工程地质学三维
① 三维地质建模的简介
三维地质建模(Three-dimensionalgeological modeling )是一个基于数据/ 信息分析,合成的学科,或者说是一个整合各种学科的学科。这样建立的地质模型汇总了各种信息和解释结果。所以是否了解各种输入数据/ 信息的优势和不足是合理整合这些数据的关键。我们的储层一般都会有多尺度上的非均质性和连续性,但是由于各种原因我们不可能直接测量到所有的这些细节。
那么借助于地质统计技术来生成比较真实的,代表我们对储层非均质性和连续性的认识的模型是一个比较有效的研究储层的手段。同一套数据可以生成很多相似的但是又不同的模型,这些模型就是随机(stochastic)的。
那么什么是地质模型呢?地质模型是一个三维网格体。这些网格建立在surface,断层和层位的基础之上。它决定了储层的构造和几何形态。网格中的每一个节点都有一系列属性,比如孔隙度,渗透率,含水饱和度等等。一般来说,节点的尺度为200英尺×200英尺×1英尺。不过具体的模型节点尺度要取决于油田的大小,要解决的关键地质问题的尺度以及模型的商业用途。不同情况下建立的地质模型节点尺度会有很大差别。地质模型的建立可以细分为三步:建立模型框架,建立岩相模型,建立岩石物性模型。
② 地质三维建模一般用什么软件
我们单位用的是理正勘察三维地质软件,您可以了解,我们用钻孔、纵断面图、剖面图来做三维工程地质模型。而且可以从工程地质勘察软件直接导入地质数据。
③ 三维地质建模方法
自20世纪80年代以来,研究人员提出了许多三维地质模型来模拟地质体,使这方面的研究有了长足的发展。通过对国内外大量的三维地质建模方面的文献和专业软件的研究分析,三维地质建模方法大体可归纳为三类:离散点源法、剖面框架法和多源数据耦合建模法。
1.2.3.1 离散点源法
在地质找矿中,经常需要根据少量的离散点采样数据(如地质测绘或钻孔资料)来获取地质体的形状,从而为进一步指导找矿起指导性的作用。因此,研究如何实现空间散乱点数据场可视化的方法具有一定的意义。
Carlson(1987)从地质学的角度提出了地下空间结构的三维概念模型,并提出用单纯复形模型(Simplicial Complex Model)来建立地质模型。Victor(1993)、Pilout(1994)则具体应用Delaunay四面体的三维矢量数据模型研究离散点地质建模问题。Lattuada(1995)对3DDT(3 Dimensional Delaunay Triangulation)在地质领域内的应用进行了研究,表明四面体格网能很好地用于地质体的三维建模,优点包括:四面体单元易于建立索引;模型易于手工编辑;可通过相邻关系导出拓扑结构;约束三角剖分易于实现面约束;四面体非常便于可视化,同时具有较高的表达精度;易于实现搜索和关系查询等。Courrioux et al.(2001)基于Voronoi图实现了地质对象实体的自动重构。Frank et al.(2007)采用隐函数法(implicit function)表达三维曲面,对离散点集进行三维重构(reconstruction),用来模拟断层和盐丘(salt dome)。杨钦(2001,2005)利用离散点源信息构建地层与断层结构面,依此作为约束条件约束Delaunay剖分建立三维地质模型。
钻孔数据也属于一种点源信息。它实质上是将原始的点、线数据进行有效的分层,根据各层面标高应用曲面构造法来生成各个层面或实体。围绕钻孔数据进行三维地质建模已有许多学者进行了研究,其中较早利用钻孔数据进行三维地质模拟的是加拿大学者Houlding(1994,2000),利用钻孔孔口点位信息进行 Delaunay三角剖分,作为“主 TIN(Primary TIN)”,其他地层面则通过高程映射实现。张煜等(2001)对其建模方法进行了深入研究与发展,在垂直钻孔的理想状态下,采用三棱柱(Tri-prism,TP)数据模型建立三维地质模型,并给出了相关的剖切算法。Lemon et al.(2003)采用“地层层位法”建立三维地层模型,并采用自定义剖面(user-defined cross-sections)的方法对地质模型进行局部交互修正。吴江斌(2003)、朱合华等(2003)提出一种基于钻孔数据的二分拓扑数据结构的建模算法,尝试采用基于钻孔数据的四面体体元模型构建地下三维地质模型;四面体结构在表达复杂结构上则较灵活,但是使用四面体表示空间实体会产生大量的冗余,且生成四面体的算法比较复杂。张芳(2005)采用Delaunay三角构网技术,利用钻孔数据构建三维地层层面模型,同时引入“界面分片”思想,以适应于海量数据模型的可视化表达,但缺少对地质体属性信息的表达。在三棱柱模型的基础上,针对钻孔存在偏斜问题,类三棱柱(Analogical Tri-prism,ATP)(齐安文等,2002)、广义三棱柱(Generalized Tri-prism,GTP)(Wu,2004)方法先后被提出,用来进行三维地质建模,已被证明广泛适应于矿山、石油等深部地质问题建模;同时,似三棱柱(Similar Triprism,STP)(Gong et al.,2004)也被提出用于解决钻孔倾斜问题,如郑蔚等(2005)基于钻孔数据采用STP建立三维地质模型对地下空间进行虚拟漫游。STP与GTP本质上是相同的。基于钻孔数据建立三维地质建模,这一看似简单的数据模型方法,经历了10多年的发展历程:从初期的TP数据模型,适用于钻孔垂直成层、地层等厚的理想情况,发展到STP、GTP适用于钻孔不垂直且地层不等厚的常见情况。
1.2.3.2 剖面框架法
剖面框架法就是在收集整理原始地质勘探资料的基础上,建立分类数据库,人工交互生成大量的二维地质剖面,然后应用曲面构造法生成各层位面表达三维地质模型,或者利用体元表示法直接进行地质体建模(Chae et al.,1999)。
利用地质剖面表达研究区域三维地质现象的初级形式是序列地质剖面法(朱小弟等,2001)。序列地质剖面构模技术实质是传统地质制图方法的计算机实现,即通过平面图或剖面图来描述地质构造,记录地质信息,如图1.2所示。其特点是将3D问题2D化,在空间上采用若干平行或近似平行的地质剖面来表达研究区域的地质分布特征,但它在空间表达上是不完整的,它把剖面之间的地层或构造分布情况留给工程设计人员去“想象”。这种构模方法难以完整表达3D矿床及其内部构造。
基于剖面信息建立真三维模型具有很大的发展空间,对于复杂地质构造区域具有很好的适应性,成为当前地质建模的主要方法之一。然而,基于剖面进行三维重构得到完善发展的是在医学领域,后来迅速扩展到其他领域。在医学领域里,通过电脑断层扫描(CAT)或者核磁共振(MRI)等技术,可以获得一系列相互平行的人体切片图像,通过提取对象的边界,基于轮廓线算法,生成三维人体模型。地质剖面信息同医学切片信息一样,都是反映研究对象的某一特定断面上的构造分布,可以借助医学三维人体建模技术来构造三维地质模型。较早将医学领域的切面三维建模引入地学领域的是在考古学方面的应用(Tipper,1976,1977;Herbert et al.,1995),主要应用在古生物的三维重构方面,而应用在三维地质建模方面的文献并不很多。
图1.2 序列地质剖面构模实例
公认的剖面三维重构的代表之作是Keppel的文章(Meyres et al.,1992;Herbert et al.,1995,2001;Xu et al.,2003;屈红刚等,2003)。在Keppel的研究基础上,Meyres(1992)将剖面建模方法分为4个子问题:对应问题(correspondence problem)、构网问题(tiling problem)、分支问题(branching problem)和光滑问题(fitting problem):①对应问题解决相邻剖面之间的轮廓线匹配问题;②构网问题主要解决轮廓线之间的三角形构网问题,考虑满足某个准则,例如最大体积法(Keppel,1975)、最小面积法(Fuchsetal.,1977)等;③分支问题是解决同一对象在不同剖面上的组成部分的个数不同的问题;④光滑问题主要解决将初始生成的三角网进行插值,从而得到更加光滑的三角网。
屈红刚等(2003)提出基于含拓扑剖面地质建模方法来实现复杂地质的三维建模的对应问题,邓飞等(2007)则对一般意义上的剖面地质建模进行了讨论。
1.2.3.3 多源数据耦合建模法
随着计算机性能的提高,具备了对海量数据的处理能力,人们对建立的地质模型要求也不断提高,希望能够建立高精度和高复杂度的地质模型(Turner,2003,2006;Calcagno et al.,2006;Kaufmann et al.,2008)。提高模型的精度可以通过插值的方法来实现,但更好的方法是通过增加约束信息来对初始地质模型进行细化,这就涉及耦合多源数据来建立地质模型的问题。
早在1993年,Houlding提出三维地学建模概念的时候就强调地质解释信息具备对模型的修正(revision)功能。并且指出矿业工程有地质勘探数据、人工绘制数据及施工数据,还有不确定性的需要通过地质统计学进行估计的数据(Houlding,2000),最终的地质模型需要综合考虑这些种类不同的数据。
McInerney et al.(2005a,b)认为三维地质建模只能部分上是一个数字地质采样过程,更重要的是地质学家的人工解释过程。并且尖锐地指出,不要指望一些计算机软件能够自动并成功地“建模”! 让一个有经验的地质学家输入解释性的信息进行建模,是现实和必要的;而软件只是建模过程中提供便利的一个工具(There is no expectation that some computer software will successfully and automatically“builda model”! The reality is that interpretative input from a skilled geologist is essential to build a model;the software is simply a tool to facilitate the model-building process)。其要求实际上是,地质建模不仅要考虑地质勘探所获取的确定性数据,还应加入地质工程人员对地质构造的解释性数据,这就构成多源地质建模的基本思想。
Mallet(2002)针对地质体建模的特殊性和复杂性,以点、线数据为主要数据源,建立以三角形为基本单元的三维曲面,采用离散光滑插值技术(Discrete Smooth Interploate,DSI)使曲面的粗糙度最小,并作为GOCAD的核心技术,得到了许多地球物理公司和石油公司的支持。
相比较国外以石油、矿业工程为主要应用领域的三维地质建模,钟登华等(2006)则从水利水电工程地质领域,研究多源地质数据建立坝区的三维地质模型。Wu et al.(2005)提出一种逐步细分的多源数据集成地质建模方法,考虑到地质数据大多比较稀疏和低采样率的特征,采用逐步细化的方法对初始地质模型不断修正。
地质构造的复杂性和认识的阶段性,使多源地质建模引起越来越多的研究兴趣。32届国际地质大会(International Geological Conference,IGC)于2004年在意大利佛罗伦萨召开,在“地质的复兴(The Renaissance of Geology)”(Zanchi et al.,2007)议题上,多名国际知名的地学建模专家共同提到了多源地质建模问题。其中,Zanchi et al.(2008)借助商业软件对意大利境内阿尔卑斯山(Alps)利用多源地质建模问题进行研究,并应用于滑坡稳定性分析。西方发达国家主要将地质建模应用于能源与环境领域,这是为数不多的在工程建设领域开辟蹊径的研究。无独有偶,Kaufmann et al.(2008)尝试采用多源地质建模,研究在废弃煤矿巷道内进行天然气储存问题。
总体来看,三维地质建模技术是一个从简单地层模拟到复杂地质构造模拟的发展过程。从最初基于单一数据建立简单层状三维地质模型,到综合利用多源数据建立复杂地质模型,能够反映地质构造的空间特征。
④ 对三维地质建模的一些新认识
三维地质模拟的目标是将离散的空间地质采样样本点数据转变为连续、可视的三维地质模型。国内外在该领域的研究重点、研究方法及应用领域等方面存在一定的不同。
(1)西方发达国家越来越重视能源与环保在国家战略中的重要地位,研究重点集中在石油、天然气的开采,地热、水资源保护与利用等方面;而国内处于经济快速发展阶段,对基础设施,尤其是城市地下空间开发、高速公路隧道等方面,有巨大的需求,从而推动地质建模方法的研究开发与利用。实质上,这里存在一个地质建模尺度问题,地质建模分为区域尺度、工程尺度、统计尺度、标本尺度(张发明,2007),国外地质建模重点在于表现区域尺度特征(如波兰已建立的国家级地质模型),就可以忽略地质中的一些细节,比如地层以系为单位,则做出来的模型大气而又漂亮。而国内现在的重点在工程尺度上,需要对影响工程建设的褶皱、断层等构造进行精确描述,对建模技术有相对较高的要求。国外以其雄厚的技术实力,在矿山开采地质建模方面处于技术领先地位,但矿山行业的重点在于对矿石品位及储量的评价和预测方面。
(2)从对地质体内部属性的处理分析方面,可将地质建模分为结构建模和属性建模(潘懋等,2007)。结构建模侧重于对地质体空间位置、几何形态和空间关系的表达,认为地质体内部属性是均一的;属性建模则通过地质统计学等方法实现地质体内部属性的非均一性表达。结合地质勘探的数据成果,地质建模可从结构建模开始,由结构建模来展现地层和构造的宏观分布,然后经过属性插值来反映其内部差异。
(3)目前,还没有一种地质建模方法能适合所有的应用领域。试图以一种方法来建立研究区域的三维地质模型,缺少对不同场地特征的层次性考虑。实际应用中,应根据具体的三维建模目的、地质构造特征及现有地质资料来选择合适的建模方法。根据建模所使用的数据源不同,如野外实测数据(地质测绘、钻井数据)、人工绘制数据(如地质剖面)及多源数据等,并结合场地特征,选择适合的地质建模方法。可以对地质建模从技术上进行总体分类:数据驱动型和技术驱动型。在当前工程实践中,地质信息的获取以地表的地形地质测绘、地下的地质勘探为主,以卫星遥感、物探等技术为辅,以现有工程地质数据建立研究区域三维地质模型构成数据驱动型建模方法。随着建模技术的发展和三维地质信息获取手段的丰富,以已有建模技术和应用目标为导向,进行相应的地质信息获取,然后建立三维地质模型,这种方法称为技术驱动型建模方法。
(4)将三维地质模型应用于实际工程中才是地质建模的本质目标,通过工程应用发现问题,反过来可以推动地质建模方法的发展。对比国内外在三维地质建模研究方面的差距,可以发现国外集中在三维地质体的可视化表达、建模技术及应用技术三个领域,而国内则集中在系统架构、外在表现形式方面研究较多,对于其中可能涉及的关键技术研究的相对较少。
⑤ 三维地质技术
三维地质技术的核心问题是三维地质空间数据模型的构建,主要应用于地质三维可视化和地质空间分析。
(1)三维地质建模
三维地质建模是目前的研究热点,近年来,国内外学者对三维地质数据模型进行了大量深入的研究,针对不同的空间现象研究了不同的构模方法,提出了多种三维地质数据模型。按照建模所采用的空间数据模型的不同,可以将这些方法分成基于表面的建模方法、基于体的建模方法以及基于表面及体混合的建模方法。综合现有的研究,又可进一步划分为:断面构模法、表面构模法、块体构模法、线框构模法、实体构模法等。综合分析现有的建模方法,目前还没有哪一类方法能够完全满足所有数据建模的需要,存在的主要问题在于:建模方法对数据的限制很大,例如基于剖面数据通常采用断面构模法,但是同时要求剖面数据是不交叉的,对于网格状分布的剖面数据就不适用了。但事实上无论是何种类型的数据,它们都从不同的方面表达了同一个地质体的空间、物理、化学等方面的性质,在建模时,如果能充分综合运用这些特点和优势,则可以在很大程度上降低模型的多解性。多源地质数据、多方法结合进行地质模型的构建是未来的发展方向。
由于三维地质建模的复杂性,不同的技术方法和软件具有各自的优势,因而同一部门、单位或项目常常需要同时使用多种建模工具,从而产生多种基于特定建模软件的模型数据,进而给后续模型数据的管理、分析和共享等工作带来诸多问题。中国地质调查局为推动该项工作,设立了“多维地质建模与分析技术研究”工作项目,开展三维地质模型数据交换标准研究。
(2)三维可视化
可视化是三维地质的重要研究内容,许多学者进行了大量的研究工作。主要集中在地形表面的重构、房屋建筑几何模型建立等方面。特别是在地形表达方面尤为突出。自Clark 1976年提出LOD技术以来,该技术大致经历了离散LOD模型阶段、连续LOD模型阶段和多分辨率模型阶段。近十几年来,可视化技术从概念、原理、方法到硬件系统得到了全面发展,逐步形成了一套完整的技术。国外将可视化技术应用于三维地质模拟的典型代表是加拿大LYNX Geosystems公司研制的LYNX系统的三维GM(Geoscience Modeling)技术、法国Nacy大学发起研制的GoCAD软件、美国Advanced Visual System公司AVS系统中面向三维地质模拟的技术。国内在这方面的研究起步较晚,主要是探索性的研究或基于国外软件针对具体项目进行应用开发。然而,随着勘探手段、测量仪器的不断改进,需要可视化处理的数据规模越来越大,尽管现在计算机的计算速度、内存容量以及其他图像加速设备的发展日新月异,但是对于庞大的数据,可视化效率始终不如人意,仍需加强该方向的研究。
(3)三维空间分析
根据空间分析所处理的对象进行划分,空间分析方法主要有基于图形的方法与基于数据的方法两类。基于图形的空间分析方法如常规的缓冲区分析、叠置分析、网络分析、复合分析、邻近分析与空间联结等能直接从2D扩展至2.5D乃至3D。由于三维数据本身可以降维到二维,因此三维技术自然能包容二维技术的空间分析功能。三维地质技术最具特色的也许是其基于三维地质数据的复杂分析能力,如计算空间距离、表面积、体积、通视性与可视域等。结合物理化学模型提供一些更具增值价值的真三维空间分析功能,如水文分析、可视性分析、日照分析与视觉景观分析等已成为三维地质分析研究的重要内容,但是这些分项工具还大多局限在地表方面,真正适合专业领域真三维空间的空间分析功能还很欠缺。
⑥ 三维地质建模
一、内容概述
随着世界各国对资源需求日益上升以及对地质环境问题的日益重视,各国研究机构都将提高资源保障能力、缓解环境压力的目光逐步转向了地球深部,这就需要对地下空间有更详细、更好地了解。正是这种社会需求的不断增长,以及地理信息系统(GIS)、数字制图、数据存储和分析、可视化技术上显著的技术进步,直接促使了从传统的二维向三维地质填图(也称为三维地质建模)的过渡成为必然。
三维地质图是传统的二维地质图向三维的延伸。这些地图可以描绘三维空间内地下层叠地层的深度、厚度和物质性质。输出的结果是通过地质解译,以及严格应用原始数据、地质知识和统计方法而创建的完全属性化和数字化的三维模型。
二维和三维输出结果都采用了相似的地质构造单元分类,并针对特定用途和相关机构的需要,按照一定的比例尺和分辨率加以呈现。三维填图完成的三维地质模型可以为需要解决地球科学问题的客户提供信息,因为:①完成的三维地质图,可以以可理解的格式、用多种地图视图解释和描绘复杂的地质情况;②当有新信息可用时,可以制作和更新各种衍生或解译图;③针对地球资源信息的特定需求,根据客户需要进行发布和定制(Berg et al.,2011)。
二、应用范围及应用实例
目前,美国地质调查局的科学家使用三维/四维工具来进行以下工作:①可视化和解释地质信息;②验证数据;③验证他们的解译和模型。三维地质填图的例子包括对面向资源评价的地下空间描述,如美国中部的含水层描述,以及作为过程模型的输入参数,如美国西部的地震。同时,USGS希望通过开发新的三维/四维工具和框架,以及通过对现有技术的提高和更有效的利用,扩大其三维/四维处理能力来监测、解译和分发自然资源信息。
加拿大地质调查局已经将三维地质填图融入了各项工作。然而,地下水研究对于三维地质填图的需求还没有从传统的地质调查上完全转变过来。盆地分析的概念是加拿大地质调查局开展三维地质填图的基础。在此框架下,工作重点放在了数据收集和了解盆地的地质历史。盆地分析在地下水研究项目中已经作为一种常见的三维研究方法。后续在GIS软件中的数据处理、插值、可视化仍然酌情根据地理和地质的复杂性、研究目标和需求而定。
英国地质调查局的三维地质模型名为LithoFrame。它代表了地质图从二维扩展到三维(表1)。LithoFrame概念的核心是不同分辨率的模型彼此对应,形成从一般的全国模型到详细的现场模型的无缝过渡。
表1 LithoFrame分辨率的主要特点
注:LithoFrame比例尺:1M为1∶100万;250为1∶25万;50为1∶5万;10为1∶1万。
法国地质调查局的三维建模主要涉及3个领域:公共服务、国际合作项目以及与许多合作伙伴和客户合作开展的科研活动:
1)公共服务:欧盟、法语国家、地区政府和城镇机关;
2)国际项目:私营公司和外国政府;
3)研究:实验室和合作大学。
法国地质调查局的三维建模活动的主要应用领域是地质调查、含水层的保护和管理、城市地质、地震风险评价、土木工程、碳捕获和存储研究、地热潜力、矿产资源开采和采后评价。
国外地质调查机构用于创建三维地质图和模型最常用的软件套件包括ArcGIS、Gocad、EarthVision、三维GeoModeller,GSI3 D、Multilayer-GDM和Isatis。这些软件中,GSI3 D、三维GeoModeller和Multilayer-GDM由地质调查机构自行开发,并根据其机构对地质填图和建模的需求进行定制。许多其他软件包也用在地质调查机构的部分建模工作流程中,其中包括GIS、统计学分析、地震深度转换、可视化和属性建模的软件。
三、资料来源
Berg R C,Mathers S J et al.2011.Synopsis of Current Three Dimensional Geological Mapping and Modeling in Geological Survey Organizations.Ilinois State Geological Survey Circular,104
⑦ 三维地质建模的实际意义
要对地下水进行管理、规划,就必须查明水文地质条件,也就是要对地下水及其赋存的地质结构有清晰的认识。在水文地质领域中,研究对象都具有空间特征,地下水及其赋存介质埋藏于地面以下,对地下水运动规律只能依靠水文地质勘察资料和水位动态资料来揭示。而这些资料一般都是以平面图、剖面图及表格形式提供的,它们所反映的数据是离散的,有局限性的,在三维空间中研究这些数据时,其拓扑关系还难以考虑清楚;同时,由于地质空间分布的复杂性、模糊性与不确定性,在仅仅具有钻孔或少量的地质离散点信息的地区上,技术人员则很难得到直观有效的地质信息。也就是说,水文地质工作者必须对这些纷杂的数据信息进行仔细的分析理解,才能洞察研究对象的本质,获得对研究对象的认识和理解,但这是一个十分费时而繁琐的过程,对他们来说是一种沉重的负担。
如果能将地下水及其赋存介质进行三维可视化表达,构建出其实体模型,则将有力地支持水文地质工作者对地下水运动规律的认识,同时,也为地下水的合理开采及其开采过程中的地质环境保护提供决策支持。
基于以上认识,需要我们建立一种权威的、不断更新的、区域性的、具有传承性的地下水地质结构三维可视化模型,这个模型建立的初期可能是粗糙甚至是有错误的。但随着专业人员对地质结构认识的不断深化和勘探精度的提高,这个模型会逐渐准确直至完全正确。计算机技术发展到今天,已经为我们提供了建立这样真三维地质模型的技术条件。
利用计算机图形学及可视化技术,可将二维抽象的地质信息以三维可视化的图形效果直观形象地表达出来,建立逼真的空间立体地质模型,并任意剖切地质体、对地质体进行三维交互信息查询等。这样可更高效地描述各种地质信息,如特定区域岩性,某一区域地层的厚度等;直观有效地表达各种地质现象间的拓扑关系,如地层的接触方式等,从而迅速提高专业技术人员对地质现象的认识,提高工作效率,发挥地质资料的最大价值。同时,在三维地质模型的建立中,还会生成一系列的三角网格数据,这为后续的地下水数值模拟奠定了基础。也就是说,三维地质建模还能将水文地质工作者从繁琐的网格剖分中解放出来。
建立地下水三维地质可视化模型,不但减轻了水文地质工作者的任务,方便他们进行专业领域知识的讨论、传播和发展,而且,这样的模型还能将专业领域复杂的、抽象的或专业性过强的成果及结论用简洁的、直观的、易于被广泛接受的方法和形式表现出来,它还将有助于不同领域间方便、正确地进行知识交流,有助于决策者做出正确判断。
⑧ 三维地质建模的发展
三维地质建模的概念最早是由加拿大SimonWHoulding 于1993年提出的。所谓三维地质建模, 就是运用计算机技术, 在三维环境下, 将空间信息管理、地质解译、空间分析和预测、地学统计、实体内容分析以及图形可视化等工具结合起来,用于地质研究的一门新技术。严格的讲,三维地质建模已经不能算是很新的技术,在国外,地质建模已经发展了几十年,中国自上世纪80年代末开始引入EarthVision以来,也已经发展了快二十年。但回顾一下地质建模在油田开发中的作用,我们不难发现,目前的三维地质建模主要有两个作用:一个是为数值模拟提供基础模型,第二是用于油藏的整体评价,例如油藏勘探开发的风险评价。但三维地质建模一直没能深入到油田的生产中。就像许多搞生产的人评价的:好看,但不中用。
在另一方面,油田开发地质研究工作中,目前还没有十分有效、先进的技术。油藏地质研究还主要依靠手工编制的厚度图、油藏剖面图、连通图等。十分需要新的技术的补充与提高。在整个开发阶段地质研究工作中,唯一可以称为新技术的就是三维地质建模。因此三维地质建模完全可以在开发阶段地质研究中起到更为突出的作用。实际上,三维地质建模应该,也完全可以成为油藏开发阶段油藏精细描述和生产措施部署的核心技术。
自上世纪五十年代马特龙把地质统计学引用地质研究以来,地质统计学就成了地质建模的核心。但是几十年的实际应用也表明,单纯依靠地质统计学是不能把三维地质建模更深入的引入到油田的开发生产中的。
如何更多的发挥三维地质建模技术的作用,真正使其成为油藏开发阶段油藏精细描述和生产措施部署的核心技术是每一个从事三维地质建模工作的人必须经常琢磨的问题。
⑨ 什么是三维地质建模,而在三维软件里哪一款在地质建模里运用的最好急!!!
三维地质建模概念:
三维地质建模就是将地质,测井,地球物理资料和各种解内释结果或者概念模型综容合在一起生成三维定量随机模型。
三维地质建模(Three-dimensionalgeological modeling)的概念最早是由加拿大SimonWHoulding 于1993年提出的。所谓三维地质建模, 就是运用计算机技术, 在三维环境下, 将空间信息管理、地质解译、空间分析和预测、地学统计、实体内容分析以及图形可视化等工具结合起来,用于地质研究的一门技术。
比较好用的软件有:
suffer
3D-Mine
MICROMINE
UG
⑩ §三维地质建模的方法体系
三维地质建模是一门高度交叉的学科,不同领域的学者从不同角度对三维地质建模的内涵进行了论述。Houlding(1994)最早提出了三维地学模拟(3D Geoscience Modeling)的概念,从广义角度对三维地质建模进行了界定,将空间信息管理、地质解译的图形处理、空间地质统计、地质体的模拟、地质信息的可视化等统称为三维地学模拟。Mallet(2002)将地质建模定义为能够统一模拟地质对象的拓扑、几何与物理属性并且能够考虑多源地质数据的数学方法的集合。
三维地质建模技术是以数字化与可视化手段刻画地质实际、构建地质模型的工具,一个完整的三维地质模型应该具备以下特征:
(1)地质模型所表示的地质对象具有明确的几何形状与空间位置,并与地质勘探数据吻合,所有几何元素均以图形与数字化的形式存在。
(2)具有有效的数据模型,所有几何元素之间具有完备的拓扑关系。
(3)拥有有效的图形与属性数据库支持,便于图形与属性信息的查询与分析。
(4)地质模型是可视的、直观的,真实感强。
上述特征决定了三维地质建模方法所涵盖的基本内容。三维地质建模方法是若干理论、方法与技术的集合体,主要涉及地质勘探数据的标准化处理、几何造型、三维空间数据模型、属性数据管理与图形可视化等方面。图1.1为三维地质建模的方法体系。
图1.1 三维地质建模的方法体系
地质数据来源众多,可靠程度不一,而且分布不均匀,建模时需要借助地质方面的知识与经验进行分析与处理,形成合理有效的信息源。地质勘探数据的标准化处理包括两方面:一是对地质勘探数据进行系统的地质分析,保证数据的可靠性;二是制定标准的数据格式,对地质信息进行标准化处理。目前,各国学者在这方面的研究较少,还没有形成统一的方法。
为了方便、简洁、合理地表达、存储与管理地质模型,必须建立有效的三维空间数据模型。简单地说,三维空间数据模型就是指图形数据的表示与存储方式以及图形元素之间的拓扑关系。常用的空间数据模型包括两类:曲面表示模型与体元表示模型。曲面表示模型是指用曲面的组合来表示地质对象,例如,用地层界面围成地层实体。目前,常见的曲面表示模型有边界表示模型、表面模型与线框模型等。体元表示模型就是将地质对象离散成若干六面体、四面体、三棱柱等形式的体元,用体元的组合表示地质体。目前文献报道较多的体元表示模型包括结构实体几何模型、规则块体模型、四面体模型、三棱柱模型、混合体元模型等。
几何造型是三维地质建模的核心内容,是指根据地质地理数据,利用数学、几何与地质分析方法重构地质对象的空间几何形态,并利用点、线、面、体等基本几何元素及其衍生的几何元素表示地质对象的过程。例如,地层界面常用不规则三角网表示,建模时可以根据钻孔数据进行插值运算,计算出三角网格结点的空间坐标,从而得到由空间三角形面片连接而成的地层界面。地质建模中常见的几何造型方法包括边界建模方法、线框建模方法、断面建模方法、映射建模方法、块段建模方法等。这些方法的思路、过程与实用性有一定的差异,但是,大多数方法都会涉及一些基本内容,如三角剖分与优化、插值计算、曲面细分与优化、曲面曲线求交、环与块体搜索、空间体元剖分等。
图形可视化就是在计算机屏幕上绘制出地质模型,利用材质、颜色与光照等手段实现真实感成像。属性数据管理是指建立属性数据库,存储与管理地质对象的物性参数,如地层名称、岩性、力学参数等。在地质建模中,图形可视化与数据库技术与其他领域的相关内容类似,没有明显的特别之处,因此,本书不再详细介绍相关内容。