当前位置:首页 » 地质工程 » 四信智能地质灾害监测

四信智能地质灾害监测

发布时间: 2021-02-10 00:04:18

㈠ 实时监测技术在地质灾害防治中的应用——以巫山县地质灾害实时监测预警示范站为例

高幼龙1张俊义1薛星桥1谢晓阳2

(1中国地质调查局水文地质工程地质技术方法研究所,河北保定,071051;2西北化工研究院,陕西临潼,710600)

【摘要】本文在地调项目工作实践的基础上,系统地总结了地质灾害实时监测的含义、特点和系统构成。详细介绍了巫山县地质灾害实时监测预警示范站的构建,针对实际运行状况,评价了实时监测技术的可行性和可靠性。

【关键词】地质灾害实时监测远程传输示范站

1 引言

随着现代科学技术的发展和边缘学科的相互渗透,自动控制、网络传输等越来越多的技术被不断应用于地质灾害的监测当中,极大地提高了监测的自动化水平,在一定程度上缓解了生产力匮乏和地质灾害急剧增加之间的矛盾。国际上,美国、日本、意大利等发达国家在一定的区域范围内建立了基于降水量、渗透压、斜坡变形等参数的地质灾害实时监测系统,借助国际互联网实现了监测数据的集中处理与实时发布。与之相比,我国地质灾害监测的实时化、网络化水平依然较低,监测信息为公众服务的功能未能得到明显体现,预警的信息渠道不畅,对重大临灾的地质灾害缺乏快速反应能力。因此,在我国进行地质灾害实时监测预警研究,对重大灾害体实施实时化监测预警,具有十分现实的意义。

笔者在参加地质调查计划项目《地质灾害预警关键技术方法研究与示范》的过程中,对实时监测技术进行了较为深入的研究,并在我国重庆市巫山县新城区建立了地质灾害实时监测预警示范站,经过1.5个水文年的示范运行,验证了实时监测的可行性和可靠性。在对示范成果初步总结的基础上形成此文,以期实时监测技术得以快速成熟及推广应用,为我国地质灾害防治事业作出贡献。

2实时监测的含义和特点

实时监测(Real-Time Monitor,RTM)指通过各种监测、采集、传输、发布技术,让目标层人员在第一时间内了解、掌握有关灾害体的变形动态和发展趋势,进而作出决策的多种技术的集合。其最主要的特点为实时性,即远程的目标层人员可在第一时间获取灾害体的全部变形信息,而获取的过程是自动的,无需技术人员值守干预。显而易见,实时的特性可以最大限度地解放劳动力,降低监测人员风险和运营成本。

同传统监测技术相比,实时监测的数据采集方式是连续的、跟踪式的,数据的采集周期很短,通常在数小时之内,甚至更短。这对于跟踪灾害体变形过程,进行反演分析具有十分重要的意义。其庞大的数据量通常也会对配套的软硬件系统提出更高的要求。

不难理解,实时监测也是自动化监测。所使用的监测仪器均需自动化作业方可实现无人值守。监测仪器自动化分为两种,一种是监测仪器本身具备定时采样和存储功能,另一种是通过第三方的自动采集仪控制采样。不管使用何种方式或基于何种原理,其数据采集是能够自动或触发实现的。

监测数据远程传输是实时监测的另一主要特点。通常情况下,监测控制中心设立在远离灾体、经济相对发达的城镇区,需要借助公众通信网络或其他介质将各种类型的监测数据“搬运”过来,进行相应的转换计算,生成目标层人员所需要的成果。这个“搬运”过程即监测数据的远程传输。传输分为两种方式,一种是有线传输方式,如架设通信线缆或光缆,在电话线两端加载 Modem等;另一种是无线传输方式,如借助 GSM/GPRS或 CDMA网络、UHF数传电台或通信卫星等。

由于实时监测是数据自动采集、传输、发布等多个技术的集合,其中的任何一个环节失败均可导致系统无法正常工作,因此,实时监测是存在风险性的。其风险构成除电力(如断电停电)等保障体系统风险和监测仪器(如传感器、采集仪故障)、传输系统(如占线、网络资源不足、数据安全)、发布系统(如网路阻塞、病毒入侵、系统崩溃)等技术风险外,还包括人为抗力风险,如监测仪器设施的人为破坏、网络系统的恶意攻击等。对于风险的营救除最大程度地降低保障体系风险和技术风险外,需要通过立法、宣传等有效措施降低人为抗力风险,并设技术人员对监测系统进行即时维护,保障系统正常运行。

3实时监测系统构成

实时监测系统由监测仪器设施、数据采集系统、数据传输系统和网络发布系统四个子系统构成。各子系统均可独立运行,以单链的方式协同工作。其工作原理如图1所示。

图1实时监测系统工作原理示意图

3.1监测仪器设施

监测仪器及设施是获取灾害体变形参数最前端、最主要的组成部分,固定安装于灾害体表层或深部,并能够表征灾害体对应部位的变形、变化。监测仪器的类型取决于所采用的监测方法。在地质灾害监测中,常用的监测方法包括灾害体地表及深部位移、应力、地下水动态、地温、降水量等(表1)。监测仪器的精度、数量及布设位置是在地质灾害勘查及综合分析的基础上,从控制灾害体主体变形的需要设计确定的。监测仪器通常和相应的监测设施,如监测标(墩)、保护装置等相互配合,完成灾害体相关参数的获取。

3.2数据采集系统

顾名思义,数据采集系统用于收集、储存各类监测数据,是通过单片机或工业控制技术实现的。目前,多数监测仪器均有配套的数据采集及存储装置,可按设定的数据采集间隔定时自动化工作,并对原始数据进行转换计算。数据采集装置通常具有 RS-232或其他标准通信接口,可以方便地将数据下载至 PC中作进一步分析处理。对于不具备配套数据采集装置或仅具备便携式读数装置的监测仪器,则可以通过第三方的数据采集仪实现自动采集工作,通用型的数据采集仪可方便地将频率、电压等模拟信号转换为数字信号加以存储和处理,并具备标准通信接口和PC交换数据。由于数据采集仪多置于监测仪器附近,二者间通常使用线缆相连接。

表1常用监测技术方法简表

3.3数据传输系统

数据传输系统用于完成数据采集仪—控制中心—用户间的数据传递。实际上,控制中心—用户间通常是利用国际互联网、通过发布系统实现的,所以狭义上的数据传输指数据采集仪—控制中心之间(即灾害体现场至控制中心)的数据传递。

按照灾害体和控制中心空间距离的长短,可将数据传输分为近距离数据传输(一般低于2km)和远程数据传输两种类型。前者由于传输距离较短,一般采用线缆连接,后者则采用远程数据传输装置。

按传输介质,远程数据传输分为有线传输和无线传输两种方式。目前常用的有线传输方式有电话线连接(即在电话线两端加载 Modem对数据进行调制、解调)、光缆连接等,无线传输方式有数传电台(用于中远距离)、GSM/GPRS或 CDMA移动通信网络、通信卫星等(图2)。

图2常用的数据传输方法

3.4信息发布系统

信息发布系统通过国际互联网,以 Web主页的方式向目标层人员(即用户)提供各类监测信息。监测信息包括灾害体地质条件、发育特征、监测网布置方式、多元监测数据、监测数据随时间推移曲线变化情况、监测信息公告及图片、视频等。

信息发布系统由底层数据库和发布主页两部分构成。前者用于管理各类基础信息及监测数据,为后者提供数据源,后者为用户提供信息访问平台。二者之间通常采用B/S等架构交换数据。

信息发布系统一旦建立完成后,一些信息内容,如灾害体地质条件、发育特征、监测网布置方式等说明性的文字便相对固定下来,在短时间内不会做大的改动,这些信息通常称为静态信息。而随着时间推移,监测数据及其曲线等信息不断产生,且呈现动态变化并需在主页上自动更新、显示,这些信息称为动态信息。要实现监测数据的实时发布,需建立动态主页来显示动态数据。

由于监测数据是由底层数据库管理的,故只要即时将监测数据自动写入数据库中,为动态主页提供随时更新的数据源,便可实现自动显示,即实时发布。而这一点是易于做到的。

4巫山县地质灾害实时监测示范站简介

重庆市巫山县新城区是我国地质灾害危害最为严重的地区之一,全县约1/3的可用建设用地受到不同程度地质灾害的威胁。通过论证对比,在城区27个较大滑坡(崩塌)中,选择了近期变形相对较为明显、危害较为严重的向家沟滑坡和玉皇阁崩滑体建立实时监测预警系统进行应用示范。选用GPS监测地表位移、固定式钻孔倾斜仪和TDR技术监测深部位移、孔隙水压力监测仪监测滑体孔隙水压力及饱水时的水位、水温,同时通过安装仪器的附加功能或定期搜集的方法兼顾了地温、降水量及库水位等监测。截至目前,共建立GPS监测标22处(含基准标)、固定式钻孔倾斜仪和TDR监测点(孔)各3处、孔隙水压力监测3孔7测点。多种监测仪器在同一地理位置同组安装,这样不仅便于不同监测方法之间资料的相互印证对比,还可以仅使用一台采集仪及传输装置采集、传输多种监测数据,降低监测系统建设成本;另外,同组安装便于修建监测机房(现场站)保护监测仪器设施。以上监测方法除GPS因建设成本、人为抗力风险等原因采用定期观测外,其余监测方法均采用实时化监测。

4.1示范站数据采集系统

固定式钻孔倾斜仪、TDR、孔隙水压力监测仪三种监测仪器均具备配套的数据采集装置,其中TDR监测技术使用工业控制机作为数据采集装置,恰好可以作为另两种监测仪器的上位机,通过多串口扩展,将固定式钻孔倾斜仪和孔隙水压力监测仪连接至工控机,定时下载、存储数据,并在预定时间统一传输至控制中心,同时在工控机上存放数据备份,防止数据丢失。示范站数据采集系统结构图如图3所示。

图3示范站数据采集系统结构图

4.2GPRS远程无线传输系统

示范站控制中心设在巫山县国土资源局,距向家沟滑坡直线距离2.74km,距玉皇阁崩滑体约0.6km,其间采用GPRS网络进行数据的远程无线传输。

GPRS(General Packet Radio Service,通用分组无线业务)是中国移动通信在GSM网络上发展起来的2.5G数据承载业务,具有传输速度快、永远在线、按量计费等优点。GPRS使用TCP/IP协议,因此可方便地将数据写入指定(具固定IP地址)的服务器中。

GPRS数据传输硬件为商用型GPRS-MODEM,控制软件自主编写,用于控制数据传输时间、目标地址及传输过程的错误处理,由服务器端和客户端两部分构成。服务器端用于设置网络配置、数据库连接方式及数据文件、日志文件和配置文件的存放路径。客户端安装于现场站数据采集仪(工控机)上,控制网络连接、上传时间、数据编码、数据备份及传输错误处理。客户端软件和所有的数据采集软件设置为不间断工作状态,在按控制参数工作的同时,接受控制中心的配置指令即时对控制参数进行调整。

4.3示范站信息发布系统

示范站信息发布系统硬件由1台小型服务器和2台 PC终端的100M局域网构成。通过2M带宽的ADSL接入Internet。底层数据库和WEB主页同时安装于服务器上。服务器操作系统为Mi-croSoft Windows Server 2000,数据库系统采用 MicroSoft SQL Server 2000。WEB主页用 ASP.NET和Visual C﹟编写,和数据库之间采用B/S架构。在病毒防护和网络安全方面,采用商业软件瑞星RAV 2004和天网防火墙系统。

(1)数据库系统

数据库系统是信息发布系统的基础,按管理内容分为基础信息管理、数据管理、辅助信息管理三部分。基础信息管理的内容包括监测站(包括中心站和现场站)、监测钻孔、监测点、发布信息、发布图片等;数据管理内容包括固定式钻孔倾斜仪、GPS、TDR监测系统、BOTDR监测系统、孔隙水压力监测仪、环境温度、降水量、库水位等;辅助信息管理内容包括分级用户、下载信息、访问统计次数等,数据库系统构成如图4所示。

(2)数据伺服处理程序

数据伺服处理程序用于转换、计算现场站传来的数据,并即时将处理后的结果写入数据库中。处理程序采用Visual BASIC语言编写,通过计时器控制的定时功能触发写库过程,并在完成写库过程后删除原数据以防止重写。不难看出,数据伺服程序是传输系统和发布系统之间的连接,它使两个彼此独立的系统有机地结合起来。

(3)示范站信息发布主页

信息发布主页为远程用户提供所需的全部信息,包括示范站的概况、实时的监测曲线、最新的监测数据等。从发布信息内容、访问方式及管理维护的角度出发,主页设计成导航区、发布区、管理区和下载区,为远程用户、管理员提供交互。

图4示范站数据库系统构成框图

导航区为远程用户提供必要的导航信息,包括公告信息、图片及相关的专业网站链接,展示示范站建设工作的进展、取得的阶段性成果及有关的预警内容。

发布区用于提供示范站概况、实时监测曲线及数据查询。

示范站概况包括示范区自然地理条件、地质条件、示范站工作的整体部署,监测仪器设施(GPS、固定式钻孔倾斜仪、TDR、BOTDR、孔隙水压力监测仪等)的性能指标,监测现场站(含中心站)、监测钻孔、监测点的基础信息等内容。

实时监测用于显示各种监测曲线,是发布主页最核心的内容。从访问方便的角度出发,实时监测采取了“选择灾体—选择监测剖面—选择监测点—选择监测时段—显示监测曲线”逐级打开、层层剥落的展示方式,并全部做成图形方式链接,以增强访问的直观性。监测曲线的坐标设计成自适应型,图形的大小在系统的配置文件中设置,并标明数据的最新更新时间。曲线是以图片的形式显示的,用户可以方便地将其下载到自己的PC中保存。

从安全考虑,数据查询进行了加密,用户需用授权的用户名和密码登录后方可查看。查询采取了“选择监测方法—选择监测点—选择监测起始时间—显示数据表”组合式筛选的方式。输入界定参数并提交后系统从底层数据库中找到所有符合条件的记录,按日期排序后列表显示。用户可以全部或部分选取查询结果,粘贴至个人PC作为WORD文档保存。

管理区专为系统管理员设计,用于管理员远程管理文本、图片、数据等信息,进行信息的添加、修改、删除、上传下载等操作。分为信息管理、图片管理、数据管理、下载管理4个相互独立的模块,具有模糊查找等高级功能。

下载区为授权用户提供工作图片、视频、监测报告、软件等较大文件的下载功能,补充主页在文件交换方面的不足。

主页面布局如图5所示。欲了解发布系统的更多内容,请登录Http://www.wss.org.cn。

5示范站实时监测系统运行评价

由于本文着重论述实时监测技术的可行性和可靠性,因此不对监测成果和滑坡稳定性动态做更多分析。从以上论述明显可以看出,在地质灾害监测中,构建实时监测系统从技术上是可行性的。本节主要针对巫山县实时监测预警示范站运行过程中出现的各种问题,从故障统计、故障原因分析等方面,对示范站采集系统、传输系统、发布系统的可靠性进行简单评价,并提出意向性的改善建议。

图5示范站信息发布主页面

根据巫山县地质灾害监测预警示范站建设工作日志,监测系统故障主要发生在传输子系统,故障表现形式为数据不传输或不正确传输,主要原因为GPRS网络信号不稳定造成传输随机中断所致;其次,拨号连接失败后的重复尝试连接导致服务器80端口长期无效重复占用,当超过服务器最大连接数后导致网络无法正确访问;再次,监测地区不规律的停电常常使保障体系失效,从而丢失数据。此外,示范站服务器系统遭受过病毒破坏和恶意攻击,两次造成网络系统崩溃。可见,实时监测系统在基础通信条件和保障体系完备的条件下,是能够稳定可靠运行的。在建设过程中通过安装长时后备电源系统、功能完善的病毒防火墙和网络防火墙,可有效降低保障体系风险,进一步提高系统运行的稳定性。

6结语

巫山县地质灾害实时监测预警示范站自2003年陆续建设运行以来,在技术人员的维护下,系统运行正常,取得了数十万个监测数据,发布公告信息及图片近百条(幅),编写监测分析简报数期,实现了监测信息远程实时访问,取得了良好的示范效果。实践证明,将实时监测技术应用于地质灾害防治中是完全可行的,也是比较可靠的。可以预见,实时监测技术将是地质灾害监测的必然发展趋势。

参考文献

[1]殷跃平等.长江三峡库区移民迁建新址重大地质灾害及防治研究.北京:地质出版社,2004

[2]王洪德,高幼龙等.《地质灾害预警关键技术方法研究与示范》项目设计书.2003(未出版)

[3]刘新民等.长江三峡工程库区滑坡及泥石流研究.成都:四川科学技术出版社,1990

[4]何庆成,侯圣山,李昂.国际地质灾害防治现状.科学情报,2004,(5)

[5]邬晓岚,涂亚庆.滑坡监测的现状及进展.中国仪器仪表,2001(3)

[6]张青,史彦新,朱汝烈.TDR滑坡监测技术的研究.中国地质灾害与防治学报.第12卷,第2期.2001,(6)

[7]曹修定,阮俊,展建设,曾克.滑坡的远程实时监测控制与数据传输.中国地质灾害与防治学报.第13卷第1期.2002(3)

[8]夏柏如,张燕,虞立红.我国滑坡地质灾害监测治理技术.探矿工程(岩土钻掘工程).2001年增刊

㈡ 地质灾害监测员是干什么的

地质灾害监测采用传统人工监测和遥感监测两种方法。
人工监测需要监测员到实地考回察。通过目测和借助一些答简易监测仪器进行,主要依靠经验。
遥感监测是在信息化时代建立在互联网平台上的一种新技术,已经被普遍采用,如晶合微震声发射技术,可以检测到土地深处变化,通过观察这些细微的变化,作出灾害预警。
信息化监测系统可以做到在线实时监测,自动运行,出现问题自动报警。地质灾害监测员需要对系统进行调试和维护。

㈢ 地质灾害监测的方法有哪些

地质灾害监测方法地质灾害的监测方法可用简易监测和仪器监测。
简易监测方法:变内形位移监测法、裂容缝相对位移监测法、目视检查监测法等。
(1)变形监测法:通过监测点的相对位移量测,了解掌握地质灾害的演变过程。
(2)裂缝相对位移监测法:通过监测灾体中拉裂两侧相对张开、闭合变化,了解地质灾害体的动态变化和发展趋势。
(3)目视检查法:通过定期目视监测地质灾害隐患点有无异常变化,了解地质灾害演变特征,及时发现斜坡地面开裂,剥脱落,地面鼓胀,泉水突然浑浊,流量增减变化,树木歪斜,墙体开裂等微观变化,及时捕捉地质灾害前兆信息。
重要危险隐患点应采用仪器监测。

㈣ 实施地质灾害监测预警体系建设规划的保障措施

(1)建立健全地质灾害监测的法规、制度和规范体系

建立和完善地质灾害监测管理办法、监测设施保护规定、监测资料共享、监测资料汇交制度。大力宣传《地质灾害防治条例》、《全国生态环境建设规划》、《中华人民共和国环境保护法》、《中华人民共和国水法》和《中华人民共和国水土保持法》;积极推进《地质环境监测法》、《地质环境保护条例》和《矿山环境保护条例》等的立法进程。

修改完善地下水环境监测技术规范;做好矿山地质环境监测技术要求、地质灾害监测技术要求、地质灾害预报预警技术要求、地面沉降、地裂缝监测规范、地质环境监测数据采集、录入等一系列规程规范和技术标准的编制或修订工作。使地质灾害监测工作走上法制化、规范化的道路。

(2)建立健全地质灾害监测机构、理顺体制关系

建立由中央到地方专门领导机构和专业组织实体,形成覆盖全国的专业与群众相结合的地质灾害监测实体网络(图)。国务院国土资源主管部门负责全国地质灾害防治的组织、协调、指导和监督工作,其他部门按照各自职责负责相关部门的防治工作。县级以上人民政府灾害防治小组应会同水利、交通、城建和气象等部门加强配合对地质灾害险情的实时动态监测,形成既有各专业独立性,又有统一领导的监测预警体系。

建立健全国家、省(市、区)、市(地、州)和县(市)四级地质环境监测机构,明确各级监测机构作为国土资源管理部门的公益性事业单位。按照“站网管理,业务联系,技术指导,资料汇交,成果集成”的原则,理顺各级关系,加强内部机构建设,使其真正承担起各类地质环境监测和地质灾害群测群防的技术指导工作。

(3)健全监测经费保障体系

监测经费实行分级分责任承担。国家、省、地和县等不同级别的监测网点建设、维护、运行和基本建设经费,应纳入各级政府的财政预算,建立地质环境专项经费;由采矿、开采地下水、工程建设等人为因素诱发的地质灾害、环境地质问题等的专门监测网点建设、维护和监测的日常运行以及试验研究经费,应由责任人承担;各类建设项目,建设单位应承担《建设用地地质灾害危险性评估》中所要求的地质环境监测研究经费。

(4)把科技进步放在突出位置,大力推广先进实用的监测设备

重视高素质人才的培养,引进先进的技术设备,加快地质环境监测的自动化进程,推广规范化的技术规程,建设和完善地质环境信息网络,改进监测成果的发布形式,提高监测工作为社会公众服务为政府决策服务的能力。

(5)加强国际交流与合作

加强国际交流与合作,学习和借鉴国外先进技术和经验,提高我国地质环境监测水平和国际影响

总结地质灾害预报预警成功的经验,进一步尝试和推进与其他公益网的合作,实现信息资源共享互为补充和促进,不断拓展监测领域,提高为政府、为社会服务的水平。

(6)加强宣传教育,提高全社会地质灾害防治和地质环境保护意识

利用电视、广播和报纸等多种宣传媒体,结合“世界地球日”、“土地日”、“水日”等社会活动大力宣传我国人口、环境与资源的基本国策,宣传生态环境建设、地质灾害防治、地质环境保护的重要性和迫切性,提高全社会对保护地质环境的重视程度,普及地质环境保护和地质灾害防治知识,提高全民的防灾减灾意识。

㈤ 地质灾害监测方法技术现状与发展趋势

【摘要】20世纪末期以来,监测理论和技术方法有长足发展,常规技术方法趋于成熟,设备精度、设备性能已具较高水平,并开发了部分高精度(微米级位移识别率)、自计、遥测、自动传输的监测设施。未来,将充分综合运用光学、电学、信息学、计算机和通信等技术(诸如光纤技术—BOTDR、时域反射技术—TDR、激光扫描技术、核磁共振技术、NUMIS、GPS技术、合成孔径干涉雷达技术—InSAR及互联网通讯技术等),进一步开发经济适用、有效可行的地质灾害监测新技术,提高精度、准确性和及时性,最大程度地减小地质灾害造成的损失。

【关键词】地质灾害监测技术方法新技术优化集成

20世纪80年代以来,我国地质灾害时空分布特点呈现新的变化。随着人类工程活动越来越强,人为地质灾害日趋严重,规模、数量和分布范围呈增加趋势;人口密集、经济发达地区地质灾害造成的损失越来越大。崩塌、滑坡和泥石流等突发性地质灾害发生频度和造成的损失不断加大,地面沉降、海水入侵等缓慢性地质灾害的范围逐渐增加。据相关统计资料显示,1995~2002年,地质灾害共造成9000多人失踪或死亡,突发性地质灾害共造成直接经济损失524亿元,缓慢性地质灾害造成直接经济损失590亿元,间接经济损失2700亿元。地质灾害已经成为严重制约我国经济发展的重要因素之一。

为了摸清我国地质灾害的分布情况,我国系统地开展了地质灾害调查工作,先后出台了《地质灾害防治管理办法》和《地质灾害防治条例》,明确指出:防治地质灾害,实行“以人为本,防治结合,统筹规划,突出重点,分期实施,逐步到位”的方针。并于2003年4月启动了全国性地质气象预报。对已经查明的地质灾害体,特别是对生产建设、人民生命财产安全构成严重威胁的地质灾害,若能运用适当、有效、经济可行的监测措施,作出科学的监测预报,则可最大程度地减小灾害损失。

滑坡监测在不同条件、不同时期其作用不同,总的来说有以下几个方面:

(1)通过综合分析多种监测方法的监测数据,确定地质灾害稳定状态及发展趋势,及时作出预测,防止或减轻灾害损失。

(2)研究导致灾害体变形破坏的主导因素、作用机理,为防治工程设计提供依据。

(3)在防治工程施工过程中,监测、分析灾害体变形发展趋势及工程施工的扰动,保障施工安全。

(4)施工结束后,进行工程效果监测。

(5)综合利用长观监测资料,分析灾害体变形破坏机制和规律,检验在防治工程设计中所采用的理论模型及岩土体性质指标值的准确性,对已有的监测预报理论及模型进行验证改进,改善、提高监测预测预报技术方法。

1地质灾害监测技术综述

地质灾害监测的主要任务为监测地质灾害时空域演变信息(包括形变、地球物理场、化学场)、诱发因素等,最大程度获取连续的空间变形数据,应用于地质灾害的稳定性评价、预测预报和防治工程效果评估。

地质灾害监测是集地质灾害形成机理、监测仪器、时空技术和预测预报技术为一体的综合技术。地质灾害的形成机理是开展地质灾害监测工作的基础;监测仪器是开展工作的手段;更为重要的是只有充分利用时空技术,才能有效发挥地质监测的作用;预测预报是开展地质灾害监测的最终目的。

崩塌、滑坡、泥石流等突发性地质灾害,具有爆发周期短、威胁性及破坏性显著、成因复杂等特点,因此,当前地质灾害的监测技术方法的研究和应用多是围绕突发性地质灾害进行的。1.1监测方法

监测方法按监测参数的类型分为四大类:即变形、物理与化学场、地下水和诱发因素监测(见表1)。

表1主要地质灾害监测方法一览表

1.1.1 变形监测

主要包括以测量位移形变信息为主的监测方法,如地表相对位移监测、地表绝对位移监测(大地测量、GPS测量等)、深部位移监测。该类技术目前较为成熟,精度较高,常作为常规监测技术用于地质灾害监测。由于获得的是灾害体位移形变的直观信息,特别是位移形变信息,往往成为预测预报的主要依据之一。

1.1.2物理与化学场监测

监测灾害体物理场、化学场等场变化信息的监测技术方法主要有应力监测、地声监测、放射性元素(氡气、汞气)测量、地球化学方法以及地脉动测量等。目前多用于监测滑坡等地质灾害体所含放射性元素(铀、镭)衰变产物(如氡气)浓度、化学元素及其物理场的变化。地质灾害体的物理、化学场发生变化,往往同灾害体的变形破坏联系密切,相对于位移变形,具有超前性。

1.1.3地下水监测

地下水监测主要是以监测地质灾害地下水活动、富含特征、水质特征为主的监测方法。如地下水位(或地下水压力)监测、孔隙水压力监测和地下水水质监测等。大部分地质灾害的形成、发展均与灾害体内部或周围的地下水活动关系密切,同时在灾害生成的过程中,地下水的本身特征也相应发生变化。

1.1.4诱发因素监测

诱发因素类主要包括以监测地质灾害诱发因素为主的监测技术方法,如气象监测、地下水动态监测、地震监测、人类工程活动等。降水、地下水活动是地质灾害的主要诱发因素;降雨量的大小、时空分布特征是评价区域性地质灾害(特别是崩、滑、流三大地质灾害的判别)的主要判别指标之一;人类工程活动是现代地质灾害的主要诱发因素之一,因此地质灾害诱发因素监测是地质灾害监测技术的重要组成部分。

1.2监测仪器

1.2.1按从监测仪器同灾害体的相对空间关系分为接触类和非接触类

(1)接触类:是指必须安装于灾害体现场或进行现场施测的监测仪器系列。如滑坡地表或深部位移监测、物理和化学场监测等。该类仪器所获得的信息多为灾害体细部信息,信息量丰富。

(2)非接触类:是指于现场安装简易标志或直接于灾害体外围施测的监测仪器系列。该类监测方法多以获得灾害体地表的绝对变形信息为主,易采用网式施测;特别是突发性地质灾害的临灾前后,具有安全、快捷等特点。如激光微位移监测、测量机器人、遥感雷达监测等。

1.2.2按监测组织方式分为简易监测、仪表监测、控制网监测、自动遥测

(1)简易监测:采用简易的量测工具(皮尺、钢尺、卡尺)对灾害体地表的裂缝等部位进行监测。

(2)仪表监测:采用机测或电测仪表(安装、埋设传感器)对滑坡进行地表及深部的位移、应力、地声、水位、水压、含水量等信息监测。

(3)控制网监测:在滑坡变形破坏区及周边稳定地带,布设大地测量或GPS卫星定位测量控制点网,进行滑坡绝对位移三维监测。

(4)自动遥测:利用有线和无线传输技术,对仪表监测所得信息进行远距离遥控自动采集、传输,可实现全天候不间断监测。

2地质灾害监测方法技术现状

地质灾害监测技术是集多门技术学科为一体的综合技术应用,主要发展于20世纪末期。伴随着电子技术、计算机技术、信息技术和空间技术发展,国内外地质灾害调查与监测方法和相关理论得到长足发展,主要表现在:

(1)常规监测方法技术趋于成熟,设备精度、设备性能都具有很高水平。目前地质灾害的位移监测方法均可以进行毫米级监测,高精度位移监测方法可以识别0.1mm的位移变形。

(2)监测方法多样化、三维立体化。由于采用了多种有效方法结合对比校核以及从空中、地面到灾害体深部的立体化监测网络,使得综合判别能力加强,促进了地质灾害评价、预测能力的提高。

(3)其他领域的先进技术逐渐向地质灾害监测领域进行渗透。随着高新技术的发展和应用的深入,卫星遥感、航空遥感等空间技术的精度逐渐提高,一些高精度物探(如电法、核磁共振等技术)的发展,使得地质灾害的勘查技术与监测技术趋于融合,通过技术上的处理、提升,该类技术逐渐适用于区域性的地质灾害和单体灾害的监测工作。

“八五”以来,我国在地质灾害监测技术研究方面取得了丰硕的成果,并积累了丰富的经验,使我国的地质灾害监测预警水平得到很大程度的提高;但是还存在一定的局限性,主要表现在:

(1)地质灾害监测技术、仪器设施多种多样,应用重复性高,受适用程度、精度、设施集成化程度、自动化程度和造价等因素的制约,常造成设备资源浪费,效果不明显。

(2)所取得的研究成果多侧重于某一工程或某一应用角度,在地质灾害成灾机理、诱发因素研究的基础上,对各种监测技术方法优化集成的研究程度较低。

(3)监测仪器设施的研究开发、数据分析理论同相关地质灾害目标参数定性、定量关系的研究程度不足,造成监测数据的解释、分析出现较大的误差。

因此,要提高地质灾害预警技术水平,必须在地质灾害研究同开发监测技术方法相结合的基础上,进行地质灾害监测优化集成方案的研究。

3地质灾害监测技术方法发展趋势

3.1高精度、自动化、实时化的发展趋势

光学、电学、信息学及计算机技术和通信技术的发展,给地质灾害监测仪器的研究开发带来勃勃生机;能够监测的信息种类和监测手段将越来越丰富,同时某些监测方法的监测精度、采集信息的直观性和操作简便性有所提高;充分利用现代通讯技术提高远距离监测数据信息传输的速度、准确性、安全性和自动化程度;同时提高科技含量,降低成本,为地质灾害的经济型监测打下基础。

监测预测预报信息的公众化和政府化。随着互联网技术的发展普及,以及国家政府的地质灾害管理职能的加强,灾害信息将通过互联网进行实时发布,公众可通过互联网了解地质灾害信息,学习地质灾害的防灾减灾知识;各级政府职能部门可通过所发布信息,了解灾情的发展,及时做出决策。

3.2新技术方法的开发与应用

3.2.1调查与监测技术方法的融合

随着计算机的高速发展,地球物理勘探方法的数据采集、信号处理和资料处理能力大幅度提高,可以实现高分辨率、高采样技术的应用;地球物理技术将向二维、三维采集系统发展;通过加大测试频次,实现时间序列的地质灾害监测。

3.2.2 智能传感器的发展

集多种功能于一体、低造价的地质灾害监测智能传感技术的研究与开发,将逐渐改变传统的点线式空间布设模式;由于可以采用网式布设模式,且每个单元均可以采集多种信息,最终可以实现近似连续的三维地质灾害信息采集。

3.3新技术新方法

3.3.1光纤技术(BOTDR)

光导纤维监测技术又称布里渊散射光时域光纤监测技术(BOTDR),是国际上20世纪70年代后期才迅速发展起来的一种现代化监测技术,在航空、航天领域中已显示了其有效性。在土木、交通、地质工程及地质灾害防治等领域的应用才刚刚开始,并受到各发达国家研究机构的普遍重视,发展前景十分广阔。

通过合理的光纤敷设,可以监测整个灾害体(特别是滑坡)的应变信息。

3.3.2时间域反射技术(TDR)

时间域反射测试技术(Time Domain Reflectometry)是一种电子测量技术。许多年来,一直被用于各种物体形态特征的测量和空间定位。早在20世纪30年代,美国的研究人员开始运用时间域反射测试技术检测通讯电缆的通断情况。在80年代初期,国外的研究人员将时间域反射测试技术用于监测地下煤层和岩层的变形位移等。90年代中期,美国的研究人员将时间域反射测试技术开始用于滑坡等地质灾害变形监测的研究,针对岩石和土体滑坡曾经做过许多的试验研究,国内研究人员已经开始该方法的研究工作,并已经在三峡库区投入试验应用阶段,同时开展了与之相关的定量数据分析理论研究。

所埋设电缆即是传感器,又可传输测试信号;该方法相对于深部位移钻孔倾斜仪监测具有安装简单、使用安全和经济实用等特点。

3.3.3激光扫描技术

该技术在欧美等发达国家应用较早,我国近期开始逐渐引进。主要是用于建筑工程变形监测以及实景再现,随着扫描距离的加大,逐渐向地质灾害调查和监测方向发展。

该技术通过激光束扫描目标体表面,获得含有三维空间坐标信息的点云数据,精度较高。应用于地质灾害监测,可以进行灾害体测图工作,其点云数据可以作为地质灾害建模、地质灾害监测的基础数据。

3.3.4核磁共振技术(NUMIS)

核磁共振技术是国际上较为先进的一种用来直接找水的地球物理新方法。它应用核磁感应系统,通过从小到大地改变激发电流脉冲的幅值和持续时间,探测由浅到深的含水层的赋存状态。我国于近期开始引进和研究,目前已经在三峡库区的部分滑坡体进行了应用试验,效果较好。

应用于地质灾害监测,可以确定地下是否存在地下水、含水层位置以及每一含水层的含水量和平均孔隙度,进而可以获知如滑坡面的位置、深度、分布范围等信息,从而对滑坡体进行稳定性评价,并对滑坡体的治理提出科学依据。

3.3.5合成孔径干涉雷达技术(InSAR)

运用合成孔径雷达干涉及其差分技术(InSAR及D-InSAR)进行地面微位移监测,是20世纪90年代逐渐发展起来的新方法。该技术主要用于地形测量(建立数字化高程)、地面形变监测(如地震形变、地面沉降、活动构造、滑坡和冰川运动监测)及火山活动等方面。

同传统地质灾害监测方法相比,具有如下特点:

(1)覆盖范围大;

(2)不需要建立监测网;

(3)空间分辨率高,可以获得某一地区连续的地表形变信息;

(4)可以监测或识别出潜在或未知的地面形变信息;

(5)全天候,不受云层及昼夜影响。

但由于系统本身因素以及地面植被、湿度及大气条件变化的影响,精度及其适用性还不能满足高精度地质灾害监测。

为了克服该技术在地面形变监测方面的不足,并提高其精度,国内外技术人员先后引入了永久散射点(PS)的技术和GPS定位技术,使InSAR技术在城市及岩石出露较好地区地面形变监测精度大大提高,在一定的条件下精度可达到毫米级。永久散射(PS)技术通过选取一定时期内表现出稳定干涉行为的孤立点,克服了许多妨碍传统雷达干涉技术的分辨率、空间及时间上基线限制等问题。

随着卫星雷达系统资源的改进和发展,以及相应数据处理软件的提高,该技术在地质灾害监测领域的应用将趋于成熟。

3.4地质灾害监测技术的优化集成

3.4.1问题的提出

(1)监测方法的适应性。对于各种监测方法所使用的监测仪器设施,均有各自的应用方向和使用技术要求;针对不同地质灾害灾种、类型,其使用技术要求(包括测点布设模式、安装使用技术要求等)不同。

(2)地质灾害不同的发展阶段。对于崩塌、滑坡等突发性地质灾害,不同发展阶段所适用的监测方法和仪器设施各异,监测数据采集周期频度不同。

(3)监测参数与监测部位。实践证明,一方面,不同的监测参数(地表位移、深部位移、应力、地下水动态、地声等)在不同类型的灾害体监测中具有不同程度的表现优势;另一方面,同一灾害体不同部位的监测参数随时间变化趋势特点并不相同,即存在反映灾害体关键部位特征的监测点,又存在仅反映局部单元(不具有明显的代表性,甚至是孤立的)特征的监测点。因此,监测要素(监测参数、监测部位)的优化选择,是整个监测设计工作的基础。

(4)自动化程度。决定于设备的集成度、控制模式、数据标准化程度和信息发布方式。

(5)经济效益。决定于地质灾害的规模、危害程度、监测技术组合、设备选型等因素。

3.4.2设计原则

地质灾害监测技术优化集成方案遵循以下原则:

(1)监测技术优化原则:针对某一类型地质灾害,确定优势监测要素,进行监测内容、监测方法优化组合,使监测工作高效、实用。

(2)经济最优原则:首先,不过于追求高、精、尖的监测技术,而应选择发展最为成熟、应用程度较高的监测技术;其次,对于危害程度较大的大型地质灾害体,可选择专业化程度较高的监测技术方法,由专业人员进行操作、维护,对于危害程度低,规模小的灾害体,可选择操作简单、结果直观的宏观监测技术,由群测群防级人员进行操作。

3.4.3最终目标

根据不同种类地质灾害和不同类型地质灾害的物质组成、动力成因类型、变形破坏特征、外形特征、发育阶段等因素,研究适用于不同类型地质灾害的监测要素(监测参数、监测点位的集合)、监测方法、监测点网的时空布置模式、监测技术要求,建立典型地质灾害监测的优化集成方案。

㈥ 全国地质灾害监测预警体系建设的主要任务

全国地质灾害监测预警体系建设的总体规划如图7.1所示。

7.3.1 国家、省、市、县级地质灾害监测预警站网建设

县级以上国土资源行政主管部门建立地质灾害监测预警体系,会同建设、水利、交通等部门承担地质灾害监测任务,负责业务技术管理,并可受政府委托行使部分地质灾害监测管理职能,发布地质灾害监测预警信息。地质灾害监测机构是公益性事业单位。

(1)国家级地质灾害监测站

国家级地质灾害监测站负责全国性地质灾害专业监测网、信息网的建设与运行工作,并承担国家级地质环境监测任务;承担全国地质灾害预警预报和相关的调查研究工作;拟编全国地质灾害监测规划、计划、工作规范和技术标准;开展科技交流与合作,研究和推广新技术、新方法;承担全国地质灾害监测数据、成果报告的汇总、分析、处理和综合研究,为政府决策部门和社会公众提供信息服务;负责对省(区、市)级地质灾害监测业务的指导、协调和技术服务。

(3)地质灾害监测预警研究试验区

针对我国突发性地质灾害具有区域性、同时性、突然性、暴发性和危害大等特点,结合国土整治规划和资源能源开发,在代表性地区开展地质灾害监测预警示范。在试验区建立自动遥测雨量观测站网,逐步建立试验区滑坡、崩塌和泥石流区域爆发的降雨临界值,为突发性灾害的区域预警提供依据。同时,在试验区开展降雨期斜坡岩土体渗流观测,研究降雨诱发滑坡、崩塌和泥石流的机理。

2010年前,进一步完善和建设三峡库区立体式监测预警示范区。完成三峡库区滑坡、崩塌、泥石流灾害的立体监测网建设,在库区60处地质灾害点实现监测数据的自动采集、实时传输和自动分析;完善库区20个县级监测点建设;完成1∶1万航摄飞行;建立全库区的遥感(RS)监测系统,完成全球定位系统(GPS)控制网、基准网建设。

2010年以前重点在重庆市区、北京市、甘肃兰州市、陕西安康市、四川雅安、云南新平、云南东川、浙江金华市、江西宜春市等地区开展突发性地质灾害监测预警试验研究。

(4)地面沉降和地裂缝监测网

1)国家级地面沉降监测网选址原则:①跨省区的地面沉降灾害区域;②有一定的监测工作和设施基础;③地方政府有积极性,并提供配套资金;④具有较为完善的法规和管理体系。

2)工作部署:2010年之前,重点开展长江三角洲、华北平原、关中平原、淮北平原和松嫩平原地面沉降和地裂缝监测网的建设;2010年以后逐步开展汾河谷地、辽河盆地、珠江三角洲以及全国其他主要城市地面沉降和地裂缝的调查及监测网的建设。

长江三角洲地面沉降和地裂缝监测网包括上海市全部,江苏的苏锡常地区、南通地区和盐城地区南部的三个县(市),浙江的杭嘉湖平原,控制面积近5万km2

华北平原地面沉降和地裂缝监测网包括北京、天津市的平原区,河北省的环渤海平原区和山东的鲁西北平原,控制面积5万多km2

关中平原和汾河谷地地面沉降和地裂缝监测网的覆盖范围自六盘山南麓的宝鸡,沿渭河向东,经西安到风陵渡转向北东,沿汾河经临汾、太原到大同,宽近100km,长近1000km,包括渭河盆地、运城盆地、临汾盆地、太原盆地、大同盆地等,涉及近50个(县)市。

7.3.3 群测群防体系建设

突发性地质灾害群测群防网主要针对地质灾害较严重的山区农村,以县为单位,在专业队伍指导下,建立由当地政府领导下的县、乡、村三级群测群防体系。在各级地方政府的组织和领导下,充分发挥各级监测站的技术优势,提高群众的防灾意识和参与程度,完善监测预报制度,到2010年,建成1400个县(市)突发性地质灾害易发区的群测群防网络体系。

(1)群众监测网络建设

1)监测点选定原则:①危险性大、稳定性差、成灾概率高,会造成严重灾情的地质灾害隐患体;②对集镇、村庄、工矿及重要居民点人民生命安全构成威胁的地质灾害隐患体;③一旦发生将会造成严重经济损失的地质灾害隐患体;④威胁公路、铁路、航道等重要生命线工程的地质灾害隐患体;⑤威胁重大基础建设工程的地质灾害隐患体。

2)监测点的建设:根据上述原则确定需要监测的地质灾害隐患点后,由专业调查组及时向当地政府提出监测方案,同时协助搞好监测点的建设工作。①监测范围的确定:除对地质灾害隐患点和不稳定斜坡本身的变形迹象进行监测外,还应把该灾害点威胁的对象和可能成灾的范围,纳入监测范围。②监测方法与要求:对当前不宜进行治理或暂时不能进行治理的隐患点,危害大的应建立简易监测点,同时要对宏观地面变形、滑坡体内的微地貌、地表植物和建筑物标志等进行观察。以定期巡测和汛期强化监测相结合的方式进行。定期巡测一般为半月或每月一次,汛期强化监测将根据降雨强度,每天或24小时值班监测。③监测点的设置:简易监测点一般采用设桩、设砂浆贴片和固定标尺,对滑坡体地面裂缝相对位移进行监测,对危害大的隐患点,如有条件也可用视准线法测量监测点的位移。

3)监测网点的管理与运行:①监测责任落实到具体的单位与个人。被监测的地质灾害隐患点所在的乡(镇)、村和有关单位为监测责任人,在其领导下,成立监测组,监测组由受危害、威胁的居民点或有关单位的群测人员组成。②建立岗位责任制,县、乡(镇)、村应逐级签订责任书。调查过程中,采取多种方式进行宣传与培训,教会监测责任人、监测组成员和群众,如何监测、如何判断灾害可能发生的各种迹象和灾情速报及有关应急防灾救灾的方法。③信息反馈与处理。县(市)国土资源主管行政部门负责监测资料与信息反馈的收集汇总,上报到市(地、州)国土资源行政部门(或地质环境监测站)进行综合整理与分析,省国土资源厅地质环境处(或省地质环境总站)将上报的资料与信息录入省地质灾害空间数据库,进行趋势分析,同时对下一步监测工作提出指导性意见。④预测有重大险情发生时,当地政府和有关单位应立即采取应急防灾减灾措施,同时应立即报告省、市、县政府和国土资源主管部门,派出专业人员赴现场协助监测和指导防灾救灾。⑤建立地质灾害速报制度,按国土资发[1998]15号文附件执行。

4)资料的收集与监测数据的整理:①监测数据包括地质灾害点基本资料、动态变化数据、灾情等。②所有监测数据均应以数字化形式储存在信息系统中,同时,必须以纸介质形式备份保存。③监测点必须进行简易定量监测,并须整理成有关曲线、图表等。应编制有关月报、季报和年报,同时,对今后灾害发展趋势进行预测。④监测数据应按有关程序逐级汇交。

(2)群专结合的预报预警系统建设

1)县(市)国土资源行政主管部门归口管理和指导群众监测网络,负责监测资料与信息反馈的收集汇总。

2)县(市)国土资源行政主管部门的地质环境职能部门应根据气象、水文预报和监测资料进行综合分析,预测地质灾害危险点,并及时向有关乡(镇)、村和矿山及负有对重要设施管理的有关部门发出预警通知。

3)县(市)国土资源行政主管部门负责组织各乡(镇)、矿山、重要设施主管部门编制汛期地质灾害防灾预案。编制全县(市)汛期地质灾害防灾预案,并负责组织实施。

4)县(市)国土资源行政主管部门负责组织地质灾害防治科普宣传活动和基层干部培训工作。

7.3.4 地质灾害监测预警信息网建设

地质灾害监测预警与防治数据是国家与地方进行地质灾害防治,保障社会与经济建设的重要信息,具有数量大、更新快、用途广等特点。通过信息网的建设,实现数据的采集、存储、分析和发布,切实做到为政府、研究人员和社会提供所需的地质灾害信息,为国家经济建设宏观决策提供基础的科学依据。

到2010年,在完善中国地质灾害信息网与各省地质灾害信息网及部分地(市)地质灾害信息网的同时,建成集地质灾害监测、地下水环境监测等为一体的全国地质灾害监测信息系统,实现地质灾害监测数据的自动采集、传输、存储、数据管理、查询、应用和信息实时发布系统。

到2020年,以科学技术为先导,不断完善全国地质灾害监测信息系统,结合气象、水文、地震等相关因素,建成多专业领域、多信息处理技术的信息系统;全面提升我国地质灾害监测信息水平,满足社会和民众对地质灾害信息的需求,实现远程会商、应急指挥等重要决策功能。

地质灾害监测预警信息系统建设依托于各级地质灾害监测机构,具有统一要求、统一流程、分级管理等特点,是一个与现代计算机技术紧密结合的系统工程。本书在第11章(全国地质灾害防治信息系统建设规划研究)全面讨论了包括地质灾害监测预警信息系统在内的整个地质灾害防治信息系统的建设问题,本节不再赘述。

7.3.5 突发性重大地质灾害应急反应机制建设与远程会商应急指挥系统建设

(1)应急反应机制建设

从现在(2004年)起,国家、各省(区、市)要组建以省国土资源行政主管部门为指挥中心,以地质环境监测总站(院、中心)为主体,地(市、州)、县(市、区)国土资源行政主管部门和地方专业队伍协同作战的地质灾害监测预警应急反应系统。

1)应急反应系统要配置必备的应急设备,每年汛前对防灾预案中地质灾害隐患点的主要县(市)进行险情巡查,重点检查防灾减灾措施、群测群防网络、监测责任制是否落实到位,并对主要灾害隐患点进行险情巡查,汛中加强监测,汛后进行复查。

2)发现险情和接到险情报告能在最短的时间内赶到现场,进行险情鉴定,同时能够及时对灾害进行动态监测、分析,预测灾害发展趋势,根据灾害成因、类型、规模、影响范围和发展趋势,划定灾害危险区,设置危险区警示标志,确定预警信号和撤离路线,组织危险区内人员和重要财产撤离,情况危急时,强制组织避灾疏散。

3)接到特大型和大型地质灾害隐患临灾报告,指挥部办公室会同相关部门,迅速组织应急调查组赶赴现场,调查、核实险情,提出应急抢险措施建议。

(2)突发性重大地质灾害远程会商与应急指挥系统建设

随着国家经济建设规模的日益扩大和人民生活水平的不断提高,地质灾害造成的损失日趋突出,地质灾害的防治工作必须针对重大地质灾害及时作出反应,提出科学的决策意见,及时指挥应急处理工作。

突发性重大地质灾害远程会商及应急指挥系统,是针对突发重大地质灾害的预报和应急指挥,在建立地质灾害综合数据库的基础上,构建连接国务院国土资源主管部门、地质灾害数据中心与重点地质灾害发生区的远程会商和应急指挥网络化多媒体环境及地质灾害应急数据传输环境,形成一套信息化的地质灾害远程会商和应急指挥工作流程。

其主要工作内容如下:

1)对重大地质灾害预报和应急指挥相关的信息进行提取、加工、整理、集成与分析,建立地质灾害综合数据库。信息内容包括地理、地质背景数据;气象分析数据;地质灾害调查与监测数据;地质灾害情况资料;救灾条件信息等。

2)建立地质灾害信息发布平台。开发和建设重大地质灾害信息预报与应急指挥相关的动态信息发布系统、空间信息提取与发布系统、多媒体信息发布系统。

3)构建地质灾害远程会商和应急指挥的网络和多媒体运行环境。包括多点、多级视频会议系统、大屏幕显示系统及有关音像、电话系统;国家与重点地质灾害区域之间的网络信息传输系统;构建地质灾害重点区域应急调查数据快速传输环境。

4)研究与制定形成一套地质灾害远程会商和应急指挥系统工作规范。分析地质灾害远程会商和应急指挥工作的特点,提出地质灾害远程会商和应急指挥系统工作的模式,建立一套相关的工作规范。

㈦  浙江省地质灾害遥感调查(ZR)

浙江省地抄质灾害在西南山区主袭要是突发性的滑坡、泥石流等,在浙北平原区主要表现为缓变性的地面沉降。为此,该课题的主要内容包括两个方面:

(1)在对已知主要滑坡(泥石流)灾害进行遥感分析解译的基础上,通过对滑坡灾害时空分布特征以及与其相关的地质、地貌、土壤类型、降雨分布、人口分布等资料的综合研究,探索滑坡(泥石流)灾害发生与降雨分布和降雨强度的关系,将GIS和ANN(人工神经网络)两种新兴技术互相融合,开发适合对浙江多点突发性滑坡(泥石流)灾害进行临灾预警预报的GIS/ANN系统,根据实时的降雨预报和雨量遥测信息,初步实现对滑坡(泥石流)灾害发生的空间范围、强度及其分布概率的临灾预警预报,确定和预测可能导致重大损失的危险区段;编制1∶50万浙江省滑坡灾害趋势遥感分析图。

(2)利用卫星遥感多光谱影像、高精度DEM数据揭示与地面沉降有关的地形地貌和地质构造等信息,结合地面沉降、地下水开采、地表水位监测等资料研究地面沉降的范围、沉降中心、沉降量、沉降速率及其发展趋势,探索建立地面沉降易发程度和危险程度等级判别标准,为地面沉降灾害的防治提供科学依据。

㈧ 抚顺市矿山地质灾害监测有限公司怎么样

简介:抚顺市矿山地质灾害监测有限公司成立于2007年08月13日,主要经营范围为抚顺市矿山地版质灾害区的地权质勘查、监测及灾情预警等。
法定代表人:赵晓超
成立时间:2007-08-13
注册资本:100万人民币
工商注册号:210411003000670
企业类型:有限责任公司(非自然人投资或控股的法人独资)
公司地址:顺城区城东新区13方块33号楼

㈨ 地质灾害数据监测系统分析软件有哪些

青岛海徕天创公司的4Dmos—pointcloud变形监测软件,预测各种地表活动,滑坡、塌陷等,可以咨询

㈩  矿山地质环境监测内容与方法

矿山地质环境监测分为两大类:一是根据已发生的地质环境问题,监测其变化情况,如数量、危害程度等动态变化;二是根据已掌握的地质环境问题的隐患情况,监测其变化趋势,及时预警预报,减少财产损失。

根据湖南省矿山地质环境现状,结合主要的地质环境问题,确定全省矿山地质环境监测内容包括四个方面:矿山地质灾害(地面塌陷、地裂缝、地面不均匀沉陷、崩塌、滑坡、泥石流);矿山地形地貌景观及土石环境,包括破坏地形地貌景观类型、土地资源的占用和破坏、固体废弃物的排放、水土流失的情况等;矿山水环境,包括地下水水位、水质、废水废液的排放等;矿山地质环境恢复治理及效果,包括尾砂库、废石堆的复垦复绿等。由于矿山地质灾害影响范围广,危害大,直接威胁到人民的生命及财产安全,因此,目前一般将矿山地质灾害、水环境作为重点监测内容,而矿山土石环境、矿山环境恢复治理作为次重点监测内容。

一、矿山地质环境监测内容

(一)矿山地质灾害监测内容

1.地面塌陷(采空塌陷、岩溶塌陷)监测

发生时间、塌陷坑数量、塌陷区面积、塌陷坑最大直径、最大深度、危害对象、直接经济损失、治理面积;采空区岩移范围或岩溶地下水强行疏干影响区内的民居建筑、井泉点、农田、道路交通等。

2.地裂缝监测

发生时间、地裂缝数量、最大地裂缝长度、宽度、深度、地裂缝走向、危害对象、直接经济损失、治理面积等。

3.地面不均匀沉陷监测

发生时间、沉降区面积、累计最大沉降量、年平均沉降量、危害对象、直接经济损失、治理面积;采空区岩移范围或岩溶地下水强行疏干影响区内的民居建筑、井泉点、农田、道路交通等。

4.崩塌监测

潜在的崩塌数量、崩塌体方量、危害对象、危险程度,崩塌隐患体上的建筑物变形特征及裂缝变化情况。

5.滑坡监测

潜在的滑坡数量、滑坡体方量、危害对象、威胁资产、危险程度、治理情况,滑坡隐患体上的建筑物、构筑物变形特征及地面微裂缝的变化情况。

6.泥石流监测

潜在的泥石流易发区数量、泥石流物源方量、危害对象、威胁资产、危险程度、治理情况。

(二)矿山水环境监测内容

1.地下水均衡破坏监测

矿区地下水水位最大下降深度、地下水降落漏斗面积、对人、畜、土地的影响;采空区岩移范围或岩溶地下水强行疏干影响区内的井泉点、农田。

2.地下水水质污染监测

地下水污染物种类、地下水污染物含量;矿区内出露的主要泉眼或主要的居民饮用水水井。

3.废水废液排放监测

废水废液类型、年产出量、年排放量、主要有害物质及含量、年循环利用量、年处理量;废水废液排污口,废水废液与溪沟、河流、水库或重要水源地的汇合处等。

(三)矿山地形地貌景观及土石环境监测内容

1.地形地貌景观监测

破坏地形地貌景观类型、方式、区位、面积、破坏程度及恢复治理难易程度。

2.占用破坏土地监测

侵占破坏土地方式、侵占破坏土地类型、面积、土地复垦面积、恢复治理难易程度。

3.固体废弃物排放监测

固体废弃物类型、占地面积及类型、主要有害物质及含量、年产出量、年排放量、年循环利用量、年处理量。

4.土壤污染监测

污染的土壤类型、面积、主要污染物及含量。

5.水土流失监测

矿区水土流失面积、土壤流失量、危害程度。

(四)矿山地质环境恢复治理及效果监测内容

主要监测已治理的矿山地质环境问题、投入治理的资金及资金来源、治理措施、治理面积、治理效果(社会效益、环境效益、经济效益)等。

二、矿山地质环境监测方式

根据监测手段的差异,矿山地质环境监测方式分为常规监测、专业监测、遥感监测和应急监测四类。具体方式的采取,根据其监测面积、地域、重点监测对象的差异性而定。

(一)常规监测

常规监测主要是指监测责任人对监测对象及监测点采取定期巡查监测,并填写技术表格的方式。

根据矿山类型,划定监测责任人。一般来说,采矿权人作为最大的受益人,也是破坏地质环境的责任主体,是常规监测的责任人。上级管理机构应该指派专员,对矿山企业开展指导,并适时开设培训班,分期催交监测技术表格,汇总分析技术资料,形成年报后再上报。对于责任主体灭失的矿山,其监测责任人应归咎于当地的国土资源主管部门,通过委托专业机构的方式开展监测。

此类监测通常采用简易的监测方法,如目测、尺测、贴片、埋简易桩等,少数引用专业设备进行监测。

(二)专业监测

专业监测主要是指通过专门的监测机构,采用先进的技术设备,对矿山地质环境问题开展监测,以监测示范区的形式推广。该监测方式与科学技术的发展紧密相连,并逐步向自动化、智能化靠拢。

以全省地质环境问题突出的大中型闭坑矿山和部分大中型国有生产矿山为单元,建立矿山地质环境监测示范区,开展矿山地质环境监测技术方法研究。原则上每个市(州)可建立1~2个矿山地质环境监测示范工程,根据“应急优先、典型示范”原则,作为示范区试点,由专门的监测机构具体实施,工作方法如下:

1)在开展示范区1∶5000精度矿山地质环境问题调查的基础上,以矿区地面沉陷变形、水环境、土石环境污染、占用破坏土地为主要监测内容,采用高新技术手段对矿区主要环境地质问题进行监测。

2)建立示范区地表塌陷监测网和深部位移监测点:广泛应用微电子技术、传感技术、通信技术和自动控制等技术监测矿山地质环境。采用多种监测技术(GPS、全站仪、水准仪、裂缝计、位移计、应变仪)定期开展地表塌陷与地表裂缝监测;采用钻孔倾斜仪、TDR定期开展深部位移监测;采用光纤光栅应变技术,三维激光扫描技术,实时监测矿山边坡、房屋开裂等的变化情况。

3)建立示范区水土污染监测网:合理布设监测网点,定期取水土样分析测试。引进先进的水环境自动检测技术,实时监控矿区水环境,分析矿区水土的污染原因、污染途径、污染程度,预防水土环境污染事故。

4)开发建立矿山地质环境示范区监测预警管理信息平台,实现自动监测、传输、管理、分析为一体的信息系统,实现远程无人自动化监控综合管理。

5)发现突变数据及时反馈地方政府,有效预防矿山地质灾害及水土环境污染事故。

6)开展多种监测技术方法研究和比较,优化监测技术手段,开展技术交流,对于各种监测方法的精度、优缺点进行比较,对各种监测技术方法进行总结及推广应用。提交年度成果和成果审查。

(三)遥感卫星监测

遥感卫星监测是指采用多波段、多时相和高分辨率遥感影像(Quick bird或SPORT卫星数据)InSAR技术,开展典型矿区地质环境动态遥感监测,建立基于遥感波谱的具有一定精度保证的主要矿山地物类型、土地与植被破坏、地面塌陷等自动识别模型与方法,实现地物面积变化监测。主要适用于大范围、矿业活动程度高、破坏大的密集型重点矿山集中开采区。

其工作步骤如下:

1)选取要监测的重点区域,充分了解研究区的地质环境背景,结合区内矿山分布,确定遥感监测方案。

2)遥感影像选取高分辨率卫星影像(QuickBird或SPORT)数据。

3)通过遥感影像对矿产开采区侵占土地、植被破坏、固体废物堆放、尾矿库分布、采空区地面沉陷、滑坡、泥石流、崩塌等地质灾害、矿产开发引发的水土流失和土地沙化、矿区地表水体污染、土壤污染等矿山环境地质问题进行解译和判读。

4)收集研究区1∶10000地形图数据,将遥感影像配准到地形图上,采用目视解译、人机结合解译和计算机自动提取等方法将解译的内容按实际规模大小标在地形图上,并填写遥感解译记录表。

5)对卫星监测数据进行实地验证,总结遥感监测技术方法,开展技术交流,对于各种监测方法的精度、优缺点进行比较,对各种监测技术方法进行总结及成果推广。提交年度成果和成果审查。

(四)应急监测

矿山地质环境应急监测适用于湖南省采矿因素引发的重大突发地质灾害事件和矿山地下水污染事件。

1.应急监测响应分级

对应地质灾害和地下水污染事件分级,应急响应分为特大(Ⅰ级响应)、重大(Ⅱ级响应)、较大(Ⅲ级响应)和一般(Ⅳ级响应)四级。市、县分别负责较大(Ⅲ级)与一般事件(Ⅳ级)应急监测工作。特大(Ⅰ级)与重大(Ⅱ级)由省应急监测指挥部决策并指挥省级地质环境监测机构实施。

2.应急监测响应程序

省应急监测指挥部接到特大(Ⅰ级)与重大(Ⅱ级)突发性矿山地质灾害和地下水污染事件信息并确认需要监测的,立即向省政府和国土资源部报告,启动并实施应急监测预案。

3.应急监测组织

成立应急监测指挥部,设立应急监测中心,应急监测中心下设现场调查组、监测组、技术分析组、综合管理组、后勤组等五个工作组。

应急监测中心接到指令后立即启动应急监测工作,组织各工作组迅速赶赴现场开展应急监测工作,各工作组的任务职责如下:

1)现场调查组与监测组:立即赶赴现场开展调查,根据灾害事件的形成条件,制定监测方案,圈定监控范围、布置监测网点、监测项目、监测方法,制定应急监测实施方案并交技术组审核。监测人员按应急监测实施方案进行监测。

2)技术分析组:根据现场情况和技术条件及时审核应急监测实施方案并报上级批准后,交现场监测组实施,提出应急对策建议和方案,编制应急监测报告交综合管理组。

3)综合管理组:组织、协调所有人员按其职责开展应急工作;及时接转电话和传送文件、报告,认真做好值班记录,保持24小时联络畅通。及时向上级有关部门报告应急调查结果、应急监测结果、事态进展、发展趋势、处置措施及效果等情况。

4)后勤保障组:负责调度车辆运送应急监测人员、设备和物质,做好后勤保障以及现场监测人员的安全救护工作;开展摄影、摄像和信息编报工作。

4.应急监测处置

(1)信息接收

省应急监测中心综合组设专人专线电话负责全省矿山地质环境突发事件的信息接收,并及时向省应急指挥部报告。

(2)应急监测

1)向地方指挥部提出开展群测群防的建议。发动群众,针对应急监测对象以及毗邻区域开展群测群防监测。定期目视检查地质灾害体有无异常变化,如建筑物变形、地面裂缝扩展及地下水异常等;利用简易工具,采用埋桩法、埋钉法、上漆法或贴片法等监测裂缝变化。

2)对险情重、规模大、表象识别困难的滑坡体,结合目视监测和简易监测,布设专业监测网观测地质灾害体的动态变化情况,监测周期尽可能加密。专业监测对象以表层位移和地下水地表水为主。在阻滑段或者滑坡周缘的扩展部位,采用激光扫描、定点测量等方法,监测关键位置的位移及其变化情况。

3)对矿山地下水污染事件,应急监测有毒有害物种类、含量变化过程,水质状况变化过程、污染范围;污染事件造成河流严重污染导致下游地下水遭受严重威胁或污染的,说明污染水体前锋入境、污染水体过境和出境过程及有毒有害物含量变化过程。

5.信息报送

(1)报告时限和程序

确认发生特别重大(Ⅰ级)与重大(Ⅱ级)突发性矿山地质灾害事件后,应急监测指挥部立即向省政府和国土资源部报告有关应急监测信息。

(2)报告方式与内容

突发的矿山地质灾害和矿山地下水污染事件应急监测报告分为初报、续报和监测结果报告三类。

1)初报从发现事件后起4小时内上报,初报主要内容包括:突发灾害事件发生的时间、地点、灾害类型、受害或受威胁人员情况等初步情况以及初步采取的防范措施、应急监测对策和预期效果。

2)续报在查清有关基本情况后随时上报,续报内容是在初报的基础上,根据应急监测进程,报告有关确切数据、事件发生的原因、过程、进展情况、采取的应急措施和效果。

3)监测结果报告在事件处理完毕后上报,采用书面报告的形式,在总结初报和续报的基础上,详细报告下列内容:应急监测项目、监测频率、监控范围、采取的监测技术方法、手段等应急监测方案;应急监测预警技术所确定的关键地段,选定的预警模型与判据,校验复核;灾害体的成因、变化数据,变化趋势、危害特征、社会影响和后续消除或减轻危害的措施建议;对应急监测实施方案、采取的应急对策、措施和效果进行评价,总结经验教训。

三、矿山地质环境监测方法

(一)矿山地质灾害监测方法

1.地面塌陷

矿区塌陷面积较大的,采用遥感技术监测;重点矿区采用高精度GPS、钻孔倾斜仪、全站仪等监测;其他采用人工现场调查、量测。具体方法为:

1)地面和建筑物的变形监测,通常设置一定的点位,用水准仪、百分表及地震仪等进行测量,或可采用埋桩法、埋钉法、上漆法、贴片法等进行简易监测。

2)塌陷前兆现象的监测内容包括:抽、排地下水引起泉水干枯、地面积水、人工蓄水(渗漏)引起的地面冒气泡或水泡、植物变态、建筑物作响或倾斜、地面环形开裂、地下土层垮落声、水点的水量、水位和含沙量的突变以及动物的惊恐异常现象等。

3)地面、建筑物的变形和水点的水量、水态的变化,地下洞穴分布及其发展状况等需长期、连续地监测,以便掌握地面塌陷的形成发展规律,提早预防、治理。

4)采用测距仪或皮尺测量塌陷区面积、塌陷坑最大深度、直径等;现场调查塌陷坑数量及危害程度。

2.地裂缝

主要监测方法有大地测量法、GPS全球定位系统、简易人工观测、应力计、拉杆、光栅位移计自动监测等技术。

人工现场调查,现场调查地裂缝数量及危害程度,测量采集数据。测距仪、罗盘和皮尺测量最大地裂缝长度、宽度、深度、地裂缝走向;最大裂缝处两侧埋水泥墩、钢筋桩。

3.地面沉降

人工现场测量采集数据。重点矿山采用现场埋设基岩标自动监测,其他采用高精度GPS监测。

4.崩塌、滑坡

人工现场调查、测量采集数据。一般采用GPS定位(坐标、高程),测距仪和皮尺测量崩塌、滑坡体积,现场调查崩塌、滑坡数量及危害程度;对于危害严重的或大、中型规模的崩塌、滑坡隐患体由矿山企业监测其空间位移变化,具体方法根据实际情况确定。

滑坡裂缝采用的简易监测方法有埋桩法、埋钉法和贴片法。

埋桩法:如图7-11,在斜坡上横跨裂缝两侧埋桩,用钢卷尺测量桩之间的距离,可以了解滑坡变形滑动过程。

埋钉法:如图7-12,在建筑物裂缝两侧各钉一颗钉子,通过测量两侧两颗钉子之间的距离变化来判断滑坡的变形滑动。这种方法对于临灾前兆的判断非常有效。

贴片法:如图7-13,在横跨建筑物裂缝粘贴水泥砂浆片或纸片,如果纸被拉断,说明滑坡发生了明显变形,须严加防范。与上面三种方法相比,这种方法是定性的,但是,可以非常直接地判断滑坡的突然变化情况。

5.泥石流

泥石流监测采用测距仪和皮尺测量潜在的泥石流物源方量、现场调查泥石流易发区数量、危险程度;对于危害严重的或大、中型规模的泥石流易发区,由矿山企业监测降雨量大小与冲刷携带物体积,具体方法根据实际情况确定。

监测的目的和任务是为获取泥石流形成的固体物源、水源和流动过程中的流速、流量、顶面高程(泥位)、容重及其变化等,为泥石流的预测、预报和警报提供依据。监测范围包括水源和固体物源区、流通段和堆积区。泥石流的监测方法,在专门的调查研究单位已采用电视录像、雷达、警报器等现代化手段和普通的测量、报警设备等进行观测。如目前国内采用超声波泥位计对泥位进行监测的方式取得了较好的效果,图7-14。

图7-11 埋桩法监测示意图

图7-12 埋钉法监测示意图

图7-13 贴片法监测示意图

图7-14 泥石流泥位自动监测装置

群众性的简易监测,主要应用经纬仪、皮尺等工具和人的目估、判断进行,简易监测的主要有以下对象与内容。

(1)物源监测

1)形成区内松散土层堆积的分布和分布面积、体积的变化。

2)形成区和流通区内滑坡、崩塌的体积和近期的变形情况,观察是否有裂缝产生和裂缝宽度的变化。

3)形成区内森林覆盖面积的增减、耕地面积的变化和水土保持的状况及效果。

4)断层破碎带的分布、规模及变形破坏状况。

(2)水源监测

除对降雨量及其变化进行监测、预报外,主要是对地区、流域和泥石流沟内的水库、堰塘、天然堆石坝、堰塞湖等地表水体的流量、水位,堤坝渗漏水量,坝体的稳定性和病害情况等进行观测。

(3)活动性监测

泥石流活动性监测,主要是指在流通区内观测泥石流的流速、流位(泥石流顶面高程)和计算流量。各项指标的简易观测方法如下:

1)观测准备工作。

建立观测标记。在预测、预报的基础上,对那些近期可能发生泥石流的沟谷,选择不同类型沟段(直线型、弯曲型),分别在两岸完整、稳定的岩质岸坡上,用经纬仪建立泥位标尺,作好醒目的刻度标记。划定长100m的沟段长度,并在上、下游断面处作好断面标记和测量上、下游的沟谷横断面图。

确定观测时间。由于泥石活动时间短,一般仅几分钟至几十分钟,故自开始至结束需每分钟观测一次,特别注意开始时间、高峰时间和结束时间的观测。

2)流速观测。

浮标法。在测流上断面的上方丢抛草把、树枝或其他漂浮物(丢物时注意安全)分别观测漂浮物通过上、下游断面的时间。

阵流法。在测流的上、下断面处,分别观测泥石流进入(龙头)上断面和流出下断面的时间。

流速计算。

3)流位观测。在沟谷两岸已建立的流位标尺上,可读出两岸泥石流顶面高程。

4)流量计算。流量可用下式概略计算。

湖南省矿山地质环境保护研究

式中:Qs为泥石流流量,m3/s;Vs为泥石流流速,m/s;As为断面面积,m2

上面各项观测资料均应做好记录,主要包括观测时间和各种观测数据,并绘制时间与观测值之间的相关曲线和计算有关指标。反映变化情况,作为预测、预报和警报的依据。

(二)矿山占用破坏土地监测方法

1.固体废料场、尾矿库、地面塌陷区、露采场

人工现场调查、测量采集数据及采用遥感监测手段。采用GPS定位、测距仪和皮尺测量固体废料场、尾矿库、地面塌陷区、露采场压占土地面积;现场调查压占土地类型;压占面积较大的重要矿区辅以遥感影像监测其面积变化。

2.矿区土壤污染及水土流失监测

人工现场调查、测量、取样室内分析,辅以土壤污染自动监测仪采集数据及遥感监测。测距仪和皮尺测量土壤污染及水土流失面积;取样分析污染物的种类、含量;现场调查污染土地类型及年土壤流失量;对于重要矿区采用遥感技术监测和人工现场调查、测量相结合的方式进行监测。

(三)矿山水环境监测方法

1.地下水均衡破坏监测

人工现场调查采集数据。采用水位自动监测仪及测绳监测水位变幅;采用GPS定位监测井泉干枯的坐标、高程;现场调查干枯井泉的数量,以及对人、畜、土地的影响和地下水降落漏斗面积。具体做法为定期进行观测,参照国家地下水动态监测方法,监测人员每月逢五逢十对区内泉眼、观测井进行观测,泉点主要是纪录泉水的流量变化情况、是否干枯;观测井主要是纪录观测井水位变化情况。定期对收集的数据进行统计分析,确定地下水位变化趋势,确定采矿活动对区内地下水位超常下降影响范围。

2.废水废液排放监测

现场调查、取样,室内分析。采用流速仪或堰板监测矿坑水、选矿废水、堆浸废水、洗煤水的排放量;定期对矿山对外排放的废水进行水质检测,检查废水的pH、重金属元素、放射性元素、砷等有害组分含量是否达到相关排放标准;定期检查矿山废水影响范围内农作物生长状况、水塘中鱼类活动是否正常。

四、矿山地质环境监测技术要求

1)矿山地质灾害监测应采用专业监测与群测群防相结合的方法。专业监测方法有水准仪、全站仪、GPS及卫星遥感测量。监测网点布设及监测周期应符合《崩塌、滑坡、泥石流监测规范》(DZ/T0221—2006)和《地面沉降水准测量规范》(DZ/T 0154—1995)的相关规定。

2)土地资源占用破坏监测采用地面测量、卫星遥感测量和土壤取样分析方法。占用土地面积可一年监测一次。土壤污染取样分析应符合《土壤环境监测技术规范》(HJ/T166—2004)的相关规定。

3)地形地貌景观破坏监测采用地面测量、卫星遥感测量和地面调查方法,可一年监测一次。

4)地下水资源破坏监测采用布点量测和取样分析方法,布点及监测频次应符合《地下水动态监测规程》(DZ/T0133—1994)规定。

五、矿山地质环境监测成果应用

(一)矿山地质环境监测成果

矿山地质环境监测应形成如下成果:

1)单个矿山地质环境监测表、监测半年报、年报;

2)省、县两级矿山地质环境监测汇总表及监测网络图;

3)省、县两级矿山地质环境监测半年报、年报;

4)省、县两级矿山地质环境监测通报。

(二)成果应用

1)作为行政机关掌握全省矿山地质环境的资料依据;

2)作为行政主管部门奖励、处罚矿山企业或督促、安排矿山地质环境恢复治理的依据;

3)作为相关政策制定、规划编制的依据;

4)作为相关科研工作的资料依据。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864