当前位置:首页 » 地质工程 » 工程建设项目地质灾害监测

工程建设项目地质灾害监测

发布时间: 2021-02-11 22:17:38

⑴ 工程建设本身可能遭受已有地质灾害危险性的预测

评估区内已有地质灾害是采空地面塌陷、岩溶地面塌陷、岸崩和膨胀土胀缩变形灾害等,我们在上一节中已论述了它们的分布、活动特征、形成机制,并对其危险性作了现状评估。这里针对管线工程的特点,地质灾害与之相对位置,进行危险性预测评估。

(一)采空地面塌陷

应支线管道工程在里程40km附近南侧的知府湾为石膏矿,在里程50km附近北侧的四里棚为岩盐矿,此二矿目前正大规模开采中。地下采空引发的地面塌陷已造成严重的灾害,殃及民房、住宅、工厂车间,多项工程设施、道路交通等破坏,目前灾情还在进一步扩大加剧中。拟建管线距上述二矿的塌陷区中心均有1km左右,考虑到工程使用年限数十年,而塌陷区范围还在扩大加剧的现状,应城支线里程40~52km,危险性大。

(二)岩溶地面塌陷

干线经过的里程608~618km地段系湖北省咸宁市城郊区(官埠桥—北洪桥地段),因大量抽汲岩溶水作城市供水,导致地面塌陷不断发展,危及生命财产安全,目前地面塌陷仍处于较不稳定状态。该地段拟建管道工程与塌陷带平行展布(见图8-5),二者处于同一向斜构造带中,为向斜核部附近,是地下水径流汇集带,在长期的地下水位反复升降过程中,易产生潜蚀作用,虽然管线设计考虑了城市规划的影响,但随着未来城市的扩大,地下水开采量增大,影响范围必然扩宽,由于本工程距离咸宁市较近,在工程建设和运营过程中,仍有可能遭遇类似的地面塌陷,以致于对工程造成危害。所以工程可能遭受岩溶地面塌陷。因此本工程建设遭受岩溶地面塌陷的危险性大。

此外,在干线里程618~705km段内,展布有寒武—三叠系的碳酸盐岩,尤其是618~660km地段内石炭—三叠系碳酸盐连续沉积,拟建管线又顺较紧密的构造线敷设,断裂较多,隐伏岩溶应较发育,具备发生地面塌陷地质、水文地质条件,虽目前未出现地面塌陷,但其危险性不容低估,故该段岩溶地面塌陷危险性为中等(660~705km危险性小)。

(三)岸崩

干线里程372~385km沿大悟河右岸敷设,距岸畔近。该地段大悟河洪汛期有局部岸崩发生,故在工程施工和运营期间发生岸崩的可能性大,预测危险性中等。

(四)膨胀土胀缩变形灾害

管道在膨胀土地段敷设时,一般在沟槽底部铺设垫层,形成隔水通道,使降雨难以入渗到深部,管道周边膨胀土的含水条件始终保持一定的水分,将减少因水分变化过大而产生胀缩变形的机会。因此,只要将膨胀土地基处理好,就不会出现大的灾害,故本工程在平原区遭受膨胀土变形的危险性小。

⑵ 地质灾害监测重点工程建设

7.4.1 长江三峡库区地质灾害监测预警工程建设

完成长江三峡库区立体式监测预警预报示范网络系统建设。运用现代化的技术、设备,对库区60处以上的地质灾害点建立自动监测网络,实现监测数据的自动采集、实时传输和自动分析;建立全库区的遥感(RS)监测系统和GPS控制网、基准网,为编制与实施防灾减灾预案提供决策支撑。通过该监测预报示范区的建设为全国地质灾害监测预报网络的建立提供最直接的经验。

7.4.2 长江三角洲、华北平原地面沉降监测工程建设

(1)长江三角洲地面沉降监测

长江三角洲包括上海市全部,江苏省的苏州、无锡、常州地区、南通和盐城南部的三个县(市),浙江省北部的杭州、嘉兴和湖州地区,面积近5万km2

长江三角洲地区在原有监测网络的基础上,按统一的规划、统一的标准建立和完善区域性地面沉降监测网。建立和完善基岩标、分层标组和其他有效的地面沉降监测设施;调整、优化和补充地下水动态分层监测孔;开展全球定位系统(GPS)、干涉合成孔径雷达(InSAR)技术和激光雷达(LI-DAR)技术应用试验研究,使地面沉降监测更加合理和有效。

(2)华北平原地面沉降监测

华北平原包括北京市、天津市、河北平原和山东鲁西北平原,总面积5万多km2

建立和完善地下水分层监测网络,建立统一的地面沉降监测网,逐步完善分层标和其他有效的地面沉降监测设施。开展全球定位系统(GPS)、干涉合成孔径雷达(InSAR)技术和激光雷达(LI-DAR)技术应用试验研究,使地面沉降监测更加合理和有效。

7.4.3 矿山地质灾害综合监测示范工程建设

建立辽宁抚顺煤矿、黑龙江七台河煤矿、山西太原西山煤矿、贵州开阳磷矿四个具有代表性的国家级矿山地质灾害综合监测示范工程。通过国家级矿山地质灾害综合监测示范工程的建设,探索总结矿山地质灾害监测的工作程序和相应的技术方法,为我国采取快捷、经济的监测办法,初步解决矿山地质灾害对当地经济建设造成的威胁提供技术准备,为实施矿山环境恢复工程提供基础依据。

⑶ 实施地质灾害监测预警体系建设规划的保障措施

(1)建立健全地质灾害监测的法规、制度和规范体系

建立和完善地质灾害监测管理办法、监测设施保护规定、监测资料共享、监测资料汇交制度。大力宣传《地质灾害防治条例》、《全国生态环境建设规划》、《中华人民共和国环境保护法》、《中华人民共和国水法》和《中华人民共和国水土保持法》;积极推进《地质环境监测法》、《地质环境保护条例》和《矿山环境保护条例》等的立法进程。

修改完善地下水环境监测技术规范;做好矿山地质环境监测技术要求、地质灾害监测技术要求、地质灾害预报预警技术要求、地面沉降、地裂缝监测规范、地质环境监测数据采集、录入等一系列规程规范和技术标准的编制或修订工作。使地质灾害监测工作走上法制化、规范化的道路。

(2)建立健全地质灾害监测机构、理顺体制关系

建立由中央到地方专门领导机构和专业组织实体,形成覆盖全国的专业与群众相结合的地质灾害监测实体网络(图)。国务院国土资源主管部门负责全国地质灾害防治的组织、协调、指导和监督工作,其他部门按照各自职责负责相关部门的防治工作。县级以上人民政府灾害防治小组应会同水利、交通、城建和气象等部门加强配合对地质灾害险情的实时动态监测,形成既有各专业独立性,又有统一领导的监测预警体系。

建立健全国家、省(市、区)、市(地、州)和县(市)四级地质环境监测机构,明确各级监测机构作为国土资源管理部门的公益性事业单位。按照“站网管理,业务联系,技术指导,资料汇交,成果集成”的原则,理顺各级关系,加强内部机构建设,使其真正承担起各类地质环境监测和地质灾害群测群防的技术指导工作。

(3)健全监测经费保障体系

监测经费实行分级分责任承担。国家、省、地和县等不同级别的监测网点建设、维护、运行和基本建设经费,应纳入各级政府的财政预算,建立地质环境专项经费;由采矿、开采地下水、工程建设等人为因素诱发的地质灾害、环境地质问题等的专门监测网点建设、维护和监测的日常运行以及试验研究经费,应由责任人承担;各类建设项目,建设单位应承担《建设用地地质灾害危险性评估》中所要求的地质环境监测研究经费。

(4)把科技进步放在突出位置,大力推广先进实用的监测设备

重视高素质人才的培养,引进先进的技术设备,加快地质环境监测的自动化进程,推广规范化的技术规程,建设和完善地质环境信息网络,改进监测成果的发布形式,提高监测工作为社会公众服务为政府决策服务的能力。

(5)加强国际交流与合作

加强国际交流与合作,学习和借鉴国外先进技术和经验,提高我国地质环境监测水平和国际影响

总结地质灾害预报预警成功的经验,进一步尝试和推进与其他公益网的合作,实现信息资源共享互为补充和促进,不断拓展监测领域,提高为政府、为社会服务的水平。

(6)加强宣传教育,提高全社会地质灾害防治和地质环境保护意识

利用电视、广播和报纸等多种宣传媒体,结合“世界地球日”、“土地日”、“水日”等社会活动大力宣传我国人口、环境与资源的基本国策,宣传生态环境建设、地质灾害防治、地质环境保护的重要性和迫切性,提高全社会对保护地质环境的重视程度,普及地质环境保护和地质灾害防治知识,提高全民的防灾减灾意识。

⑷ 什么项目 要做地质灾害危险性评估

国务院《地质灾害防治条例》第二十一条规定:"在地质灾害易发区进行工程建设应当在可行性研究阶段进行地质灾害危险性评估,……。编制地质灾害易发区内的城市总体规划、村庄和集镇规划时,应当对规划区进行地质灾害危险性评估"。
国土资源部《地质灾害防治管理办法》第15条规定,城市建设、有可能导致地质灾害发生的工程项目建设和在地质灾害易发区内进行的工程建设,在申请建设用地之前必须进行地质灾害危险性评估。
地质灾害危险性评估主要依据《国土资源部关于加强地质灾害危险性评估工作的通知》(国土资发[2004]69号)文件要求,相关技术要求依据《通知》附件1"地质灾害危险性评估技术要求(试行)"。《通知》规定:地质灾害危险性评估工作分级进行;对承担地质灾害危险性评估工作的单位实行资质管理制度;报告应经具有资格的资质灾害防治专家进行审查;对评估成果实行备案制度。
评估成果根据评估级别的不同分别由县级、市级和省级国土资源行政主管部门认定,并按要求抄报部、省、市级国土资源主管部门。不符合条件的,国土资源行政主管部门不予办理建设用地审批手续。地质灾害危险性评估包括下列内容:
(1)阐明工程建设区和规划区的地质环境条件基本特征
(2)分析论证工程建设区和规划区各种地质灾害的危险性,进行现状评估、预测评估和综合评估
(3)提出防治地质灾害措施与建议,并作出建设场地适宜性评价结论。

⑸ 为什么要进行地质灾害监测

地质灾害是当前世界最严重的自然灾害之一。每年因为地质灾害造成的人员伤亡和财产损失都是所有灾害中最严重的。进行地质灾害监测,预先进行人群疏散,是减少人员伤亡和财产损失的唯一有效方法。

⑹ 浅议三峡库区地质灾害预警工程常用监测方法及应用

王爱军1,2薛星桥1,2

(1中国地质大学(武汉),湖北武汉,430074;

2中国地质调查局水文地质工程地质技术方法研究所,河北保定,071051)

【摘要】长江三峡库区地质灾害预警监测是服务于地质灾害防治、保障三峡工程建设安全的主要基础工作。开县、万州区、巫山县的38个滑坡灾害专业监测点,采用大地形变监测、深部位移钻孔倾斜仪监测、地下水动态监测、滑坡推力监测、地表裂缝相对位移监测、GPS全球卫星定位系统监测、TDR时间域反射监测和宏观监测等综合系列监测方法。每个滑坡灾害点,采用2种以上监测方法,分别监测滑坡体地表内部变形或受力变化;重要灾害点采用4~5种方法同时进行监测,以便进行对比和综合分析。对滑坡监测及监测成果统计分析,多种监测数据成果具有明显的一致性和相关性,反映了滑坡体的变形情况和特征,证实监测方法合理有效,监测成果将为地质灾害预警工程和地质灾害防治工程提供可靠依据。

【关键词】三峡库区地质灾害预警工程监测方法应用

1前言

长江三峡库区自然地质条件复杂,是地质灾害的多发区和重灾区。三峡工程的兴建和百万移民工程,在一定程度上改变了原有地质环境的平衡状态,加剧了地质灾害的发生。随着三峡工程建设的不断推进,库区地质灾害对三峡工程和库区人民生命财产安全的影响日益增加,及时有效地防治库区地质灾害已成为三峡工程建设的重要任务之一。地质灾害预警监测工作是实现地质灾害防治的主要基础工作。

三峡库区共有38个滑坡灾害专业监测点在进行专业监测工作,其中重庆市开县14个、万州区14个、巫山县10个。

2监测方法

2.1大地形变监测

采用全站仪监测。在滑坡体外选取地质条件较好、基础相对稳定的点位作为监测基准点,在滑坡体上选择有代表性的点位作为监测点,标志点全部采用混凝土强制对中监测墩。

2.2深部位移监测

采用钻孔倾斜仪进行监测。在滑坡体上选择有代表性的点位布置测斜钻孔,分别在其主滑方向和垂直主滑方向上进行正反两回次自下而上的测读,监测点间距0.5m,使用移动式“CX-01型重力加速度计式钻孔测斜仪”,监测数据稳定后自动记录,每期监测共记录4组数据。

2.3滑坡推力监测

在滑坡体上选择有代表性的点位布置钻孔,在钻孔中选择适当的深度部位,预置一系列滑坡推力传感器,用传导光纤连接至地面,每次监测采用“BHT-Ⅱ型崩塌滑坡推力监测系统”测量记录各点数据。

2.4地表裂缝相对位移监测

在裂缝的两侧适当部位安置数套裂缝计,进行原位裂缝相对位移监测。机械式监测具有干扰少、可信度高、性能稳定特点,监测记录数据可直接做出时间—位移曲线,测量结果直观性强。仪器一般量程范围在25~100mm间,读数器的分辨率为0.01mm,操作温度在-40℃~+105℃之间。

2.5地下水动态监测

在滑坡体上选择有代表性的点位布置钻孔,对地下水水位,孔隙水压力、土体含水率、温度等参数监测,采用自动水位记录仪、孔隙水压力监测仪等仪器监测。其中孔隙水压力监测仪的孔隙水压力量程为-80kPa~200kPa,分辨率0.1kPa,精度0.5%F·S;土体含水率量程为0至饱和含水率,分辨率1%;温度量程为0~70℃,分辨率0.1℃,精度1%F·S。

2.6GPS全球卫星定位系统监测

在滑坡体外选取地质条件较好,基础相对稳定的点位,作为监测基准点;在滑坡体上选择有代表性的点位作为监测点,标志点全部采用混凝土强制对中监测墩,观测时采取多点联测。GPS监测方法,可进行全天候监测,不受通视条件限制,同时监测 X、Y、Z三维方向位移量,方便灵活,并可监测灾害体所处地带的区域地壳变形情况。采用的美国 Ashtech公司生产的UZ CGRS型GPS,最小采样间隔1s,最少跟踪和接收12颗卫星,使用Ashtech Solution 2.6软件解算,精度可达水平3mm+1ppm,垂直6mm+2ppm。

2.7时间域反射测试技术(TDR)监测

即采用电缆中的“雷达”测试技术,在电缆中发射脉冲信号,同时进行反射信号监测。在滑坡体上选择有代表性的点位布置监测钻孔,将同轴电缆埋入监测孔,地表与 TDR监测仪相连接,把测试信号与反射信号相比较,根据其异常情况判断同轴电缆的断路、短路、变形状态,推断出电缆的变形部位,进而推算滑坡体地层的变形部位和位移量。TDR监测采用了固定式预置同轴电缆,成本低,可进行自上而下的全断面连续监测,量程范围大。

2.8宏观监测

以定期巡查方法为主,对变形较大的滑坡体,据其变形特征布置一定数量的简易观测点进行定期观测,及时掌握其变形动态。

对于每个滑坡灾害点,采用2种以上监测方法,分别监测滑坡体地表变形和滑坡体内部变形或受力变化,重要灾害点采用4~5种方法同时进行监测,以便进行对比和综合分析。监测点的布置应重点突出,控制滑坡的重点部位;照顾全面,力求能反映滑坡体整体变形情况。钻孔孔口周围用混凝土浇筑,布置精确监测点位。

3监测效果分析

根据2003年7月至12月滑坡灾害专业监测数据资料,初步分析三峡库区地质灾害预警工程监测方法及应用效果。

3.1大地形变监测

大地形变监测,开展了开县大丘九社和巨坪九社滑坡、巫山县狗子包滑坡和板壁塘滑坡,共4个滑坡的监测。以下以开县大丘九社滑坡为例简述监测效果。

大丘九社滑坡位于开县镇东镇大丘九社斜坡上,滑坡平面形态近似矩形,剖面上呈凹型;分布高程205~300m,滑体长约250m、宽约300m,面积710万m2,估计厚度20m,体积约140万m3。滑坡发育于侏罗系中统沙溪庙组(J2s)紫红色泥岩及砂岩互层组成的平缓层状斜坡中,滑坡体的物质组成主要为砂岩及砂岩碎块石土,表层为松散土壤,局部出露砂岩碎块石,为崩滑堆积体滑坡。

图1开县大丘九社滑坡累计位移量曲线图

(a)X方向(b)Y方向(c)H方向 D1——监测点编号

大丘九社滑坡体上布置了3排监测点,每排3个共计9个监测点,滑坡体对面斜坡上布置了2个基准点,分别在2个基准点进行监测。监测网布置既控制了整体滑坡体又突出重点,采用前方交汇法施测。

8月5日进行了首次测量,9月21日进行D1第二次测量成果与之对比,表明变形趋势明显,滑体向 NEE向滑移。10月24日监测成果表明各监测点的变形趋于缓和。11月和12月监测成果表明各监测点无明显变化(见图1)。监测数据与宏观调查定性分析相一致。

利用全站仪进行大地形变监测,其特点为监测方便,可随时对一些危险滑坡监测,既可以在滑坡体上设置永久性监测桩,又可以设置临时性监测桩;监测精度高,测点中误差可达到3.5mm;不仅能测定相对位移,而且能监测绝对位移;在满足测量条件下可进行连续监测,监测滑坡滑移的全过程,不存在量程限制。但该仪器监测受天气因素和光线条件制约,难以在雨雾条件和夜间实施监测,且受地形和通视条件制约,施测以人工操作为主,不易实现自动化监测。

3.2深部位移钻孔倾斜仪监测

深部位移钻孔倾斜仪监测点为开县6个滑坡、16个钻孔,巫山县5个滑坡、19个钻孔,万州区8个滑坡、24个钻孔,共计19个滑坡、59个钻孔。以下以开县虎城村滑坡为例简述监测效果。

虎城村滑坡为堆积层滑坡,位于开县长沙镇虎城村斜坡。该滑坡在平面近似矩形,剖面为凹形,分布高程330~400m,纵长约300m,横宽约500m,滑体估计平均厚度12m,面积15万m2,体积180万m3。滑坡发育于侏罗系中统沙溪庙组(J2s)紫红色泥岩及泥质粉砂岩组成的水平层状岩层斜坡上,滑体上部为崩坡积紫红色碎石土层。滑坡威胁居民400余人及其财产安全。该滑坡布置了3个深部位移钻孔倾斜仪监测钻孔。

Kx-162钻孔位于滑体的中部。2004年10月,在9.5~10.5m测试深度处发生明显的位移变形,本月变形量5.56mm,变形方向247°。11月,没有增大趋势,累积形变4.58mm,略小于10月份累积变形量,变形方向253°(见图2)。

Kx-165钻孔位于滑体的下部。2004年10月,在15.0~16.5m测试深度处发生明显的位移变形(见图3),本月变形量5.45mm,变形方向241°。11月,没有明显的增大趋势,累积变形5.39mm,同10月份累积变形量相近,变形方向240°。

地质灾害调查与监测技术方法论文集

图2开县虎城村滑坡 Kx-162钻孔位移随深度变化曲线

(a)EW方向(b)SN方向

图3开县虎城村滑坡Kx-165钻孔位移随深度变化曲线

(a)EW方向(b)SN方向

深部位移钻孔倾斜仪监测方法,可在滑坡体上一定部位布置的钻孔中,监测滑坡体内垂直方向上的浅层、中层、深层、滑动带等滑移方向和相对滑动位移量;但在滑坡发生较大或急剧加速的位移变形时,由于钻孔和孔内测斜管变形、破坏,测斜仪探头不能送入钻孔之内,可能使钻孔失去监测价值。

3.3 滑坡推力监测

滑坡推力监测共设有2个测点、4个钻孔:巫山县淌里滑坡钻孔2个,曹家沱滑坡钻孔2个。以下以淌里滑坡为例简述监测方法与效果。

淌里滑坡位于巫山县曲尺乡长江干流左岸斜坡上,滑坡在平面形态上呈不规则的圈椅状,前缘分布高程90m,后缘高程400m,平均坡度约30°~40°,纵长约800m,横宽150~250m,滑体厚20m,面积24万m2,体积490万m3。滑坡发育于三叠系巴东组(T2b)灰岩、泥灰岩、泥岩中,滑体物质主要为泥灰岩及泥岩碎块石土,表层多为松散土层,下部碎块石土结构密实。

Ws-t-tzk1推力孔位于滑体的下部,Ws-t-tzk2推力孔位于滑体的中部。其滑坡推力监测成果数据见图4、图5。推力监测曲线图表明,各次监测数据规律性强,基本一致,传感器没有发现明显的数值变化。滑坡推力监测结果与宏观监测结果和同时进行的钻孔倾斜仪监测结果相一致,说明此阶段滑坡暂时处于相对稳定的微变形状态。

图4巫山县淌里滑坡 Ws-t-tzk1钻孔滑坡推力监测曲线图

图5巫山县淌里滑坡 Ws-t-tzk2钻孔滑坡推力监测曲线图

滑坡推力监测方法属于固定点式监测,在钻孔中预置传感器,用传感光纤连接,在地面用滑坡推力监测系统采集传感信息,可在滑坡体上一定部位布置的钻孔中,自上至下监测滑坡体内垂直方向上的浅层、中层、深层、滑动带等滑坡推力变化量,可定期进行数据采集监测;在对采集和传输处理系统进行改进的基础上,可实现无值守自动化连续监测。

4结论

(1)通过多手段的综合监测,掌握了被监测滑坡体的表面、内部自上至下滑移带的变形及受力情况,数据综合分析表明其反映了滑坡位移变化及动态特征,取得了进行灾害预警的重要基础数据资料,说明采用的监测方法合理有效。

(2)钻孔倾斜仪深部位移监测方法,当滑坡体发生一定量缓变位移后,部分钻孔不能再进行全孔施测,造成勘察监测资金浪费和滑坡体监测点及监测部位减少。

(3)目前一月一次的监测周期,难以保证在滑坡发生滑移险情时能进行有效监测。为此应在进行专业监测的同时,进行群测群防监测。特殊情况下,对危险滑坡灾害点,调整监测方案,进行加密监测或连续监测,使监测满足预警预报要求。

(4)从长远发展考虑,监测应以免值守、易维护、低成本、固定式、自动化快速连续采集传输和半自动化监测及人工监测相结合为方向,以建立起高效的地质灾害监测网络与地质灾害预警系统。

参考文献

[1]王洪德,高幼龙,薛星桥,朱汝烈.链子崖危岩体防治工程监测预报系统及效果.中国地质灾害与防治学报,2001,12(2):59~63

[2]王洪德,姚秀菊,高幼龙,薛星桥.防治工程施工对链子崖危岩体的扰动.地球学报,2003,24(4):375~378

[3]张青,史彦新,朱汝烈.TDR滑坡监测技术的研究.中国地质灾害与防治学报,2001,12(2):64~66

[4]董颖,朱晓冬,李媛,高速,周平根.我国地质灾害监测技术方法.中国地质灾害与防治学报,2001,13(1):105~107

[5]段永侯,等.中国地质灾害.北京:中国建筑工业出版社,1993

⑺ 浙江省地质灾害监测方法探讨

赵建明1唐小明2

(1浙江省地质环境监测总站,浙江杭州,310007;2浙江省地质矿产研究所,浙江杭州,310007)

【摘要】浙江省是全国地质灾害多发省份之一,但地质灾害专业监测工作开展较晚,目前已经开展或正在开展的主要监测项目集中在滑坡、崩塌上。作者根据多年从事地质灾害研究、监测经验,系统分析了国内外滑坡、崩塌监测工作的现状,为浙江省进一步开展以滑坡、崩塌为主的突发性地质灾害监测提出了切实可行的建议。

【关键词】地质灾害监测方法探讨

浙江省是全国地质灾害多发省份之一。近年来随着人类工程活动的加大,地质灾害的发生次数明显增多,分布面积不断扩大,已成为我省四大灾害之一。地质灾害对人民的生命和财产构成越来越严重的威胁,直接影响国民经济持续发展和社会安定。

我省最为突出的、危害最大的地质灾害类型为崩塌、滑坡、泥石流、地面塌陷和地面沉降,除地面沉降属缓变性地质灾害外,其他均属突发性地质灾害。根据已完成调查与区划的45个县(市)统计,全省共有各类地质灾害点5480处,其中滑坡3513处,占64%,崩塌1511处,占28%,泥石流、地面塌陷456处,占8%。全省受地质灾害威胁的人口为13.4万人,潜在财产损失20.6亿元。

地质灾害监测是地质灾害防治的重要手段与内容,其目的是通过一定的监测仪器或监测手段对已知的地质灾害体进行形变、位移、地下水动态、应力状态等特征进行测量,分析、了解地质灾害体的变形位移状态及趋势,为地质灾害防治决策以及预报预警提供定量的数据。

1浙江省地质灾害监测现状

我省地质灾害专业监测工作开展较晚,目前已经开展或正在开展的主要监测项目集中在滑坡、崩塌上,具体项目见表1。

长期以来,我省崩塌滑坡等突发性地质灾害的监测仍然以群测群防为主要手段,并且取得了很好的效果,而专业监测开展较晚,应用范围有限、监测手段偏少,监测网络尚需完善。我省滑坡崩塌的专业监测工作开始于20世纪90年代末,实施单位以高校为主,地勘单位介入较晚;监测对象以高速公路、治理后滑坡为主,未治理点的监测较少;监测方法以常规的绝对位移、相对位移、地下水水位以及雨量监测为主,应力监测、推力监测、地声监测等尚未应用;既有地表位移监测,也有深部位移监测,但是两者配合程度偏低。但是,通过几年的实践,我省在滑坡崩塌监测工作领域已经取得了长足的进步,积累了一定的经验,并且培养了一批专业监测技术人员,为我省开展系统的专业监测奠定了基础。

表1浙江省滑坡崩塌监测项目基本情况表

2国内外滑坡崩塌监测现状

2.1滑坡崩塌监测的主要方法

滑坡崩塌监测仪器的设计目的概括起来主要有3个。第一是直接获取滑坡崩塌体的变形特征,包括地下变形、地表变形两类;第二是间接获取滑坡崩塌体的变形特征,如地下水位、孔隙水压、泉水量、地音、应力等测量,第三是滑坡崩塌相关因素监测,如降雨、地表水流量等。目前国内应用的主要监测方法可以归纳为:绝对位移监测、相对位移监测、声发射监测、应力监测、地下水监测、地表水监测、地震监测、人类相关活动监测、宏观地质调查监测。

2.2国外滑坡崩塌监测现状

国外滑坡监测的研究与实践走过了较长的过程,无论在传感器、数据传输与共享以及预测预报等领域均开展了大量的工作,目前处在一个较成熟的水平。其中美国、日本、意大利、瑞士、法国等发达国家的研究程度最高。滑坡监测已经由过去的人工用皮尺等简易测量发展到仪器仪表监测,并逐步实现自动化、高精度、实时性的遥测系统。其中近年来最主要的进展在数据传输网络方面。图1为美国地质勘探局(USGS)为监测连接内华达州与加利福尼亚州的50号公路两侧的多处滑坡设计并实现的活动滑坡实时监测系统(Real-Time Monitoring of active land-slides)。

近十年来,滑坡监测研究的一个热点是时间域反射测试技术(TDR)的应用,它由美国的研究人员最早运用,目前已发展为一种成熟的滑坡监测技术。TDR技术因成本低、不易损坏、安装简易、观测简便、经济实用、全孔连续测量、量程大等特点而得到广泛的关注。

同时,监测系统与预警系统(Alarm system)的衔接也是目前国外研究的热点,现阶段国外较新的监测手段与技术包括 GPS监测、高分辨率遥感监测、三维扫描测量监测等。同时,大量被利用的还有多种传统的监测技术与方法,如全站仪为主要设备的位移测量、地下水位监测、降雨量监测、应力监测等。总之,纵观国外地质灾害监测的现状,主要有以下特征:

(1)新技术、新方法的大量使用与日趋成熟,其中主要是实时监测与数据传输,美国、日本等国家在这一方面的优势比较明显。

图1滑坡实时监测网络结构

(2)监测的重点仍然以对交通、城镇以及重要设施构成威胁的滑坡为主,如美国地质勘探局对加利福尼亚州50号公路滑坡体的监测、法国对 Séchilienne滑坡的监测、日本对冈山市Taguchi滑坡的监测等。目前还未见对小规模滑坡监测方法、监测技术的详细报道。

(3)监测效果较好。由于实现了实时监测,监测数据能够及时传输以供技术人员分析之用,所以在地质灾害的监测效果方面有较好的表现。

2.3国内滑坡崩塌监测现状

国内的地质灾害专业监测工作虽然起步稍晚,但是发展的水平与国外相近。以往的专业监测主要集中在交通、水利水电等重要设施领域,近年来随着技术的发展与国家基础建设的投入不断加大,地质灾害专业监测工作逐渐得以推广。

“九五”及“十五”期间开展了以国土资源部《地质灾害监测预报与防治技术方法研究》、《滑坡、崩塌地质灾害监测新技术开发》项目为代表的地质灾害监测新方法、新技术的研究工作,其目的是“研制适用于滑坡、崩塌地质灾害动态监测的新技术,实现低成本、高精度、自动化、快速、遥测和实时监测”。目前这一批项目已经完成并通过验收,或即将提交验收。香港与台湾地区是我国山地地质灾害最发育的地区,港台学者在山地地质灾害监测预警方面的调查与研究深度也较高。香港特区政府土木工程署通过建立一个覆盖范围广阔的自动雨量计网络,为山泥倾泻(即滑坡)警报系统的运作提供即时的雨量数据(图2)。

该网络于1984年设立,现有86个雨量计分布全港各处。资料记录、控制及处理系统可从设立的86个雨量计及另外24个由香港天文台运作的雨量计接收数据,根据雨量特征及地质灾害敏感分析在全港发布预警信息。台湾地区通过社区预警来提高山地灾害的防灾能力。三峡库区是我国较早开展系统化地质灾害监测的地区。到目前为止,除对危害程度较大的地质灾害,如链子崖危岩、黄腊石滑坡等进行专业监测外,对其余数以千计的地质灾害点仍然以群测群防为主要监测手段。从我国一些比较典型的地质灾害成功预报的实例来看,群测群防仍然是最为有效的监测措施,这一方面反映群测群防的必要性与实效性,另一方面又说明专业监测仍有待进一步加强。

图2香港地区的雨量监测与预报(右图黑点为雨量站位置)

概括而言,我国崩塌、滑坡地质灾害监测现状的基本特征为:

(1)监测技术的研究的研制达到较高的水平,但是仪器的稳定性与使用年限仍有待进一步提高;

(2)一些较先进的监测技术与方法的研究取得显著的成果,但是科技成果转化为生产的速度慢、周期长;

(3)突发性地质的监测工作一般仍采用群测群防为主,群专结合的模式。

3 浙江省地质灾害监测建议

在调研基础上,对近阶段开展我省地质灾害监测工作提出以下建议:

3.1坚持走“群专结合,群测群防”的地质灾害防治道路

群专结合、群测群防仍然是十分有效的地质灾害防治手段。在三峡地区,虽然国家投入了大量资金用于重要滑坡崩塌点的监测,但是对规模小、数量多、危害面广的小规模滑坡崩塌点,仍然采取群测群防为主的措施,并且取得了很好的效果。我省现查明各类灾害点5000余处,其中绝大多数以中、小型为主,尤以小型居多。对如此众多的地质灾害,必须加强群测群防网络建设。

3.2积极开展重要地质灾害点的专业监测

对危险性大、稳定性差、成灾概率高、灾情严重和规模较大的地质灾害点;或者对集镇、村庄、工矿和重要居民点人民生命安全构成威胁的(一般威胁人员较多);造成严重经济损失的;威胁公路、铁路、航道等重要生命线工程和重大基础建设工程的地质灾害点应开展专业监测工作。

地质灾害监测点建设,对尚未治理的滑坡可了解和掌握滑坡的演变过程,直接得到滑坡变形的位置、规模、位移方式、方向和速率等,及时捕捉滑坡灾害的特征信息,为滑坡的正确分析评价、预测预报及治理工程等提供可靠资料和科学依据;对已进行治理的滑坡,又是检验滑坡分析评价及滑坡防治工程效果的尺度。因此,专业监测是滑坡调查、研究和防治工程的重要组成部分,又是预测预报信息获取的一种有效手段。

3.3加强地质灾害规律性研究,完善地质灾害气象预报(警)

在尚不具备准确逐点监测预报的情况下,加强区域趋势预报是提高地质灾害预报预警技术的重要手段。趋势预报的基础是规律研究,包括灾害类型、成灾机理、形成条件、诱发因素等。香港地区山泥倾泻预测业务开展以来,共发布警报13次,其中1次误报,另有2次漏报,结果较为满意。

目前在全省25个重点县(市)地质灾害调查与区划工作的基础上,研制了 SPV-ANN/GIS突发性地质灾害预报(警)系统,开展了浙江省突发性地质灾害气象预报(警)工作的试运行。随着全省45个重点县(市)地质灾害调查与区划工作的完成,对这些资料的深入开发与利用,完善地质灾害气象预报(警)系统是迫在眉睫的一项工作。要与浙江省水文勘查局、省气象台密切合作,开展我省不同区域(小流域、地质单元或地质灾害防治区)、不同灾害类型的临界降雨量研究,逐步提高地质预报(警)水平。

3.4密切注意国内外动态,逐步开展仪器研发

目前国家、国土资源部以及中国地质调查局都对低成本简易监测仪器的研发十分关注,并鼓励各省、各科研、生产单位开展这类仪器的研制与开发。我们将密切关注国内外在这一领域的研究动态,加强与高等院校、科研机构和仪器生产厂家的联系,在条件成熟时开展简易监测仪器的开发与研制。

首先,力争将我省列为由中国环境监测院负责实施的《中国地质灾害监测关键技术研究》项目的参与和试点省份,以建立适合我省地质灾害监测的指标体系。同时密切关注我省正在进行滑坡监测的项目实施情况,如中国地质大学在我省重要示范地质灾害点布置的裂缝监测仪器,如通过实践证明监测手段有效、监测效果可靠,可与中国计量学院、浙江温岭南光地质仪器厂合作,在充分调研已有仪器的原理、性能、优劣势的基础上,通过改进其量程,增加自动测量与数据传输的功能,有针对性地进行改良与创新,达到较好的简易监测效果。

⑻ 地质灾害调查监测

完成抄全国1∶1万工程地质调查1127平方千米,1∶5万工程地质调查6530平方千米,1∶5万灾害地质勘查2200平方千米。各地成功避让各类地质灾害920起,安全转移37926人,避免财产损失5.5亿元。地质灾害造成的死亡和失踪人数同比减少12%,直接经济损失减少42.7%。

长江三角洲地区全面建成地面沉降监测与控制体系,初步建立地面沉降主动防治和科学管理的决策机制。重庆巫山、奉节建立了具国际先进水平的地质灾害实时监测预警示范站,为三峡工程库区等国家重大工程建设区地质灾害的监测预警提供了技术支撑。建立以专业的地质灾害监测和群测群防相结合的雅安地质灾害监测预警示范区和以区域地质灾害监测为基础的江西省地质灾害气象预警系统。西南山区城市、东南台风暴雨型、西北黄土地质灾害监测预警示范工作取得良好进展。“万村培训行动”成效明显,云南昭通成功预报盐津滑坡,避免2011人伤亡;四川达州成功预报青宁乡岩门村滑坡,避免2251人伤亡。

⑼ 地质灾害防治工程中监测新技术的开发应用与展望

季伟峰

(中国地质科学院探矿工艺研究所,四川成都,610081)

【摘要】地质灾害防治工程中对地质灾害体的监测十分必要。本文简要介绍了我国当前地质灾害监测的主要方法及新技术在工程实践中的应用,指出了地质灾害监测工程实践中存在的主要问题,展望了我国在本领域技术发展的趋势。

【关键词】地质灾害监测技术应用展望

自然地质环境和人为活动是引发地质灾害的两大主要原因。在最近的20多年时间里,随着我国人口的增加,经济建设的快速发展,特别是基础设施建设规模的扩大,建设与用地的矛盾十分突出。植被的破坏严重,使山体滑坡、泥石流、地面沉降等地质灾害在全国许多地区频繁发生,严重阻碍了灾害发生地的经济建设和社会发展。

1我国主要的地质灾害形式及危害

1.1地质灾害及常见形式

地质灾害是指由自然地质作用和人为活动作用形成的,对人类生存和工程建设可能构成危害的各种特有的自然环境灾害的总称。

常见的地质灾害形式主要有6种,它们是崩塌、滑坡、泥石流、地面塌陷、地裂缝和地面沉降,简称为崩、滑、流、塌、裂、沉。

1.2三峡库区的主要地质灾害

三峡水利工程建成后将产生巨大的经济效益和社会效益。但它的建设对库区的自然环境也带来一定的直接或潜在影响。三峡工程的一期蓄水、二期蓄水和新城镇的建设已经给库区带来了不少地质灾害问题。在淹没区的新城镇建设中,由于在选址时考虑地质环境因素不够,使有些新城镇从建设一开始就与地质灾害结下了“不解之缘”。主要表现形式为人为高切坡和深基坑诱发的滑坡和崩塌。湖北的巴东、秭归,重庆的巫山、奉节、云阳、万县等地在新城镇的建设中都引发了大量的地质灾害,如何趋利避害是摆在我们面前的重大课题。

1.3地质灾害的主要危害

地质灾害的危害是显而易见的。我国幅员辽阔,地质构造复杂,地貌千姿百态,山地和丘陵面积占国土总面积的2/3以上。全国34个省、直辖市、自治区以及特别行政区均存在着不同形式和不同程度的地质灾害,每年都要造成惨重的人员伤亡和财产损失。其中滑坡、泥石流和山洪等突发性地质灾害被定为国际减灾10年的主要灾种,由于这些灾害具有潜在性和突发性,一旦发生,来势凶猛,常造成断道、断航、构筑物损毁、人员伤亡和财产损失。在我国,每年丧生地质灾害的总人数达800~1000人,经济损失超过100亿元人民币。

1.4地质灾害监测的特点

(1)滑坡等变形体分布通常较为分散,成因机制复杂。开展监测工作前,需有一定前期地质环境勘察、研究工作基础;

(2)地质灾害体大多位于交通、通讯十分不便地区,电源接入也很困难;

(3)目前大多数监测以手动为主,数据汇交速度相对较慢,人工劳务成本较高;

(4)与大坝、桥梁、隧道等固定建筑物、构筑物的安全监测相比,地质灾害监测具有开放的监测边界,条件复杂,自动化监测和遥测等监测手段、监测仪器的选择、固定安装、运行等须注意仪器设备的环境适应性和抗干扰性能,保证正常使用和安全运行。

2地质灾害防治工程中监测的必要性

地质灾害防治工程的监测根据工程所处的不同阶段,可分为施工安全监测、防治效果监测和长期稳定性监测,目前一般简单地统称为监测。在以往的工作实践中经常发现,除经济原因外,在地质灾害的治理过程中存在一定的盲目性。有些地质灾害进行了治理,理由是认为它不稳定。有些没有进行治理,理由是认为它是稳定的。除一些简单粗糙的勘察资料外,几乎没有充分的证据证明一个变形体稳定与否,是否需要进行工程治理。如果对滑坡等变形体进行必要的监测,将会减少这种盲目性,收到事半功倍的效果。

2.1对于已采取工程措施的地质灾害体

对于已采取工程措施的地质灾害防治工程,在治理过程中,根据监测结果进行效果评价,指导施工,及时对设计进行修改;防治工程竣工后,随着周围环境条件的变化,约束条件也会发生变化。如锚索的腐蚀和松弛、地下水位变化、临空面加大、工程质量不高、巨大外力(如地震和大爆破)等,都有可能使一些已经治理过、暂时处于相对稳定的滑坡变形体重新失稳,如不进行持久的监测,它们具有更大的欺骗性和危险性,并非就可以高枕无忧,仍需通过必要的监测来评判它的治理效果和长期稳定性。

2.2对于未采取工程措施的地质灾害体

对于一些未经治理、而又具有潜在危害的地质灾害体,监测也是十分必要的。一些暂时没有资金进行工程整治但又对人民生命财产构成较大潜在威胁的大型滑坡变形体,以投资较小的监测工作来弥补是有效的方法和途径。通过有效的监测既可对其稳定性进行评价,监测结果又可为是否治理和如何治理提供设计依据。用监测的手段对滑坡等变形体进行有效的监控,是一项投资少、见效快的方法,目前已逐步被一些政府官员和业主所接受并推崇。他们也意识到用工程手段进行整治后应该用监测数据来验证,否则是盲目的。但目前仍有相当多的管理和设计部门只注重被动的治理和亡羊补牢,而不注重防患于未然。

3当前地质灾害监测的主要方法

以往作为监测工作的对象,主要是对一些重要的构筑物和大型建设工程的变形、位移、沉降等进行监测,如水利水电大坝、大型桥梁、重要厂房、大型地下隐蔽工程、矿山边坡和尾矿坝等。对复杂的地质灾害体进行监测,则是近些年才逐渐开始应用的,当前采用的主要监测方法有以下几种。

3.1地面绝对位移监测

绝对位移监测是最基本的常规监测方法,测量崩滑体测点的三维坐标,从而得出测点的三维变形位移量、位移方位与变形位移速率。主要使用经纬仪、水准仪、红外测距仪、激光准直仪、全站仪和GPS等,应用大地测量法来测得变形体上某点的三维坐标。

3.2地面相对位移监测

地面相对位移监测是量测崩滑体重点变形部位点与点之间相对位移变化(张开、闭合、下沉、抬升、错动等)的一种常用的变形监测方法。主要用于对裂缝、崩滑带、采空区顶底板等部位的监测、沉降观测等,是位移监测的重要内容之一。目前常用的监测仪器有振弦位移计、电阻式位移计、裂缝计、变位计、收敛计等。

3.3钻孔深部位移监测

对于滑坡等变形地质体来讲,不仅要监测其地表位移,也要监测其深部位移,这样才能对整体的位移进行判断监测。方法是先在滑坡等变形体上钻孔并穿过滑带以下至稳定段,定向下入专用测斜管,管孔间环状间隙用水泥砂浆(适于岩体钻孔)或砂、土石(适于松散堆积体钻孔)回填固结测斜管;下入钻孔倾斜仪,以孔底为零位移点,向上按一定间隔(一般为0.5m或1m)测量钻孔内各深度点相对于孔底的位移量。常用的监测仪器有钻孔倾斜仪、钻孔多点位移计等。

3.4应力监测

对于滑坡等变形体不仅要监测其位移的变化,还需要监测其内部应力的变化。因为在地质体变形(或称运动)的过程中必定伴随着变形体内部应力变化和调整,所以监测应力的变化是十分必要的。常用的仪器有锚杆应力计、锚索应力计、振弦式土压力计等。

3.5水环境监测

对于崩滑体来讲,除了自然地质条件和人为扰动外,水是对滑坡的稳定状态起直接作用的最主要因素,所以对水环境(含过程降雨及降雨强度、地表水的流量、地下水位、渗流量、渗流压、孔隙水压力、地下水温度等)进行监测十分重要。常用的监测仪器有量水堰、遥测雨量计、测钟、电测水位计、遥测水位计、渗压计、渗流计、电测温度计等。

3.6地震监测

地震监测适用于所有的崩滑监测。地震力是作用于崩滑体的特殊荷载之一,因此对崩滑体的稳定性起着重要作用。当地质灾害位于地震高发区时,应经常及时收集附近地震台站资料;必要且条件许可时,可采用地震仪等监测区内及外围发生的地震强度、发震时间等。分析震中位置、震源深度、地震烈度、评价地震作用对区内的崩滑体稳定性的影响。

3.7 人类相关活动监测

人类活动如掘洞采矿、削坡取土、爆破采石、加载及水利设施的运营等,往往造成人工型地质灾害或诱发产生地质灾害,在出现上述情况时,应予以监测并停止某项活动。对人类活动监测,应监测对崩滑体有影响的项目,监测其范围、强度、速度等。

3.8宏观地质调查监测

采用常规地质调查法,定期对崩滑体出现的宏观变形痕迹(如裂缝发生及发展、地面沉降、塌陷、坍塌、膨胀、隆起、建筑物变形等)和与变形有关的异常现象(如地声、地下水异常等)进行调查记录。该法具有直观性强、适应性强、可信程度高的特点,为崩滑监测的主要手段,也是群测群防的主要内容。适用于所有崩滑体,具有准确的预报功能。

4监测新技术的研究与工程实践

4.1国外监测新技术的研究与应用

发达国家在岩土工程及地质灾害监测领域不但有传统的监测方法和仪器,近年来已将高新技术应用于地质灾害预测、预警工程。美国的PDI公司、Geokon公司、意大利Sisgeo公司、瑞士Leica公司、瑞典Geotech公司、德国Zeiss公司、日本尼康公司等在监测方法的创新和新技术的应用方面都处于领先地位。红外技术、激光技术、微波技术、光纤技术、格区式光栅技术、机电一体化、自动化技术、卫星通讯技术、计算机及人工智能等高新技术在监测技术方法和仪器的开发研究中得到了广泛的应用。可以这样讲,作为岩土工程监测一个分支的地质灾害监测及监测仪器,已经不是传统意义上的大地测量仪器,而是实现了传统方法和仪器与现代高新技术的完美结合,把监测仪器的技术水平推到了一个崭新的阶段,并正在向更高层次发展。国外具有代表性的产品有 Leica公司的TCR1800全站仪、TCR2003测量机器人、Geomos系统、DNA电子水准仪、GPS,Zeiss公司的DiNi12系列电子水准仪、North America公司的钻孔多点位移计、Sicon公司的岩土工程监测系列仪器等。

4.2国内监测新技术的研究与应用

国内水电系统和国土资源部都开展了这方面的研究,如水利科学院、中科院有关院所、国土资源部技术方法研究所等。我所伴随着三峡工程的建设,在国土资源部的大力资助下,也开发了多种岩土工程及地质灾害防治监测仪器,如钻孔倾斜仪系列、应力测量系列、地面位移测量系列等监测仪器、多参数遥测系统等,还承担了科技部“崩滑地质灾害自动化监测系统”项目的研究,为测量仪器国产化做了大量的工作,产品在三峡库区和国家的重大工程中得到了较好的应用。我所近几年研究的成果并形成的产品主要有以下8项:

(1)DMY型激光隧道断面张敛测量系统;

(2)BYT型光纤崩滑体推力监测系统;

(3)DZQX新型多功能钻孔倾斜仪;

(4)崩塌无线自动化监测预报系统;

(5)PSD型微位移变形测量系统;

(6)MS型锚索(锚杆)测力系统;

(7)DHS型地层含水率仪;

(8)岩心定向与取心技术研究。

4.3工程监测实践

在研究开发的同时,我所用自己研究的成果积极参与国家重大基本建设工程的监测工作和三峡库区地质灾害防治的工程监测,取得了较好的经济效益和社会效益。最近几年承担的重大监测工程有:

(1)宝成复线清江大断面双线长隧道变形量测;

(2)成昆铁路电气化改造西昌南马鞍堡隧道变形量测;

(3)北京地铁复八线变形量测;

(4)上海地铁一号线人民广场站变形量测;

(5)青岛地铁试验段变形量测;

(6)成(都)—南(充)高速公路高陡边坡变形及量测;

(7)内(江)—宜(宾)高速公路高边坡变形量测;

(8)丹(东)—沈(阳)高速公路丹本(溪)段全线隧道验收工程;

(9)318国道二郎山—康定段 K2794+860~980滑坡的地面位移、深部位移及应力监测;

(10)奉节县、云阳县地质灾害监测工程。

5监测技术发展展望

(1)地质灾害的发生将更加频繁,危害程度更大,监测工作将受到更多的重视,监测成果应用将产生更大的社会效益。

(2)在我们的上级主管部门——中国地质调查局的支持下,我们的监测仪器研究及运行系统软件开发将会得到更多资助,并使我们的监测手段更加完备,登上一个新的台阶,具有更强的市场竞争能力。

(3)自动化监测和遥测是地质灾害监测的发展方向,但目前实施还有很多困难。

(4)地质灾害具有一定区域性,是一项公益性的事业,更需要政府的引导和支持。

6结语

通过几年的监测工程实践,目睹了不少由于忽视地质灾害的工程安全监测和失效工程而导致生命和财产的损失,也看到不少通过监测成功预报灾害而避免灾害发生的实例。在实行工程质量终生追究制的今天,对地质灾害及相关岩土工程的安全进行长期监测显得尤为重要和迫切。

监测工程是地质灾害防治工程体系的重要组成部分,不能重治轻防,应做到治理、防范、监测并重,有时甚至重于工程治理手段。

在一定时期内对滑坡变形体实施监测工程,可以节省大量的投资。

地质灾害防治工程应建立在科学监测的基础上,以监测指导设计、施工、工程效果评价,以科学的态度面对它,应从过去的凭经验和粗糙的勘察上升到定量阶段,只有这样,才能对滑坡变形体进行深入的认识和科学评价。

监测工作不是可有可无的,它是工程诊断的需要,是从事地质灾害研究和预测必不可少的一项工作。

防范重于救灾,监测胜于治理。

参考文献

[1]殷跃平等.地质工程设计支持系统与链子崖锚固设计.北京:地质出版社,1995

[2]黄润秋主编.高边坡稳定性的系统工程地质研究.成都:成都科技大学出版社,1991

[3]乔建平主编.滑坡减灾理论与实践.北京:科学出版社,1997

[4]唐邦兴主编.山洪泥石流滑坡灾害及防治.北京:科学出版社,1994

[5]国家技术监督局,建设部.工程测量规范.北京:中国计划出版社,2003

[6]国家技术监督局,建设部.工程岩体试验方法标准.北京:中国计划出版社,2001

[7]王永年,殷世华主编.岩土工程安全监测手册.北京:中国水利电力出版社,1999

[8]季伟峰主编.工程地质与地质工程.北京:地质出版社,1999.

⑽ 实施地质灾害监测预警体系建设规划的投资估算

地质灾害监测预警规划主要费用项目包括:建立国家级地面沉降监测网,地质灾害监测重点工程,地质灾害监测预警研究试验区,重大突发性地质灾害单体监测工程等。到2010年,投资估算经费为37.4亿元人民币。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864