地质灾害监测预警
Ⅰ 全国地质灾害监测预警体系建设规划的必要性、指导思想、基本原则和目标
7.2.1 必要性
《中国21世纪议程》提出了我国可持续发展的战略目标。在我国经济和社会快速发展的过程中,人类活动的强度和范围达到前所未有的程度,其对包括地质环境在内的人类生态环境的干扰与破坏也日益增强,在许多地区引发的不同程度的自然地质灾害造成了危害和损失成倍增加的现象,矿产资源和地下水资源等的开发利用以及各种工程活动诱发的地面沉降、崩塌、滑坡、泥石流等人为地质灾害也较为普遍,对城市、公共基础设施和广大人民群众的生命财产安全构成严重威胁。特别是地面沉降多发生在我国经济最发达、人口密度最大、公共基础设施最密集的东部地区,成为这些地区乃至国家可持续发展的重要制约因素。因此,保护生态环境、进行生态环境建设和防灾减灾,已经成为国家长期的目标和任务。为此,加强地质灾害监测,进行全国地质灾害监测与预警体系建设的规划,在监测基础上,实现对地质灾害的治理与对地质环境的保护,不仅是防灾减灾的需要,而且也是国家经济社会可持续发展、保护生态环境和进行生态环境建设的最基本的保障,是一项重要的基础性和公益性的国家地质工作。现就从我国社会经济的发展的几个重要方面,对地质环境与地质灾害监测的必要性,进行简要论述:
(1)保障国家重大工程建设安全与西部大开发战略的需求
全国有20余条铁路干线和所有山区公路不同程度地受到滑坡、崩塌、泥石流的危害或威胁。大型水库岸边,河流傍岸,尤其是峡谷段,常因发生滑坡、崩塌、泥石流而阻塞航道,并引起洪灾。中东部沿海平原和盆地地面沉降、地裂缝和地面塌陷等地质灾害严重威胁和破坏基础工程设施。加强这些基础工程设施和沿大江大河危险地段的地质环境监测,采取科学的分析方法进行预测预报,是一项长期的工作。
西部大开发战略把加快水利、交通、能源和通讯等基础设施建设放在首位,其中包括:长江三峡工程、南水北调工程、大江大河上中游干(支)流控制性水利枢纽工程、内河航运通道、青藏铁路、西电东送工程、西气东输工程等。这些重大工程地域跨度大,多处在或穿越地质灾害易发区,为保障上述工程安全施工和运营,必须加强地质环境监测工作。
(2)城市化发展对地质灾害监测的需求
目前,我国有城市668座。预计2020年左右,我国城镇化水平将提高到45%~50%,我国城市数将达到1000~1100座。城市是人类活动最集中,环境地质问题最突出的地区。为了保障城市化进程,指导城市规划,预防由于不合理的工程活动引发的地面沉降、地裂缝、崩塌、滑坡等地质灾害和其他环境地质问题,必须加强对城市地下水环境和地质灾害的监测。
(3)矿产资源开发对地质灾害监测的需求
我国矿产资源开发带来了很多环境地质问题,产生大量的地质灾害隐患。每年矿石开采量57亿~60亿t,矿山企业每年产生固体废弃物133.8亿t、产生尾矿26.5亿t,处置率仅为6.95%。矿山固体废弃物任意堆放形成了严重的滑坡、泥石流等地质灾害隐患,地下采矿活动诱发的滑坡、地面塌陷等地质灾害十分突出。矿山地质环境监测十分薄弱,矿山地质灾害防治工作任重道远。为了保障矿产资源的安全开发和矿山地质环境的有效治理,必须加强矿山地质环境监测。
7.2.2 指导思想
应坚持以人为本,全面、协调、可持续的科学发展观和人口、资源、环境协调发展的一系列方针政策。紧密结合经济社会发展规划的总体目标和要求,充分认识地质灾害监测预警体系建设的重要性和紧迫性。动员社会各方面的力量,从我国地质灾害发生发育的实际出发,尊重自然规律和经济规律,正确处理长远与当前、整体与局部的关系,依靠科技进步,运用新思路、新理论、新技术、新方法,实现对地质灾害的有效监控和预报预警,为我国地质灾害防治、地质环境保护和资源环境的可持续利用提供有力支撑。
7.2.3 基本原则
(1)与国家国民经济社会发展进程相适应的原则
建立和完善与全面建设小康社会相适应的、符合可持续发展要求的地质灾害监测预警体系,为国家和地方宏观调控和指导国土资源开发与整治提供依据。
(2)突出“以人为本”
坚持按客观规律办事,从实际出发,讲求实效,山区、平原和不同灾种的监测重点各有侧重的原则。在以突发性地质灾害为重点的地区,应以最大限度地减少人员伤亡、保障社会稳定和人民生命财产安全作为主要目的;缓变性地质灾害应以专业监测为主要手段进行监测与规划。
(3)群、专结合的原则
建立以县、乡、村为基础,全民参与、群专结合的群策群防体系,是多年来地质灾害防治工作中总结出来的宝贵经验,也是避免人员伤亡,把灾害损失降到最低限度的重要保证。
(4)统筹规划、分步实施、分级管理
密切结合生产力布局和人口分布状况,对全国地质灾害监测预警体系建设工作进行统筹规划,制定切实可行的分阶段实施方案,明确各级政府和企(事)业单位在地质灾害监测中的责任和义务,建立统一管理和分级(国家、省、市、县)管理相结合,处理好全部与局部、长远与当前的关系,优先实施重点地区和重要经济区(带)的监测预警体系建设。
(5)监测网建设与保护并重
摈弃重建设、轻保护的观念,严禁边建设、边破坏,通过法律、经济等手段,明确保护责任,落实保护费用,切实保护监测仪器、设备、设施的建设成果。
(6)站网建设与能力建设并举
在不断完善地质灾害监测网基础硬件设施建设的同时,加强机构建设、法规制度建设、技术规范建设、信息系统建设、人力资源建设和研究能力建设。
(7)专业服务功能与公众服务功能并重
地质灾害监测信息既要为国家决策和专业调查评价提供支持,也要为社会公众提供地质灾害现状信息和防灾减灾信息。
(8)依靠科技创新、提高监测工作质量
加强科学研究,改进监测设施,依靠科技进步,全面提升监测能力和服务水平。
(9)建立多渠道筹资机制
各级地质灾害监测机构的监测经费要纳入同级政府财政预算。多渠道筹集监测资金,设立各级地质灾害监测专项经费,确保监测工作的顺利实施。
7.2.4 目标
地质灾害监测预警体系建设的目的是最大限度地减少人民群众的生命财产损失,以保障经济、社会的可持续发展;为国家及地方宏观调控和指导国土资源开发与整治提供依据;从地质环境可持续开发利用角度提出地区发展战略建议;为改善人居环境,保障交通大动脉安全畅通,水电工程正常运行等提供保障;为地区社会经济发展提供决策参考。在基本掌握全国地质灾害分布状况与危害程度的基础上,建立并逐步完善全国地质灾害的监测预警网络体系。
(1)总体目标
从现在起到2020年,在逐步查明我国地质灾害分布状况与危害程度的基础上,建成覆盖全国的较完善的突发性地质灾害群测群防网络体系;建成以省(区、市)及部分县(市)地质环境监测站为骨干的突发性地质灾害应急反应体系;建成我国较完善的地质灾害专业监测骨干网络,重点地区及重要经济区(带)达到监测数据的实时采集、分析、预警预报的水平。使地质灾害防治工作以被动救灾为主的局面得到根本性扭转,人为有效控制地质灾害,使损失逐年攀升的趋势得到有效控制。
(2)阶段目标
1)到2010年,地质灾害监测预警体系建设的目标如下:①群测群防监测网络覆盖到全国突发性地质灾害易发区的1400个县(市),形成县、乡、村三级监测体系。②初步建成由各级政府和有关部门参与的全国地质灾害专业监测骨干网络。③初步建成重要交通干线和水利工程区的专业监测预警系统。充分推广高新技术在地质灾害监测中的应用,利用计算机技术、3S技术等先进手段,提高监测预报的自动化水平。④在进一步完善群、专结合,群测群防监测网络的同时,完成分布在全国各省(区、市)重大突发性地质灾害隐患点的监测预警预报示范系统。⑤建成较完善的地质灾害监测信息网络系统,重点地区及重要经济区(带)的专业监测要初步达到监测数据的实时采集、自动分析、自动预警预报的水平。⑥初步建成重点地区及重要经济区(带)地面沉降等缓变性地质灾害监测网络系统。力争使我国地质灾害监测预警预报的仪器、设备达到国际水平。
2)到2020年,在地质灾害监测管理法规、规章的支持下,要使国土资源部门对地质灾害监测监督管理的职能全面到位,并逐步纳入科学化、规范化和法制化的轨道;使地质灾害监测体系的科学理论与技术方法达到国际先进水平,建成覆盖全国的较完善的地质灾害重点防治区突发性地质灾害群专结合的监测预警预报网络;建成全国地面沉降、地裂缝等缓变性地质灾害的实时监控体系;建成完善的地质灾害监测信息网络,实现地质灾害监测数据的自动化采集、传输、存储和信息的实时发布。建成比较完善的地质灾害防灾预警指挥系统。
Ⅱ 我国地质灾害监测预警工作现状
7.1.1 地质灾害防治与监测的法规建设
伴随我国国民经济建设的发展,各种类型的人类工程活动不断加剧,崩塌、滑坡、泥石流及其他多种地质灾害不断发生。为防治地质灾害的发生、发展,满足地方社会经济发展的需要,包括了对地质灾害监测工作进行管理在内的地方性地质灾害防治法规,自1995年开始出现。至1999年,已有18个省(区、市)颁布了21项法规条例,至2004年即已有29个省(区、市)颁布了40余项法规、条列(附录2)。
在全国各地地方性地质灾害防治法规的基础上,2001年5月国土资源部发布了《“十五”国土资源生态建设和环境保护规划》;2001年5月国务院办公厅转发了《关于加强地质灾害防治总体规划》;001年10月国土资源部完成了《三峡库区地质灾害防治总体规划》,并于2002年1月由国务院批复,2002年2月下发湖北省和重庆市国土资源部门落实。作为地质灾害防治方面的全国性法规,2003年11月国务院颁布了《地质灾害防治条例》(附录2)。在上述全国性法规、规划的指导下,目前“全国地质环境管理办法”等一系列的规程、规范正在编制之中。这些法规、条例的出台,有力地推进了全国地质灾害监测预警体系的建设和地质环境管理、保护工作。
7.1.2 监测网络与机构建设
(1)专业监测机构建设现状与存在的问题
截至2002年9月,全国地质灾害监测机构及队伍状况如表7.1所示。由该表可知,我国现有:国家级地质环境监测中心1个,省级地质环境监测总站(院、中心)31个,地(市)级地质环境监测站220个,其中直属分站138个,代管分站131个,县级地质环境监测站49个(重庆40个,四川7个,福建2个)。上述机构中,中国地质环境监测院在职职工126人(包括三峡中心),省地级地质环境监测队伍在职人数3349人。合计全国地质环境监测专业队伍在职人数3349人。这样一支队伍初步形成了地质灾害勘查、监测和预报预警的科研体系,为地质灾害的防治、地质环境的保护和依法行政提供了组织保障。
表7.1 全国地质灾害监测机构及队伍状况
值得指出的是,目前地质灾害监测预警管理体制还不够健全。虽然省(区、市)级和地(市)级两级国土资源主管部门承担起了地质灾害监测预警职能,但多数地(市)级国土局没有专门的科室,县级以下机构很不健全,体制还没有理顺。与此同时,在水利、铁路、公路和城建等部门也还没有设立地质灾害监测预警预报指挥系统。国土资源部门原有各级地质环境监测站是在政事不分、事企不分的历史条件下建立的,部分省(区)的公益性监测工作仍由企业性质的地勘单位承担,与政府行政管理脱节,难以满足政府和社会的需要。
(2)地质灾害监测网络建设现状与存在的问题
1)突发性地质灾害监测。全国突发性地质灾害监测状况参见表7.2。截至2003年,全国完成地质灾害调查与区划的县(市)达到545个,面积200万km2,共调查出灾害隐患点7万余处,建立了群测群防点4万多处;湖南、广西、四川、宁夏、青海、新疆开展专业监测与巡测的灾害点120余处。
三峡库区20个市(区、县)已成立17个地质环境监测站,建立了秭归-巴东段(50km)地质灾害GPS监测网并投入监测运行。该网包括国家级控制网(A级)、基准网(B级)、滑坡监测(C级)三级GPS监测网,对12个单体滑坡进行监测,共建有59个GPS监测点。
黑龙江省七台河市地面塌陷监测网控制面积10km2,设地面塌陷监测点58个,为矿山地质灾害监测起到了示范作用。
2)缓变性地质灾害监测。缓变性地质灾害监测网在长江三角洲地区除上海市建立了覆盖全市的较为完善的、由基岩标、分层标、GPS观测点、地面水准点和地下水监测孔等构成的地面沉降监测网络外,江苏的苏锡常地区2002年也在个别地区建立了分层标,其他地区尚属空白。环渤海地区只有天津市在城区建立了7组分层标,而且多建于1985年以前。北京市的3组基岩标和分层标正在建设之中。西安设立了部分地裂缝监测点,宁波初步建成了地面沉降监测网。目前开始实施地面沉降和地裂缝监测的主要地区为华北平原和长江三角洲和部分大中城市。全国地面沉降监测现状参见表7.2的有关内容。
3)区域性群测群防体系尚未建成。群众对地质灾害缺乏预防知识,基层主管部门缺少专业技术人员,群专结合的地质灾害监测体系和群测群防的监测网络不健全,全国大部分县(市)还没有建立。目前仅是开展过地质灾害调查与区划的539个县(市)建立了群测群防监测网络。地质灾害监测尚未引起全社会足够的重视,资金保证程度差,缺乏完善的救灾防灾系统。因此,加大宣传和管理力度,加强立法工作,强化地质环境管理,编制地质灾害防治工作规划纲要,指导各县(市)编制本地区的地质灾害防治规划,积极有效地开展地质灾害防治工作,对防灾减灾是非常必要的。
4)监测工作经费严重不足。地方各级政府尚未建立地质灾害专项资金渠道,仅靠国家补助的部分地质灾害防治专项资金开展工作。每年的监测经费不足以维持正常的监测工作,监测工作日益萎缩,设备陈旧老化、设施破损严重,影响监测成果质量,难以满足准确快速实时监测的要求。
表7.2 全国地质灾害监测状况
7.1.3 监测预警信息系统建设
利用中国地质环境监测院提供的数据库软件,省级地质环境监测总站(院、中心)基本实现了991年以后地下水监测数据和地质灾害调查数据的入库管理,部分省(区)还建立了图形库、文档库、监测点档案库和信息管理系统等。四川省开展了地质灾害预报信息随同天气预报播出的试点工作。全国地质环境监测信息管理现状如表7.3所示。
表7.3 全国地质环境信息管理现状
在网络建设方面,只有少数省(区、市)实现了与Internet的专线连接(河北、青海、海南等)和内部局域网建设,多数省区通过拨号上网向中国地质环境监测院传输数据。目前,地质环境监测数据的分析和开发利用还很不够,地质环境监测数据基本上没有向社会和公众开放。这些情况表明,在地质灾害防治方面,信息传输与处理没有跟上时代步伐。
Ⅲ 地质灾害区域预警原理
据检索统计,世界上约有20多个国家或地区不同程度地开展过降雨引发滑坡、泥石流的研究或预警工作。其中,中国香港(Brandetal.,1984)、美国(Keeferetal.,1987)、日本(Fukuzono,1985)、巴西(Neiva,1998)、委内瑞拉(Wieczoreketal.,2001)、波多黎各(Larsen&Simon,1993)和中国大陆等曾经或正在进行面向公众社会的降雨引发区域性滑坡、泥石流的早期预警与减灾服务工作,预警的地质空间精度达到数千米量级,时间精度达到小时量级。这些国家和地区一般都在地质灾害多发区或敏感区开展或完成了比较详细的地质灾害调查评价工作,拥有比较长期且比较完整的降雨与滑坡、泥石流关系资料,或在典型地区建立了比较完善的降雨遥控监测网络和先进的数据传输系统。
综合分析国内外研究与应用状况,基于气象因素的区域地质灾害预警预报理论原理可初步划分为三大类,即隐式统计预报法、显式统计预报法和动力预报法。
4.2.1 隐式统计预报法
隐式统计预报法把地质环境因素的作用隐含在降雨参数中,某地区的预警判据中仅仅考虑降雨参数建立模型。隐式统计预报法可称为第一代预报方法,比较适用于地质环境模式比较单一的小区域。由于这种方法只涉及一个或一类参数,无论预警区域的研究程度深浅均可使用,所以这是国内外广泛使用的方法,也是最易于推广的方法。这种方法特别适用于有限空间范围,且地质环境条件变化不大的地区,如以花岗岩及其风化残积物分布为主的中国香港地区多年来一直在研究应用和深化这一方法。
这种方法考虑的降雨参数包括年降雨量、季度降雨量、月降雨量、多日降雨量、日降雨量、小时降雨量和10min降雨量等。实际应用时,一般只涉及1~3个参数作为预报判据,如临界降雨量、降雨强度、有效降雨量或等效降雨量等。
突发性地质灾害临界过程降雨量判据的预警方法抓住了气象因素诱发地质灾害的关键方面,但预警精度必然受到所预警地区面积大小、突发性地质事件样本数量、地质环境复杂程度和地质环境稳定性及区域社会活动状况的限制,单一临界降雨量指标作为预警判据的代表性是有限的。
代表性研究成果主要有:
Onodera et al.( 1974) 通过研究日本的大量滑坡,提出累计降雨量超过 150 ~ 200mm,或每小时降雨强度超过 20 ~30mm 作为判据。Nilsen et al.( 1976) 发现美国 Alameda,Califor-nia 在累计降雨量超过 180mm 时,滑坡将频繁发生。Oberste-lehn( 1976) 认为累计降雨量达到 250mm 左右,美国 San Benito,California 将发生滑坡。Guidicini and Iwasa( 1977) 通过对巴西 9 个地区滑坡记录和降雨资料的分析,认为降雨量超过年平均降雨量的 8% ~17%,滑坡将滑动; 超过 20%,将发生灾难性滑坡。Caine( 1980) 全面总结了全球的可利用数据,给出了不同地区诱发滑坡暴雨事件的降雨强度和持续时间与滑坡的关系式。这一关系式当然不可能适用于全球所有地区( Crozier 在 1997 年证明) ,仍不失为探讨诱发滑坡临界降雨值的里程碑。
Brand et al.( 1984) 在中国香港研究表明,大多数滑坡由局部高强度短历时降雨诱发,而前期降雨量不是主要因素,除非是小型滑坡。Ng and Shi( 1998) 认为降雨的持续也是一个非常重要的诱发滑坡的因素。中国香港地区预测 24h 内降雨量达到 175mm 或 60min 内市区内雨量超过 70mm,即认为达到滑坡预报阈值,即由政府发出通报。中国香港平均每年约发出 3 次山洪滑坡暴发警报。
Ganuti et al.( 1985) 提出了临界降雨系数( critical precipitation coefficient,CPC) 的概念,并总结出当 CPC >0.5 时,将有 10a 一遇的滑坡发生; 当 CPC >0.6 时,将有 20a 一遇的滑坡发生。
Glade( 1997) 综合前人研究成果建立了确定诱发滑坡的降雨临界值的 3 个模型,并在纽西兰北岛南部的 Wellington 地区进行了验证。3 个模型要求的基本数据为: 日降雨量、滑坡发生日期和土体潜在日蒸发量( 通过 Thornthwaite method 方法计算得到) 。降雨强度临界值Glade( 1997) 的模型 1———日降雨模型( daily rainfall model) ,只使用日降雨量参数,简单地分析诱发滑坡和不诱发滑坡的日降雨量( Glade,1998) ,得出最小临界值和最大临界值,即在最小临界值以下,没有滑坡发生; 在最大临界值以上,滑坡一定发生。降雨量等级划分以20mm 为一个等级; 降雨过程雨量临界值 Glade( 1997) 的模型 2———前期日降雨量模型( an-tecedent daily rainfall model) ,考虑了前期降雨的影响。他认为决定前期情况有两个主要因素: 前期降雨的历时时间和土体含水量减少的速率; 土体含水状态临界值 Glade( 1997) 的模型 3———前期土体含水状态模型( antecedent soil water status model) ,他认为除了前期雨量,土体含水量和潜在的蒸发量对滑坡的影响也很大。
刘传正在 2003 年 5 月主持全国地质灾害气象预警工作过程中,利用地质灾害发生前15d 降雨量建立滑坡、泥石流发生区带的临界过程降雨量创建了预警判据模式图,并结合具体区域( 2003 年28 个区、2004 年以后74 个区) 进行校正的方法。该方法适应3 级预报的要求界定了 α 线和 β 线作为预警等级界限。3 年多来汛期的预警成果发布检验与应用证明,该方法在科学依据上是成立的,但限于预警区域过大、基础数据和地质灾害统计样本数量太少,准确率有待提高,同时也充分说明了开展地质灾害数据集成研究的迫切性。
另外,中国科学院成都山地灾害与环境研究所等机构在单条泥石流监测与预警建模方面进行了多年持续不懈的研究工作,取得了具有代表性的成果。
4.2.2 显式统计预报法
显式统计预报法是一种考虑地质环境变化与降雨参数等多因素叠加建立预警判据模型的方法,它是由地质灾害危险性区划与空间预测转化过来的(CarraraA.,1983;HaruyamaH.&KawakamiH.,1984;BaezaC.&CorominasJ.,1996;CarraraA.,CardinaliM.&GuzzettiF.,1991;刘传正,2004;殷坤龙,2005)。
区域地质灾害危险性评价和风险区划研究仍是当前的研究主流,而利用之进行地质灾害的实时预警与发布则多处于探索阶段。这种方法可以充分反映预警地区地质环境要素的变化,并随着调查研究精度的提高相应地提高地质灾害的空间预警精度。显式统计预报法可称为第二代预报方法,是正在探索中的方法,比较适用于地质环境模式比较复杂的大区域。
基于地质环境空间分析的突发性地质灾害时空预警理论与方法是根据单元分析结果经过合成实现的,克服了仅仅依据单一临界雨量指标的限制,但对临界诱发因素的表达、预警指标的选定与量化分级等尚存在需要进一步研究的诸多问题。
因此,要实现完全科学意义上的区域突发性地质灾害预警,必须建立临界过程降雨量判据与地质环境空间分析耦合模型的理论方法———广义显式统计模式地质灾害预报方法,预警等级指数(W)是内外动力的联立方程组。即
中国地质灾害区域预警方法与应用
式中:W为预警等级指数;a为地外天体引力作用,包括太阳、月亮的引潮力,太阳黑子、表面耀斑和太阳风等对地球表面的作用,a=f(a1,a2,…,an);b为地球内动力作用,主要表现为断裂活动、地震和火山爆发等,b=f(b1,b2,…,bn);c为地球表层外动力作用,包括降雨、渗流、冲刷、侵蚀、风化、植物根劈、风暴、温度、干燥和冻融作用等,c=f(c1,c2,…,cn);d为人类社会工程经济活动作用,包括资源、能源开发和工程建设等引起地质环境的变化,d=f(d1,d2,…,dn)。
20世纪70年代,以美国加利福尼亚州旧金山地区圣马提俄郡的滑坡敏感性图为代表,利用多参数图的加权(或不加权)叠加得到区域滑坡灾害预测图。
20世纪80年代,CarraraA.(1983)将多元统计分析预测方法引用到区域滑坡空间预测中,并在世界各国得到迅速发展与推广。如HaruyamaH.&KawakamiH.(1984)利用数学统计理论对日本活火山地区降雨引起的滑坡灾害进行了危险度评价。BaezaC.&CorominasJ.(1996)利用统计判别分析模型进行了浅层滑坡敏感性评估,结果斜坡破坏的正确预测率达到96.4%,有力地说明了统计预测的适用性。CarraraA.,CardinaliM.&GuzzettiF.等(1991)将统计模型与GIS结合,应用于意大利中部某小型汇水盆地的滑坡危险性评估,实现从数据获取到分析、管理的自动化,结果证明统计分析与GIS的综合使用是一种快速、可行、费用低的区域滑坡危险性评价与制图方法。
20世纪90年代中后期以来,随着计算机技术和信息科学的高速发展,RS、GIS和GPS等“3S”技术联合应用使快速处理海量的地质环境数据成为可能,出现了地质灾害空间预测模型方法应用研究逐步从地质灾害危险评价与预警应用相结合的新态势。
刘传正等(2004)创建并发表了用于区域地质灾害评价和预警的“发育度”、“潜势度”、“危险度”和“危害度”时空递进分析理论与方法,简称“四度”递进分析法(AMFP),并在三峡库区(54175km2)和四川雅安地质灾害预警试验区(1067km2)进行了应用,结果是可信的。
李长江等(2004)将GIS和ANN(人工神经网络)相互融合,考虑不同的地质、地貌和水文地质背景,建立了给定降雨量的浙江省区域群发性滑坡灾害概率预报(警)系统(LAPS)。
宋光齐等(2004)根据地貌、岩性和地质构造几率分布,基于GIS建立了给定降雨量的四川省地质灾害预报系统。
殷坤龙等(2005)以浙江省为例探索了基于WebGIS的突发性地质灾害预警预报问题。
由于我国政府在全国范围内推行区域地质灾害预警预报机制,目前我国的预警探索工作走在世界前列。
4.2.3 动力预报法
动力预报法是一种考虑地质体在降雨过程中地-气耦合作用下研究对象自身动力变化过程而建立预警判据方程的方法,实质上是一种解析方法。动力预报方法的预报结果是确定性的,可称为第三代预报方法,目前只适用于单体试验区或特别重要的局部区域。该方法主要依据降雨前、降雨中和降雨后降水入渗在斜坡体内的转化机制,具体描述整个过程斜坡体内地下水动力作用变化与斜坡体状态及其稳定性的对应关系。通过钻孔监测地下水位动态、孔隙水压力和斜坡应力-位移等,揭示降雨前、降雨过程中和降雨后斜坡体内地下水的实时动态响应变化规律、整个坡体物理性状变化及其变形破坏过程的关系。在充分考虑含水量、基质吸力、孔隙水压力、渗透水压力、饱水带形成和滑坡—泥石流转化因素条件下,选用数学物理方程研究解析斜坡体内地下水动力场变化规律与斜坡稳定性的关系,确定多参数的预警阈值,从而实现地质灾害的实时动力预报。
目前,这种方法局限于试验场地或单个斜坡的研究探索阶段,必须依赖具有实时监测、实时传输和实时数据处理功能的立体监测网(地-气耦合)作为支撑才能实现实时预报。由于理论、技术和经费等方面的高要求,这种方法比较适用于重要的小区域或单体的研究性监测预警。
据研究,美国旧金山海湾地区的6h降雨量达到4in(101.6mm)时,就可能引发大面积泥石流。为了监测降雨期间地下水压力的变化,研究人员设置了若干个孔隙水压力计以观测斜坡中地下水压力变化。旧金山海湾地区实时区域滑坡预警系统包括降雨与滑坡发生的经验和分析关系式,实时雨量监测数据,国家气象服务中心降雨预报以及滑坡易发区略图。
在我国,刘传正等(2004)在四川雅安区域地质灾害监测预警试验区进行了大气降水与斜坡岩土层含水量变化的分层响应监测,发现不同降雨过程和降雨强度下,斜坡岩土体的含水量相应发生明显变化,可以研究降雨在斜坡岩土体内的渗流过程直至出现滑坡、泥石流的成因机理。
2003年8月23~25日是一个引发多处地质灾害并造成人员伤亡的典型降雨过程,可以作为分析实例。以8月19日15时的含水量为背景值,则8月23,24和25日降雨过程分别对应第96,120和144h的含水量,4个层位的记录曲线明确反映了随累计降雨量增加斜坡岩土体含水量急剧增加,第一、二层位达到过饱和状态,且含水量急剧增加出现于第121h,即24日15时之后,滞后于降雨时间约20h。各层含水量峰值出现于第151h,即接近滑坡呈区域性暴发时间(26日零时,对应第153h)。该分析未考虑沿裂隙的地下水渗流作用(图4.1)。
图4.1 四川雅安桑树坡监测试验点第1~4层含水量随时间变化曲线
分析对比隐式统计预报法、显式统计预报法和动力预报法3类方法,我们认为,未来的方向是探索地质灾害隐式统计、显式统计与动力预警3种模型的联合应用方法,以适应不同层级的地质灾害预警需求。研究内容包括临界雨量统计模型、地质环境因素叠加统计模型和地质体实时变化(水动力、应力、应变、热力场和地磁场等)的数学物理模型等多参数、多模型的耦合。3种模型的联合应用不仅适应特别重要的区域或小流域,也为单体地质灾害的动力预警与应急响应提供决策依据。
Ⅳ 什么是地质灾害监测预警
地质灾害来源于自然和人为地质作用对地质环境的灾难性破坏,主要包括崩塌内、滑坡、泥石流、地面塌陷和地裂容缝等。我国是世界上地质灾害频发的地区之一,近年来,关于滑坡、泥石流类灾害的研究是行业研究的重点。地质灾害的防治常常因为工作的分散,造成标准化程度较差,资源共享较难的问题。
Ⅳ 地质灾害预警级别 地质灾害预警什么意思
地质灾害预警制度。预警内容主要包括地质灾害可能发生的时间、地点、成专灾范围和影响程度属等。地质灾害预警由县级以上人民政府国土资源主管部门会同气象主管机构发布。任何单位和个人不得擅自向社会发布地质灾害预警。
按照未来24小时内,地质灾害发生的可能性大小,地质灾害预警分为五级,分别为
一级:可能性很小;
二级:可能性较小;
三级:可能性较大(通知监测人员和威胁住户注意);
四级:可能性大(预报阶段,停止外业,各岗位人员到岗待命);
五级:可能性很大(警报阶段,无条件紧急疏散,密切观测)。
Ⅵ 四信地质灾害监测预警系统主要功能有哪些
主要作用是:通过野外监测站对降雨量、表面位移、泥水位、地声、次声内、孔隙水压力容、视频、深部位移、土压力等要素进行实时监测,使用GPRS/LoRa/3G/4G等通信方式将数据传输到管理及监测预警云平台,为防灾减灾提供实时信息服务。
广泛应用于滑坡监测预警、泥石流监测预警、地面沉降监测预警、崩塌监测预警等,有效保障地质灾害多发地区人民群众的生命与财产安全。
Ⅶ 地质灾害调查与预警
一、部署重点
开展我国西南山区、黄土高原、湘鄂桂山区等主要地质灾害高易发区地质灾害详细调查,建立典型地质灾害监测预警区;完善长江三角洲、华北平原和汾渭盆地地面沉降监测网,开展珠江三角洲、东北平原等地区地面沉降调查,开展京沪、大同—西安等高速铁路沿线地面沉降与地裂缝详细调查。
二、部署建议
(一)全国地质灾害调查监测综合评价
1.工作现状
完成了全国1:50万以地质灾害为主的环境地质调查与综合研究,完成了700个县(市)的县市地质灾害调查成果集成,正在开展1640个县(市)的县市地质灾害调查成果集成。2005年起,开展1:5万地质灾害详细调查数据库建设及成果初步梳理工作。开展地质灾害气象预警技术方法研究,逐步提高我国区域地质灾害预警预报技术水平。
但随着详细调查与监测预警示范的大规模铺开,需要进一步进行数据的整理、分析与综合集成,并在研究基础上编制满足国家层面需求的系列图系。
2.工作目标
总体目标:整合地质灾害详细调查成果,分析地质灾害发育分布规律,划定地质灾害易发区,搭建综合研究技术平台和信息化平台,建立全国地质灾害数据库。整合监测预警示范区成果,研究监测预警网络建设模式,形成全国地质灾害监测预警信息平台。完善地质灾害调查与监测技术规程与技术要求,综合研究并编制满足国家需要的地质灾害系列图系。
“十二五”期间:建立地质灾害调查与地质灾害监测预警成果集成体系。总结地质灾害调查成果,开展区域地质灾害易发区综合评价和易发程度区划。总结地质灾害监测预警示范区建设成果,搭建地质灾害监测预警信息平台。
“十三五”期间:完善地质灾害调查与地质灾害监测预警成果集成体系。进一步总结地质灾害调查成果,形成全国和省级地质灾害易发区综合评价和易发程度区划。系统总结地质灾害调查与地质灾害监测成果,形成全国地质灾害早期预警区划。
3.工作任务
完成全国1:5万地质灾害调查与典型预警示范区建设成果的汇总、集成与综合研究。搭建1:5万地质灾害调查综合研究技术平台和信息化平台,建立全国地质灾害数据库。搭建全国地质灾害监测预警信息平台,完善早期预警产品发布体系。总结修订《崩塌、滑坡、泥石流1:50000调查规范》,完成全国地质灾害早期预警区划,编制全国及分省地质灾害与地质灾害早期预警综合图系。
“十二五”期间:对西北黄土高原区、西南山区、湘鄂桂山区、东南沿海地区地质灾害高易发区1:5万地质灾害调查成果进行集成,建立1:5万地质灾害调查信息化成果技术要求;完成11个地质灾害监测预警示范区成果综合研究,搭建全国地质灾害监测预警信息平台,初步建立全国地质灾害早期预警区划。
“十三五”期间:完成西北黄土高原区、西南山区、湘鄂桂山区、东南沿海地区地质灾害高、中易发区1:5万地质灾害调查成果集成,完善1:5万地质灾害调查信息化成果技术要求。完成全国30个地质灾害监测预警示范区成果综合研究,形成建立全国地质灾害早期预警区划。编制完成全国及分省地质灾害与地质灾害早期预警综合图系。
(二)西北黄土高原区1:5万地质灾害调查
1.工作现状
完成了以省(区、市)为单元的西北省区1:50万以地质灾害为主的环境地质调查、263个县的1:10万山区丘陵县地质灾害调查。2005年起,在46个县近10万平方千米范围内开展了1:5万地质灾害调查。
通过开展1:5万地质灾害调查,基本摸清了调查区地质灾害分布和发育规律,有力地支持了完善地质灾害防治规划和各项减灾防灾工作。根据县市地质灾害调查成果,在西北黄土高原区及秦巴山区中,仍有处于地质灾害高、中易发区的191个县近54万平方千米需要尽快开展1:5万地质灾害调查工作。
2.工作目标
以遥感解译、地面调查、测绘和工程勘查为主要手段,以县(区)级行政区划为基本单元,开展西北黄土高原区及秦巴山区20万平方千米(191个县)的1:5万地质灾害调查,基本查明区内地质灾害及其隐患的分布、形成的地质环境条件和发育特征,并对其危害程度进行评价,圈定地质灾害易发区和危险区,建立地质灾害信息预警系统,建立健全群专结合的监测网络,为减灾防灾提供基础地质依据。
“十二五”期间:开展西北地质灾害高易发区1:5万地质灾害调查,基本查清区内地质灾害分布发育规律,逐步建立地质灾害风险控制管理工作体系。
“十三五”期间:继续开展地质灾害高、中易发区1:5万地质灾害调查,查清区内地质灾害分布发育规律,形成西北地区地质灾害易发区区划和重点区域地质灾害风险管理区划,显著提高我国地质灾害防治水平。
3.工作任务
开展西北地区地质灾害中、高易发区1:5万地质灾害调查;完善地质灾害易发性和危险性区划;健全完善地质灾害群测群防体系,建立地质灾害空间数据库。
在已经圈定的地质灾害易发区内,以县为单位采用点、线、面结合,重点和一般调查结合的方式开展1:5万地质灾害调查工作。2015年前优先开展地质灾害高易发区及经济损失较大地区调查,基本覆盖人员伤亡及财产损失主要地区。2020年前,逐步推进,最终完成西北地区高、中易发区调查。在调查基础上,完善地质灾害易发性和危险性区划,健全完善地质灾害群测群防体系,探索建立地质灾害风险评价与风险控制管理工作体系。
“十二五”期间:开展西北黄土高原区地质灾害高易发区1:5万地质灾害调查。
“十三五”期间:继续开展西北黄土高原区地质灾害高、中易发区1:5万地质灾害调查。
(三)西南山区1:5万地质灾害调查
1.工作现状
完成了以省(区、市)为单元的西南山区1:50万以地质灾害为主的环境地质调查、423个县的1:10万山区丘陵县地质灾害调查。2005年起,在29个县(近10万平方千米)开展了1:5万地质灾害调查。
通过开展1:5万地质灾害调查,基本摸清了调查区地质灾害分布和发育规律,有力支持并完善了地质灾害防治规划和各项减灾防灾工作。根据县市地质灾害调查成果,在西南山区,仍有处于地质灾害高、中易发区的190个县近75万平方千米需要尽快开展地质灾害详细调查工作。
2.工作目标
总体目标:以遥感解译、地面调查、测绘和工程勘查为主要手段,以县(区)级行政区划为基本单元,开展西南山区、藏东地区75万平方千米,1:5万地质灾害调查,基本查明区内地质灾害及其隐患的分布、形成的地质环境条件和发育特征,并对其危害程度进行评价,圈定地质灾害易发区和危险区,建立地质灾害信息预警系统,建立健全群专结合的监测网络,为减灾防灾提供基础地质依据。
“十二五”期间:开展西南川滇山区、藏东地区等地质灾害高易发区1:5万地质灾害调查,基本查清区内地质灾害分布发育规律,逐步建立地质灾害风险控制管理工作体系。
“十三五”期间:继续开展西南川滇山区、藏东地区地质灾害高、中易发区1:5万地质灾害调查,查清区内地质灾害分布发育规律,形成全国地质灾害易发区区划和重点区域地质灾害风险管理区划。显著提高我国地质灾害防治水平。
3.工作任务
开展西南川滇山区、藏东地区滑坡、崩塌、泥石流等突发性地质灾害中、高易发区1:5万地质灾害调查;健全完善覆盖地质灾害中、高易发区的群测群防网络,完善地质灾害易发性和危险性区划。建立地质灾害空间数据库。
在已经圈定的地质灾害易发区内,以县为单位采用点、线、面结合,重点和一般调查结合的方式开展1:5万地质灾害调查工作。2015年前优先开展地质灾害高易发区及经济损失较大地区调查,基本覆盖人员伤亡及财产损失主要地区。2020年前,逐步推进,最终完成西南山区高、中易发区调查。在调查基础上,建立完善群测群防体系,完善地质灾害易发性和危险性区划,探索建立区域风险评价与风险控制管理工作体系。
“十二五”期间:开展西南山区高易发区1:5万地质灾害调查工作。
“十三五”期间:继续开展西南山区高、中易发区1:5万地质灾害调查工作。
(四)湘鄂桂山区地质灾害详细调查
1.工作现状
完成了以省(区、市)为单元的1:50万以地质灾害为主的环境地质调查、287个县的1:10万山区丘陵县地质灾害调查。2005年起,在14个县近4万平方千米范围内开展了1:5万地质灾害调查。
通过开展1:5万地质灾害调查,基本摸清了调查区地质灾害分布和发育规律,有力地支持了完善地质灾害防治规划和各项减灾防灾工作。根据县市地质灾害调查成果,在湘鄂桂山区,仍有处于地质灾害高、中易发区的82个县近20万平方千米需要尽快开展1:5万地质灾害详细调查工作。
2.工作目标
总体目标:以遥感解译、地面调查、测绘和工程勘查为主要手段,以县(区)级行政区划为基本单元,开展西南山区、藏东地区1:5万地质灾害调查,基本查明区内地质灾害及其隐患的分布、形成的地质环境条件和发育特征,并对其危害程度进行评价,圈定地质灾害易发区和危险区,建立地质灾害信息预警系统,建立健全群专结合的监测网络,为减灾防灾提供基础地质依据。
“十二五”期间:完成湘鄂桂山地丘陵区20个县(市)1:5万地质灾害调查,基本查明区内地质灾害及其隐患的分布、形成的地质环境条件和发育特征,并对其危害程度进行评价,为制定防灾规划和减灾提供技术支撑。
“十三五”期间:全面完成湘鄂桂山地丘陵区40个县(市)1:5万地质灾害调查,基本查明区内地质灾害及其隐患的分布、形成的地质环境条件和发育特征,并对其危害程度进行评价,为制定防灾规划和减灾提供技术支撑。
3.工作任务
开展湘鄂黔山地区滑坡、崩塌、泥石流等突发性地质灾害中、高易发区1:5万地质灾害调查;健全完善覆盖地质灾害中、高易发区的群测群防网络,完善地质灾害易发性和危险性区划。建立地质灾害空间数据库。
在已经圈定的地质灾害易发区内,以县为单位采用点、线、面结合,重点和一般调查结合的方式开展地质灾害1:5万调查工作。2015年前优先开展地质灾害高易发区及经济损失较大地区调查,基本覆盖人员伤亡及财产损失主要地区。2020年前,逐步推进,最终完成湘鄂黔山地区高、中易发区调查。在调查基础上,建立完善群测群防体系,完善地质灾害易发性和危险性区划,探索建立区域风险评价与风险控制管理工作体系。
“十二五”期间:开展高易发区1:5万地质灾害调查。
“十三五”期间:继续开展高、中易发区1:5万地质灾害调查。
(五)东南沿海山区1:5万地质灾害调查
调查区主要包括浙江、福建、安徽、江西四省常年遭受台风袭击的地质灾害高风险区及中低山丘陵区,总面积约12万平方千米。该区域人口密度高、经济发达,地质条件复杂,台风和降雨频繁,地质灾害影响严重。
1.工作现状
完成了以省(区、市)为单元的1:50万以地质灾害为主的环境地质调查,以县(市)为单元的1:10万丘陵山区地质灾害调查约271个县(市),浙江省开展了小流域1:1万地质灾害调查。初步查明了崩塌、滑坡、泥石流等突发性地质灾害分布情况、发育特征、发育强度及其形成条件和发生规律,对地质灾害发生的环境地质条件和发展趋势进行了区划及预测评价,调查成果及时为重点县(市)及区域地质灾害防治提供了技术支撑。
虽然浙江开展小流域1:1万地质灾害调查调查,尚未系统开展1:5万地质灾害调查,缺少区域1:5万地质灾害调查资料,目前地质灾害防治依靠的是以往1:10万县市地质调查资料,地质灾害防灾工作能力和水平亟待提升。
2.工作目标
总体目标:全面完成地质灾害高、中易发区1:5万地质灾害调查工作,查明崩塌、滑坡、泥石流等突发性地质灾害分布情况、发育特征、发育强度及其形成条件和发生规律,对地质灾害发生的环境地质条件和发展趋势进行了区划及预测评价,调查成果及时为重点县(市)及区域地质灾害防治提供了技术支撑。
“十二五”期间:完成地质灾害高易发区1:5万地质灾害调查工作,选择25处重大地质灾害高易发区开展风险管理。
“十三五”期间:完成地质灾害中易发区1:5万地质灾害调查工作,选择15处重大地质灾害中易发区开展风险管理。
3.工作任务
以保护人民生命财产和生存环境、保障重大建设工程、重要矿山、国家级或省级旅游景区建设为目标,开展1:5万地质灾害调查,基本查明地质灾害发育及危害现状、形成条件和形成机理,进行地质灾害危险性评价和风险评估;开展区域地质灾害监测预警网络建设,建立典型区地质灾害监测预警示范;开展重大地质灾害调查与风险管理选区及评估;建立区域地质灾害数据共享平台。
(六)汶川地震地质灾害调查评价
1.工作现状
开展了工作区在内的青藏高原东南缘的地壳变形、断裂运动、地震活动研究、活动断裂和古地震研究、区内区域地壳稳定性研究及一系列的深部地球物理探测研究。从1991年到2006年已在青藏高原东部及邻区开展了十多年地壳形变监测。震后完成了地震灾区地质灾害应急调查、详细调查及对重大灾害体的勘察。
但震后地质环境、地应力场及位移场均发生了较大变化,需尽快完成调查。震后地震灾区地质灾害应急调查、详细调查及对重大灾害体的勘察资料亟待整理。灾后恢复重建迫切需要区域稳定性评价及地质灾害防治区划。与地震及地震地质灾害相关的关键科学问题亟待解决。
2.工作目标
总体目标:以汶川地震为契机,全面开展龙门山地区地震与地质灾害详细调查工作,结合综合地球物理勘查,摸清龙门山断裂带主要特征;系统总结工作区现代构造运动的地质灾害效应规律及地质灾害链形成机理;揭示龙门山及邻近构造带未来地震活动趋势;了解龙门山及邻近构造带的地震工程地质条件;开展区域地壳稳定性和重要场地工程地质稳定性评价;为龙门山地震重灾区恢复重建及邻区重要工程规划提供地质依据;建设地震地质灾害信息系统,为地震灾区防灾减灾和重建规划服务。
“十二五”期间:完成龙门山地区地震地质灾害调查,确定汶川地震发震断裂和同震断裂的地表变形特征,确定活动断裂深部结构,初步完成青藏高原东缘地壳形变和斜坡动力响应综合监测及汶川地震灾区地脉动测试,建立极震区滑坡形成机理模式及汶川地震区工程岩体稳定性评价与地质灾害填图技术方法,完成地质灾害相应成果建设,为汶川地震灾后重建提供相关地震地质灾害资料和必要的技术支撑。
“十三五”期间:深入研究地震地质灾害链的形成机理和演化过程,开展区域地壳稳定性评价,总结提升各种地震地质灾害调查、监测和评价的技术水平,并促进相关技术方法的推广应用。
3.工作任务
在广泛收集利用前期已有相关地质研究资料的基础上,利用遥感解译与野外地面调查、深部探测相结合,线路地质调查与重点地段大比例尺填图调查相结合,新构造运动特征定性分析与断裂活动时域及强度定量测试分析相结合,内动力与外动力地质作用调查相结合,物理仿真模拟与数值模拟相结合,对工作区活动断裂特别是发震断裂及其灾害效应进行定量—半定量评价;基于青藏高原东缘地壳形变和斜坡动力响应综合监测,以及对地震动力与地质灾害相关性的多方位综合调查和研究(模拟试验、常规和非常规岩土工程特性试验等),分析龙门山及邻近构造带未来新构造运动趋势及其灾害效应,开展汶川地震地质灾害关键科学问题的深入研究,力图在典型地震地质灾害的成灾机理和评价技术方面有所突破。
“十二五”期间:开展汶川地震灾区以滑坡、崩塌、泥石流灾害为主要内容的1:5万地质灾害调查与测绘;进行龙门山及邻近构造带地震工程地质调查评价;开展龙门山及邻近构造带活动断裂调查;开展区域地壳稳定性综合评价;在龙门山及其邻近地区开展综合地球物理探测,取得地震活动带较详细的岩石圈结构模型;在青藏高原东缘开展系统的高精度GPS测量与监测,重点开展对龙门山断裂带、鲜水河—安宁河—小江断裂带及其附近区域的监测。
开展川西地区地震地质及区域构造稳定性研究,研究更加符合斜坡地震动响应客观实际的地震动稳定性评价方法;通过大型振动台试验,揭示不同地震波下边坡的动力响应规律;通过开展汶川地震灾区地脉动测试及研究分析,提升对地震及余震有关的地质灾害问题更深层次的研究;在先期地震灾区地质灾害隐患巡排查工作的基础上,建立地震滑坡稳定性评价及失稳概率的定量评价模型,对地震滑坡危险程度进行分级,并对其危险性进行分区,形成地震滑坡灾害编图的一套技术方法体系。
“十三五”期间:地震灾区地质灾害调查和研究成果进行综合分析研究。
(七)西部复杂山体地质灾害成灾模式与风险评价
1.工作现状
西部地区复杂山体区已开展过不同程度的调查工作。其中包括基础性的1:20万区域地质图和1:20万水文地质图,及部分区域完成了1:5万地质填图。专业性的包括以省(区、市)为单元的1:50万以地质灾害为主的环境地质调查、1:10万山区丘陵县地质灾害调查。2005年起,部分地区开展了1:5万地质灾害调查。
但由于西部大型山体滑坡成因复杂,只依靠地表普查很难认清成灾模式,更难以掌握灾害的多米诺效应。如武隆鸡尾山滑坡,前期工作已将滑坡区圈定为危险区,但调查成果并没能对滑坡破坏机理与成灾模式作出正确的判断。武隆鸡尾山滑坡、宣汉天台乡滑坡、冯店垮梁子滑坡多起灾难性滑坡灾害的发生,表明在西部山区复杂斜坡地带,存在隐蔽性极高、突发性强、成因机理复杂、灾害隐患极大的特殊类型滑坡。这些滑坡成灾机理、致灾模式亟待研究。
2.工作目标
总体目标:以西部复杂山体为研究对象,依托已有调查成果,全面开展西部复杂山体成灾机理研究。开展地质灾害成灾模式调查、成灾条件与机理研究、致灾模式与机理研究、重大灾害防治对策研究。初步摸清西部地区地质灾害成因机制,建立西部复杂山体灾害识辨方法、完善灾害评价体系、提出区划防治建议,为主动防灾服务。
“十二五”期间:完成乌江流域、清江流域、三峡库区等西南山区复杂山体滑坡和黄土地区灌溉型滑坡、秦巴山区浅表层滑坡的形成机理和成灾模式研究;完成西部复杂山体特大地震滑坡的致灾范围预测研究;完成复杂山体滑坡的快速加固技术及复杂山体滑坡的遥感早期识别技术研究;建立融合重大地质灾害识别、稳定性判定、致灾模式判别、监测防治措施的防灾体系。
“十三五”期间:深入研究复杂山体地质灾害链的形成机理和演化过程,完善融合重大地质灾害识别、稳定性判定、致灾模式判别、监测防治措施的防灾体系,总结提升各种地质灾害调查、评价、监测和防治的技术,并促进相关技术方法的推广应用。
3.工作任务
“十二五”期间:在重大地质灾害易发的乌江流域、清江流域、三峡库区、西部山区、秦巴山区和黄土地区选择有代表性的滑坡,通过调查、勘察及试验,深入研究这些地区滑坡形成原因、运动机理及致灾模式,完善灾害发育特征认识,构建主动防灾体系。
通过对西部复杂山体地震滑坡三维物理模拟、多种三维数值模拟、变形破坏过程分析以及滑坡动力学分析等分析手段,对滑坡的影响范围进行深入探讨。开展微型组合抗滑桩、土工合成挡墙、快速注浆、预制格构等地质灾害快速加固技术的研究,并开展快速加固技术应用示范及加固效果监测分析,开展遥感早期识别技术研究等关键问题研究,提升主动防灾能力。
“十三五”期间:开展西部复杂山体地质灾害成灾模式与风险评价综合研究。
(八)典型地质灾害监测预警与示范推广
1.工作现状
完成了长江三峡库区滑坡等地质灾害GPS控制监测网建设。初步建立四川雅安、重庆巫山、云南哀牢山等8个代表不同突发性地质灾害类型的监测预警示范区。解决了地质灾害实时监测、实时传输、预警产品快速发布等多项关键技术。2003年开始,开展了全国和省级尺度的汛期地质灾害气象预警,取得了良好的效果。研制了三维激光微位移监测系统、滑坡微震自动连续观测系统、滑坡监测多媒体网络远程监控技术、FBG滑坡监测解调设备、地质灾害光导监测仪等多项技术与设备。研制了适用于地质灾害群测群防的系列仪器,已推广20万套,并在“5·12”抗震救灾工作中发挥了重要作用。
健全监测预警网络,形成覆盖我国主要灾害类型的国家级地质灾害监测工程示范区,进一步开发实用监测预警设备是下一步工作的重点。
2.工作目标
建立30个国家级地质灾害监测工程示范区,对地质灾害高风险区的重点区域实施专业监控,不断提高预测预警水平,推动区域地质灾害监测工作,为全国地质灾害综合预警提供依据。研制系列监测预警仪器和防治技术设备,不断完善突发性地质灾害监测数据采集、传输与分析管理技术,为突发性地质灾害监测和减灾防灾提供技术支持。
“十二五”期间:完成11个典型地质灾害监测预警示范区建设,建立区内有效的地质灾害预警系统。
“十三五”期间:全面完成地质灾害高易发区30个典型区域国家级专业监测工程示范区建设。
3.工作任务
以地质构造背景、气候条件和地质灾害发育规律为基础,选择典型地质灾害区域建设地质灾害监测预警示范区,研究探索不同地质灾害区地质灾害监测预警技术工作方法,为减灾防灾提供技术支持。根据1:5万地质灾害调查成果,优先考虑有代表性、工作基础较好、示范作用明显的区域开展工作。协助地方开展全国山地丘陵区县(市)地质灾害群测群防早期预警能力建设。
在地质灾害高易发区30个典型区域建立国家级专业监测工程示范区,完善监测内容、建立监测网络。开展全国山地丘陵区县(市)地质灾害群测群防早期预警能力建设,为已经确认的5万余处群测群防地质灾害隐患点,安装自动监测报警仪器。
开展简易监测仪器研发与示范、实时监测新技术研究与示范、监测技术平台建设。
“十二五”期间:在突发性地质灾害高易发区,根据不同地质灾害类型,选择建设完善燕山山地滑坡泥石流监测预警区、辽东南中低山泥石流区等11个典型区域地质灾害监测预警区。
建设区域地质灾害群测群防网络,对2万处隐患点进行简易仪器自动观测。
“十三五”期间:继续加强突发性地质灾害高易发区专业监测示范工程建设,完成长白山崩塌滑坡、天山谷地降雨—融雪型滑坡泥石流等19个区域突发性地质灾害监测预警区建设。
建设区域地质灾害群测群防网络,对1万处隐患点进行简易仪器自动观测。
(九)全国地面沉降调查与监测
1.工作现状
初步完成长江三角洲地区、华北平原、汾渭盆地等重点地区地面沉降和地裂缝调查10万平方千米,基本查明该地区发生的地质背景和地面沉降分布规律,基本建立以基岩标、分层标和GPS、水准测量为主的区域地面沉降立体监测网络,在上海、江苏和北京地面监测站,实现了监测数据自动采集、传输,初步建成地面沉降地理信息系统,为制定科学的地面沉降防治措施打下了良好的基础。
存在问题主要包括:地面沉降发展的趋势加剧,防治任务艰巨;地面沉降调查工作程度不平衡;监测网络需要进一步完善,监测技术有待进一步提升;重大工程面临地面沉降的威胁。
2.工作目标
建成平面以GPS监测和水准测量为主,垂向以分层标、基岩标及地下水监测为主,以及空间遥感观测技术(In SAR)监测为主的地面沉降立体综合监测体系,实现对地面沉降的有效监控。
“十二五”期间:完成我国所有地面沉降区、城市及重要交通干线地面沉降调查。在主要地面沉降区建成平面以GPS监测和水准测量为主,垂向以分层标、基岩标及地下水监测为主,以及空间遥感观测技术(In SAR)监测为主的地面沉降立体综合监测体系,基本实现对主要沉降区地面沉降的有效监控。
“十三五”期间:在所有地面沉降区建成平面以GPS监测和水准测量为主,垂向以分层标、基岩标及地下水监测为主,以及空间遥感观测技术(In SAR)监测为主的地面沉降综合监测体系,实现对所有地面沉降区地面沉降的有效监控。完成所有地面沉降区地面沉降风险管理与区划,为制定科学的地面沉降防治措施打下坚实的基础。
3.工作任务
利用In SAR等现代化监测技术,完善长江三角洲、华北平原、汾渭盆地地面沉降监测网,并继续进行监测;开展珠江三角洲、东北平原等地面沉降工作空白区地面沉降调查,建立地面沉降监测网络;和铁道部、交通部等部门密切合作开展重大工程区地面沉降调查与监测;结合区域地质环境背景和区域经济发展布局,开展地面沉降灾害风险评估,制定分区地面沉降控制目标和管理措施。
“十二五”期间:开展安徽阜阳、松嫩平原、珠江三角洲、江汉—洞庭湖平原等一般地面沉降区1:10万的地面沉降调查5000平方千米;继续对长三角、华北平原、汾渭盆地等主要沉降区进行地面沉降监测。
长江三角洲地区:开展江浙两省沿海平原等以往工作较薄弱地区包括淮安、扬州、泰州、南通、绍兴、台州地区的1:25万地面沉降灾害调查,重点城市1:5万地面沉降灾害调查。
华北平原:对前期工作薄弱的地区开展1:5万地面沉降调查工作;基本覆盖以开采地下水为主要水源的平原地区。
汾渭盆地:开展汾渭盆地陕西咸阳、渭南和榆次、临汾及运城等重点城市的地面沉降地裂缝灾害调查。
继续对长三角、华北平原、汾渭盆地等主要沉降区进行地面沉降监测与风险管理。
“十三五”期间:重要地面沉降区监测。
长江三角洲地区:完善地面沉降监测网络,每年定期开展In SAR地面沉降监测。
华北平原:完善地面沉降监测网络,每年定期开展In SAR地面沉降监测。
汾渭盆地:完善地面沉降地裂缝监测网络,每年定期开展山西地面沉降监测。每年定期开展In SAR地面沉降监测。
一般沉降区地面沉降监测。即安徽阜阳、松嫩平原、珠江三角洲、江汉—洞庭湖平原等一般地面沉降区地面沉降In SAR监测。
重大工程地面沉降调查与监测。主要开展涉及华北平原、汾渭盆地和长三角地区三个地面沉降防治规划区的主要高速铁路建设项目的地面沉降灾害防治工作,包括:全线位于汾渭盆地的大同—西安高速铁路、跨华北平原和长三角地区的京沪高速铁路。
Ⅷ 全国地质灾害监测预警体系建设的主要任务
全国地质灾害监测预警体系建设的总体规划如图7.1所示。
7.3.1 国家、省、市、县级地质灾害监测预警站网建设
县级以上国土资源行政主管部门建立地质灾害监测预警体系,会同建设、水利、交通等部门承担地质灾害监测任务,负责业务技术管理,并可受政府委托行使部分地质灾害监测管理职能,发布地质灾害监测预警信息。地质灾害监测机构是公益性事业单位。
(1)国家级地质灾害监测站
国家级地质灾害监测站负责全国性地质灾害专业监测网、信息网的建设与运行工作,并承担国家级地质环境监测任务;承担全国地质灾害预警预报和相关的调查研究工作;拟编全国地质灾害监测规划、计划、工作规范和技术标准;开展科技交流与合作,研究和推广新技术、新方法;承担全国地质灾害监测数据、成果报告的汇总、分析、处理和综合研究,为政府决策部门和社会公众提供信息服务;负责对省(区、市)级地质灾害监测业务的指导、协调和技术服务。
(3)地质灾害监测预警研究试验区
针对我国突发性地质灾害具有区域性、同时性、突然性、暴发性和危害大等特点,结合国土整治规划和资源能源开发,在代表性地区开展地质灾害监测预警示范。在试验区建立自动遥测雨量观测站网,逐步建立试验区滑坡、崩塌和泥石流区域爆发的降雨临界值,为突发性灾害的区域预警提供依据。同时,在试验区开展降雨期斜坡岩土体渗流观测,研究降雨诱发滑坡、崩塌和泥石流的机理。
2010年前,进一步完善和建设三峡库区立体式监测预警示范区。完成三峡库区滑坡、崩塌、泥石流灾害的立体监测网建设,在库区60处地质灾害点实现监测数据的自动采集、实时传输和自动分析;完善库区20个县级监测点建设;完成1∶1万航摄飞行;建立全库区的遥感(RS)监测系统,完成全球定位系统(GPS)控制网、基准网建设。
2010年以前重点在重庆市区、北京市、甘肃兰州市、陕西安康市、四川雅安、云南新平、云南东川、浙江金华市、江西宜春市等地区开展突发性地质灾害监测预警试验研究。
(4)地面沉降和地裂缝监测网
1)国家级地面沉降监测网选址原则:①跨省区的地面沉降灾害区域;②有一定的监测工作和设施基础;③地方政府有积极性,并提供配套资金;④具有较为完善的法规和管理体系。
2)工作部署:2010年之前,重点开展长江三角洲、华北平原、关中平原、淮北平原和松嫩平原地面沉降和地裂缝监测网的建设;2010年以后逐步开展汾河谷地、辽河盆地、珠江三角洲以及全国其他主要城市地面沉降和地裂缝的调查及监测网的建设。
长江三角洲地面沉降和地裂缝监测网包括上海市全部,江苏的苏锡常地区、南通地区和盐城地区南部的三个县(市),浙江的杭嘉湖平原,控制面积近5万km2。
华北平原地面沉降和地裂缝监测网包括北京、天津市的平原区,河北省的环渤海平原区和山东的鲁西北平原,控制面积5万多km2。
关中平原和汾河谷地地面沉降和地裂缝监测网的覆盖范围自六盘山南麓的宝鸡,沿渭河向东,经西安到风陵渡转向北东,沿汾河经临汾、太原到大同,宽近100km,长近1000km,包括渭河盆地、运城盆地、临汾盆地、太原盆地、大同盆地等,涉及近50个(县)市。
7.3.3 群测群防体系建设
突发性地质灾害群测群防网主要针对地质灾害较严重的山区农村,以县为单位,在专业队伍指导下,建立由当地政府领导下的县、乡、村三级群测群防体系。在各级地方政府的组织和领导下,充分发挥各级监测站的技术优势,提高群众的防灾意识和参与程度,完善监测预报制度,到2010年,建成1400个县(市)突发性地质灾害易发区的群测群防网络体系。
(1)群众监测网络建设
1)监测点选定原则:①危险性大、稳定性差、成灾概率高,会造成严重灾情的地质灾害隐患体;②对集镇、村庄、工矿及重要居民点人民生命安全构成威胁的地质灾害隐患体;③一旦发生将会造成严重经济损失的地质灾害隐患体;④威胁公路、铁路、航道等重要生命线工程的地质灾害隐患体;⑤威胁重大基础建设工程的地质灾害隐患体。
2)监测点的建设:根据上述原则确定需要监测的地质灾害隐患点后,由专业调查组及时向当地政府提出监测方案,同时协助搞好监测点的建设工作。①监测范围的确定:除对地质灾害隐患点和不稳定斜坡本身的变形迹象进行监测外,还应把该灾害点威胁的对象和可能成灾的范围,纳入监测范围。②监测方法与要求:对当前不宜进行治理或暂时不能进行治理的隐患点,危害大的应建立简易监测点,同时要对宏观地面变形、滑坡体内的微地貌、地表植物和建筑物标志等进行观察。以定期巡测和汛期强化监测相结合的方式进行。定期巡测一般为半月或每月一次,汛期强化监测将根据降雨强度,每天或24小时值班监测。③监测点的设置:简易监测点一般采用设桩、设砂浆贴片和固定标尺,对滑坡体地面裂缝相对位移进行监测,对危害大的隐患点,如有条件也可用视准线法测量监测点的位移。
3)监测网点的管理与运行:①监测责任落实到具体的单位与个人。被监测的地质灾害隐患点所在的乡(镇)、村和有关单位为监测责任人,在其领导下,成立监测组,监测组由受危害、威胁的居民点或有关单位的群测人员组成。②建立岗位责任制,县、乡(镇)、村应逐级签订责任书。调查过程中,采取多种方式进行宣传与培训,教会监测责任人、监测组成员和群众,如何监测、如何判断灾害可能发生的各种迹象和灾情速报及有关应急防灾救灾的方法。③信息反馈与处理。县(市)国土资源主管行政部门负责监测资料与信息反馈的收集汇总,上报到市(地、州)国土资源行政部门(或地质环境监测站)进行综合整理与分析,省国土资源厅地质环境处(或省地质环境总站)将上报的资料与信息录入省地质灾害空间数据库,进行趋势分析,同时对下一步监测工作提出指导性意见。④预测有重大险情发生时,当地政府和有关单位应立即采取应急防灾减灾措施,同时应立即报告省、市、县政府和国土资源主管部门,派出专业人员赴现场协助监测和指导防灾救灾。⑤建立地质灾害速报制度,按国土资发[1998]15号文附件执行。
4)资料的收集与监测数据的整理:①监测数据包括地质灾害点基本资料、动态变化数据、灾情等。②所有监测数据均应以数字化形式储存在信息系统中,同时,必须以纸介质形式备份保存。③监测点必须进行简易定量监测,并须整理成有关曲线、图表等。应编制有关月报、季报和年报,同时,对今后灾害发展趋势进行预测。④监测数据应按有关程序逐级汇交。
(2)群专结合的预报预警系统建设
1)县(市)国土资源行政主管部门归口管理和指导群众监测网络,负责监测资料与信息反馈的收集汇总。
2)县(市)国土资源行政主管部门的地质环境职能部门应根据气象、水文预报和监测资料进行综合分析,预测地质灾害危险点,并及时向有关乡(镇)、村和矿山及负有对重要设施管理的有关部门发出预警通知。
3)县(市)国土资源行政主管部门负责组织各乡(镇)、矿山、重要设施主管部门编制汛期地质灾害防灾预案。编制全县(市)汛期地质灾害防灾预案,并负责组织实施。
4)县(市)国土资源行政主管部门负责组织地质灾害防治科普宣传活动和基层干部培训工作。
7.3.4 地质灾害监测预警信息网建设
地质灾害监测预警与防治数据是国家与地方进行地质灾害防治,保障社会与经济建设的重要信息,具有数量大、更新快、用途广等特点。通过信息网的建设,实现数据的采集、存储、分析和发布,切实做到为政府、研究人员和社会提供所需的地质灾害信息,为国家经济建设宏观决策提供基础的科学依据。
到2010年,在完善中国地质灾害信息网与各省地质灾害信息网及部分地(市)地质灾害信息网的同时,建成集地质灾害监测、地下水环境监测等为一体的全国地质灾害监测信息系统,实现地质灾害监测数据的自动采集、传输、存储、数据管理、查询、应用和信息实时发布系统。
到2020年,以科学技术为先导,不断完善全国地质灾害监测信息系统,结合气象、水文、地震等相关因素,建成多专业领域、多信息处理技术的信息系统;全面提升我国地质灾害监测信息水平,满足社会和民众对地质灾害信息的需求,实现远程会商、应急指挥等重要决策功能。
地质灾害监测预警信息系统建设依托于各级地质灾害监测机构,具有统一要求、统一流程、分级管理等特点,是一个与现代计算机技术紧密结合的系统工程。本书在第11章(全国地质灾害防治信息系统建设规划研究)全面讨论了包括地质灾害监测预警信息系统在内的整个地质灾害防治信息系统的建设问题,本节不再赘述。
7.3.5 突发性重大地质灾害应急反应机制建设与远程会商应急指挥系统建设
(1)应急反应机制建设
从现在(2004年)起,国家、各省(区、市)要组建以省国土资源行政主管部门为指挥中心,以地质环境监测总站(院、中心)为主体,地(市、州)、县(市、区)国土资源行政主管部门和地方专业队伍协同作战的地质灾害监测预警应急反应系统。
1)应急反应系统要配置必备的应急设备,每年汛前对防灾预案中地质灾害隐患点的主要县(市)进行险情巡查,重点检查防灾减灾措施、群测群防网络、监测责任制是否落实到位,并对主要灾害隐患点进行险情巡查,汛中加强监测,汛后进行复查。
2)发现险情和接到险情报告能在最短的时间内赶到现场,进行险情鉴定,同时能够及时对灾害进行动态监测、分析,预测灾害发展趋势,根据灾害成因、类型、规模、影响范围和发展趋势,划定灾害危险区,设置危险区警示标志,确定预警信号和撤离路线,组织危险区内人员和重要财产撤离,情况危急时,强制组织避灾疏散。
3)接到特大型和大型地质灾害隐患临灾报告,指挥部办公室会同相关部门,迅速组织应急调查组赶赴现场,调查、核实险情,提出应急抢险措施建议。
(2)突发性重大地质灾害远程会商与应急指挥系统建设
随着国家经济建设规模的日益扩大和人民生活水平的不断提高,地质灾害造成的损失日趋突出,地质灾害的防治工作必须针对重大地质灾害及时作出反应,提出科学的决策意见,及时指挥应急处理工作。
突发性重大地质灾害远程会商及应急指挥系统,是针对突发重大地质灾害的预报和应急指挥,在建立地质灾害综合数据库的基础上,构建连接国务院国土资源主管部门、地质灾害数据中心与重点地质灾害发生区的远程会商和应急指挥网络化多媒体环境及地质灾害应急数据传输环境,形成一套信息化的地质灾害远程会商和应急指挥工作流程。
其主要工作内容如下:
1)对重大地质灾害预报和应急指挥相关的信息进行提取、加工、整理、集成与分析,建立地质灾害综合数据库。信息内容包括地理、地质背景数据;气象分析数据;地质灾害调查与监测数据;地质灾害情况资料;救灾条件信息等。
2)建立地质灾害信息发布平台。开发和建设重大地质灾害信息预报与应急指挥相关的动态信息发布系统、空间信息提取与发布系统、多媒体信息发布系统。
3)构建地质灾害远程会商和应急指挥的网络和多媒体运行环境。包括多点、多级视频会议系统、大屏幕显示系统及有关音像、电话系统;国家与重点地质灾害区域之间的网络信息传输系统;构建地质灾害重点区域应急调查数据快速传输环境。
4)研究与制定形成一套地质灾害远程会商和应急指挥系统工作规范。分析地质灾害远程会商和应急指挥工作的特点,提出地质灾害远程会商和应急指挥系统工作的模式,建立一套相关的工作规范。
Ⅸ 什么叫做地质灾害气像风险黄色预警
地质灾害气象预警是指地质和气象部门依据当前环境发布的灾害预警,一共分为五级,黄色为第三级,注意级,24小时内,灾害发生可能性较大。
预报预警时间内启动地质灾害隐患点群测群防,并24小时监测;采取防御措施,提醒灾害易发地点附近的居民、厂矿、学校、企事业单位密切关注天气预报,以防天气突然恶化。
地质灾害的类型主要是山体崩塌、滑坡、泥石流、地面塌陷、地裂缝、地面沉降等灾害。地质灾害的发生源于两方面因素:第一方面是不可抗力的自然因素造成的,如汛期强降雨引起的突发性地质灾害(泥石流、滑坡、崩塌等)。
(9)地质灾害监测预警扩展阅读:
地质灾害的发生:
地质灾害的发生源于两方面因素:第一方面是不可抗力的自然因素造成的,如汛期强降雨引起的突发性地质灾害(泥石流、滑坡、崩塌等)。为了最大限度地避免和减少不可抗力的自然灾害造成的损失,需要加强基础调查工作,掌握致灾地质作用的分布状况和危害程度,
建立监测网络和预警系统,加强动态监测,在多发区要加强群测群防,在重点防范期内,要加强巡查检查,鼓励提供发生地质灾害的前兆信息,根据出现的前兆划定地质灾害危险区,予以公告,并在危险区边界设置警示标志,采取工程治理或搬迁避让措施,
通过预防和治理,达到避免和减少伤亡损失和财产损失的目的。第二方面是人为建设活动引发的,如兴建水利工程、架桥、修路引发的地质灾害(滑坡、塌陷等)。为了避免或减少人为活动引发地质灾害,对地质灾害易发区内的工程项目,
一方面要求建设单位可行性研究阶段必须进行地质灾害危险性评估,作出该工程建设中和建成后是否引发地质灾害的结论,并提出预防和治理措施,
另一方面也要求有关部门必须编制地质灾害易发区城市总体规划、村庄和集镇规划,并对规划区进行危险性评估,提出建设工程项目遭受地质灾害危害的可能性,以及采取预防治理的措施。
综上所述,地质灾害的发生不可避免,但通过建立制度、采取措施,加强管理,经过人类的不懈努力,避免或减轻地质灾害造成的损失还是可以作到的。