工程地质有哪些坚土泥水
1. 工程地质有哪些常用的研究方法
工程地质研究的主内容有:确定岩土组分、组织结构(微观结构)、物理、化学与力学性质(特别是强度及应变)及其对建筑工程稳定性的影响,进行岩土工程地质分类,提出改良岩土的建筑性能的方法;研究由于人类工程活动的影响而破坏的自然环境的平衡,以及自然发生的崩塌、滑坡、泥石流及地震等物理地质作用对工程建筑的危害及其预测、评价和防治措施;研究解决各类工程建筑中的地基稳定性,如边坡、路基、坝基、桥墩、硐室,以及黄土的湿陷、岩石的裂隙的破坏等,制定一套科学的勘察程序、方法和手段,直接为各类工程的设计、施工提供地质依据;研究建筑场区地下水运动规律及其对工程建筑的影响,制定必要的利用和防护方案;研究区域工程地质条件的特征,预报人类工程活动对其影响而产生的变化,作出区域稳定性评价,进行工程地质分区和编图。随着大规模工程建设的发展,其研究领域日益扩大。除了岩土学和工程动力地质学、专门工程地质学和区域工程地质学外,一些新的分支学科正在逐渐形成,如矿山工程地质学、海洋工程地质学、城市工程地质及环境工程地质学、工程地震学。
1工程地质与岩土工程的区别工程地质是研究与工程建设有关地质问题的科学(张咸恭等著《中国工程地质学》)。工程地质学的应用性很强,各种工程的规划、设计、施工和运行都要做工程地质研究,才能使工程与地质相互协调,既保证工程的安全可靠、经济合理、正常运行,又保证地质环境不因工程建设而恶化,造成对工程本身或地质环境的危害。工程地质学研究的内容有:土体工程地质研究、岩体工程地质研究、工程动力地质作用与地质灾害的研究、工程地质勘察理论与技术方法的研究、区域工程地质研究、环境工程地质研究等。岩土工程是土木工程中涉及岩石和土的利用、处理或改良的科学技术(国家标准《岩土工程基本术语标准》)。岩土工程的理论基础主要是工程地质学、岩石力学和土力学;研究内容涉及岩土体作为工程的承载体、作为工程荷载、作为工程材料、作为传导介质或环境介质等诸多方面;包括岩土工程的勘察、设计、施工、检测和监测等等。由此可见,工程地质是地质学的一个分支,其本质是一门应用科学;岩土工程是土木工程的一个分支,其本质是一种工程技术。从事工程地质工作的是地质专家(地质师),侧重于地质现象、地质成因和演化、地质规律、地质与工程相互作用的研究;从事岩土工程的是工程师,关心的是如何根据工程目标和地质条件,建造满足使用要求和安全要求的工程或工程的一部分,解决工程建设中的岩土技术问题。2工程地质与岩土工程的关系虽然工程地质与岩土工程分属地质学和土木工程,但关系非常密切,这是不言而喻的。有人说:工程地质是岩土工程的基础,岩土工程是工程地质的延伸,是有一定道理的。工程地质学的产生源于土木工程的需要,作为土木工程分支的岩土工程,是以传统的力学理论为基础发展起来的。但单纯的力学计算不能解决实际问题,从一开始就和工程地质结下了不解之缘。与结构工程比较,结构工程面临的是混凝土、钢材等人工制造的材料,材质相对均匀,材料和结构都是工程师自己选定或设计的,可控的。计算条件十分明确,因而建立在材料力学、结构力学基础上的计算是可信的。而岩土材料,无论性能或结构,都是自然形成,都是经过了漫长的地质历史时期,在多种复杂地质作用下的产物,对其材质和结构,工程师不能任意选用和控制,只能通过勘察查明,而实际上又不可能完全查清。岩土工程师不敢相信单纯的计算结果,单纯的计算是不可靠的,原因就在于工程地质条件的不确知性和岩土参数的不确定性,不同程度地存在计算条件的模糊性和信息的不完全性。因而虽然土力学、岩石力学、计算技术取得了长足进步,并在岩土工程设计中发挥了重要作用,但由于计算假定、计算模式、计算方法、计算参数等与实际之间存在很多不一致,计算结果总是与工程实际有相当大的差别,需要进行综合判断。
2. 岩石的工程地质性质有哪些
岩石的工程地质性质包括物理和力学性质两个方面。
岩石的主要物理性质版:
1、重量:用比重(2.4~3.3)和权重度(容重——岩石单位体积的重量)两个指标表示。
岩石重度的大小,决定于岩石中矿物的比重、孔隙性及其含水情况。
2、孔隙性:孔隙的发育程度,用孔隙度来表示(孔隙的总体积与岩石的总体积之比)。其大小决定于结构和构造。
3、吸水性:反映岩石在一定条件下的吸水能力。其大小与岩石孔隙度的大小、孔隙的张开程度有关。
4、软化性:是指岩石遇水后,它的强度和稳定性发生变化的性质。
5、抗冻性:指岩石抵抗因水结冰产生的体积膨胀力的能力。在高寒冰冻区岩石的抗冻性能较为重要。
岩石的主要力学性质
1、岩石的变形:用弹性模量(应力与应变之比)和泊松比(横向应变与纵向应变之比0.2~0.4)两个指标表示。
2、岩石的强度:指岩石抵抗外力破坏的能力,用岩石在达到破坏前所能承受的最大应力来表示。岩石的主要破坏形式有压碎、拉断和剪断。常用的对应的强度指标是抗压、抗剪、抗拉强度。
3. 工民建的主要工程地质问题有哪些
工程地质条件是指工程建筑物所在地区与工程建筑有关的地质环境各项因素回的综合。这些因素包括:(1)地层答的岩性:是最基本的工程地质因素,包括它们的成因、时代、岩性相关书籍、产状、成岩作用特点、变质程度、风化特征、软弱夹层和接触带以及
4. 土木工程地质
我是学地质的,但我也不能很清楚地解释。断层性质及形成时代的判断回这是两个问题答,也是构造地质学研究的重点问题之一。庞大的一个学科,众多学者天天研究的问题,怎么可能在这里一两段话说明白?我们考试的话,答最简单的常识,这道题也应该能答上两页。
最简单讲断层分为三种,正断层、逆断层和走滑断层。但具体到应力状态应力模式等等,断层是很复杂很复杂的。正断层就是断层面上盘相对于下盘下降,逆断层反之,走滑断层是两盘不是上下位移,而是沿断层走向错动。当然,这是最简单的。
时代判断,最基础的,断层形成的时间晚于它所错断的最年轻的地层时代,早于同这些地层不整合的未被断层错断的最老的地层时代。
你不会是正在考试吧......
5. 一、什么是工程地质条件,包括哪些方面
工程地质条件是指对工程建筑有影响的各种地质因素的总称。主要包括地形地貌、地层岩性、地质构造、地震、水文地质、天然建筑材料以及岩溶、滑坡、崩坍、砂土液化、地基变形等不良物理地质现象。
工程地质条件即工程活动的地质环境,可理解为工程建筑物所在地区地质环境各项因素的综合。一般认为它包括岩土(岩石和土)的类型及其工程性质、地质构造、地形地貌、水文地质条件、地表地质作用和天然建筑材料等。
岩土的类型及其工程性质
这是最基本的工程地质因素,包括它们的成因、时代、岩性、产状、成岩作用特点、变质程度、风化特征、软弱夹层和接触带以及物理力学性质等。
地质构造
地质构造是工程地质工作研究的基本对象,包括褶皱、断层、节理构造的分布和特征。地质构造,特别是形成时代新、规模大的优势断裂,对地震等灾害具有控制作用,因而对建筑物的安全稳定、沉降变形等具有重要意义。
水文地质条件
这是重要的工程地质因素,地下水是降低岩、土体稳定性的重要因素,又在某些情况下对建筑物的某些部位(如基础)发生侵蚀作用,影响建筑物的安全。它包括地下水的成因、埋藏、分布、动态和水质等。
地表地质作用
是现代地表地质作用的反映,与建筑区地形、气候、岩性、构造、地下水和地表水作用密切相关,主要包括滑坡、崩塌、岩溶、泥石流、风沙移动、河流冲刷与沉积等等,对评价建筑物的稳定性和预测工程地质条件的变化意义重大。
地形地貌
地形是指地表高低起伏状况、山坡陡缓程度与沟谷宽窄及形态特征等,地貌则说明地形形成的原因、过程和时代。平原区、丘陵区和山岳地区的地形起伏、土层厚薄和基岩出露情况、地下水埋藏特征和地表地质作用现象都具有不同的特征,这些因素都直接影响到建筑场地和线路的选择。
天然建筑材料
工程中常用的天然建筑材料主要有:粘性土料、砂性土、砂卵砾石料、碎石、块石石料等,在大型土木及水利工程中,天然建筑材料的量、质及开采运输条件等,直接关系到场址选择、工程造价、工期长短等,因此,它也是工程地质条件评价的重要内容,有时甚至可以成为选择工程建筑物类型的决定性因素。
(5)工程地质有哪些坚土泥水扩展阅读:
这些主要工程地质条件又分为场地地质和地基两个方面。在不同勘察阶段,对这两个方面的侧重应有所不同,但不能偏废,如在选址和初步勘察阶段,勘察工作侧重在场地地质,同时也对地基进行一定的研究。在详勘阶段则多侧重地基问题,但也要对场地地质作必要的调查研究工作。
自然条件是因地而异的,建筑物类型和性质也各不相同,因而在不同的情况下作为重点研究对象的工程地质条件也是因地因工程而异,如在山区建筑,与场地稳定性有密切关系的地质现象(地层褶皱、断裂、滑坡、岩溶等)往往是重要的地质条件;
对地下建筑来说,地质构造对建筑物的稳定性有很大影响,而岩石产状、断层、节理和破碎带的性质与分布等是重要的地质条件。
工程地质条件的好坏是对建筑地区,场址选择,建筑总平面布置,以及主要建筑物地基基础工程的设计与施工都有密切关系和影响,必须在工程建筑设计前将该地区的工程地质条件预先查明。
6. 何谓工程地质条件包括那些方面
工程地质条件包括:地形地貌、地层岩性、地质构造、地下水条件、地球物理条件、物理地质环境和天然建筑材料7项。工程地质学里面第一页就有提到。
再看看别人怎么说的。
7. 岩石的工程地质有哪些
A,矿物成分。由于岩石是多晶体的组合物,矿物晶体内部质点的间距小,吸引力远专较晶粒间的吸引力强。碎屑属沉积岩胶结物的成分对强度的影响是最明显的。
B,结构的影响。一般情况下,由于晶粒间质点的平均距离要比晶体内部质点的平均距离大得多,彼此吸引的牢固程度低,因此颗粒间的联接决定岩石的抵抗作用力。
C,水的影响。在岩体中对力学性质产生重要影响的主要是重力水和结合水,主要通过多种作用改变岩体的结构和成分:润滑作用,冻融作用,潜蚀作用,水解作用,联接作用。
D,作用力的特点对工程地质性质也有影响。力的性质,应力水平,围压大小,应力增加速率,应力持续时间,以及应力的增减历程等。
E,温度效应,零度以下的岩石,强度和弹性模量都比较高,一千度以上,力学性质的影响随岩石类型而异。
8. 坚土属于几类土啊
坚土属于三类土来。
中等自密实的粘性土或黄土,含有碎石、卵石或建筑材料碎屑的潮湿的粘性土或黄土。
主要用镐、条锄,少许用锹。
(8)工程地质有哪些坚土泥水扩展阅读:
土建土石方开挖土壤类型是按土壤的坚硬程度来划分的,其中干土和湿土划分的标准是以地下水位为准,地下水位以上者为干土,地下水位以下者为湿土。建筑土石方工程用土分类如下:
一类土:一类土是指砂、腐殖土等;
二类土:二类土是指黄土类、软盐渍土和碱土、松散而软的砾石、掺有碎石的砂和腐殖土等。
一、二类土的坚固系数较低(0,5--0.8),用尖锹、少数用镐即可开挖。
三类土:三类土是指粘土或冰粘土、重壤土、粗砾石、干黄土或掺有碎石的自然含水量黄土等,土的坚固系数为0.81--1.0,须用尖锹并同镐开挖。
四类土:四类土是指硬粘土、含碎石的重壤土、含巨砾的冰碛粘土、泥板岩等,上的坚固系数达1.0~1.5,土的开挖须用尖锹、镐和撬棍同时进行。
参考资料:网络--土质
9. 常见的工程地质问题有哪些
风化、破碎岩层。风化一般在地基表层,可以挖除。破碎岩层有的较浅,可以挖除。有的埋藏较深,如断层破碎带,可以用水泥浆灌浆加固或防渗;风化、破碎处于边坡影响稳定的,可根据情况采用喷混凝土或挂网喷混凝土罩面,必要时配合注浆和锚杆加固。
断层、泥化软弱夹层。对充填胶结差,影响承载力或抗渗要求的断层,浅埋的尽可能清除回填,深埋的注水泥浆处理;浅埋的泥化夹层可能影响承载能力,尽可能清除回填,深埋的一般不影响承载能力。断层、泥化软弱夹层可能是基础或边坡的滑动控制面。
松散、软弱土层。对不满足承载力要求的松散土层,如砂和砂砾石地层等,可挖除,也可采用固结灌浆、预制桩或灌注桩、地下连续墙或沉井等加固;对不满足抗渗要求的,可灌水泥浆或水泥黏土浆,或地下连续墙防渗;对于影响边坡稳定的,可喷射混凝土或用土钉支护。
滑坡体。斜坡内可能沿滑动面下滑的岩体称为滑坡体。滑坡发生往往与水有很大关系,渗水降低滑坡体尤其是滑动控制面的摩擦系数和黏聚力,要注重在滑坡体上方修筑截水设施,在滑坡体下方筑好排水设施。防止滑坡,经过论证可以在滑坡体的上部刷方减重,未经论证不要轻易扰动滑坡体。
地下水发育地层。当地下水发育影响到边坡或围岩稳定时,要及时采用洞、井、沟等措施导水、排水,降低地下水位。
对结构面不利交汇切割和岩体软弱破碎的地下工程围岩,地下工程开挖后,要及时采用支撑、支护和衬砌。支撑多采用柱体、钢管排架、钢筋或型钢拱架,拱架的间距根据围岩破碎的程度决定。
岩溶与土洞。当建筑工程不可能避开时,可挖除洞内软弱充填物后回填石料或混凝土。不方便挖填的,可采用长梁式、桁架式基础或大平板等方案跨越洞顶,也可对岩溶进行裂隙钻孔注浆,对土洞进行顶板打孔充砂、砂砾,或做桩基处理。
10. 什么叫工程地质条件包括哪些内容
工程地质条件是指工程建筑物所在地区地质环境各项因素的综合。 这些因素包括: (1) 地层的岩性:是最基本的工程地质因素,包括它们的成因、时代、岩性
相关书籍、产状、成岩作用特点、变质程度、风化特征、软弱夹层和接触带以及物理力学性质等。 (2) 地质构造:也是工程地质工作研究的基本对象,包括褶皱、断层、节理构造的分布和特征、地质构造,特别是形成时代新、规模大的优势断裂,对地震等灾害具有控制作用,因而对建筑物的安全稳定、沉降变形等具有重要意义。 (3) 水文地质条件:是重要的工程地质因素,包括地下水的成因、埋藏、分布、动态和化学成分等。 (4) 地表地质作用:是现代地表地质作用的反映,与建筑区地形、气候、岩性、构造、地下水和地表水作用密切相关,主要包括滑坡、崩塌、岩溶、泥石流、风沙移动、河流冲刷与沉积等,对评价建筑物的稳定性和预测工程地质条件的变化意义重大。 (5) 地形地貌:地形是指地表高低起伏状况、山坡陡缓程度与沟谷宽窄及形态特征等;地貌则说明地形形成的原因、过程和时代。平原区、丘陵区和山岳地区的地形起伏、土层厚薄和基岩出露情况、地下水埋藏特征和地表地质作用现象都具有不同的特征,这些因素都直接影响到建筑场地和路线的选择。 参考资料《工程地质》主编:邵燕 合肥工业大学出版社 工程地质条件是客观存在的地质因素,只有其中的稳定因素或工程建设产生的不稳定因素对工程建设运行构成或可能构成有害影响时才成为工程地质问题