当今世界是一个追求科学、追寻真理、不断向前发展的世界。因此,在推进岩土工程走向未来发展的同时,就需要将科学性思维、科学性方法以及科学性的知识融入岩土工程施工的研究性工作之中。融入科学的思维方法就需要培养思维创新,以创新性头脑去开发新的岩土工程施工工艺。融人科学的工作方法,就需要在开发新的岩土工程时,不断的研究新方法、应用新方式,以合理、有效的方式促进岩土工程的研究工作走向未来。融人科学的学科知识就是指在进行岩土工程施工研究新技术之前,熟知各种岩土工程知识,并将知识进行创新,从而开创岩土工程走向未来。
6. 岩土工程和地质工程有什么区别他们研究的方向是什么将来有哪些就业方向
一、岩土工程
(一)岩土工程:是欧美国家于世纪60年代在土木工程实践中建立起来的一种新的技术体制。岩土工程是以求解岩体与土体工程问题,包括地基与基础、边坡和地下工程等问题,作为自己的研究对象。
岩土工程 geotechnical engineering
地上、地下和水中的各类工程统称土木工程。土木工程中涉及岩石、土、地下水的部分称岩土工程。
岩土工程专业是土木工程的分支,是运用工程地质学、土力学、岩石力学解决各类工程中关于岩石、土的工程技术问题的科学。按照工程建设阶段划分,工作内容可以分为:岩土工程勘察、岩土工程设计、岩土工程治理、岩土工程监测、岩土工程检测。
(二)主要研究方向包括:①城市地下空间与地下工程:以城市地下空间为主体,研究地下空间开发利用过程中的各种环境岩土工程问题,地下空间资源的合理利用策略,以及各类地下结构的设计、计算方法和地下工程的施工技术(如浅埋暗挖、盾构法、冻结法、降水排水法、沉管法、TBM法等)及其优化措施等等。②边坡与基坑工程:重点研究基坑开挖(包括基坑降水)对邻近既有建筑和环境的影响,基坑支护结构的设计计算理论和方法,基坑支护结构的优化设计和可靠度分析技术,边坡稳定分析理论以及新型支护技术的开发应用等。③地基与基础工程:重点开展地基模型及其计算方法、参数研究,地基处理新技术、新方法和检测技术的研究,建筑基础(如柱下条形基础、十字交叉基础、筏形基础、箱形基础及桩基础等)与上部结构的共同作用机理和规律研究等。
岩土工程发展前景
1 引 言
展望岩土工程的发展,笔者认为需要综合考虑岩土工程学科特点、工程建设对岩土工程发展的要求,以及相关学科发展对岩土工程的影响。
岩土工程研究的对象是岩体和土体。岩体在其形成和存在的整个地质历史过程中,经受了各种复杂的地质作用,因而有着复杂的结构和地应力场环境。而不同地区的不同类型的岩体,由于经历的地质作用过程不同,其工程性质往往具有很大的差别。岩石出露地表后,经过风化作用而形成土,它们或留存在原地,或经过风、水及冰川的剥蚀和搬运作用在异地沉积形成土层。在各地质时期各地区的风化环境、搬运和沉积的动力学条件均存在差异性,因此土体不仅工程性质复杂而且其性质的区域性和个性很强。
岩石和土的强度特性、变形特性和渗透特性都是通过试验测定。在室内试验中,原状试样的代表性、取样过程中不可避免的扰动以及初始应力的释放,试验边界条件与地基中实际情况不同等客观原因所带来的误差,使室内试验结果与地基中岩土实际性状发生差异。在原位试验中,现场测点的代表性、埋设测试元件时对岩土体的扰动,以及测试方法的可靠性等所带来的误差也难以估计。
岩土材料及其试验的上述特性决定了岩土工程学科的特殊性。岩土工程是一门应用科学,在岩土工程分析时不仅需要运用综合理论知识、室内外测成果、还需要应用工程师的经验,才能获得满意的结果。在展望岩土工程发展时不能不重视岩土工程学科的特殊性以及岩土工程问题分析方法的特点。
土木工程建设中出现的岩土工程问题促进了岩土工程学科的发展。例如在土木工程建设中最早遇到的是土体稳定问题。土力学理论上的最早贡献是1773年库伦建立了库伦定律。随后发展了Rankine(1857)理论和Fellenius(1926)圆弧滑动分析理论。为了分析软粘土地基在荷载作用下沉降随时间发展的过程,Terzaghi(1925)发展了一维固结理论。回顾我国近50年以来岩土工程的发展,它是紧紧围绕我国土木工程建设中出现的岩土工程问题而发展的。在改革开放以前,岩土工程工作者较多的注意力集中在水利、铁道和矿井工程建设中的岩土工程问题,改革开放后,随着高层建筑、城市地下空间利用和高速公路的发展,岩土工程者的注意力较多的集中在建筑工程、市政工程和交通工程建设中的岩土工程问题。土木工程功能化、城市立体化、交通高速化,以及改善综合居往环境成为现代土木工程建设的特点。人口的增长加速了城市发展,城市化的进程促进了大城市在数量和规模上的急剧发展。人们将不断拓展新的生存空间,开发地下空间,向海洋拓宽,修建跨海大桥、海底隧道和人工岛,改造沙漠,修建高速公路和高速铁路等。展望岩土工程的发展,不能离开对我国现代土木工程建设发展趋势的分析。
一个学科的发展还受科技水平及相关学科发展的影响。二次大战后,特别是在20世纪60年代以来,世界科技发展很快。电子技术和计算机技术的发展,计算分析能力和测试能力的提高,使岩土工程计算机分析能力和室内外测试技术得到提高和进步。科学技术进步还促使岩土工程新材料和新技术的产生。如近年来土工合成材料的迅速发展被称为岩土工程的一次革命。现代科学发展的一个特点是学科间相互渗透,产生学科交叉并不断出现新的学科,这种发展态势也影响岩土工程的发展。
岩土工程是20世纪60年代末至70年代初,将土力学及基础工程、工程地质学、岩体力学三者逐渐结合为一体并应用于土木工程实际而形成的新学科。岩土工程的发展将围绕现代土木工程建设中出现的岩土工程问题并将融入其他学科取得的新成果。岩土工程涉及土木工程建设中岩石与土的利用、整治或改造,其基本问题是岩体或土体的稳定、变形和渗流问题。笔者认为下述12个方面是应给予重视的研究领域,从中可展望21世纪岩土工程的发展。
2 区域性土分布和特性的研究
经典土力学是建立在无结构强度理想的粘性土和无粘性土基础上的。但由于形成条件、形成年代、组成成分、应力历史不同,土的工程性质具有明显的区域性。周镜在黄文熙讲座〔1〕中详细分析了我国长江中下游两岸广泛分布的、矿物成分以云母和其它深色重矿物的风化碎片为主的片状砂的工程特性,比较了与福建石英质砂在变形特性、动静强度特性、抗液化性能方面的差异,指出片状砂有某些特殊工程性质。然而人们以往对砂的工程性质的了解,主要根据对石英质砂的大量室内外试验结果。周镜院士指出:“众所周知,目前我国评价饱和砂液化势的原位测试方法,即标准贯入法和静力触探法,主要是依据石英质砂地层中的经验,特别是唐山地震中的经验。有的规程中用饱和砂的相对密度来评价它的液化势。显然这些准则都不宜简单地用于长江中下游的片状砂地层”。我国长江中下游两岸广泛分布的片状砂地层具有某些特殊工程性质,与标准石英砂的差异说明土具有明显的区域性,这一现象具有一定的普遍性。国内外岩土工程师们发现许多地区的饱和粘土的工程性质都有其不同的特性,如伦敦粘土、波士顿蓝粘土、曼谷粘土、Oslo粘土、Lela粘土、上海粘土、湛江粘土等。这些粘土虽有共性,但其个性对工程建设影响更为重要。
我国地域辽阔、岩土类别多、分布广。以土为例,软粘土、黄土、膨胀土、盐渍土、红粘土、有机质土等都有较大范围的分布。如我国软粘土广泛分布在天津、连云港、上海、杭州、宁波、温州、福州、湛江、广州、深圳、南京、武汉、昆明等地。人们已经发现上海粘土、湛江粘土和昆明粘土的工程性质存在较大差异。以往人们对岩土材料的共性、或者对某类土的共性比较重视,而对其个性深入系统的研究较少。对各类各地区域性土的工程性质,开展深入系统研究是岩土工程发展的方向。探明各地区域性土的分布也有许多工作要做。岩土工程师们应该明确只有掌握了所在地区土的工程特性才能更好地为经济建设服务。
3 本构模型研究
在经典土力学中沉降计算将土体视为弹性体,采用布西奈斯克公式求解附加应力,而稳定分析则将土体视为刚塑性体,采用极限平衡法分析。采用比较符合实际土体的应力-应变-强度(有时还包括时间)关系的本构模型可以将变形计算和稳定分析结合起来。自Roscoe与他的学生(1958~1963)创建剑桥模型至今,各国学者已发展了数百个本构模型,但得到工程界普遍认可的极少,严格地说尚没有。岩体的应力-应变关系则更为复杂。看来,企图建立能反映各类岩土的、适用于各类岩土工程的理想本构模型是困难的,或者说是不可能的。因为实际工程土的应力-应变关系是很复杂的,具有非线性、弹性、塑性、粘性、剪胀性、各向异性等等,同时,应力路径、强度发挥度、以及岩土的状态、组成、结构、温度等均对其有影响。
开展岩土的本构模型研究可以从两个方向努力:一是努力建立用于解决实际工程问题的实用模型;一是为了建立能进一步反映某些岩土体应力应变特性的理论模型。理论模型包括各类弹性模型、弹塑性模型、粘弹性模型、粘弹塑性模型、内时模型和损伤模型,以及结构性模型等。它们应能较好反映岩土的某种或几种变形特性,是建立工程实用模型的基础。工程实用模型应是为某地区岩土、某类岩土工程问题建立的本构模型,它应能反映这种情况下岩土体的主要性状。用它进行工程计算分析,可以获得工程建设所需精度的满意的分析结果。例如建立适用于基坑工程分析的上海粘土实用本构模型、适用于沉降分析的上海粘土实用本构模型,等等。笔者认为研究建立多种工程实用模型可能是本构模型研究的方向。
在以往本构模型研究中不少学者只重视本构方程的建立,而不重视模型参数测定和选用研究,也不重视本构模型的验证工作。在以后的研究中特别要重视模型参数测定和选用,重视本构模型验证以及推广应用研究。只有这样,才能更好为工程建设服务。
4 不同介质间相互作用及共同分析
李广信(1998)认为岩土工程不同介质间相互作用及共同作用分析研究可以分为三个层次:①岩土材料微观层次的相互作用;②土与复合土或土与加筋材料之间的相互作用;③地基与建(构)筑物之间相互作用〔2〕。
土体由固、液、气三相组成。其中固相是以颗粒形式的散体状态存在。固、液、气三相间相互作用对土的工程性质有很大的影响。土体应力应变关系的复杂性从根本上讲都与土颗粒相互作用有关。从颗粒间的微观作用入手研究土的本构关系是非常有意义的。通过土中固、液、气相相互作用研究还将促进非饱和土力学理论的发展,有助于进一步了解各类非饱和土的工程性质。
与土体相比,岩体的结构有其特殊性。岩体是由不同规模、不同形态、不同成因、不同方向和不同序次的结构面围限而成的结构体共同组成的综合体,岩体在工程性质上具有不连续性。岩体工程性质还具有各向异性和非均一性。结合岩体断裂力学和其它新理论、新方法的研究进展,开展影响工程岩体稳定性的结构面几何学效应和力学效应研究也是非常有意义的。
当天然地基不能满足建(构)筑物对地基要求时,需要对天然地基进行处理形成人工地基。桩基础、复合地基和均质人工地基是常遇到的三种人工地基形式。研究桩体与土体、复合地基中增强体与土体之间的相互作用,对了解桩基础和复合地基的承载力和变形特性是非常有意义的。
地基与建(构)筑物相互作用与共同分析已引起人们重视并取得一些成果,但将共同作用分析普遍应用于工程设计,其差距还很大。大部分的工程设计中,地基与建筑物还是分开设计计算的。进一步开展地基与建(构)筑物共同作用分析有助于对真实工程性状的深入认识,提高工程设计水平。现代计算技术和计算机的发展为地基与建(构)筑物共同作用分析提供了良好的条件。目前迫切需要解决各类工程材料以及相互作用界面的实用本构模型,特别是界面间相互作用的合理模拟。
5 岩土工程测试技术
岩土工程测试技术不仅在岩土工程建设实践中十分重要,而且在岩土工程理论的形成和发展过程中也起着决定性的作用。理论分析、室内外测试和工程实践是岩土工程分析三个重要的方面。岩土工程中的许多理论是建立在试验基础上的,如Terzaghi的有效应力原理是建立在压缩试验中孔隙水压力的测试基础上的,Darcy定律是建立在渗透试验基础上的,剑桥模型是建立在正常固结粘土和微超固结粘土压缩试验和等向三轴压缩试验基础上的。测试技术也是保证岩土工程设计的合理性和保证施工质量的重要手段。
岩土工程测试技术一般分为室内试验技术、原位试验技术和现场监测技术等几个方面。在原位测试方面,地基中的位移场、应力场测试,地下结构表面的土压力测试,地基土的强度特性及变形特性测试等方面将会成为研究的重点,随着总体测试技术的进步,这些传统的难点将会取得突破性进展。虚拟测试技术将会在岩土工程测试技术中得到较广泛的应用。及时有效地利用其他学科科学技术的成果,将对推动岩土工程领域的测试技术发展起到越来越重要的作用,如电子计算机技术、电子测量技术、光学测试技术、航测技术、电、磁场测试技术、声波测试技术、遥感测试技术等方面的新的进展都有可能在岩土工程测试方面找到应用的结合点。测试结果的可靠性、可重复性方面将会得到很大的提高。由于整体科技水平的提高,测试模式的改进及测试仪器精度的改善,最终将导致岩土工程方面测试结果在可信度方面的大大改进。
6 岩土工程问题计算机分析
虽然岩土工程计算机分析在大多数情况下只能给出定性分析结果,但岩土工程计算机分析对工程师决策是非常有意义的。开展岩土工程问题计算机分析研究是一个重要的研究方向。岩土工程问题计算机分析范围和领域很广,随着计算机技术的发展,计算分析领域还在不断扩大。除前面已经谈到的本构模型和不同介质间相互作用和共同分析外,还包括各种数值计算方法,土坡稳定分析,极限数值方法和概率数值方法,专家系统、AutoCAD技术和计算机仿真技术在岩土工程中应用,以及岩土工程反分析等方面。岩土工程计算机分析还包括动力分析,特别是抗震分析。岩土工程计算机数值分析方法除常用的有限元法和有限差分法外,离散单元法(DEM)、拉格朗日元法(FLAC),不连续变形分析方法(DDA),流形元法(MEM)和半解析元法(SAEM)等也在岩土工程分析中得到应用〔3〕。
根据原位测试和现场监测得到岩土工程施工过程中的各种信息进行反分析,根据反分析结果修政设计、指导施工。这种信息化施工方法被认为是合理的施工方法,是发展方向。
7 岩土工程可靠度分析
在建筑结构设计中我国已采用以概率理论为基础并通过分项系数表达的极限状态设计方法。地基基础设计与上部结构设计在这一点尚未统一。应用概率理论为基础的极限状态设计方法是方向。由于岩土工程的特殊性,岩土工程应用概率极限状态设计在技术上还有许多有待解决的问题。目前要根据岩土工程特点积极开展岩土工程问题可靠度分析理论研究,使上部结构和地基基础设计方法尽早统一起来。
8 环境岩土工程研究
环境岩土工程是岩土工程与环境科学密切结合的一门新学科。它主要应用岩土工程的观点、技术和方法为治理和保护环境服务。人类生产活动和工程活动造成许多环境公害,如采矿造成采空区坍塌,过量抽取地下水引起区域性地面沉降,工业垃圾、城市生活垃圾及其它废弃物,特别有毒有害废弃物污染环境,施工扰动对周围环境的影响等等。另外,地震、洪水、风沙、泥石流、滑坡、地裂缝、隐伏岩溶引起地面塌陷等灾害对环境造成破坏。上述环境问题的治理和预防给岩土工程师们提出了许多新的研究课题。随着城市化、工业化发展进程加快,环境岩土工程研究将更加重要。应从保持良好的生态环境和保持可持续发展的高度来认识和重视环境岩土工程研究。
9 按沉降控制设计理论
建(构)筑物地基一般要同时满足承载力的要求和小于某一变形沉降量(包括小于某一沉降差)的要求。有时承载力满足要求后,其变形和沉降是否满足要求基本上可以不验算。这里有二种情况:一种是承载力满足后,沉降肯定很小,可以不进行验算,例如端承桩桩基础;另一种是对变形没有严格要求,例如一般路堤地基和砂石料等松散原料堆场地基等。也有沉降量满足要求后,承载力肯定满足要求而可以不进行验算。在这种情况下可只按沉降量控制设计。
在深厚软粘土地基上建造建筑物,沉降量和差异沉降量控制是问题的关键。软土地基地区建筑地基工程事故大部分是由沉降量或沉降差过大造成的,特别是不均匀沉降对建筑物的危害最大。深厚软粘土地基建筑物的沉降量与工程投资密切相关。减小沉降量需要增加投资,因此,合理控制沉降量非常重要。按沉降控制设计既可保证建筑物安全又可节省工程投资。
按沉降控制设计不是可以不管地基承载力是否满足要求,在任何情况下都要满足承载力要求。按沉降控制设计理论本身也包含对承载力是否满足要求进行验算。
10 基坑工程围护体系稳定和变形
随着高层建筑的发展和城市地下空间的开发,深基坑工程日益增多。基坑工程围护体系稳定和变形是重要的研究领域。
基坑工程围护体系稳定和变形研究包括下述方面:土压力计算、围护体系的合理型式及适用范围、围护结构的设计及优化、基坑工程的“时空效应”、围护结构的变形,以及基坑开挖对周围环境的影响等等。基坑工程涉及土体稳定、变形和渗流三个基本问题,并要考虑土与结构的共同作用,是一个综合性课题,也是一个系统工程。
基坑工程区域性、个性很强。有的基坑工程土压力引起围护结构的稳定性是主要矛盾,有的土中渗流引起流土破坏是主要矛盾,有的控制基坑周围地面变形量是主要矛盾。目前土压力理论还很不完善,静止土压力按经验确定或按半经验公式计算,主动土压力和被动土压力按库伦(1776)土压力理论或朗肯(1857)土压力理论计算,这些都出现在Terzaghi有效应力原理问世之前。在考虑地下水对土压力的影响时,是采用水土压力分算,还是采用水土压力合算较为符合实际情况,在学术界和工程界认识还不一致。
作用在围护结构上的土压力与挡土结构的位移有关。基坑围护结构承受的土压力一般是介于主动土压力和静止土压力之间或介于被动土压力和静止土压力之间。另外,土具有蠕变性,作用在围护结构上的土压力还与作用时间有关。
11 复合地基
随着地基处理技术的发展,复合地基技术得到愈来愈多的应用。复合地基是指天然地基在地基处理过程中部分土体得到增强或被置换,或在天然地基中设置加筋材料,加固区是由基体(天然地基土体)和增强体两部分组成的人工地基。复合地基中增强体和基体是共同直接承担荷载的。根据增强体的方向,可分为竖向增强体复合地基和水平向增强体复合地基两大类。根据荷载传递机理的不同,竖向增强体复合地基又可分为三种:散体材料桩复合地基、柔性桩复合地基和刚性桩复合地基。
复合地基、浅基础和桩基础是目前常见的三种地基基础形式。浅基础、复合地基和桩基础之间没有非常严格的界限。桩土应力比接近于1.0的土桩复合地基可以认为是浅基础,考虑桩土共同作用的摩擦桩基也可认为是刚性桩复合地基。笔者认为将其视为刚性桩复合地基更利于对其荷载传递体系的认识。浅基础和桩基础的承载力和沉降计算有比较成熟的理论和工程实践的积累,而复合地基承载力和沉降计算理论有待进一步发展。目前复合地基计算理论远落后于复合地基实践。应加强复合地基理论的研究,如各类复合地基承载力和沉降计算,特别是沉降计算理论;复合地基优化设计;复合地基的抗震性状;复合地基可靠度分析等。另外各种复合土体的性状也有待进一步认识。
加强复合地基理论研究的同时,还要加强复合地基新技术的开发和复合地基技术应用研究。
12 周期荷载以及动力荷载作用下地基性状
在周期荷载或动力荷载作用下,岩土材料的强度和变形特性,与在静荷载作用下的有许多特殊的性状。动荷载类型不同,土体的强度和变形性状也不相同。在不同类型动荷载作用下,它们共同的特点是都要考虑加荷速率和加荷次数等的影响。近二三十年来,土的动力荷载作用下的剪切变形特性和土的动力性质(包括变形特性和动强度)的研究已得到广泛开展。随着高速公路、高速铁路以及海洋工程的发展,需要了解周期荷载以及动力荷载作用下地基土体的性状和对周围环境的影响。与一般动力机器基础的动荷载有所不同,高速公路、高速铁路以及海洋工程中其外部动荷载是运动的,同时自身又产生振动,地基土体的受力状况将更复杂,土体的强度、变形特性以及土体的蠕变特性需要进一步深入的研究,以满足工程建设的需要。交通荷载的周期较长,交通荷载自身振动频率也低,荷载产生的振动波的波长较长,波传播较远,影响范围较大。高速公路、高速铁路以及海洋工程中的地基动力响应计算较为复杂,研究交通荷载作用下地基动力响应计算方法,从而可进一步研究交通荷载引起的荷载自身振动和周围环境的振动,对实际工程具有广泛的应用前景。
13 特殊岩土工程问题研究
展望岩土工程的发展,还要重视特殊岩土工程问题的研究,如:库区水位上升引起周围山体边坡稳定问题;越江越海地下隧道中岩土工程问题;超高层建筑的超深基础工程问题;特大桥、跨海大桥超深基础工程问题;大规模地表和地下工程开挖引起岩土体卸荷变形破坏问题;等等。
岩土工程是一门应用科学,是为工程建设服务的。工程建设中提出的问题就是岩土工程应该研究的课题。岩土工程学科发展方向与土木工程建设发展态势密切相关。世界土木工程建设的热点移向东亚、移向中国。中国地域辽阔,工程地质复杂。中国土木工程建设的规模、持续发展的时间、工程建设中遇到的岩土工程技术问题,都是其它国家不能相比的。这给我国岩土工程研究跻身世界一流并逐步处于领先地位创造了很好的条件。展望21世纪岩土工程的发展,挑战与机遇并存,让我们的共同努力将中国岩土工程推向一个新水平。
(三)就业方向:公路交通建设, 铁路交通建设 ,港口建设, 水电站建设 ,矿山建设(含建井、开采)等等。
二、地质工程
(一)地质工程 Geological Engineering
地质工程领域是以自然科学和地球科学为理论基础,以地质调查、矿产资源的普查与勘探、重大工程的地质结构与地质背景涉及的工程问题为主要对象,以地质学、地球物理和地球化学技术、数学地质方法、遥感技术、测试技术、计算机技术等为手段,为国民经济建设服务的先导性工程领域。国民经济建设中的重大地质问题、所需各类矿产资源、水资源与环境问题等是社会稳定持续发展的条件和基础。地质工程领域正是为此目的而进行科学研究、工程实施和人才培养。地质工程领域服务范围广泛,技术手段多样化,目前,从空中、地面、地下、陆地到海洋,各种方法技术相互配合,交叉渗透,已形成科学合理的、立体交叉的现代化综合技术和方法。
本工程领域涉及到数学、物理学、地质学、油气及固体矿产的矿产普查与勘探、水文地质、工程地质、岩土工程、遥感地质、数学地质、应用地球物理和应用地球化学、计算机应用技术等学科。
培养目标
地质工程领域为适应国民经济建设和社会发展的需要,为地质调查、工程勘察、矿产资源的普查勘探与开发相关的工矿企业和工程建设部门培养应用型、复合型高层次工程技术人才和工程管理人才。
地质工程领域工程硕士要求掌握地质工程领域坚实的基础理论和宽广的专业知识及管理知识,了解地质工程领域工程技术的国内外现状和发展趋势,掌握解决地质工程有关问题的先进技术方法和现代化技术手段,具有独立担负工程技术或工程管理的能力,具有较强的创新意识和一定的创新能力,掌握一门外国语,能较熟练地阅读与地质工程领域有关的专业文献和撰写论文的外文摘要,能熟练运用计算机技术解决地质工程领域中有关问题。
领域范围
地质工程领域适用的行业包括:地质调查,油气及固体矿产资源的普查勘探与评价,大型工矿企业和水利水电建设,公路和铁道建设,工程地质,水文地质,地质环境及地质灾害的调查,勘察及监测等。
(二)研究方向:土体工程地质、地基处理、岩体工程地质、地质灾害防治与环境地质、渗流计算与地下水资源、地面沉降研究、城市工程地质与工程环境效应研究、非饱和土力学等。
地质工程领域覆盖的范围包括:地质调查技术和方法与矿产资源勘查与评价,区域矿产基地及矿产远景区预测与评价,矿区与矿床的勘探、开发与评价,地质工程领域建设、勘查评价项目可行性研究与决策,地质勘探的新技术与新方法,水文地质、工程地质、环境地质、地质灾害的预测、评价、监测与保护,地质结构、地质环境、地质过程及地质灾害研究中的计算机应用,地质工程实施过程中的质量检测及新方法、新技术的设计、开发、应用,地质资源与地质工程行业的工程管理。
(三)就业方向:地矿、石油勘探开发、水利电力、环保、国土资源部门等
7. 北京大学地质学类都有哪些专业
北大地质学专业介绍及方法指导
1.专业情况介绍
矿物学岩石学矿床学专业
矿物岩石矿床学研究所是在矿物学岩石学矿床学博士点和硕士点基础上组建而成。包括12个基础理论和应用基础学科方向:岩浆岩岩石学、沉积岩岩石学、变质岩岩石学、结构矿物学、成因矿物学、宝石矿物学、矿物岩石材料学、岩矿信息学、矿床学、矿产经济学、油气地质学、灾害地质学等。现有硕士研究生38名、博士研究生9名。多年来,在董申保院士和叶大年院士的领导下,经过不懈努力,不仅在教学上成绩斐然,在科研上硕果累累,在应用开发研究中也独具特色。研究所有关老师编写的10余套教材和研究专著多数获得省部级奖励。高压变质作用、华北麻粒岩、北方花岗岩、碳酸盐岩中的油气藏成因、储层非均质性、催化生油、风化作用与边坡稳定关系、咔宾碳-石墨材料、矿物功能材料研究、环境矿物学与环境矿物材料学、钙钛矿系列研究、应用结晶学、粘土矿物、造山带成矿作用理论、矿产资源经济学理论等科研项目和方向在国内外产生了较大影响。宝玉石的检测与研究、沙漠筑路等应用开发领域也取得了很大的社会和经济效益,在产学研相结合的方向上迈出了坚实的第一步。
本所拥有中国科学院院士2名,博士生导师6名,副教授13名。在职教员共21名。
所长:魏春景 副所长: 赖 勇 秦善
成员: 陈斌 陈衍景
传秀云 董申保 关平 刘楚雄 鲁安怀 马瑞志 田伟 王长秋 吴朝东 叶大年 张立飞 张秀莲
构造地质学专业
北京大学地球与空间科学学院大陆动力学与资源工程研究所是国家理科培养基地,现在拥有构造地质学、灾害与环境地质学、资源工程地质学、岩石物理学、信息地质学等学科方向,其中构造地质学是全国重点学科。这里有雄厚的师资力量、完善的教学环境、先进的实验设备、丰硕的科研成果、自由的学术氛围,是人才成长的理想场所。
经过长期不懈的努力,现已经形成以国内外著名学者为学术带头人、以具有博士学位的中青年教师为骨干的教学科研队伍,目前有教授(包括博士生导师)11人,副教授4人。近5年,在SCIENCE、GEOLOGY、JGR和JSG等国际著名学术刊物上发表SCI收录论文,在国内核心期刊发表学术论文和出版学术专著共278篇(部),获得省部级奖励14项。承办了多次大型国际学术会议,与10多所世界著名大学如麻省理工学院、加州大学、美因茨大学、慕尼黑大学、早稻田大学、、澳大利亚国立大学、墨尔本大学和莫斯科大学等开展合作研究,人员互访,主持和参与IGCP国际合作项目3项,国家自然科学基金重点课题1项、国家863课题1项和国家973课题5项。
为保证高层次人才的培养和支持莘莘学子们对学业的追求,特别设有“地质奖学金”和“丁东奖学金”,各方面表现优异者还可获得学校多种类型奖学金的资助,强度从1000-5000元不等,最高可达10000元,获奖比例一般在30%以上;对于希望进一步深造的优秀毕业生可以采用免试推荐、连读、提前攻读等形式直接攻读硕士或博士学位,人数一般为应届毕业生人数的50%以上。
所长: 张进江 副所长: 侯贵廷 张志诚
成员: 郭召杰 韩宝福 何涛 侯建军 季建青 李江海 梁海华 马宗晋 潘懋 吴泰然 徐备 尹安
郑文涛
北京大学石油与天然气研究中心
http://iog.pku.e.cn/
姓名
职称
专业
贾承造
教授
石油地质学 构造地质学
潘 懋
教授
石油地质学 储层地质学 测井资料处理与解释 信息地质学 数字油田
刘 波
研究员
盆地-构造沉积演化 储层沉积学 层序地层学 碳酸盐岩成岩演化
吴朝东
教授
层序地层学 地震沉积学陆相盆地沉积体系数值模拟 黏土矿物与沉积地层年代学
李江海
教授
石油地质学 盆地构造演化
郭召杰
教授
石油地质学 造山带与盆地构造
关 平
教授
沉积学及地球化学 成藏动力学与油气运移 盆地分析及油气资源综合评价
胡天跃
教授
储层地球物理学 岩石物理学 测井技术
张东晓
教授
石油及能源开采研究 水资源研究 二氧化碳处理相关研究
侯贵廷
教授
油田构造的数值模拟 盆地构造分析构造应力场 低渗透油藏的裂缝定量预测 井间插值部署加密井技术
师永民
研究员
油气田开发地质 火山岩油气藏描述 储量计算及井位部署
测井地质 地震解释
岩石力学及构造应立场恢复模拟
何 川
研究员
三维地震建模/偏移及油藏数值模拟 石油工程领域新型测试、测量、监测、诊断
王一博
副研究员
地震勘探采集设计 信号噪音去除 (随机噪音、面波及多次波等相关噪声) 多分辨率处理方法 波形反演
逆时偏移
2.考试科目
四门:英语、政治、高等数学与地质学基础、岩石学
高等数学与地质学基础:二合一的试卷。北大自命题。高等数学占75分,地质学基础占75分。
岩石学:三合一的试卷。沉积岩、岩浆岩、变质岩都涉及。两种题型:名词解释与问答题。
关于专业课考试范围:
北大岩石学试卷中,变质岩部分的内容还是比较多的,而大多数石油院校的学生在变质岩方面学得也不是很到位,所以这是个很大的漏洞需要弥补。目前,似乎只有北大、地大、中科院的岩石学考变质岩部分。南京大学的岩石学考试不考变质岩。我也看了各研招单位的试卷,变质岩部分考察最难的要算北大了。相比南京大学,北大矿物学岩石学矿床学专业比南大相比多考了高等数学部分和变质岩部分,所以,北大的考察还是比较全面的。当然,南大的这个专业也不容易考,他们的专业课试题考察的很深入。
变质岩部分要记忆的东西很多,我觉得时间如果不够,除了泥质系列要重点掌握外,其他系列的变质岩只记忆下名词解释就行了吧。我个人感觉:泥质系列最重要,其次是基性系列。区域变质岩最重要,其次是接触变质岩,至于冲击变质作用、汽成水热变质作用什么的,我个人觉得一般了解下就行了,主要是警惕下名词解释,他们不可能出大题的。在记忆各个变质相的矿物组合、变质反应的时候,我感觉联系变质带记忆我觉得效果比较好!
注意:
矿物学岩石学矿床学专业考 岩石学 科目,
构造地质学专业、古生物与地层学专业也可以选考 岩石学 科目。
3.参考书目介绍
重点用书:
《岩石学》路凤香、桑隆康,地质出版社2002
(中国地质大学编写,目前也基本是各个重点大学地质系的学生教材。)
重点参考书,我认为这些书也是应该备齐的:
《岩石学》 乐昌硕 地质出版社
1984年1月(武汉地院编写的)
《岩石学简明教程》卫管一等编,地质出版社,2005(成都地院编写的)
《岩浆岩石学》邱家骧 地质出版社
(中国地质大学编写的)
《火成岩石学》孙鼐、彭亚鸣 地质出版社(南京大学编写的)
《变质岩石学》 王仁民等
地质出版社(北京大学编写的)
《变质岩石学》 贺同新
地质出版社(长春地院编写的)
《沉积岩石学》石油工业出版社(中国石油大学编写的,一般也是石油院校的教材。)
《地球化学》
韩吟文、马振东,地质出版社,2003(在阐述不同构造环境的岩浆作用产出的岩石的地化特征时应自学一下涉及到的相关内容。)
参考书不用全看,主要是带着问题去看!边看边总结抄录关键点。
关于这些书,可以在书店买或网上邮购买。
比较老的书可以从图书馆借了自己把整本书复印了下来看。
西南地区的考生可以去西南石油大学、成都理工大学图书馆借阅。
北京地区的学生可以去学院路的
地质出版社 与 石油工业出版社石油科技书店 购买。
推荐参考文献:
极端条件下的变质作用——变质地质学研究的前沿,张立飞,2007
可在中国知网CNKI下载。
4.深造或就业情况介绍
北大本科生考研的极少,基本想保研都可以保研。
硕士毕业生中:直博或去其他科研院所读博;出国留学;就业。
就业的单位:石油方向的毕业生可以研究院、外企、油田,国企主要是中石油中石化中海油,外企主要是壳牌、斯伦贝谢等等。
博士毕业生:高校任教、研究院、油田等。
专业课复习指导
1.复习资料使用说明:考试书目、真题
通过看真题来找考点、重点,再回头有针对性地看书!
有条件的话可以找在北大的同学搜集下他们的课件。
如果有时间,至少要精读一遍考试书目。因为尽管每年的考试试题重复率很高,但基本上保持在150分的卷子里有100分左右是过去曾经考过的,但每年都会有50分左右的试题是新出的。所以,研究往年真题的目的在于保住已有的100分,而精读的目的就在于争取未知的50分!
参考书不用全看,主要是带着问题去看!边看边总结抄录关键点。
2.阶段性复习方法指导:
看真题→找考点→翻教材找答案→总结凝练→背诵记忆!
先理解,后总结,再记忆!
前期以理解总结为主,后期以强化记忆为主。
不知道考点而盲目看书会导致低效率,无用功!
3.导师介绍
研究生院网站http://grs.pku.e.cn/
关注其考试专业目录。
地球与空间科学学院网站 http://sess.pku.e.cn/
浏览老师的主页,寻找老师的联系方式。
石油与天然气研究中心网站 http://iog.pku.e.cn
石油地质学方向的学生重点关注。
老师发表的论文不需要花太多精力去钻研,大概明确老师的研究方向即可。
可以给打算报考的导师发邮件交流。
矿物代号:
普通角闪石Hb 绿泥石Ch 透辉石Di 钠长石Ab
铁橄榄石Fo
柯石英Coe 蓝晶石Ky 黝帘石Zo 正长石Or
文石Ar 夕线石Sil 斜黝帘石Czo 阳起石Act 辉石Px
硬绿泥石Cld
十字石St 铁铝榴石Alm 钙铝榴石Gro 白云石Dol
方解石Cal 多硅白云母Phn 黑云母Bi 白云母Ms 堇青石Crd
红柱石And 硅灰石Wo 滑石Tc 透闪石Tr 角闪石Am Al2SiO5 Als
绿帘石Ep 钙长石An 橄榄石Ol
蛇纹石Ser 绢云母Se 石榴石Gt
8. 岩土的工程发展
1引言
展望岩土工程的发展,笔者认为需要综合考虑岩土工程学科特点、工程建设对岩土工程发展的要求,以及相关学科发展对岩土工程的影响。
岩土工程研究的对象是岩体和土体。岩体在其形成和存在的整个地质历史过程中,经受了各种复杂的地质作用,因而有着复杂的结构和地应力场环境。而不同地区的不同类型的岩体,由于经历的地质作用过程不同,其工程性质往往具有很大的差别。岩石出露地表后,经过风化作用而形成土,它们或留存在原地,或经过风、水及冰川的剥蚀和搬运作用在异地沉积形成土层。在各地质时期各地区的风化环境、搬运和沉积的动力学条件均存在差异性,因此土体不仅工程性质复杂而且其性质的区域性和个性很强。
岩石和土的强度特性、变形特性和渗透特性都是通过试验测定。在室内试验中,原状试样的代表性、取样过程中不可避免的扰动以及初始应力的释放,试验边界条件与地基中实际情况不同等客观原因所带来的误差,使室内试验结果与地基中岩土实际性状发生差异。在原位试验中,现场测点的代表性、埋设测试元件时对岩土体的扰动,以及测试方法的可靠性等所带来的误差也难以估计。
岩土材料及其试验的上述特性决定了岩土工程学科的特殊性。岩土工程是一门应用科学,在岩土工程分析时不仅需要运用综合理论知识、室内外测成果、还需要应用工程师的经验,才能获得满意的结果。在展望岩土工程发展时不能不重视岩土工程学科的特殊性以及岩土工程问题分析方法的特点。
土木工程建设中出现的岩土工程问题促进了岩土工程学科的发展。例如在土木工程建设中最早遇到的是土体稳定问题。土力学理论上的最早贡献是1773年库伦建立了库伦定律。随后发展了Rankine(1857)理论和Fellenius(1926)圆弧滑动分析理论。为了分析软粘土地基在荷载作用下沉降随时间发展的过程,Terzaghi(1925)发展了一维固结理论。回顾我国近50年以来岩土工程的发展,它是紧紧围绕我国土木工程建设中出现的岩土工程问题而发展的。在改革开放以前,岩土工程工作者较多的注意力集中在水利、铁道和矿井工程建设中的岩土工程问题,改革开放后,随着高层建筑、城市地下空间利用和高速公路的发展,岩土工程者的注意力较多的集中在建筑工程、市政工程和交通工程建设中的岩土工程问题。土木工程功能化、城市立体化、交通高速化,以及改善综合居往环境成为现代土木工程建设的特点。人口的增长加速了城市发展,城市化的进程促进了大城市在数量和规模上的急剧发展。人们将不断拓展新的生存空间,开发地下空间,向海洋拓宽,修建跨海大桥、海底隧道和人工岛,改造沙漠,修建高速公路和高速铁路等。展望岩土工程的发展,不能离开对我国现代土木工程建设发展趋势的分析。
一个学科的发展还受科技水平及相关学科发展的影响。二次大战后,特别是在20世纪60年代以来,世界科技发展很快。电子技术和计算机技术的发展,计算分析能力和测试能力的提高,使岩土工程计算机分析能力和室内外测试技术得到提高和进步。科学技术进步还促使岩土工程新材料和新技术的产生。如土工合成材料的迅速发展被称为岩土工程的一次革命。现代科学发展的一个特点是学科间相互渗透,产生学科交叉并不断出现新的学科,这种发展态势也影响岩土工程的发展。
岩土工程是20世纪60年代末至70年代初,将土力学及基础工程、工程地质学、岩体力学三者逐渐结合为一体并应用于土木工程实际而形成的新学科。岩土工程的发展将围绕现代土木工程建设中出现的岩土工程问题并将融入其他学科取得的新成果。岩土工程涉及土木工程建设中岩石与土的利用、整治或改造,其基本问题是岩体或土体的稳定、变形和渗流问题。笔者认为下述12个方面是应给予重视的研究领域,从中可展望21世纪岩土工程的发展。
2区域性土分布和特性的研究
经典土力学是建立在无结构强度理想的粘性土和无粘性土基础上的。但由于形成条件、形成年代、组成成分、应力历史不同,土的工程性质具有明显的区域性。周镜在黄文熙讲座〔1〕中详细分析了我国长江中下游两岸广泛分布的、矿物成分以云母和其它深色重矿物的风化碎片为主的片状砂的工程特性,比较了与福建石英质砂在变形特性、动静强度特性、抗液化性能方面的差异,指出片状砂有某些特殊工程性质。然而人们以往对砂的工程性质的了解,主要根据对石英质砂的大量室内外试验结果。周镜院士指出:“众所周知,目前我国评价饱和砂液化势的原位测试方法,即标准贯入法和静力触探法,主要是依据石英质砂地层中的经验,特别是唐山地震中的经验。有的规程中用饱和砂的相对密度来评价它的液化势。显然这些准则都不宜简单地用于长江中下游的片状砂地层”。我国长江中下游两岸广泛分布的片状砂地层具有某些特殊工程性质,与标准石英砂的差异说明土具有明显的区域性,这一现象具有一定的普遍性。国内外岩土工程师们发现许多地区的饱和粘土的工程性质都有其不同的特性,如伦敦粘土、波士顿蓝粘土、曼谷粘土、Oslo粘土、Lela粘土、上海粘土、湛江粘土等。这些粘土虽有共性,但其个性对工程建设影响更为重要。
我国地域辽阔、岩土类别多、分布广。以土为例,软粘土、黄土、膨胀土、盐渍土、红粘土、有机质土等都有较大范围的分布。如我国软粘土广泛分布在天津、连云港、上海、杭州、宁波、温州、福州、湛江、广州、深圳、南京、武汉、昆明等地。人们已经发现上海粘土、湛江粘土和昆明粘土的工程性质存在较大差异。以往人们对岩土材料的共性、或者对某类土的共性比较重视,而对其个性深入系统的研究较少。对各类各地区域性土的工程性质,开展深入系统研究是岩土工程发展的方向。探明各地区域性土的分布也有许多工作要做。岩土工程师们应该明确只有掌握了所在地区土的工程特性才能更好地为经济建设服务。
3本构模型研究
在经典土力学中沉降计算将土体视为弹性体,采用布西奈斯克公式求解附加应力,而稳定分析则将土体视为刚塑性体,采用极限平衡法分析。采用比较符合实际土体的应力-应变-强度(有时还包括时间)关系的本构模型可以将变形计算和稳定分析结合起来。自Roscoe与他的学生(1958~1963)创建剑桥模型至今,各国学者已发展了数百个本构模型,但得到工程界普遍认可的极少,严格地说尚没有。岩体的应力-应变关系则更为复杂。看来,企图建立能反映各类岩土的、适用于各类岩土工程的理想本构模型是困难的,或者说是不可能的。因为实际工程土的应力-应变关系是很复杂的,具有非线性、弹性、塑性、粘性、剪胀性、各向异性等等,同时,应力路径、强度发挥度、以及岩土的状态、组成、结构、温度等均对其有影响。
开展岩土的本构模型研究可以从两个方向努力:一是努力建立用于解决实际工程问题的实用模型;一是为了建立能进一步反映某些岩土体应力应变特性的理论模型。理论模型包括各类弹性模型、弹塑性模型、粘弹性模型、粘弹塑性模型、内时模型和损伤模型,以及结构性模型等。它们应能较好反映岩土的某种或几种变形特性,是建立工程实用模型的基础。工程实用模型应是为某地区岩土、某类岩土工程问题建立的本构模型,它应能反映这种情况下岩土体的主要性状。用它进行工程计算分析,可以获得工程建设所需精度的满意的分析结果。例如建立适用于基坑工程分析的上海粘土实用本构模型、适用于沉降分析的上海粘土实用本构模型,等等。笔者认为研究建立多种工程实用模型可能是本构模型研究的方向。
在以往本构模型研究中不少学者只重视本构方程的建立,而不重视模型参数测定和选用研究,也不重视本构模型的验证工作。在以后的研究中特别要重视模型参数测定和选用,重视本构模型验证以及推广应用研究。只有这样,才能更好为工程建设服务。
4不同介质间相互作用及共同分析
李广信(1998)认为岩土工程不同介质间相互作用及共同作用分析研究可以分为三个层次:①岩土材料微观层次的相互作用;②土与复合土或土与加筋材料之间的相互作用;③地基与建(构)筑物之间相互作用〔2〕。
土体由固、液、气三相组成。其中固相是以颗粒形式的散体状态存在。固、液、气三相间相互作用对土的工程性质有很大的影响。土体应力应变关系的复杂性从根本上讲都与土颗粒相互作用有关。从颗粒间的微观作用入手研究土的本构关系是非常有意义的。通过土中固、液、气相相互作用研究还将促进非饱和土力学理论的发展,有助于进一步了解各类非饱和土的工程性质。
与土体相比,岩体的结构有其特殊性。岩体是由不同规模、不同形态、不同成因、不同方向和不同序次的结构面围限而成的结构体共同组成的综合体,岩体在工程性质上具有不连续性。岩体工程性质还具有各向异性和非均一性。结合岩体断裂力学和其它新理论、新方法的研究进展,开展影响工程岩体稳定性的结构面几何学效应和力学效应研究也是非常有意义的。
当天然地基不能满足建(构)筑物对地基要求时,需要对天然地基进行处理形成人工地基。桩基础、复合地基和均质人工地基是常遇到的三种人工地基形式。研究桩体与土体、复合地基中增强体与土体之间的相互作用,对了解桩基础和复合地基的承载力和变形特性是非常有意义的。
地基与建(构)筑物相互作用与共同分析已引起人们重视并取得一些成果,但将共同作用分析普遍应用于工程设计,其差距还很大。大部分的工程设计中,地基与建筑物还是分开设计计算的。进一步开展地基与建(构)筑物共同作用分析有助于对真实工程性状的深入认识,提高工程设计水平。现代计算技术和计算机的发展为地基与建(构)筑物共同作用分析提供了良好的条件。迫切需要解决各类工程材料以及相互作用界面的实用本构模型,特别是界面间相互作用的合理模拟。
5岩土工程测试技术
岩土工程测试技术不仅在岩土工程建设实践中十分重要,而且在岩土工程理论的形成和发展过程中也起着决定性的作用。理论分析、室内外测试和工程实践是岩土工程分析三个重要的方面。岩土工程中的许多理论是建立在试验基础上的,如Terzaghi的有效应力原理是建立在压缩试验中孔隙水压力的测试基础上的,Darcy定律是建立在渗透试验基础上的,剑桥模型是建立在正常固结粘土和微超固结粘土压缩试验和等向三轴压缩试验基础上的。测试技术也是保证岩土工程设计的合理性和保证施工质量的重要手段。
岩土工程测试技术一般分为室内试验技术、原位试验技术和现场监测技术等几个方面。在原位测试方面,地基中的位移场、应力场测试,地下结构表面的土压力测试,地基土的强度特性及变形特性测试等方面将会成为研究的重点,随着总体测试技术的进步,这些传统的难点将会取得突破性进展。虚拟测试技术将会在岩土工程测试技术中得到较广泛的应用。及时有效地利用其他学科科学技术的成果,将对推动岩土工程领域的测试技术发展起到越来越重要的作用,如电子计算机技术、电子测量技术、光学测试技术、航测技术、电、磁场测试技术、声波测试技术、遥感测试技术等方面的新的进展都有可能在岩土工程测试方面找到应用的结合点。测试结果的可靠性、可重复性方面将会得到很大的提高。由于整体科技水平的提高,测试模式的改进及测试仪器精度的改善,最终将导致岩土工程方面测试结果在可信度方面的大大改进。
6岩土工程问题计算机分析
虽然岩土工程计算机分析在大多数情况下只能给出定性分析结果,但岩土工程计算机分析对工程师决策是非常有意义的。开展岩土工程问题计算机分析研究是一个重要的研究方向。岩土工程问题计算机分析范围和领域很广,随着计算机技术的发展,计算分析领域还在不断扩大。除前面已经谈到的本构模型和不同介质间相互作用和共同分析外,还包括各种数值计算方法,土坡稳定分析,极限数值方法和概率数值方法,专家系统、AutoCAD技术和计算机仿真技术在岩土工程中应用,以及岩土工程反分析等方面。岩土工程计算机分析还包括动力分析,特别是抗震分析。岩土工程计算机数值分析方法除常用的有限元法和有限差分法外,离散单元法(DEM)、拉格朗日元法(FLAC),不连续变形分析方法(DDA),数值流形元法(NMM)和半解析元法(SAEM)等也在岩土工程分析中得到应用〔3〕。
根据原位测试和现场监测得到岩土工程施工过程中的各种信息进行反分析,根据反分析结果修政设计、指导施工。这种信息化施工方法被认为是合理的施工方法,是发展方向。
7岩土工程可靠度分析
在建筑结构设计中我国已采用以概率理论为基础并通过分项系数表达的极限状态设计方法。地基基础设计与上部结构设计在这一点尚未统一。应用概率理论为基础的极限状态设计方法是方向。由于岩土工程的特殊性,岩土工程应用概率极限状态设计在技术上还有许多有待解决的问题。要根据岩土工程特点积极开展岩土工程问题可靠度分析理论研究,使上部结构和地基基础设计方法尽早统一起来。
8环境岩土工程研究
环境岩土工程是岩土工程与环境科学密切结合的一门新学科。它主要应用岩土工程的观点、技术和方法为治理和保护环境服务。人类生产活动和工程活动造成许多环境公害,如采矿造成采空区坍塌,过量抽取地下水引起区域性地面沉降,工业垃圾、城市生活垃圾及其它废弃物,特别有毒有害废弃物污染环境,施工扰动对周围环境的影响等等。另外,地震、洪水、风沙、泥石流、滑坡、地裂缝、隐伏岩溶引起地面塌陷等灾害对环境造成破坏。上述环境问题的治理和预防给岩土工程师们提出了许多新的研究课题。随着城市化、工业化发展进程加快,环境岩土工程研究将更加重要。应从保持良好的生态环境和保持可持续发展的高度来认识和重视环境岩土工程研究。
9按沉降控制设计理论
建(构)筑物地基一般要同时满足承载力的要求和小于某一变形沉降量(包括小于某一沉降差)的要求。有时承载力满足要求后,其变形和沉降是否满足要求基本上可以不验算。这里有二种情况:一种是承载力满足后,沉降肯定很小,可以不进行验算,例如端承桩桩基础;另一种是对变形没有严格要求,例如一般路堤地基和砂石料等松散原料堆场地基等。也有沉降量满足要求后,承载力肯定满足要求而可以不进行验算。在这种情况下可只按沉降量控制设计。
在深厚软粘土地基上建造建筑物,沉降量和差异沉降量控制是问题的关键。软土地基地区建筑地基工程事故大部分是由沉降量或沉降差过大造成的,特别是不均匀沉降对建筑物的危害最大。深厚软粘土地基建筑物的沉降量与工程投资密切相关。减小沉降量需要增加投资,因此,合理控制沉降量非常重要。按沉降控制设计既可保证建筑物安全又可节省工程投资。
按沉降控制设计不是可以不管地基承载力是否满足要求,在任何情况下都要满足承载力要求。按沉降控制设计理论本身也包含对承载力是否满足要求进行验算。
10基坑工程围护体系稳定和变形
随着高层建筑的发展和城市地下空间的开发,深基坑工程日益增多。基坑工程围护体系稳定和变形是重要的研究领域。
基坑工程围护体系稳定和变形研究包括下述方面:土压力计算、围护体系的合理型式及适用范围、围护结构的设计及优化、基坑工程的“时空效应”、围护结构的变形,以及基坑开挖对周围环境的影响等等。基坑工程涉及土体稳定、变形和渗流三个基本问题,并要考虑土与结构的共同作用,是一个综合性课题,也是一个系统工程。
基坑工程区域性、个性很强。有的基坑工程土压力引起围护结构的稳定性是主要矛盾,有的土中渗流引起流土破坏是主要矛盾,有的控制基坑周围地面变形量是主要矛盾。土压力理论还很不完善,静止土压力按经验确定或按半经验公式计算,主动土压力和被动土压力按库伦(1776)土压力理论或朗肯(1857)土压力理论计算,这些都出现在Terzaghi有效应力原理问世之前。在考虑地下水对土压力的影响时,是采用水土压力分算,还是采用水土压力合算较为符合实际情况,在学术界和工程界认识还不一致。
作用在围护结构上的土压力与挡土结构的位移有关。基坑围护结构承受的土压力一般是介于主动土压力和静止土压力之间或介于被动土压力和静止土压力之间。另外,土具有蠕变性,作用在围护结构上的土压力还与作用时间有关。
11复合地基
随着地基处理技术的发展,复合地基技术得到愈来愈多的应用。复合地基是指天然地基在地基处理过程中部分土体得到增强或被置换,或在天然地基中设置加筋材料,加固区是由基体(天然地基土体)和增强体两部分组成的人工地基。复合地基中增强体和基体是共同直接承担荷载的。根据增强体的方向,可分为竖向增强体复合地基和水平向增强体复合地基两大类。根据荷载传递机理的不同,竖向增强体复合地基又可分为三种:散体材料桩复合地基、柔性桩复合地基和刚性桩复合地基。
复合地基、浅基础和桩基础是目前常见的三种地基基础形式。浅基础、复合地基和桩基础之间没有非常严格的界限。桩土应力比接近于1.0的土桩复合地基可以认为是浅基础,考虑桩土共同作用的摩擦桩基也可认为是刚性桩复合地基。笔者认为将其视为刚性桩复合地基更利于对其荷载传递体系的认识。浅基础和桩基础的承载力和沉降计算有比较成熟的理论和工程实践的积累,而复合地基承载力和沉降计算理论有待进一步发展。复合地基计算理论远落后于复合地基实践。应加强复合地基理论的研究,如各类复合地基承载力和沉降计算,特别是沉降计算理论;复合地基优化设计;复合地基的抗震性状;复合地基可靠度分析等。另外各种复合土体的性状也有待进一步认识。
加强复合地基理论研究的同时,还要加强复合地基新技术的开发和复合地基技术应用研究。
12周期荷载以及动力荷载作用下地基性状
在周期荷载或动力荷载作用下,岩土材料的强度和变形特性,与在静荷载作用下的有许多特殊的性状。动荷载类型不同,土体的强度和变形性状也不相同。在不同类型动荷载作用下,它们共同的特点是都要考虑加荷速率和加荷次数等的影响。近二三十年来,土的动力荷载作用下的剪切变形特性和土的动力性质(包括变形特性和动强度)的研究已得到广泛开展。随着高速公路、高速铁路以及海洋工程的发展,需要了解周期荷载以及动力荷载作用下地基土体的性状和对周围环境的影响。与一般动力机器基础的动荷载有所不同,高速公路、高速铁路以及海洋工程中其外部动荷载是运动的,同时自身又产生振动,地基土体的受力状况将更复杂,土体的强度、变形特性以及土体的蠕变特性需要进一步深入的研究,以满足工程建设的需要。交通荷载的周期较长,交通荷载自身振动频率也低,荷载产生的振动波的波长较长,波传播较远,影响范围较大。高速公路、高速铁路以及海洋工程中的地基动力响应计算较为复杂,研究交通荷载作用下地基动力响应计算方法,从而可进一步研究交通荷载引起的荷载自身振动和周围环境的振动,对实际工程具有广泛的应用前景。
13特殊岩土工程问题研究
展望岩土工程的发展,还要重视特殊岩土工程问题的研究,如:库区水位上升引起周围山体边坡稳定问题;越江越海地下隧道中岩土工程问题;超高层建筑的超深基础工程问题;特大桥、跨海大桥超深基础工程问题;大规模地表和地下工程开挖引起岩土体卸荷变形破坏问题;等等。
岩土工程是一门应用科学,是为工程建设服务的。工程建设中提出的问题就是岩土工程应该研究的课题。岩土工程学科发展方向与土木工程建设发展态势密切相关。世界土木工程建设的热点移向东亚、移向中国。中国地域辽阔,工程地质复杂。中国土木工程建设的规模、持续发展的时间、工程建设中遇到的岩土工程技术问题,都是其它国家不能相比的。这给我国岩土工程研究跻身世界一流并逐步处于领先地位创造了很好的条件。展望21世纪岩土工程的发展,挑战与机遇并存,让我们的共同努力将中国岩土工程推向一个新水平。
9. 长安大学的地质工程是重点学科吗
长安大学是全国211工程院校之一,一直以来以道路桥梁等土木工程为重点专业。在所有的学们课类中,以地矿类和土建类位最好的系类。地质工程是工学学们地矿类,在全国有开办这个专业的33所本科院校中排在b+等级,属于长安大学的中上专业,全国可以拍到第6到10名之间。地质工程目前的就业率在97%左右,是目前非常热门的专业之一。就业去向基本上集中在西北地区,而单位集中在国企了。