当前位置:首页 » 地质工程 » 地质灾害治理泥石流排导槽

地质灾害治理泥石流排导槽

发布时间: 2021-02-08 02:57:11

1. 泥石流灾害的防治措施

泥石流是指在山区或者其他沟谷深壑,地形险峻的地区,因为暴雨、暴雪或其他自然灾害引发的山体滑坡并携带有大量泥沙以及石块的特殊洪流。泥石流灾害很容易造成严重的损失和伤亡,所以,泥石流的防治就尤其重要。泥石流的防治措施有:

将生物措施与适用于某一泥石流危害区的几项工程措施相互结合,对泥石流小流域进行全面统一整治,有效地预防和减少灾害的发生;

泥石流的防治措施:开展泥石流的预测预报

从空间上,可根据地质、地形地貌、降雨等条件,泥石流发育程度和规模进行危险区域划分,划分出高度危险、中度危险和一般危险区。从时间上,可分为中长期和短历时预报。

泥石流的防治措施:应急性措施

每年7~8月为泥石流易发时段,应采取应急避防措施。首先要避开泥石流危险地段,尽量在泥石流到来之前采取防范行动。在泥石流发育地区应进行必要的搬迁、临时防护措施,对受泥石流严重威胁的工矿、村镇应提前做好应急部署。

2. 泥石流应急治理措施

1)避:居民点、安置点应避开泥石流可能影响的沟道范围和沟口。

2)排:截、排引导地表水形成水土分专离以达到降属低泥石流暴发频率及规模的措施。

3)拦:修建拦沙坝和谷坊群起到拦挡泥石流松散物并稳定谷坡,工程实施可改变沟床纵坡、降低可移动松散物质量、减小沟道水流的流量和流速从而达到控制泥石流的作用。

4)导:修建排导槽引导泥石流通过保护对象而不对保护对象造成危害。

5)停:在泥石流沟道出口有条件的地方采用停淤坝群构建停淤场,以减小泥石流规模使其转为挟沙洪流,降低对下游的危害。

6)禁:禁止在泥石流沟中随意弃土、弃渣、堆放垃圾。

7)植:封山育林、植树造林。

3. 老干沟泥石流治理设计

(一)目的与要求

1.目的

1)在教师带领和指导下,通过本次泥石流灾害治理工程设计的实训,加深对所学的泥石流灾害防治工程基本知识的理解,培养学生分析问题和解决问题的能力;

2)掌握泥石流灾害治理工程设计的基本程序和设计方法,具备编制泥石流治理设计的基本技能。

2.要求

根据泥石流治理设计的方法、步骤和要求,按照老干沟泥石流治理工程平面布置图,完成泥石流综合治理方案中拦沙坝、排导槽、截流沟以及造林工程的设计编制工作任务,并对治理设计存在的问题进行分析。

实训时间为1周(5天)。

(二)设计标准和设计基本数据

1.设计标准

(1)荷载强度标准

1)暴雨强度按10年重现期计。

2)本工程可不考虑震害问题。

(2)泥石流防治工程服务年限

拦沙坝、排导槽工程服务年限按50年考虑。

(3)泥石流流体的特性

按黏性泥石流考虑,流体最大深度取4m,流体容重取2.2kg/m3,泥石流体的流速为20m/s,泥石流体的静剪切强度为1000kPa。泥石流体中大石块粒径为2m×1.5m×1m,质量为900kg,大石块与拦沙坝体的撞击历时0.5s,大石块的运动速度为18m/s。多年平均来沙量按100×104 m3/a计,泥石流中土体的体积浓度为60%,土体容重为2.4kg/m3

2.设计基本数据

1)气温:多年平均气温为13℃,最高气温为31℃,最低气温为-9℃。

2)降雨:多年平均降雨量海拔2200m以上为830mm,海拔2200m以下为700mm;10年一遇降雨强度设计值取48.5mm/h。

3)与岩土体有关的计算参数:松散堆积物(土体)饱水重度为18.8kN/m3,内摩擦角为18.5°,粘聚力取17.0kPa。

4)其他计算参数:拦沙坝为重力坝,坝体材料选用浆砌块石,容重取2.4t/m3;坝底与地基土摩擦系数取0.4,坝内淤积物的主动土压力设计值取54.0kN/m。

(三)设计成果

1.设计成果

编写云南省昆明市东川区老干沟泥石流治理工程施工设计报告。

2.附图(可根据需要适当增减)

1)云南省昆明市东川区老干沟泥石流治理工程平面布置图。

2)云南省昆明市东川区老干沟泥石流治理拦沙坝断面图。

3)云南省昆明市东川区老干沟泥石流治理排导槽断面图。

4)云南省昆明市东川区老干沟泥石流治理截流沟断面图。

小 结

本章的学习重点是运用前面所学的地质灾害防治技术的相关知识,进行滑坡和泥石流防治工程设计。通过实践,能够运用具有不同特点的治理工程对上述两种地质灾害进行治理;同时,还应该总结实践经验,根据所学的相关知识,能进行其他地质灾害(如岩溶塌陷、地面沉降、地裂缝、矿山与地下工程、特殊土地基加固)治理工程设计。

复习思考题

1.地质灾害治理设计前应做哪些准备工作?

2.地质灾害防冶工程设计提纲主要包括哪些内容?

4. 地质灾害工程治理方式有哪些 排导槽 挡墙

主要有:拦砂坝、储淤场、挡土墙、护坡、截洪排水工程、 谷坊坝等。在泥石流形成区版的上游适宜地段,建造水权库、水塘或其他形式的蓄水工程以调节洪水,削减流经泥石流形成区的洪峰流量(即水动力条件),并严防渗漏、溃决;稳定山体、斜坡,减少松散物质的形成、积聚;在流通区内,修建拦挡泥石流的谷坊坝(群),如实体坝和格栅坝,以固坡护床;在堆积区的后缘,用储淤场将泥石流固体物质在指定地段停淤,减少下泄洪峰流量和固体物质总量。

5. 发生崩塌、滑坡、泥石流等地质灾害如何治理

泥石流防治是一项由多种措施组成的系统工程。它主要由四方面措施组成:①防止和削弱泥石流活动的防治体系--通过生物措施和工程措施,保护和治理流域环境,消除或削弱泥石流发生条件;②控制泥石流运动的防治体系-采用拦挡坝、谷坊、排导沟、停淤场等工程措施,调整和疏导泥石流流通途径和淤积场地,减少灾害破坏损失;③预防泥石流危害的防护工程体系~一修建渡槽、涵洞、隧道、明硐、护坡、挡墙、顺坝、丁坝等工程,对重要危害对象进行保护;④预测、预报及救灾体系一一对于遭受泥石流严重威胁的居民、企业和重要工程设施,及时搬迁、疏散,受灾时有效地抢险救灾,减少灾害破坏损失。
治理滑坡可以从以下两个大的方面着手:
(一)消除和减轻地表水和地下水的危害,滑坡的发生常和水的作用有密切的关系,水的作用,往往是引起滑坡的主要因素,因此,消除和减轻水对边坡的危害尤其重要,其目的是:降低孔隙水压力和动水压力,防止岩土体的软化及溶蚀分解,消除或减小水的冲刷和浪击作用。具体做法有:防止外围地表水进入滑坡区,可在滑坡边界修截水沟;在滑坡区内,可在坡面修筑排水沟。在覆盖层上可用浆砌片石或人造植被铺盖,防止地表水下渗。对于岩质边坡还可用喷混凝土护面或挂钢筋网喷混凝土。排除地下水的措施很多,应根据边坡的地质结构特征和水文地质条件加以选择。常用的方法有:1,水平钻孔疏干;2,垂直孔排水;3,竖井抽水;4,隧洞疏干;5,支撑盲沟。
(二)改善边坡岩土体的力学强度
通过一定的工程技术措施,改善边坡岩土体的力学强度,提高其抗滑力,减小滑动力。常用的措施有:1,削坡减载;用降低坡高或放缓坡角来改善边坡的稳定性。削坡设计应尽量削减不稳定岩土体的高度,而阻滑部分岩土体不应削减。此法并不总是最经济、最有效的措施,要在施工前作经济技术比较。2,边坡人工加固;常用的方法有:1,修筑挡土墙、护墙等支挡不稳定岩体;2,钢筋混凝土抗滑桩或钢筋桩作为阻滑支撑工程;3,预应力锚杆或锚索,适用于加固有裂隙或软弱结构面的岩质边坡;4,固结灌浆或电化学加固法加强边坡岩体或土体的强度;

6. 泥石流勘查的基本规定

1.工程地质测绘

1)遥感解译:从卫片和航片解译泥石流区域性宏观分布、地貌和地质条件;有条件时可用不同时相的影像图解译、对比泥石流发展状态,编制遥感图像解译图,航片比例尺宜为1∶8000~1∶34000。

2)填图要求:所划分的填图单元在图上标注的尺寸最小为2mm。对于小于2mm的重要单元,可采用扩大比例尺或符号的方法表示。在1∶500或1∶2000的地形图上可能修建拦挡工程和排导工程地段,其地质界线的地质点误差不应超过3mm,其他地段不应超过5mm。

3)地质地貌测绘:对全流域及沟口以下可能受泥石流影响的地段,调绘与泥石流形成和活动有关的地质地貌要素,编制相应的地貌图与地质图,填绘纵剖面图与横剖面图。流域平面填图比例尺宜为1∶10000或1∶50000,分区平面填图比例尺宜为1∶500~1∶5000;纵剖面图比例尺横向宜为1∶500~1∶2000,竖向宜为1∶100~1∶500;横剖面图比例尺横向宜为1∶200或1∶500。测绘方法以沿沟追索、实测和填绘剖面为主。

2.水文调查

1)暴雨洪水调查:泥石流小流域一般无实测洪水资料,可根据较长的实测暴雨资料推求某一频率的设计洪峰流量。对缺乏实测暴雨资料的流域,可采用理论公式和该地区的经验公式计算不同频率的洪峰流量。有关计算公式见水文计算手册。

2)溃决洪水调查:包括水库溃决洪水、冰湖溃决洪水和堵河(沟)溃决洪水。溃决洪水流量据溃决前水头、决口宽度、坝体长度、溃决类型(全溃决或局部溃决,一溃到底或不到底)采用理论公式计算或据经验公式估算,并结合实际进行校核。有关计算公式见溃坝水力学。

3.泥石流体勘查

1)泥痕测绘:选择代表性沟道,量测沟谷弯曲处泥石流爬高泥痕、狭窄处最高泥痕及较稳定沟道处泥痕。据泥痕高度及沟道断面计算过流断面面积,据上、下断面泥痕点计算泥位纵坡,作为计算泥石流流速、流量的基础数据。

2)泥石流流体试验:

·浆体重度测定:泥石流流体重度可根据泥石流样品采用称重法测定。泥石流体样品一般难以采到,可了解目击者回忆,根据泥痕和堆积物特征进行配制,采用体积比法测定。

·粒度分析:对泥石流体样品中大于2mm的粗颗粒进行筛分,粒径小于2mm的细颗粒用比重计法或吸管法测定颗粒成分。对泥石流体中固体物质的颗粒成分,从堆积体中取样测定。取样数量应结合粒径来确定。

·黏度和静切力测定:必要时进行黏度和静切力测定,用泥石流浆体或人工配制的泥浆样品模拟泥石流浆体,其黏度可采用标准漏斗1006型黏度计或同轴圆心旋转式黏度计测定;其静切力可采用1007型静切力计量测。

3)泥石流动力学参数计算:

·流速:据调查所得泥石流流体水力半径、纵坡、沟床糙率及重度等参数计算;也可按泥石流的性质和所在地域,选择合适的地区性经验公式计算。

·流量:泥石流流量可采用形态调查法(据泥痕勘测所得的过流断面面积乘以流速)或雨洪法(按暴雨洪水流量乘以泥石流修正系数)确定。暴雨小径流的地区性经验公式较多,暴雨洪水流量应采用适用的经验公式计算。

·冲击力:泥石流冲击力是泥石流防治工程设计的重要参数,分为流体整体冲压力和个别石块的冲击力两种。具体计算方法参照本节“六、泥石流特征值的确定”部分内容,除此之外还可采用其他公式加以印证。

·弯道超高与冲高:参照泥石流特征值的确定。

4)堆积物试验:通过调查、实验,按《土工试验方法标准》(GB/T50123—1999)确定泥石流堆积物的固体颗粒比重、土体重度、颗粒级配、天然含水量、界限含水量、天然孔隙比、压缩系数、抗剪强度和抗压强度等参数,供治理工程比选和设计使用。

5)泥石流的形成区、流通区和堆积区测绘:①工程治理区实测剖面至少应按一纵三横控制;②重点区应有1~3个探槽或探坑(井)控制;③各区测绘内容参见表56所列诸影响因素。

4.勘探试验

(1)勘探

勘探工程主要布置在泥石流堆积区和采取防治工程的地段。勘探工程以钻探为主,辅以物探和坑探等轻型山地工程。受交通、环境条件的限制,在泥石流形成区一般不采用钻探工程;当存在可能成为固体物源的滑坡或潜在不稳定斜坡必须钻探时,勘探线及钻孔布置参照“滑坡勘查”有关规定执行。

(2)钻探

泥石流防治工程场址主勘探线钻孔,宜在工程地质测绘和地球物理成果的指导下布设,孔距应能控制沟槽起伏和基岩构造线,间距一般30~50m。30m宽的沟谷应有1个钻孔控制,30~50m宽的沟谷应有2个钻孔控制,宽50m以上的沟谷应以30~50m间距布孔。当松散堆积层深厚不必揭穿其厚度时,孔深应是设计建筑物最大高度的0.5~1.5倍;基岩埋藏浅时,孔深应进入基岩弱风化层5~10m。

钻孔的布置应尽可能采用一孔多用,互相结合,使得钻探工程在勘查中发挥最好的效益。

孔径的选择,在松散岩层中,考虑其泥石流物质组成的特点,孔径一般要求在Φ145mm以上;在基岩钻进中,钻孔孔径可适当缩小,但终孔孔径不得小于Φ91mm。

钻孔的记录和编录:①钻进中的班报表记录应真实、及时,按钻进回次逐段填写,严禁事后追记;②钻探现场编录可采用肉眼鉴定、手触方法,对岩土描述除按规范外,可采用标准化、定量化的方法(孟塞尔色标、砂土粒样、点荷载仪、袖珍贯入仪),应计算岩心采取率和岩石质量RQD值;③钻探成果要有钻孔柱状图、岩心编录及野外现场试验记录。

(3)物探

物探工作除作为钻探工程的补充和验证外,在施工条件差、难以布置或不必布置钻探工程的泥石流形成区,可布置1~2条物探剖面,对松散堆积层的岩性、厚度、分层、基岩面深度及起伏进行推断。物探的比例尺应大于地质测绘的比例尺,一般采用1∶25000,1∶10000,1∶50000,1∶2000或1∶100。井中测定可采用更大的比例尺。适宜使用的方法:浅层地震、电阻率法、地质雷达及声波探测。

物探勘测的范围:①在泥石流形成区,其测线一般不超过测区单面坡的坡长,深度在20~30m范围之内;②在泥石流堆积区,测线应能控制住泥石流的分布,深度上也能控制堆积的厚度;③在工程勘测中,物探测线顺勘探线布置,其范围应能达到其所需物探数据;④在孔中垂直测定范围能控制两孔之间和孔深范围。成果报告应按各种物探方法的要求进行编制,最终统一到一种解译。

(4)坑槽探

结合钻探和物探工程,在重点地段布置一定数量的探坑或探槽,揭露泥石流在形成区、流通区、堆积区不同部位的物质沉积规律和粒度级配变化,了解松散层岩性、结构、厚度和基岩岩性、结构、风化程度及节理裂隙发育状况;现场采集具有代表性的原状岩土样。

探槽的规格:长度以需要为准,深度不超过3m,底宽不小于0.6m,其两壁的坡度按土质和探槽的深浅合理放坡:①深1m的浅槽中,两壁坡度为90°;②深1~3m的槽中,密实土层为70°~80°,松散土层为60°~70°,在潮湿、松土层中不应大于55°。

掘进中的技术要求:①人工掘进,禁止使用掘空底部、使之自然塌落的方法;②禁止采用爆破法;③槽壁应保持平整,松石及时清除,严禁在悬石下作业,槽口两边0.5m以内不得有堆放的土石和工具;④槽内有两人以上工作时,要保持3m以上的安全距离;⑤在松散易坍塌的地层中掘进,两壁应及时支护;⑥凡影响人畜安全的探槽,在取得地质成果后,必须及时回填。

探坑、探井的技术要求:①在泥石流的形成区、流通区及堆积区需要进行现场试验的探坑(试坑),其开口的规格,圆形直径一般为Φ500mm,方形为50cm×50cm,深度要求在剥去表层之后不小于0.5m;②泥石流勘查中,探井的规格尺寸:探井深一般不超过10m,开口为圆形的直径为0.8~1.0m,深5m~10m,断面尺寸长×宽为1.2m×0.8m或1.2m×1.0m,考虑到泥石流物质组成颗粒大小差异大,其开口可适当放大,也可采用梯级开挖;③探井掘进技术参数参看《地质勘查坑探规程》。

探槽、探井地质成果:①在开挖掘进时分别对不同单元体岩、土层的岩性、结构、颗粒级配等进行描述、编录,图文应尽量规格化;②探槽要有槽底、两壁的展示图,探井要有展示图,能直观地反映岩、土体的结构及展布,比例尺:1∶25,1∶50或1∶100;③为防治工程提供设计所需的其他资料。

(5)试验

对坝高超过10m以上实体拦挡工程宜进行抽水或注水试验,获取相关水文地质参数;在孔(坑)内采取岩样、土样和水样,进行分析测试,获取岩土体的物理力学性质参数;水样一般只做简分析,拟建的防治工程应增加侵蚀性CO2测定内容。

采集的岩石要能满足表5-11制样的要求,测试数据能够反映岩石的实际性状。

表5-11 室内测试岩样规格表

土样的样品数量及测试要求:①泥石流勘查中,泥石流堆积物的颗粒分级及容重是重要参数,根据泥石流堆积物常含有大颗粒的特点,现场测试采样一般要求500kg左右;②在坝址土体中,每层稳定土层中试样组数一般不少于6组,扰动土样的数量可适当减少;③原状土样的大小,钻孔取样尺寸为直径10cm,高20cm,在坑槽中采样,每组样品尺寸为15cm×15cm×15cm;④泥石流堆积物的颗粒分析,应将≥2cm以上的颗粒在野外筛分,<2cm颗粒送实验室进行颗分。详见表512。

表5-12 室内测试土样规格

水试样的室内要求:泥石流灾害勘查中,对水样一般只要求作常规项目的分析:在防治工程中,由于大部分工程的基础置于地下水位之下,要求增加CO2的测定。一般简分析样品数量500~1000mL;全分析样品数量200~300mL;侵蚀性CO2样品数量250~300mL,加2~3g大理石粉。

5.对各类防治工程提供以下主要设计参数

1)各类拦挡坝:对各类拦挡坝提供主要设计参数是覆盖层和基岩的重度、预载力布置值、抗剪强度,基面摩擦系数,泥石流性质与类型、发生频次,泥石流体的重度和物质组成,泥石流体的速度、流量和设计暴雨洪水频率,泥石流回淤坡度和固体物质颗粒成分,沟床清水冲刷线。

2)其他工程:桩林着重于桩锚固段基岩的深度、风化程度、力学性质,排导槽、渡槽着重于泥石流运动的最小坡度、冲击力、弯道超高和冲高;导流堤、护岸堤和墩着重于基岩的埋藏深度和性质、泥石流冲击力和弯道超高、墙背摩擦角;停淤场着重于淤积总量、淤积总高度和分期淤积高度。

6.施工条件调查

结合可能采取的泥石流防治工程技术,调绘施工场地、工地临时建筑和施工道路的地形地貌,并进行地质灾害危险性评估,测图范围和精度视现场情况而定。

了解泥石流防治工程周围所需天然建筑材料的分布状况,对沙石料质量和储量进行评价。如天然骨料缺少或不符合工程质量要求,须对就近料场的人工料源进行初查。

了解泥石流防治工程周围的水源状况并采样分析,对防治工程生活用水的水质水量进行评价,提出供水方案建议。

7.监测

泥石流监测内容,分为泥石流形成条件(固体物质来源、气象水文条件等)监测、运动特征(流动动态要素、动力要素、输移冲淤等)监测和流体特征(物质组成及其物理化学性质等)监测。

1)勘查阶段:只要求进行简便的常规监测。

2)降雨观测:必要时,根据流域大小,在流域内设置1~3个控制性自记式雨量观测点,定时巡视观测。观测点的设置要避免风力影响和高大树木的遮掩。

3)泥位、流速观测:有条件时,可进行泥位和流速观测。

·泥位观测,观测站应尽可能设在两岸稳定、顺直的泥石流流通河床段。观测断面可设置2个或2个以上。用简便的断面索法观测泥位的涨落过程,精度要求到0.1m。条件许可时,泥位也可采用有线或无线传感器及探头遥测(如超声水位计、泥位检知网、泥位检知线等)。

·泥石流流速观测必须和泥位观测同时进行,数值记录要和泥位相对应。一般采用水面浮标测速法。

4)预警预报:出现泥石流临灾征兆时,应及时报告有关部门进行预警预报。泥石流警报,首先要确定预警预报参数临界值,如泥位观测报警的泥位临界值、地声报警的地声临界值、暴雨报警的雨强临界值。

·断面泥位观测法:当监测断面泥位达到警戒值时,立即发出预警信号;当监测断面泥位达到避难泥位时,则发出警报信号。

·传感法:将泥石流传感器、地震传感器、地声传感器、超声泥位计、泥位高度检知线等安装在沟谷适当地点(超声探头必须安装在流域中、下游的主河床内),这样可以保证泥石流流量处在一个较稳定的范围内,减少泥石流规模报警的误差。当泥石流发生时,传感器接受信息,进行预警或报警。

5)监测资料整理分析:除对泥石流监测原始记录进行整理编目外,还应将监测数据进行重新编号,形成泥石流监测的正式项目。如条件具备,应建立成果数据库,把全部编目资料存入计算机,以供有关人员查阅。

7. 如何治理崩塌、滑坡、泥石流等地质灾害

泥石流防治是一项由多种措施组成的系统工程。它主要由四方面措施组成:①防止和削弱泥石流活动的防治体系--通过生物措施和工程措施,保护和治理流域环境,消除或削弱泥石流发生条件;②控制泥石流运动的防治体系-采用拦挡坝、谷坊、排导沟、停淤场等工程措施,调整和疏导泥石流流通途径和淤积场地,减少灾害破坏损失;③预防泥石流危害的防护工程体系~一修建渡槽、涵洞、隧道、明硐、护坡、挡墙、顺坝、丁坝等工程,对重要危害对象进行保护;④预测、预报及救灾体系一一对于遭受泥石流严重威胁的居民、企业和重要工程设施,及时搬迁、疏散,受灾时有效地抢险救灾,减少灾害破坏损失。

治理滑坡可以从以下两个大的方面着手:
(一)消除和减轻地表水和地下水的危害,滑坡的发生常和水的作用有密切的关系,水的作用,往往是引起滑坡的主要因素,因此,消除和减轻水对边坡的危害尤其重要,其目的是:降低孔隙水压力和动水压力,防止岩土体的软化及溶蚀分解,消除或减小水的冲刷和浪击作用。具体做法有:防止外围地表水进入滑坡区,可在滑坡边界修截水沟;在滑坡区内,可在坡面修筑排水沟。在覆盖层上可用浆砌片石或人造植被铺盖,防止地表水下渗。对于岩质边坡还可用喷混凝土护面或挂钢筋网喷混凝土。排除地下水的措施很多,应根据边坡的地质结构特征和水文地质条件加以选择。常用的方法有:1,水平钻孔疏干;2,垂直孔排水;3,竖井抽水;4,隧洞疏干;5,支撑盲沟。
(二)改善边坡岩土体的力学强度 通过一定的工程技术措施,改善边坡岩土体的力学强度,提高其抗滑力,减小滑动力。常用的措施有:1,削坡减载;用降低坡高或放缓坡角来改善边坡的稳定性。削坡设计应尽量削减不稳定岩土体的高度,而阻滑部分岩土体不应削减。此法并不总是最经济、最有效的措施,要在施工前作经济技术比较。2,边坡人工加固;常用的方法有:1,修筑挡土墙、护墙等支挡不稳定岩体;2,钢筋混凝土抗滑桩或钢筋桩作为阻滑支撑工程;3,预应力锚杆或锚索,适用于加固有裂隙或软弱结构面的岩质边坡;4,固结灌浆或电化学加固法加强边坡岩体或土体的强度;

8. 排导槽工程

排导槽自上而下由进口段、急流段和出口段3部分组成(图3-24),由于各部分的作用与功能不同,故对其平面布置的要求也就不一样。排导槽的总体布置应根据防护区范围及沟道等有利地形,力求达到线路顺直,路程较短,纵坡大,排泄顺畅、安全,被占土地少,工程投资节省,便于施工和运行管理。排导槽一般沿沟道布设,必要时亦可沿扇形地的一侧或扇脊、扇间凹地布设,还应与现有工程及沟道的防治规划保持一致。

图3-24 排导槽平面布置示意图

(—)排导槽纵横坡度关系及水力学特征

1.排导槽纵断面

排导槽纵断面设计的关键是选择一个合理的纵坡和断面宽深比,为排泄泥石流创造必要的水力条件,使排导槽达到既能顺利排走相应规模的泥石流,又不至于在槽内产生较大的冲淤变化。排导槽的纵坡原则上应沿槽长保持不变,在特定的地形地质条件下,其纵坡只能由小逐渐增大。但对于小型堆积扇,扇缘至基准面落差较小,一般可考虑在上游山口筑坝抬高沟槽或在下游开挖降低沟槽,亦可采取两者结合的方法增大纵坡。

1)排导槽纵坡应大于该沟泥石流运动的最小坡度,其值按下式计算。

对于黏性泥石流,计算公式如下:

地质灾害防治技术

式中:θm为泥石流运动的最小坡度角(°);τ0为泥石流浆体的静剪切强度(Pa);Hc为泥石流泥深(m);φm为泥石流中土体的动摩擦角(°);γs为土体容重(t/m3);γy为泥石流中土体的容重(t/m3);CV为泥石流中土体的体积浓度(m3/t)。

对于稀性泥石流,计算公式如下:

地质灾害防治技术

式中:γc为泥石流体容重(t/m3);其他符号意义同前。

2)选择的纵坡应与泥石流沟流通段的沟床纵坡基本保持一致,不宜过于偏大或偏小,这样就能达到有效泄洪防淤或防冲刷的目的。

3)按照选择的纵坡及其对应的断面宽深比,根据泥石流的不同规模验算排导槽内产生的流速,该值应小于或等于排导槽所能允许的防冲刷流速。

4)按照沟床冲淤基本平衡的原则进行类比,选择纵坡;或借用已经过实际运行证明是合理的排导槽纵坡进行选择。

根据泥石流多年研究结果及对已建大量泥石流排导槽的调查分析,建议合理纵坡的取值列入表3-7。

2.排导槽横断面

排导槽横断面应满足不同规模泥石流的过流能力及具有最佳的水力特性,当规定的最大流量通过时,应是安全的。

表3-7 泥石流排导槽合理纵坡值

急流槽的宽深比不应太小,宜采用(1∶1)~(1∶1.5)。就水力条件而言,宽深比超过一定程度,无论怎样再压缩槽宽、加大槽深,也难以增加水力半径和流速,故挟沙能力亦不再提高。

此时,必须与其他工程措施(如拦蓄工程等)配合使用。

(1)横断面形式选择

排导槽横断面有不同的形式(图3-25),根据不同的泥石流类型与规模确定相应的横断面形状。梯形和矩形断面适用于各种类型和规模的山洪泥石流,槽底宽度不受限制。三角形断面适用于排泄规模不大的黏性泥石流,宽度不宜超过5m。弧形底部复式断面及梯形复式断面适用于间歇发生、规模变化悬殊的泥石流。

图3-25 排导槽横断面形式图

(2)横断面尺寸的选择

通常采用泥石流沟流通段的形态特征与急流槽相对应的值进行类比确定。通过试算,选择一组急流槽的宽深比,使其以较大的泥石流深度保持相等或稍大的流速。即保持相当或稍大的挟沙能力,使由流通区下泄的同等规模泥石流,不在急流槽内停淤。

1)铁道部第二勘测设计院经过类比、归纳,提出选用急流槽的条件如下。

A.当选用小型人工铺砌急流槽时,计算公式如下:

地质灾害防治技术

式(3-65)和式(3-66)中:脚标c、g、l分别为泥石流、急流槽及流通区;M为糙率;R为水力半径(m);A为断面积(m2);v为流速(m/s)。

B.当选用不做铺底的大型急流槽时,计算公式如下:

地质灾害防治技术

地质灾害防治技术

式(3-67)~(3-69)中:H为泥深(m);B为断面宽度(m);其他符号意义同前。

2)昆明铁路科学研究所,根据vg≥vl求算急流槽的最小深度,拟定槽深,计算槽宽。

A.对于稀性泥石流的计算方法。

当为人工铺底的小型急流槽时,公式如下:

地质灾害防治技术

式中:I为纵坡(‰);其他符号意义同前。

当为无铺底的大型槽时,公式如下:

地质灾害防治技术

式中符号意义同前。

B.对于黏性泥石流的计算方法。

当为小型铺底急流槽时,计算公式如下:

地质灾害防治技术

式中:K为流速系数;其他符号意义同前。

当为无铺底的大型槽时,计算公式如下:

地质灾害防治技术

式中符号意义同前。

3)西南铁道研究所利用类比法,按下列关系式计算急流槽最大槽宽,然后拟定槽宽,计算槽深,选择最佳宽深比。计算公式为

地质灾害防治技术

式中:X为指数,对于黏性泥石流,X取2.0,对于稀性泥石流,X取2.3;其他符号意义同前。

在确定底宽时,应优先选用具有合理底宽的窄深型断面。但为了防止淤积和堵塞,以及便于小规模泥石流的流动,排导槽的最小底宽应满足下式:

地质灾害防治技术

式中:Dm为沟床物质的最大粒径;其他符号意义同前。

(3)排导槽深度

1)直线排导槽深计算公式如下:

地质灾害防治技术

式中:H为排导槽深度(m),H≥1.2 Dm,Dm为沟体物质的最大粒径;Hg为最大设计泥深(m);Hs为槽内淤积总厚(m);hs为安全超高(m)。

2)在排导槽弯道凹岸一侧尚需增加弯道超高值,计算公式如下:

地质灾害防治技术

式中:Bc为排导槽泥石流表面宽度(m);R为排导槽中线的曲率半径(m);vc为泥石流的断面平均流速(m/s);其他符号意义同前。

3)进出弯道的过渡段长度,计算公式如下:

地质灾害防治技术

式中:L为过渡段长度(m);LR为弯道长度(m),由平面布置确定。为定值时,纵值增大,横值减小;纵值减小,横值增大,二者成反比关系。它们有机结合能使坡降达到最佳效果值。

3.槽型与水力学特征

槽型和材质均对泥石流的水力学特征值有影响。根据现有泥石流流速公式v=KHnIm分析,影响最大的因子是阻力系数(K)、水深(H)、水力坡度(I)及其指数。

(1)阻力系数(粗糙系数)

阻力系数的大小与泥石流流速成反比(除泥石流体内部阻力外)。

1)槽型影响固体物质的运动态势和摩擦阻力。当泥石流大石块在排导槽内运动时,其搁置形式多呈梁式点状接触,两端置于槽底的两侧斜坡上,减小了摩擦力。平底槽则与之相反,呈平置或面接触的较稳定状态。起动平置式面接触石块所需的力远比搁置式点接触石块的力要大得多,这是排导槽与平底槽固体物质运动不同的根本原因。

2)建筑材料及其表面粗糙度。材质不同,摩擦系数也不同,并且各种粗糙面也有不同的糙率。因此,材质和施工质量对排淤效果有一定的影响。特别是固、液相不等速的水石流流体更为明显。

(2)水深(水力半径)

增大水深是增强排导的有效方法。要增大水深,必须变换槽型、缩小槽宽。

1)槽形:圆形槽水力要素最好,排淤效果也不错,但施工难度很大;综合槽型次之;平底槽施工条件最好,但水力条件与排淤效果太差,排泥石流不可取。

2)槽宽:在槽形与过流面积一定的条件下,槽宽与水深成反比。因此,在满足排泄泥石流最大石块顺利通行的条件下,压缩槽宽加大水深是较好的选择。

3)边墙斜坡:在槽形、槽宽、过流面积一定的条件下,边墙坡度与水深成反比。所以边墙坡度越陡越有优越性。

(3)水力坡度

增大水力坡度可使流速增大。但是,由于地形条件的限制,增大坡度往往需加大工程量,有时非常不经济。此时,可采取变换槽形的方式,增大槽底的横坡,也就相应增加了水力坡度。

(二)排导槽结构及其排防机理

1.排导槽特点

排导槽特点是窄、深、尖。这是在总结研究20世纪70年代以前大量使用宽、浅、平的梯形、矩形排导槽的教训及通过试建一批V形泥石流排导槽获得成功经验的基础上,针对泥石流的冲淤危害,以排泄泥石流固体物质为目标,根据束水冲沙原理提出的新结构。这种排导槽,具有明显的固定输沙中心和良好的固体物质运动条件,对于排泄泥石流固体物质具有较理想的效果。

2.排导槽结构

在排导槽的设计中,当加大排导槽纵坡、束窄过流宽度、增大泥深、减少停淤的同时,却又增大了山洪及稀性泥石流体对槽身的冲刷。因此,要求排导槽的结构既能保证槽内停淤量少,又不至于产生较大的冲刷破坏,从而保证排导槽运行的安全。主要结构形式有以下几种。

(1)整体式圬工结构

两槽壁及槽底多用钢筋混凝土或水泥砂浆砌石筑成整体结构。适用于泥石流规模不大,槽宽小于5m的排导槽。当槽底为平底时,容易产生淤积;当槽底为钝角三角形或圆弧形时,则有利于泥石流的排泄。

(2)分离式圬工结构

即把侧墙与槽底护砌分开,槽的侧墙可由混凝土或浆砌石挡土墙或护坡组成,槽底可用混凝土、浆砌石全面护砌,或间隔布设防冲肋槛而成。此类结构多适用于河床基础较好,泥石流爆发规模大、槽底宽的排导槽。除这些条件外,若槽的侧墙基础加深有困难,埋设深基础不经济,槽底全铺砌造价过高时,采用沟底加防冲肋槛非常经济。防冲肋槛与墙基础应连成整体,槛顶可与沟底齐平,如图3-26所示。

图3-26 带防冲肋槛的急流槽

间距按下式计算:

地质灾害防治技术

式中:L为两肋槛间的水平距离(m);I为排导槽底纵坡(‰);Ic为槛下冲刷后的沟槽纵坡(‰);H为防冲肋槛的高度(m),一般为1.5~2.5m;Hc为最大冲刷线以下的埋设深度(m),一般为1.0~1.5m。

(3)具有侧向刺槛(丁坝)的防护结构

当槽底为较宽的天然沟床,并设有防冲肋槛时,为防止泥石流对排导槽导流堤产生冲刷,一般在靠堤身一侧沿水流方向设置多道刺槛,约束泥石流按规定的方向运动。刺槛可用浆砌石或混凝土等材料构成,底部最好与防冲肋槛上部连为一体。刺槛高度应小于堤高的1/3;长度应视槽宽而定,原则上应保证束窄后的横断面仍能通过设计流量;刺槛的回淤长度应满足堤身基础的防冲刷要求。

当导流槽底为天然沟床时,若其陡坡地段为巨砾所覆盖,则可将巨砾间的缝隙用细石混凝土或水泥砂浆填实,使巨砾及沟床的整体稳定性增大。若泥石流沟的常流水极小,暴发的泥石流为黏性泥石流时,则排导槽的底部及堤身均可不必护砌。实践证明:黏性泥石流在排导槽内流动时,不仅冲刷能力小,而且还会在堤的迎水面粘附一层泥体,可保护原先的土堤。当泥石流间断发生时,粘附层将会逐渐增厚,使土堤表面形成一个厚而坚硬的保护层。

3.排导槽平面模式

泥石流沟堆积区的天然平面模式呈扇形向下游展布,归槽水流则呈散状漫流,明显降低水流输沙能力而产生堆积。反之,如将排导槽平面布设成倒喇叭形,可增大水深、加大流速、防止漫流改道,具有形成集水归槽、束水冲沙、使固体物质列队运行的作用。图3-27为排导槽平面模式示意图。

4.排导槽纵坡模式

泥石流沟的天然纵坡模式一般都是上陡下缓,呈凹形坡。由于地形坡度变缓,泥石流流速下降,产生停淤而形成泥石流堆积扇。因此,排导槽纵坡设计,最好是上缓下陡或一坡到底。若受地形控制,纵坡需设计成上陡下缓时,则必须从平面上配套设计成倒喇叭形模式,使之能随着纵坡的变缓而过流断面宽度相应减小,以增大水深、加大流速,保持缓坡段与陡坡段流速有同等的输沙能力和流通效应。图3-28为排导槽纵坡模式示意图。

图3-27 V形排导槽平面模式示意图

图3-28 排导槽纵坡模式示意图

5.排导槽横断面模式

泥石流沟的天然沟槽横断面模式,基本上由形成区的狭窄V形逐渐转换成堆积区的宽、浅、平梯(矩)形,由集中深水流渐变成宽、浅漫流,由冲蚀搬运过程演化成停淤堆积。这种天然泥石流沟槽断面的冲淤规律,完全符合排导槽窄、深、尖的冲蚀与梯(矩)形槽宽、浅、平的淤积特点。

6.排导槽排防机理

从防治泥石流的意义上讲,排导槽完全改变了平底槽的流通效应,其机理是:

1)排导槽在横断面结构上构成了一个固定的最低点,也是泥石流的最大水深、最大流速所在点和固体物质的集中点,从而成为一个固定的动力束流、集中冲沙的中心。

2)排导槽底能架空大石块,使大石块呈梁式点接触状态,以线摩擦和滚动摩擦形式运动。沟心尖底处泥石流的润滑浮托作用强,因而阻力小、速度大,这是排泄泥石流固体物质成功的关键。

3)排导槽底是由纵、横向斜面构成,松散固体物质在斜面上始终处于不稳定状态,沿斜坡合力方向挤向沟心最低点的集流中心,从而形成排导槽的三维空间重力束流,使泥石流输移效果更佳。反之,泥石流体在平底槽内的水深基本上是平摊等深,不易形成集流冲沙中心和立体重力束流,并且槽底与粗大石块呈平面接触,底部泥浆润滑作用微弱,故平底槽阻力大、速度小、防淤效果极差。

(三)排导槽工程设计技术要点

1.排导槽平面设计

(1)平面布置

平面设计时应随纵坡变缓,由上而下逐渐收缩槽宽,呈倒喇叭形。上游入口用15°~20°扩散角束流堤顺接原沟槽,防止上游沟槽漫流改道,连接处宜圆顺渐变,稳定主流动力线,理顺粗大石块列队归槽,以免大石块堵塞。

(2)出口走向

排导槽出口走向应与下游大河主流方向斜交,交角一般小于60°,有利于输送泥石流固体物质。

(3)排导槽长度

排导槽上游要顺接沟槽,以不使泥石流漫流改道为原则。下游长度不宜过大,并应适当抬高出口,为出口留有充分的堆积场所和发挥排导槽出口能量集中的特点,使之能自由冲刷,降低出口排水基面,防止泥石流出槽后漫流堆积。严禁排导槽伸入下游大河最高洪水位以下,以防洪水期回淤。

(4)弯曲半径

排导槽平面布设要尽量顺直,必须弯曲时,曲线半径不宜小于槽底宽度的10~20倍。

2.排导槽纵坡设计

(1)排导槽纵断面设计

将排导槽纵断面设计成上缓下陡或一坡到底的理想坡度,有利于泥石流固体物质的排泄。若受地形坡度限制,需设计成上陡下缓时,必须配套设计成槽宽逐渐向下游收缩的倒喇叭形,使水深亦逐步加大,保持缓坡段与陡坡段具有相同的水力输沙功能,确保排导槽的排淤效果。纵坡通常用30‰~300‰之间的数值,限值为10‰~350‰。设计纵坡可略缓于泥石流扇纵坡,使出口高出地面1m左右,有利于排泄和减轻磨蚀。

(2)坡度联结

当相邻纵坡设计值之差超过50‰时,宜用竖曲线连接。竖曲线半径尽量大,使泥石流体有较好的流势,以削弱泥石流固体物质在变坡点对槽底的局部冲击。

(3)纵坡设计

1)当纵坡过缓时,可在桥前设拦渣坝,提高泥石流位能,或用人工增大桥下局部河段纵坡,以提高排淤效果。

2)加大V形槽横坡。因为V形槽的纵、横坡度与流通效应成正比关系。当纵坡一定时,加大横坡也有增排效应。因此,要注意选择有效的横坡设计值。

(4)V形槽出入口设计

排导槽入口以15°~20°扩散角用曲线顺接沟槽两岸,连接处需牢固可靠,以防掏蚀改道。槽前接堤迎水面,防护基础埋深1~2m,槽的入口垂裙埋深1~2m,出口设“一”字墙拦挡槽后填土,出口垂裙深度视地质、地形和流速确定,一般埋深2.5~4.0m。如图3-29、图3-30、图3-31所示。

(5)排导槽槽顶

在槽顶一般应留有1.5~2.0m的净空,以满足泥石流排泄的特殊要求。

(6)注意事项

禁止在排导槽出口纵坡延长线以下1.5~2.0m深度范围内设防冲消能措施,以免受阻形成顶托、漫流回淤,影响排泄效果。

3.排导槽横断面设计

(1)V形底横坡设计

排导槽底部呈V形,其横坡通常为200‰~250‰,限值为100‰~300‰。横坡与泥石流颗粒粒度成正比,与养护维修、加固范围有关,横坡越陡,固体物质越集中,磨蚀、养护、加固范围越小。在纵坡不足时加大横坡更有意义。

图3-29 排导槽出口平面布置示意图

图3-30 排导槽出口一字墙示意图

图3-31 排导槽变高度边墙出口示意图

(2)排导槽槽宽设计

排导槽宜用适度的深宽比控制,槽底过宽,水深就小,不利于排导,且槽底磨蚀范围大,维修养护工作量大。槽宽也不能过小,否则将影响大石块的运行,导致堵塞、漫流。因此,排导槽出口槽宽设计最小不得小于2.5倍泥石流流体的最大石块直径,通常深宽比介于(1∶1)~(1∶3)之间为宜。

(3)排导槽槽深设计

1)排导槽设计水深计算:根据排导槽流速大于泥石流流通区流速的选定条件,求算排导槽的最小水深。拟定槽深,计算槽宽,选择适宜的深宽比。最小水深计算式如下:

对于黏性泥石流排导槽(铺底槽,考虑铺床作用,K值相似),计算公式为

地质灾害防治技术

式中:脚标c、l分别为排导槽和流通区;H为水深(m);I为纵坡坡度(‰)。

对于稀性泥石流排导槽(铺底槽),

地质灾害防治技术

式中:n为糙率;其他符号意义同前。

2)排导槽设计水深必须大于1.2倍泥石流流体的最大石块直径,以防最大石块在槽内停淤。

3)排导槽设计流速必须大于泥石流流体内最大石块的起动流速,防止最大石块在槽内淤积。

(4)安全高度设计

由于泥石流常呈波状阵流运动,固体物质有漂浮表面现象,石块碰撞、泥沙飞溅。因此,设计时应按保护物的重要性设置不同的安全高度。在地势不利,桥下净空不足时,安全高度宜取0.5~1.0m,其余可取0.25m。当排导槽通过能力大于设计流量的20%时,可不另加安全高度。

(5)排导槽边墙设计

排导槽边墙分直墙式和斜墙式。设计边墙应视地质、地形、水文、泥沙情况,经综合经济技术比较而定。直边墙受力较大,适宜在曲线外侧和填方地段采用,有降低泥石流弯道超高值的作用,抗侧压力较好的优势。斜边墙适宜于挖方和直线段,按护墙受力设计,有省圬工的优越性。

(6)排导槽设计主要尺寸及圬工规格

排导槽设计尺寸及圬工规格见图3-32所示。

图3-32 排导槽设计主要尺寸及圬工规格图

1)流速v<8m/s时,沟心最大厚度取0.6m,边墙顶宽取0.5m,槽底用M10级水泥砂浆砌片石、块石镶面,边墙用M5.0级水泥砂浆砌片石,沟心设马鞍面。

2)当8≤v≤12m/s时,沟心最大厚度取0.8m,边墙顶宽取0.6m,槽底用M10级水泥砂浆砌片石,并在沟心0.4B槽宽范围内用坚硬块石镶面;边墙用M7.5级水泥砂浆砌片石。

3)当v>12m/s时,沟心最大厚度取1.0m,边墙顶宽取0.7m,槽底用C20级混凝土、钢纤维混凝土护面0.3m,沟心0.4B槽宽范围内用坚硬块石或铸石镶面,或设纵向旧钢轨防磨蚀,钢轨底面向上,轨距5~7cm,或采用钢板防护沟心。边墙用M10级水泥砂浆砌片石。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864