中国煤层气地质
① 中国煤层气资源与勘探开发
8.3.1 煤层气产业发展前景
目前,除了井下瓦斯抽放利用已形成一定规模并获相应效益外,地面煤层气勘探开发仍处于探索阶段,尚未进入工业性规模开发阶段。但是,展望未来,我国煤层气产业具有良好的发展前景。
根据最新的预测结果,我国烟煤和无烟煤煤田中,在埋深300~2000 m范围内煤层气资源量为31.46×1012m3。在世界上,前苏联煤层气资源量为(17.0~113.3)×1012m3,美国为(9.7~11.7)×1012m3(据Boyer,et al.,1998),我国煤层气资源量位居世界第二位。由石油天然气系统进行的全国第二轮油气资源评价结果显示,我国有38×1012m3的常规天然气资源量,其中陆地有30×1012m3、海域有8×1012m3(据陈永武,2000);可见,在我国陆地范围内,煤层气资源量比常规天然气还要大。值得指出的是,在计算煤层气资源量时,褐煤、不可采煤层和煤层围岩等均未参与计算。但事实上,褐煤中含有一定量的煤层气,如我国沈北矿区褐煤的气含量Cdaf达6.47cm3/g,美国鲍德河盆地褐煤的气含量(Cdaf)虽只有0.03~2.3cm3/g,由于煤层单层厚度达67 m之巨,因而同样实现了商业性开发;我国褐煤广泛分布,大多煤层厚度都很大,故其中的煤层气资源潜力是不小的;另根据煤矿通风和井下瓦斯抽放实践,在不可采煤层和围岩中的煤层气资源量通常是可采煤层的10%~20%。若将上述3个范畴都包括在内,我国煤层气资源量将会更加巨大。
丰富的资源量为我国煤层气产业的形成和发展提供了雄厚的物质基础和资源保证。
8.3.2 国家能源战略和煤矿安全的需要
随着社会的进步和发展,在21世纪,人们将更加重视可持续发展战略。为实现国民经济持续、快速发展,必须坚持保护和建设生态环境、净化家园,节约和有效地利用能源资源。为此国家将大力推进开发和使用天然气等洁净能源。另外,从国家石油安全战略考虑,必须减少国民经济和人民生活对石油资源的依赖程度,开拓替代能源。我国人均拥有天然气产量不足20 m3,相对发达国家(如英国人均达1300 m3以上)差距很大,天然气消费量在一次能源消费结构中比例小,仅占2%左右,这种局面远远不能适应国民经济的发展和人民生活水平提高的需要。要改变这种被动局面,只靠常规天然气是不能解决问题的,国家在大力加强常规天然气开发的同时,十分重视煤层气这种非常规天然气的开发利用问题。因此,煤层气在未来我国的能源构成中将具有广阔的发展空间。
从煤矿安全生产角度看,煤层气(俗称煤层瓦斯)是煤矿安全生产的最大隐患,常常造成惨重的灾害事故,而且随着矿井的延伸,问题会变得更加严重。在采煤前及采煤过程中,如果从地面预先将煤层气开采出来,就会大大减少矿井瓦斯灾害的隐患;同时还大大降低了采煤过程中甲烷(CH4)这种强烈温室效应气体的排放量,对保护大气环境具有重要作用。
因此,利用地面采气技术开发利用煤层气资源,是解决矿井瓦斯灾害的一条有效途径,特别是对矿井深部,意义更为突出。
8.3.3 国家重视煤层气的开发利用
国家对煤层气资源的开发利用工作十分重视。江泽民总书记为煤层气开发题词:“依靠科技进步,发展煤层气产业,造福人民。”代表了国家和人民对煤层气产业化的殷切期望和高度重视。
1999年,由国土资源部、国家计委等5部委联合下发的《矿产资源储量评审认定办法》文件中,将煤层气与石油、天然气和放射性矿产同样对待,列为由国家统一管理的矿种。自20世纪80年代以来,国家在煤层气管理、产业政策、资源综合利用、价格政策及对外合作勘探开发等方面先后制定并实施了一系列措施和优惠政策(孙茂远,1998),扶持和鼓励煤层气产业的发展。
为了集中各方面的力量,加速我国煤层气资源的开发利用,经国务院批准,于1996年5月组建了中联煤层气有限责任公司。这是一个跨地区、跨行业,集煤层气开采、利用和输送于一体的主干公司,并被授予对外合作进行煤层气勘探、开发和生产的专营权。中联公司的成立,标志着我国煤层气勘探开发已进入了有序发展的全新历史阶段,也为我国煤层气产业的形成和发展提供了强有力的组织保证。
1990年,沈阳市煤气总公司引进美国技术,在辽宁省红阳矿区施工红阳一号煤层气井,进行煤层气资源风险勘探,开创了我国利用现代煤层气技术之先河。此后,国内煤炭、石油、地矿系统各有关单位和中联公司与联合国开发计划署(UNDP)、美国和澳大利亚的有关公司等,在我国各地进行煤层气勘探开发试验工作,先后在柳林、石楼、潘庄及晋城、潘庄及大城建成了6个小型煤层气试验开发井网,均获得工业性气流;由中联公司在枣园地区施工的TL-007 井,单井最高产气量达16000 m3/d。另外,正在建设中的还有新集、淮北、临兴、盘江和丰城等小型试验开发井网。这些小型开发井网起到了试验和示范作用。
小型开发井网显示出在中国利用地面技术开采煤层气的可行性,并积累了大量生产资料和丰富的实践经验,特别是在晋城矿区高变质无烟煤中利用地面垂直井技术采气获得成功,大大拓展了人们的视野。所有这些都为今后大规模工业性开发进行了有效的技术储备。
我国进行地面煤层气勘探开发试验工作已有10余年的历史,但至今仍停留在打勘探井和小型试验开发井网的水平上,未能进入大规模工业性开发利用阶段。究其原因,主要是投入不足和下游工程(特别是输气管道)不配套。美国至1995年底共有6700口煤层气生产井,年产气量达270×108m3;而我国截至1999年底,共打各类煤层气井156口,其中进行过采气试验的井(包括地面垂直井和采动区井)只有99 口;采出的气体全部排空,故煤层气产量为“零”。相比之下,我国煤层气井数量很少,相应的投入就更少。在这种状况下,很难实现煤层气开发利用的实质性突破。
天然气输送管道缺乏是制约我国煤层气发展的重要外部条件。在已有的和正在建设的小型煤层气试验开发井网范围内,除大城地区有地域性的天然气输气管道外,其他地区都没有。这种局面严重地抑制着对煤层气进一步投入和勘探的热情。若能解决煤层气远距离输送的通道问题,必将大大激发人们对煤层气勘探开发投资的热情。
伴随着国家实施西部大开发战略,由塔里木盆地至上海的“西气东输”工程已全面开工。这条长4200 km的输气管道,将经过榆林、长治和淮南等地,这些地区都是煤层气资源条件很好的地区,也是目前我国煤层气勘探开发的热点区域。“西气东输”工程的建设,为相关地区煤层气开发利用提供了一个大发展的良好契机。
8.3.4 开发前景评价
在对各主要地区分别评价和全国总体认识的基础上,按照分层次、分阶段和综合评价的原则,以煤层发育富集程度、煤层气资源量规模、地理位置及市场条件、煤层气勘探开发程度为依据,以含气带为单位,对于开发前景进行了分类评价。
Ⅰ类:指资源条件和经济地理位置俱佳,目前煤层气勘探效果显著,作为优先开发的含气带。此类含气带有沁水、鄂尔多斯盆地东缘、渭北、徐淮和淮南等5个含气带。这5个含气带的煤层气资源量为8.90×1012m3,占全国总资源量的28.29%。
Ⅱ类:指资源量丰富,但地区经济发展相对滞后,或地形条件不利,煤层气勘探工作很少,或煤层气勘探工作尚未开展的含气带,可作为长远规划考虑。这类含气带包括华蓥山、川南、黔北、六盘水、吐-哈、准噶尔南和伊犁等6个含气带。这6个含气带的煤层气资源量为6.81×1012m3,占全国总资源量的21.65%。
Ⅲ类:指资源条件一般,但经济地理位置优势明显,市场需求旺盛,煤层气勘探具有一定基础,煤层气开发利用已取得一定成效的含气带,可根据需要和可能性开展工作。这类含气带包括三江-穆棱河、浑江-辽阳、抚顺、辽西、京唐、冀中平原、豫西、萍乐、湘中、黄陇、鄂尔多斯盆地北部、鄂尔多斯盆地西部、桌-贺和准噶尔东14个含气带。这14个含气带的煤层气资源量为10.60×1012m3,占全国煤层气总资源量的37.73%。
Ⅳ类:为上述各类以外的含气带,资源条件和外部条件较差,在当前技术经济条件下可暂不考虑开发利用其煤层气资源。
在Ⅰ、Ⅱ、Ⅲ类含气带中,优选出沁水盆地北部的阳泉-寿阳地区、沁水盆地南部地区、鄂尔多斯盆地东缘、渭北煤田东段、铁法盆地、大城地区、淮北矿区、淮南矿区、丰城矿区和盘江矿区等有利区块,作为煤层气地面开发的重点工作对象。
建议进一步阅读
1.程裕淇主编.1994.中国区域地质概论.北京:地质出版社
2.赵庆波.2004.中国煤层气地质特征及其勘探新领域.天然气工业,24(5):4~8
3.朱杰,车长波等.2006.我国煤层气产业发展趋势预测.中国矿业,15(11):5~8
4.张新民等.2002.中国煤层气地质与资源评价.北京:科学出版社,65~137、202~219、224~276
② 国内外煤层气地质研究 现状
美国是世界上最早开始煤层气地面开发,煤层气商业化开发利用也最为成功和规模最大。
加拿大: 煤层气资源量占世界第二位,连续油管施工技术和煤层气液氮压裂技术两项关键技术,生产区域主要在西部的阿尔伯特省。
德国: 在煤层气发电利用上较为成功,主要技术特点是模块化燃气发电机组,采用集装箱式设计,便于拆装、运输,对30%浓度以上甚至略低于30%甲烷浓度的气体进行发电利用,实现了电热联产。
中国煤层气主要集中在沁水盆地南部、铁法和阳泉矿区。全国95%的煤层气资源分布在晋陕内蒙古、新疆、冀豫皖和云贵川渝等四个含气区,其中晋陕内蒙古含气区煤层气资源量最大,占全国煤层气总资源量的50%左右。
国家能源局2013年1月发布《煤层气产业政策》征求意见稿。根据该意见稿,“十二五”期间,我国将建成沁水盆地和鄂尔多斯盆地东缘两大煤层气产业化基地,形成勘探开发、生产加工、输送利用一体化发展的产业体系。加大新疆、辽宁、黑龙江、河南、四川、贵州、云南、甘肃等地区煤层气资源勘探力度,建设规模化开发示范工程。之后再用5~10年时间,新建3~5个产业化基地,实现煤层气开发利用与工程技术服务、重大装备制造等相关产业协调发展。
但也有业内人士表示,我国实现煤层气大规模产业化开发存在瓶颈。首先,我国的煤炭企业片面追求产量,没有考虑开发利用煤层气。其次,我国管网建设以及储配能力不足,阻碍了实现煤层气产业化。再次,由于电力行业存在门槛,煤矿利用瓦斯所发电量难以实现并网。
③ 石楼勘探区煤层气地质
石楼-大宁构造带位于离石鼻状隆起南部,石炭、二叠系含煤岩系为西倾平缓单斜,倾角<4°,其上发育的次级褶皱多呈南北走向。上石炭统本溪组含2层薄煤层(11、12煤),太原组含煤5层(6~10煤),下二叠统山西组含煤5层(1~5煤),其中4、5、8、9煤为煤层气勘探目标煤层。煤层累厚8~22 m,埋藏适中为300~1200 m。煤岩显微组分以镜质组、半镜质组为主,Ro,max为0.90%~1.70%,属肥、焦煤,煤层含气量12.1~12.63 m3/t,煤层渗透率(0.01~6.4)×10-3μm2。
1995年及1997—1998年,安然公司、阿科公司与中方合作在石楼—大宁构造带石楼、中阳一带施钻7口煤层气勘探井(SH1—7)。从SH2、3和SH5-7五口井煤层含气量资料分析,SH5井较低,5煤4.5 m3/t,9煤9.81 m3/t,3、4煤为8.2 m3/t和7.41 m3/t,均低于10 m3/t,其余四口井除SH3井3、4煤为9.42 m3/t、8.25 m3/t外,均大于10 m3/t,SH2井3煤最高达23 m3/t。五口井6个层位测试结果,3煤含气量为8.2~23 m3/t,4煤为7.41~14.58 m3/t,5煤为4.5~18.37 m3/t,8煤为17.08~21 m3/t,9煤为13~17.55 m3/t,10煤为9~15.9 m3/t。
从石楼煤层气勘探的六口井煤层渗透率资料分析,SH1-3井渗透率较低,低者为0.0012×10-3μm2,SH3井3、4、5煤层最高为1.00×10-3μm2。SH5-7井渗透率较高,SH5井8、10煤层埋深266.70 m,渗透率为4.60×10-3μm2,SH6井8、9、10煤层埋深897.33 m,渗透率为2.90×10-3μm2,SH7井8煤层埋深925.07 m,渗透率为4.10×10-3μm2,可见8煤及9、10煤渗透率相对较高。
对石楼勘探区4口煤层气井进行钻探、测试和压裂,1998年10月开始单井排采6个月。SH5井最高产气量1260 m3/d,平均产气量560 m3/d,最高产水量16 t/d,平均产水量6.3 t/d;SH6井最高产气量1120 m3/d,平均产气量700 m3/d,最高产水量16 t/d,平均产水量4.0 t/d;SH3井最高产气量840 m3/d,平均产气量420 m3/d,最高产水量16 t/d,平均产水量3.2 t/d;SH7井最高产气量280 m3/d,平均产气量100 m3/d,最高产水量13 t/d,平均产水量2.5 t/d。4口井半年累产气28×104m3,单井最高产气量1260 m3/d,单井平均产气量100~600 m3/d,单井排采和煤层渗透率较低是产气量较低的主因。估算720 km2煤层气储量1324×108m3。
参见《中国煤层气盆地图集》“石楼勘探区煤层含气量数据表”“石楼勘探区煤层渗透率数据表”“石楼勘探区煤层气井气水产量数据表”“SH—6井气水产量曲线”。
④ 国内外煤层气地质条件对比
美国、澳大利亚、加拿大煤层气勘探开发之所以取得成功,首先与其各自盆地的煤层气地质条件是分不开的。近年来,中国在多个地区开展煤层气勘探开发试验,其中晋城、大宁—吉县、宁武、昌吉等地区的煤层气取得了初步的成果。分析对比国内和国外重点地区的煤层气地质条件,对于中国煤层气的下一步勘探开发具有重要的借鉴意义。
一、煤层气资源量及资源丰度
首先,含煤盆地要具有一定规模的煤层气资源量和可采资源。只有煤层气资源规模达到了一定数量,煤层气勘探和开发才有经济效益,如果含煤盆地规模太小,资源量少,难以形成大规模的工业性效应。从参与对比的国外6个典型盆地和国内4个重点地区来看,煤层气资源量分布介于0.32×1012~11.67×1012m3,最大的为艾伯塔盆地,最小的为宁武盆地。煤层气资源丰度一般在0.4×108m3/km2以上,晋城地区所在的沁水盆地、吉县地区所在的鄂尔多斯盆地煤层气资源丰度与圣胡安盆地、黑勇士盆地类似(表2-4)。
二、成煤地质时代
从参与对比的9个地区来看,成煤地质时代有石炭纪、二叠纪、侏罗纪、白垩纪和古近纪,时间跨度很大,各个时代的煤层均可以开展煤层气勘探开发。但成煤时代较新、埋藏浅的煤层,对煤层气开采更为有利。
三、煤层厚度及连续性
煤层气开发成功盆地通常具有煤层分布稳定、连续性好的特点。从9个地区来看,煤层单层厚度一般都在2m以上,以煤层气勘探开发最为成功的圣胡安盆地为例,含煤1~5层,煤层厚度9~30m,中国晋城、吉县、宁武地区煤层总厚度在10m左右,昌吉地区煤层厚度可达80m,与国外煤层气产气盆地相当。当单层含气量高和多层合采时,薄层也可以作为选区目标,黑勇士盆地、艾伯塔盆地就是实例。
四、煤层埋藏深度
从目前已经开发的煤层气盆地来看,煤层气开发的深度一般为100~1200m,埋深过大后煤层渗透率急剧降低,加上钻井成本上升,开发效益变差。粉河盆地在短期内迅速取得突破,与煤层埋藏较浅有极大的关系。中国晋城、吉县地区煤层气开发效果最为明显的地区也在煤层埋藏深度1200m以浅的地区。
五、煤阶
在9个地区中,RO最大的晋城地区为3.5%,煤阶达到了无烟煤3号;RO最小的粉河盆地为0.3%,煤阶为褐煤。在从褐煤到无烟煤的各种类型的煤阶中,都获得了工业气流。国外进行煤层气勘探开发的地区主要为中低煤阶区;国内晋城地区为高煤阶区,也取得了煤层气勘探开发的突破。
六、煤层气成因
美国落基山前是目前煤层气开发的主力地区,其煤层气生成主要受控于深成变质作用和岩浆热变质作用。渐新世—早中新世的火山岩影响着落基山脉南部的广大地区,包括皮申斯南部地区和圣胡安、拉顿盆地,形成以热成因气为主、部分为晚期生物气的成因类型;而产自粉河盆地低煤阶的煤层气为早期生物气。中国晋城、吉县地区在燕山期也曾受到区域岩浆热变质作用,煤层气主要为热成因气;中国昌吉低煤阶煤层受盆地深处气源和浅部大气淡水影响,煤层气成因类型可能为热成因气和生物气。
表2-4 国内外重点地区煤层气地质条件对比表
七、保存条件
由于中国基本的构造格局是由一些小型地台、中间地块和众多微地块及其间的褶皱带镶嵌起来的复合大陆,与国外形成于统一的地台背景下的煤层气地质背景不同,形成条件和赋存条件具有其复杂性和特殊性。晋城、宁武和吉县地区聚煤盆地基底稳定,聚煤作用发育,煤层气生成的物质基础好,存在保存条件好的区带,这一点与美国西部落基山前陆盆地相似;新疆昌吉地区煤层形成于陆相湖盆中,煤层厚度大,煤层上覆地层以粉砂岩和泥岩为主,煤层气保存条件好,有利于煤层气富集。
八、含气量及吸附饱和度
通常含气量和吸附饱和度高,利于煤层气的勘探开发。在参与对比的9个地区中,含气量分布范围为1~35m3/t,最小的为低煤阶的粉河盆地,最大的为高煤阶的晋城地区。9个重点地区煤层吸附饱和度分布范围60%~100%。国内晋城、吉县、宁武和昌吉地区与国外煤层气成功开发盆地相比饱和度相差不大,存在利于煤层气开发有利条件。
九、渗透性
渗透性是评价一个地区煤层气勘探开发潜力最重要的参数之一。一般渗透性越好,煤层气开发前景就也越好。同一个区块、同一煤层横向渗透率变化较大,有的大于20×10-3μm2,有的小于1×10-3μm2。在参与对比的9个地区中,渗透率变化范围为0.1×10-3~50.0×10-3μm2,如煤层渗透率低于0.1×10-3μm2,煤层气难于产出,产量很低,不具有经济效益。以粉河盆地为例,在其他地质条件并不有利的条件下,由于其煤层渗透性好,煤层厚度大,同样使得粉河盆地取得煤层气开发的巨大成功。对比来看,与国外相比中国煤储层渗透率总体偏低,这是与国外煤层气成功开发地区的最大差别。
十、单井产量
在参与对比的9个地区中,除美国圣胡安盆地煤储层压力局部形成超压致使煤层气产量异常高出外,大部分地区的压力梯度正常或偏低,储层压力梯度0.70~1.00MPa/100m,煤层气井产量偏低,单井平均1500~5000m3/d。
⑤ 中国煤层气储量、产量增长趋势预测
一、煤层气储量增长趋势预测
截至2009年,全国共探明煤层气储量1857.4×108m3,探明面积1133.56km2。根据中国煤层气地质特征及资源分布状况,2010~2015年,在沁水盆地、鄂尔多斯盆地、准噶尔盆地、宁武盆地、二连盆地等地累计获探明储量达5180×108m3,2015~2020年,随着煤层气的勘探开发技术日趋成熟和开采成本的降低,勘探范围将进一步扩大到华南、东北及西北地区,在此期间,煤层气开发会快速向规模化、产业化发展,逐渐形成10~15个煤层气生产基地,探明煤层气地质储量约8740×108m3;到2025年,在全国预计探明储量约1.36×1012m3,随着勘探开发技术的提高和开采成本的降低,形成完善的煤层气产业体系。2030年建成20~30个煤层气生产基地,预计探明储量将达到2.08×1012m3。(图8-2)。
图8-2 中国常规天然气与煤层气储量增长趋势预测图
二、煤层气产量增长趋势预测
根据《新一轮全国油气资源评价》成果,中国煤层气资源丰富,42个主要含气盆地埋深2000m以浅煤层气地质资源量为36.8×1012m3,埋深1500m以浅煤层气可采资源量10.9×1012m3。为了预测煤层气在未来10~20年的产量增长趋势,利用历史趋势预测法对未来煤层气产量增长进行中长期的预测。预测2010~2020年,随着煤层气的勘探开发技术日趋成熟和开采成本的降低,勘探范围将进一步扩大到华南、东北及西北地区,在此期间,煤层气开发会快速向规模化、产业化发展,逐渐形成10~15个煤层气生产基地,预计2020年煤层气产量将达到270×108m3,探明煤层气地质储量约8740×108m3。到2025年,在全国预计探明储量约1.36×1012m3,随着勘探开发技术的提高和开采成本的降低,煤层气产量达330×108m3,形成完善的煤层气产业体系。2030年建成20~30个煤层气生产基地,预计煤层气产量将达到380×108m3(图8-3),累计探明煤层气地质储量将达到2.08×1012m3。2030年以后,随着煤层气开发技术的不断进步,处于2000~4000m深层的煤层气资源也将会被探明和开采,预计煤层气探明储量和产量还会大幅度地增加。
图8-3 中国常规天然气与煤层气产量增长趋势预测图
⑥ 中国煤层气勘探开发现状与发展前景
徐凤银 刘 琳 曾雯婷 董玉珊 李延祥 周晓红
(中石油煤层气有限责任公司,北京 100028)
摘 要:“清洁化、低碳化” 是全球趋势。加快煤层气勘探开发步伐,对减少煤矿瓦斯事故、保护大气 环境、改善能源结构、保障能源安全具有重要战略意义。中国对煤层气开发力度不断加大,出台了价格优惠、 税收优惠、开发补贴、资源管理、矿权保护等一系列鼓励政策,形成中石油、晋煤集团、中联煤三大煤层气 企业,但目前产业整体规模较小。针对矿权问题,形成3种促进采煤采气协调发展的合作模式。即:沁南模 式、潞安模式和三交模式。在技术上已初步形成适合不同煤阶和不同地质条件下煤层气的勘探开发配套技术,建成了高水平的煤层气实验室,并在800m以深地区、低阶煤储层的开发等领域有实质性突破。
到2010年底,全国共钻煤层气井5426口,探明煤层气地质储量2900多亿立方米。累建产能超过30× 108m3/a,年产量15×108m3,商品气量11.8×108m3。建成管输、压缩/液化能力56×108m3/a。截至2011年 6月,全国煤层气日产量超过400×104m3。已建或在建了较完善的煤层气管网。沁南、韩城、大宁-吉县及 保德四个有利区都紧邻已有天然气主干管线。
中国煤层气资源丰富,潜力大、前景好,加大研发力度,依靠技术进步,特别建议加强四个方面的工作: 一是根据资源分布研究与调整对策;二是国家政策落实和企业间的相互合作须进一步加强;三是在提高单井 产量和整体效益方面强化技术攻关;四是建立统一的信息平台,避免无序竞争和重复性投资。这将会大大促 进煤层气产业快速发展。
关键词:中国;煤层气;开发;产业;技术;现状;前景
Exploration & Development Status and Prospects For China's Coal Bed Methane
Xu Fengyin,Liu Lin,Zeng Wenting,DongYushan,Li Yanxiang,Zhou Xiaohong
(PetroChina CBM Co.,Ltd,Beijing 100028,China)
Abstract:A global trend of "Clean and low-carbon" has been formed.To speed up CBM exploration and development is of significant importance to rece coal mine gas accidents,to protect atmospheric environment and to improve energy structure.Greater efforts have been exerted to CBM development,given a series of encouraging policies,i.e.favourable price,tax preferences,development subsidy,resource management and mineral right protection.Three major CBM enterprises emerged including PetroChina,JAMG,and CUCBM,while the current instrial scale is relatively small.Considering the exploration right issues,3 cooperation modes are developed to promote the coordinated development of gas extraction and coal mining such as Qinnan mode,Lu'an mode and Sanjiao mode.Regarding technologies,a couple of exploration and development technologies are developed,tailored for various rank coal methane and for different geological conditions,and a high-profile CBM lab was built.Besides,some substantial breakthroughs have been made in exploring CBM buried deeper than 800m and in low-rank coal bed methane development.
By the end of year 2010,5,426 CBM wells have been drilled,about 290 bcm of the geological reserves proved.An annual proction capacity of over 3 bcm were accumulatively built for surface extraction,procing 1.5 bcm/a,with 1.18 bcm of commercial proction and 5.6 bcm/a for pipeline transportation,CNG and LNG capacity.The nationwide CBM yield has exceeded 4 million cubic meters per day by June,2011.Four favorable blocks,like Qinnan,Hancheng,Daning-jixian and Baode all get close to the major existing pipelines.
China is rich in CBM resources,with great potentials and promising prospects.Thus,the following four suggestions are proposed:to work out proposals based on resource distribution;to further coordinate governmental policies and entrepreneur performance;to strive to make technological breakthroughs in increasing single well yield and in promoting integrated economic efficiency;to establish a unified information platform to avoid disorderly competition and repeated investment.All these four proposals are likely to stimulate the progress of CBM instry.
Key words:China;CBM;development;instry;technology;status;prospects
引言
煤层气俗称瓦斯,成分主要是甲烷,形成于煤化过程中,主要有吸附在煤孔隙表面、分布在煤孔隙 及裂隙、溶解在煤层水中三种赋存形式,以吸附状态为主。当煤层生烃量增大或外界温度、压力条件改 变时,三种赋存形式可以相互转化。“清洁化、低碳化” 是全球趋势,能源转型和低碳经济已成为世界 各国经济社会发展的重要战略。
煤层气开发利用具有“一举三得” 的优越性。首先它是一种清洁、高效、安全的新型能源,燃烧 几乎不产生任何废气,有利于优化能源结构,弥补能源短缺;再者,瓦斯是煤矿安全“第一杀手”,它 的开发有利于煤矿安全生产,减少煤矿瓦斯事故;同时它也是一种强烈温室效应气体,温室效应是CO2 的20倍,开发煤层气可以有效减少温室效应。总体体现出经济、安全和环保三大效益。加快煤层气勘 探开发步伐,对减少煤矿瓦斯事故、保护大气环境、改善能源结构、保障能源安全具有重要战略意义。煤层气的开采方式分为井下抽采与地面抽采两种方式。地面抽采在钻完井、测录井、压裂、排采、集输 工艺上与常规油气开采技术基本相同。
1 世界煤层气资源及产业现状
1.1 资源分布
全世界埋深小于2000m的煤层气资源量约为260×1012m3,主要分布在俄罗斯、加拿大、中国、美 国、澳大利亚等国家(图1)。
图1 全世界煤层气资源分布情况
1.2 产业现状
目前,美国、加拿大、澳大利亚等 国家煤层气产业发展趋于成熟。美国自 20世纪80年代以来,有14个含煤盆地 投入煤层气勘探开发,现已探明可采储 量3×1012m3。2009年,煤层气生产井 5万余口,产量542×108m3。煤层气产 量占天然气总产量比重日益增大,2009 年煤层气产量比例达到9%。加拿大煤 层气产业发展迅猛。1987年开始勘探,2002年规模开发,2009年生产井7700 口,产量达60×108m3。澳大利亚也已 形成工业规模。主要分布在东部悉尼、苏拉特、鲍恩三个含煤盆地,2005年生产井数1300口,产量 12×108m3,2009年产量达48×108m3。
1.3 技术现状
通过长期的理论与技术研发,目前国际上形成4大主体技术,4项工程技术。4大主体技术包括: 地质选区理论和高产富集区预测技术,煤层气储层评价技术,空气钻井、裸眼洞穴完井技术,多分支水 平井钻井技术。
4项工程技术包括:连续油管钻井、小型氮气储层改造技术,短半径钻井和U形水平井技术,注氮 气、二氧化碳置换煤层气增产技术,采煤采气一体化技术。
2 中国煤层气产业现状
2.1 勘探开发现状
受美国、加拿大、澳大利亚等国家煤层气快速发展的影响,加之国家出台一系列优惠政策,中国煤 层气开发规模和企业迅速发展,已形成中国石油、晋煤集团、中联煤三大主要煤层气生产企业。
到2010年底,全国共钻煤层气井5426口,探明煤层气地质储量2900多亿立方米。累建产能超过 30×108m3/年,地面抽采实现年产量15×108m3,商品气量11.8×108m3。建成管输、压缩/液化能力 56×108m3/a。截至2011年6月,全国煤层气日产量超过400×104m3。
中国石油:2010年12月,商务部等四部委宣布为进一步扩大煤层气开采对外合作,新增中国石 油、中国石化以及河南省煤层气公司三家企业作为第一批试点单位。目前中国石油登记煤层气资源超过 3×1012m3,探明地质储量占全国64%,重点分布在沁水、鄂东两大煤层气盆地。近几年来,积极开展 煤层气前期评价、勘探选区及开发先导试验,投资力度大幅度增加,发现沁水、鄂东两大千亿立方米规 模以上煤层气田,逐步形成沁南、渭北、临汾与吕梁四个区块的开发格局。截止到2010年底,商品气 量近4×108m3。
通过几年的探索,与煤炭企业和地方政府合作,形成3种促进采煤采气协调发展的合作模式。即: 沁南模式:矿权重叠区协议划分,分别开发,双方开展下游合作;潞安模式:整体规划、分步实施,共 同维护开采秩序,避免重复性投资;三交模式:先采气、后采煤,共同开发。这些模式得到张德江副总 理和国家有关部委的肯定。
已建或在建了较完善的煤层气管网。沁南、韩城、大宁-吉县及保德四个有利区都紧邻已有天然气 主干管线(图2)。
建成了高水平的煤层气实验室,测试样品涵盖全国绝大多数煤层气勘探开发区,工作量占全国 80%,技术水平居国内领先。
主要实验技术包括:含气量测试技术,等温吸附测试技术,煤储层物性分析技术,煤层压裂伤害测 试技术等。
晋煤集团:到2010年底,完成钻井2510口,地面抽采产量达到9×108m3。建成寺河-晋城10× 108m3/a输气管线;参股建成晋城-博爱输气管线。与香港港华共同投资组建煤层气液化项目日液化量 可达25×104m3;投产120兆瓦煤层气发电厂。开发地区涉及山西沁水、阳泉、寿阳、西山,甘肃宁 县,河南焦作等。
中联煤并中海油:中联煤目前有矿权面积2×104km2,其中对外合作区块面积达1.6×104km2。截 至2010年底,在沁水盆地潘河建成国家沁南高技术产业化示范工程,以及端氏国家油气战略选区示范 工程。
目前完成钻井672口,投产230口,日产气50×104m3。2010年,中海油通过收购中联煤50%股 份,成功介入煤层气勘探开发,为发展煤层气产业打下了基础。
图2 中国石油天然气主干管网示意图
阜新煤业:阜新煤炭矿业集团与辽河石油勘探局合作,开展了三种煤层气合作开采模式,显著提高 了整体开发效益。三种开发模式包括:未采区短半径水力喷射钻井见到实效;动采区应用地面负压抽采 技术,实现了煤气联动开采;采空区穿越钻井取得成功。2010年已钻井52口,日产气10×104m3,商 品气量3226×104m3,建成CNG站3座,主要供盘锦、阜新市CNG加气站。
中石化:煤层气矿权区主要为沁水盆地北部和顺区块及鄂东延川南区块。2010年完成钻井34口,产气84×104m3,目前日产气近3000m3。2010年,华东局与淮南矿业签署了 “煤层气研究开发合作意 向书”,在淮南潘谢矿区优选出100km2有利区块,共同开发煤层气资源。2011年,与澳大利亚太平洋 公司在北京签署了一项框架协议,双方确立了非约束性关键商务条款。
其他:龙门、格瑞克、远东能源及亚美大陆等合资公司及其它民企纷纷介入煤层气勘探开发,加大 产能建设规模,其中亚美大陆目前日产气19.7×104m3。
总体来看,沁水盆地南部成为我国煤层气开发的热点,共建产能近25×108m3/a,目前日产气近 380×104m3,实现大规模管网外输和规模化商业运营,初步形成产运销上下游一体化的产业格局。
2.2 政府优惠政策与技术支持
为了鼓励煤层气产业发展,中国政府出台了一系列优惠政策,包括价格优惠、税收优惠、开发补 贴、资源管理及矿权保护等等(表1),取得了明显效果。
表1 中国政府鼓励煤层气产业发展的优惠政策
与此同时,在技术层面也给予了强有力的支持。2007年以来,国家发改委专门组建了煤层气开发 利用、煤矿瓦斯治理两个国家工程研究中心,科技部设立了 “大型油气田及煤层气开发” 国家科技重 大专项。中国石油成立了专业煤层气公司,并设立“煤层气勘探开发关键技术与示范工程” 重大科技 专项。这些都为煤层气产业发展与技术进步创造了条件。
2.3 技术现状
我国的地质条件和美国等有所区别。目前,煤层气开发都源于美国最早的理论。随着规模化深入开 发,现场实验了很多不同类型煤阶和煤体结构、构造条件、水文地质条件下的煤层气储存特点。已经证 明,这套理论是否完全适合中国煤层气地质条件还有待进一步证实。针对中国不同盆地地质条件研发的 不同的勘探开发技术,有些已经取得了突破性进展。
2.3.1 地质上有新认识
有利区评价方法有新突破:通过煤岩特征、含气量、渗透率、产气量等地质综合研究,建立起富集 高产区评价标准,提出了产能建设区开发单元的划分标准和方法。
800m以深煤层气井产量有突破:一般认为,随着煤层埋深的增加压力随之增大,渗透率急剧减小、 产气量也随之减少。目前国内商业开发深度都在800m以浅地区。随着勘探开发的深入推进,800m以 深井也获得了工业气流(最高产气量2885m3/d)(图3),但煤层产气规律尚不清楚,正在通过加强研 究及大井组排采试验得以证实。
图3 800m以深井排采曲线
煤储层渗透率普遍较低,储层保护是关键:煤储存条件的研究是煤层气开发关键的制约因素。沁水 盆地3#煤渗透率(0.013~0.43)×10-3μm2,平均0.112×10-3μm2;鄂东(0.22~12)×10-3μm2,平均1×10-3μm2。总体来看,煤层物性差、非均质性强,因此,钻井过程中加强储层保护是关键。钻 井、压裂过程中应尽量采用对井筒周围煤储层的危害小的欠平衡钻井及低伤害压裂液。
2.3.2 现场管理有新措施
高煤阶开发井网井距有新探索。由于我国高煤阶煤层气储层物性与外国有较大差异,开发证实一直 沿用的300m×300m井距不完全适合,主要表现在高产井数少,达产率低,产量结构不合理。为此,通 过精细地质研究,以提高单井产量为目标,对不同井距产气效果数值模拟并进行先导试验,探索了高煤 阶煤层气开发的200m×200m井网和井距。与此同时,在水平井的下倾部位实施助排井也初见成效。
2.3.3 工程技术配套有新进展
三维地震勘探:韩城地区实施100km2三维地震,资料品质明显好于二维,小断层的刻画更加清晰(图4),有效地指导了井网部署。
图4 韩城地区三维与二维剖面对比
羽状水平井钻井:通过市场化运作,打破了 外国公司在羽状水平井施工领域的垄断地位,摆 脱了羽状水平井钻井完全依赖外国公司的局面,成本大幅度降低。
压裂配套工艺:在对煤层实验分析的基础 上,结合大量的压裂实践,形成以 “变排量、低 伤害” 为原则,“高压井处理技术、分层压裂技 术” 等新工艺,采用低密度支撑剂、封上压下、 一趟管柱分压两层等工艺技术。
排采技术:形成缓慢、稳定、长期、连续八 字原则;为培养高产井形成三个关键环节:液面 控制、套压控制、煤粉控制;针对低成本战略,形成井口排采设备的两种组合:电动机+抽油 机,气动机+抽油机。
地面集输处理:标准化设计、模块化建设、 自动化管理,基本实现低成本高效运营。
2.4 利用现状
2009年全国建成6家煤层气液化厂,液化产能260×104m3/d,2010年为300×104m3/d,2020年 可达到700×104m3/d。除此之外,还主要用于低浓度瓦斯发电,居民生活,合成氨、甲醛、甲醇、炭 黑等化工原料,已逐步建立起煤层气和煤矿瓦斯开发利用产业体系。
2.5 存在问题
技术上:技术是制约目前产业进展缓慢的主要问题。目前存在的主要问题包括:煤层气高渗富集区 的控气因素,符合我国煤层气地质条件、用以指导生产实践的开发理论,适合我国地质条件的完井、压 裂、排采等关键技术与相应设备等。
管理上:主要包括:煤层气、煤炭矿权重叠,先采气、后采煤、发电上网等政策实施困难较多,对 外合作依赖程度高,自营项目受到限制,管道规模小,市场分散、不确定性大等。
3 煤层气发展前景与建议
随着国民经济的发展,天然气需求快速增长为煤层气发展提供了机会。2000年以来,天然气年均 增长速度达到16%(图5),2009年底,全国天然气消费总量875×108m3,2010年,天然气需求量超 过1400×108m3,供应能力约1000×108m3。2015年,预计天然气需求量2600×108m3,供应能力只有 1600×108m3,到2020年,天然气缺口将超过1000×108m3,这就为煤层气等非常规气的发展提供了 空间。
3.1 发展前景
据有关规划,到2015年,全国地面开发煤层气产量将达到100×108m3;2020年,天然气产量约 2020×108m3,其中非常规天然气产量达到620×108m3,地面开发煤层气将达到200×108m3。
图5 2000~2008年中国天然气消费量变化趋势
与此同时,各相关企业也制定了 “十二五” 发展目标(表2)。
表2 全国重点地区及企业煤层气地面开发预测表
上述目标能否顺利实现,前景如何,勘探开发及产业规模能否迅速发展,主要取决于国家政策的进 一步落实以及几大主要企业的投入。尤为重要的是这些企业针对煤层气赋存条件的技术进步与突破,而 非资金问题,这一点必须引起高度重视。中国石油将会进一步加大投入,促进煤层气产业快速发展。主 要加大沁水盆地南部和鄂尔多斯盆地东部两个重点产业基地的勘探开发力度,积极探索外围盆地煤层气 开发配套技术。预计:2012年新增探明煤层气地质储量2000×108m3,为建产能提供资源保障;2013 年建成生产能力45×108m3/年,2015年产量达到45×108m3,商品量40×108m3,成为国内第一煤层气 生产企业。同时,成为业务技术主导者、规范标准制定者、行业发展领跑者。到2020年,煤层气商品 量预计达到100×108m3,成为中国石油主营业务重要组成部分和战略经济增长点。
3.2 对策与建议
3.2.1 根据资源分布研究与调整对策
全国埋深小于2000m的煤层气总资源量为36.8×1012m3,可采资源量约10.8×1012m3。资源量大 于1×1012m3盆地有8个,资源量合计28×1012m3,占全国76%,主要分布于中西部地区。埋藏深度小 于1000m的资源量为14×1012m3,是目前开发的主要资源。低阶煤煤层气资源量占43%,但目前主要 开发的是中高阶煤煤层气资源。因此,现在必须加强对西部地区中深层(埋深大于800m)和中低阶煤 煤层气开发的研究与开发试验力度,力求更大范围的实质性突破。
3.2.2 国家政策落实和企业间的相互合作须进一步加强
完善相关政策措施,制定煤层气、煤炭开发统一规划,做到无缝衔接,切实落实“先采气、后采 煤”,实现资源充分利用。采煤采气3种合作方式还需要进一步扩展;积极推进煤层气产业发展与煤矿 瓦斯防治一体化合作。
3.2.3 在提高单井产量和整体效益方面强化技术攻关
针对煤层气勘探开发关键技术需要加强攻关。进一步研发针对煤层气地质特点而形成配套合适的钻 探、压裂、排采、管输等专有设施和设备,加大发展羽状水平井开发关键技术力度。
3.2.4 建立统一的信息平台,避免无序竞争和重复性投资
强化信息渠道,实现资源共享,避免无序竞争和重复性投资。建立煤层气行业统一的信息管理系统 是一项非常重要的基础工作。包括两方面内涵:企业内部应加强煤层气田的数字化建设,国家层面应加 强行业技术与产业信息的统计和交流发布,为煤层气行业提供统一的信息化建设标准。
结束语
低碳经济是我国能源经济发展的必由之路。为了从源头上减少碳排放,引领能源结构和产业多元 化,天然气供需缺口将长期存在,对煤层气需求会不断增加。中国煤层气资源丰富,目前产业整体规模 小,但潜力大、前景好。加大研发力度,依靠技术进步,将大大促进煤层气产业快速发展。
参考文献
[1]徐凤银等.煤层气勘探开发的理论与技术发展方向[J].中国石油勘探,2008,(5)
[2]宋岩等.煤层气成藏机制及经济开发理论基础[M].北京:科学出版社,2005
[3]李景明等.中国煤层气资源特点及开发对策[J].天然气工业,2009,(4)
[4]郭炳政.韩城区块煤层气勘探开发现状与启示,2006年煤层气学术研讨会论文集[C].北京:地质出版社
[5]赵庆波等.煤层气地质选区评价理论与勘探技术[M].北京:石油工业出版社,2009
[6]陈振宏等.煤粉产出对高煤阶煤层气井产能的影响及其控制[J].煤炭学报,2009,(34)2
[7]孙茂远.煤层气资源开发利用的若干问题[J].中国煤炭,2005,(3)
[8]刘洪林,李景明,宁宁,李贵中.我国煤层气勘探开发现状、前景及产业化发展建议[J].天然气技术,2007,(04)
[9]鲜保安,崔思华,蓝海峰,李安启.中国煤层气开发关键技术及综合利用[J].天然气工业,2004,(05)
[10]叶建平.中国煤层气勘探开发进展综述[J].地质通报,2006,(Z2)
[11]崔荣国.国内外煤层气开发利用现状[J].国土资源情报,2005,(11)
[12]秦勇,程爱国.中国煤层气勘探开发的进展与趋势[J].中国煤田地质,2007,(1)
[13]彭贤强,张宝生,储王涛,刘玲莉.中国煤层气开发综合效益评价[J].天然气工业,2008,(3)
[14]李五忠,田文广,孙斌,王宪花,赵玉红.低煤阶煤层气成藏特点与勘探开发技术[J].天然气工业,2008,(3)
[15]严绪朝,郝鸿毅.国外煤层气的开发利用状况及其技术水平[J].石油科技论坛,2007,(6)
[16]翟光明,何文渊.抓住机遇,加快中国煤层气产业的发展[J].天然气工业,2008,(3)
[17]Working Document of the NPC Global Oil &Gas Study.Topic Paper#29 Unconventional GAS.July 18,2007.
[18]司光耀,蔡武,张强国内外煤层气利用现状及前景展望[J].中国煤层气,2009,(6)
[19]Facing the Hard Truths about Energy[R].Washington,D.C:National Petroleum Council,2007.
[20]侯玉品,张永利,章梦涛.超短半径水平井开采煤层气的探讨[J].矿山机械,2005,(6)
[21]严绪朝,郝鸿毅.国外煤层气的开发利用状况及其技术水平[J].石油科技论坛,2006,(6)
[22]刘贻军.应用新技术促进煤层气的开发[J].地质通报,2007,(26)
⑦ 国内煤层气勘探开发进展
一、国内煤层气井下抽采利用情况
(一)中国煤层气井下抽采现状
中国煤层气资源潜力巨大,新一轮评价埋深2000m以浅的资源总量达36.8×1012m3,约占世界煤层气总资源量的13%。煤层气热值一般在33.44kJ/m3左右,中国每年排放的煤层气近200×108m3,相当于烧掉6000×104t标准煤。
根据资料统计,2006年,国有重点煤矿中,有高瓦斯矿井158处、煤与瓦斯突出矿井156处,高瓦斯、突出矿井数量约占49.8%,煤炭产量约占42.0%;主要分布在安徽、四川、重庆、贵州、江西、湖南及河南等省市。
(二)中国主要矿井瓦斯抽采量
中国开始进行井下瓦斯抽采的试验是从20世纪50年代开始的,当时仅有抚顺、阳泉、天府和北票等6个矿井抽采瓦斯,年抽采量约60×106m3;60年代又有中梁山、焦作、淮南、松藻、峰峰等局的20 多个矿井先后开展了抽采瓦斯工作,年抽采量为16×107m3;70年代抽采矿井猛增到83 个,抽采量达24×107m3;80年代抽采矿井达到111个,抽采量达到38×107m3。
最近几年,中国煤矿区瓦斯抽采非常活跃。2009年全国产煤30×108t,635处矿井中高瓦斯矿占24.6%,全年瓦斯安全死亡约2631人(百万吨死亡人数是美国的近19倍),年向大气释放煤层气约200×108m3,264处瓦斯抽放点,全年煤矿瓦斯井下抽采量为61.7×108m3,利用17.7×108m3,利用率28.7%。
(三)中国主要矿井瓦斯抽采率
阳泉、晋城、淮南、盘江、松藻、水城、抚顺、淮北、铁法、平顶山、鹤壁、焦作、鹤岗、峰峰、中梁山、天府、芙蓉、南桐、六枝等矿区是中国目前的主要抽采瓦斯矿区,各主要矿区抽采总量达到18.25×108m3,矿区平均抽采率为40.08%。其中,阳泉、晋城、淮南、盘江、松藻、水城、抚顺7个矿区的瓦斯抽采量最多,年瓦斯抽采量均超过了1×108m3。
除抽采量外,抽采率也是衡量矿井瓦斯抽采工作优劣的主要指标。在全国抽采矿井中,对18个主要矿区中112对矿井的抽采率进行了统计分析。
按照抽采率大小,中国主要瓦斯抽采矿区可以划分为3类:I类矿区:瓦斯抽采率>40%,抽采效果好;II类矿区:瓦斯抽采率25%~40%,抽采效果一般;III类矿区:瓦斯抽采率<25%,抽采效果差。
中国主要瓦斯抽采矿区的总体瓦斯抽采效果不好,平均抽采率30%。I类矿区只有6个,仅占主要瓦斯抽采矿区数的33%,平均抽采率59.3%;瓦斯抽采效果一般的II类矿区也只有4个,占主要瓦斯抽采矿区数的22%,平均抽采率33.5%;瓦斯抽采效果差的III类矿区则多达8个,占主要瓦斯抽采矿区数高达45%,平均抽采率仅为17.8%。如果考虑所有抽采瓦斯矿井,抽采率低于25% 的矿井比例会更多。井下混合瓦斯每年的总释放量达200m3/a,这样估算,中国瓦斯抽采率仅12%左右。大量宝贵的资源泄漏到大气之中,既浪费了资源,又污染了环境。
二、国内煤层气地面勘探开发情况
据不完全统计,截至2009年底全国共钻煤层气井超过4000口,日产气量266×104m3。全国已建成年产能25.0×108m3:其中中石油公司建成6.0×108m3,中联煤层气公司建成3.0×108m3,晋煤集团建成5.5×108m3,其他10.5×108m3,年产气量10.15×108m3(据国家能源局)。基本情况如表2-3所示。
表2-3 截至2009年底国内主要公司煤层气勘探开发现状表
初步掌握了一套适合中国煤层气井常规工程施工技术及工艺流程,同时编制了近30项工程技术标准或规程规范,良好地控制了工程质量。
对全国范围内的煤层气资源、分布及储层参数条件有了一个较为全面的认识,对有利地区进行了初步筛选,先后分别在山西沁水,河东,宁武,大宁—吉县,两淮,贵州,六盘水,陕西韩城,云南恩洪—老厂,辽宁沈北,江西萍乐丰城,湖南冷水江等几十个区块进行了钻探或井组试采试验,其中沁水南部和阜新地区大部分单井日产气1800~3500m3,供气比较稳定。
沁水盆地已成为煤层气开发热点,截至2009年底,沁水盆地累计钻井超过3000口,探明地质储量1596.35×108m3(中石油844.04×108m3,占52.9%),日产量达到248×104m3。中石油30×108m3/a煤层气产业化基地已具雏形,一期工程已建成10×108m3/a处理能力,并于2009年9月15日投产,目前每天向西气东输管线供气超过100×104m3。晋煤集团煤层气抽采能力达到了11×108m3,其中井下抽采5×108m3,地面抽采6×108m3。日销售能力达到160×104m3。中联煤层气公司:完成国家示范工程潘河项目建设,形成2×108m3产量。2009年12月21日与华北油田的煤层气输气管道成功对接,日供气量可达10×104m3。亚美大陆煤层气公司在大宁矿区形成约1×108m3/a产能。
鄂尔多斯盆地东缘煤层气勘探开发稳步推进。中国石油在陕西韩城,山西大宁—吉县、三交区块已完成钻井289口(探井63口,生产井226口),二维地震1260km。2009年提交基本探明煤层气地质储量1145×108m3。
三、国内煤层气勘探开发发展历程
近年来,中国煤层气地面开发和井下抽采日益活跃,煤层气产业已经进入快速发展阶段。
中国的煤层气井下抽采始于20世纪50年代,主要是井下瓦斯抽采,起步早,但进展缓慢,最近几年,中国煤矿区瓦斯抽采非常活跃,2009年全国煤矿瓦斯井下抽采量达61.7×108m3,较2006年翻了一番,利用17.7×108m3,利用率28.7%。截至2009年底,煤矿安全死亡2631人(因瓦斯事故死亡750人),百万吨死亡率0.987,首次降至1以下。
中国煤层气地面勘探开发始于20世纪90年代初,近几年发展较快,已初步准备了可供开发的煤层气资源,初步形成了煤层气开发工艺技术,多个区块已取得较好的产气开发效果,并实现了小规模商业化生产。
煤层气地面开发主要集中在沁水盆地、鄂尔多斯盆地东缘,以及阜新盆地的刘家区块,截至2009年底,沁水盆地南部沁水气田钻井超过3000余口,年产气9.7×108m3;鄂尔多斯盆地东缘共钻煤层气井430余口,年产气超过1500×104m3,阜新盆地刘家区块共钻煤层气井70余口,年产气超过3000×104m3。
在国家战略选区和煤层气示范工程等项目的推动下,近年中国煤层气开发取得突破性进展,以直井和多分支水平井为代表的煤层气开发技术逐步成熟,煤层气产业进入快速发展阶段。同时,国家适时出台了一系列优惠政策,极大地促进了煤层气产业的发展,中国煤层气产业进入快速发展阶段。
⑧ 中国石油煤层气勘探开发实践及发展战略
费安琦 雷怀玉 李景明 赵培华 李延祥
(中国石油天然气股份有限公司 北京 100086)
作者简介:费安琦,男,1946年生,满族,1965年毕业于中国地质大学,主要从事石油、天然气及煤层气勘探开发方面的研究和管理工作。
摘要 根据中国石油天然气股份有限公司煤层气十年勘探经验,系统总结了中国石油在煤层气勘探领域的新认识和新技术,利用这些认识和技术取得了重要勘探成果,发现了三个气田,储备了一大批有利目标区。中国石油在“十一五”期间将加大煤层气的投入,以早日促进煤层气产业化发展。
关键词 煤层气 地质理论 新发现 新领域
Practice and Strategy of CBM Exploration and Development of PetroChina
Fei Anqi,Lei Huaiyu,Li Jingming,Zhao Peihua,Li Yanxiang
(PetroChina Company Limited,Beijing 100086)
Abstract:Based on the CBM exploration experience of PetroChina for ten years,some new knowledge and technologies for CBM exploration from PetroChina were systemically summarized in this paper.PetroChina achieved important CBM exploration results in the light of these knowledge and technologies and discovered three CBM fields and reserved lots of favorable CBM perspective areas.During the eleventh five-year plan,PetroChina will double the investment of CBM to early realize the successful development of China's CBM instry.
Key words:CBM;geology theory;new discovery;new field
前言
煤层气主要以甲烷为主,是洁净的天然气资源。煤层气是主要以吸附形式存在于煤层中的非常规天然气。煤层气勘探可以减少采煤的灾害,减缓对大气的污染,更重要的是煤层气是天然气的一个后备资源。中国石油天然气股份有限公司于1994年在原新区勘探事业部成立了煤层气勘探项目经理部,专门立项进行煤层气勘探。十余年以来,先后组织了“九五”总公司煤层气科技攻关和大量煤层气勘探生产项目,参加本项目科技攻关入数达250余人,着眼全国开展了大区评价研究,投资4.5亿元,共钻井80口,开辟了河北大城、山西晋城、大宁三个试验区。获得了一大批煤层气的有利区块,取得了一批突出的技术成果。“十一五”期间公司将进一步加大投入,促进煤层气早日产业化,实现股份公司能源的多元化战略。
1 中国煤层气地质理论有突破性认识
结合中国煤层气地质特点,将煤层气气藏类型划分为承压水封堵、压力封闭、顶板水网络状微渗滤、构造封闭四大类,并指出承压水封堵气藏保存条件好,有利于排水降压,煤层气最富集,是主要勘探目标。
在煤热演化生烃机理上划分为区域岩浆热变质、局部热动力变质、深层水交替热变质、区域压实变质、构造应力变质五种类型,并指出区域岩浆热变质类型的煤层割理发育,物性好,高产条件最优越,是勘探重点。
在煤层气成因类型上由盆地边缘到腹部划分为甲烷风化带、生物降解带、饱和吸附带、低解吸带四种类型,并指出生物降解带埋藏浅、开采中水大气小,甲烷风化带含甲烷气特低,低解吸带煤层埋藏深、物性差、含气饱和度低、可解吸率低,而饱和吸附带是高产富集有利部位。
在煤层气成藏后改造作用中存在水动力洗刷、煤层矿化、构造粉煤、成岩压实、构造变形差异聚集五种主要作用类型,往往构造变形差异聚集作用类型的上倾承压水封闭条件好,下倾部位有充足气源补给,高产富集条件优越,为勘探重点。
2 形成了煤层气勘探配套工艺技术
先后组织了22项煤层气专用勘探技术攻关,以下6项达到国际领先水平。
2.1 煤层绳索式全封闭快速取心技术
为准确求取煤层含气量和提高煤层取心收获率,研制出绳索式取心工具(大通径)及配套设备,包括取心钻头、外管、内管总成、半合式岩心管、悬挂机构、弹卡定位机构、割卡心机构、单动机构、报警装置、差动机构、内外管扶正器、打捞器、绳索提升系统,及通径大于101mm的专用钻具。现场对30口井取心,平均收获率98%以上,煤心保持原始结构,并且出心速度快,由井底割心到地面装罐,700m 井深仅用8~10min,实测含气量可靠。比常规取心速度快20倍,此项技术已获国家发明专利。
2.2 注入/压降试井技术
针对煤层松软、低压、低渗且含有气体和水的特点,引进国外先进的高压低排量(最高注入压力41MPa,最低注入排量2m3/h)注入泵,并配备了先进、可靠的地面泵注系统。建立了适用于不同试验区的测试工艺技术,研制出专用解释系统软件。经现场50多层测试对比,煤层渗透率等参数解释准确性较高。
2.3 大地电位法煤层压裂裂缝监测技术
根据煤层近于非弹性体的特点,建立了室内数学模型和物理模型试验,研制出大地电位法煤层压裂裂缝监测设备和解释软件,可对煤层压裂裂缝延伸方位和长度进行现场直接动态监测和定量解释。经现场60多层测试对比,压裂裂缝监测结果准确性较高,解决了以往煤层压裂水平裂缝无法直观定量评价的难题。该项技术已获国家发明专利。
2.4 井间地震声波层析成像(CT)技术
根据煤层中的纵波速度较低、压裂后其纵波速度进一步降低的特点,采用井间地震声波层析成像技术,描述声波穿过剖面内煤层物性的变化特点,以评价压裂后井间连通状况。经现场测试对比,井间测试结果清晰可靠,解决了以往煤层裂缝不能直观定量评价的难题。
2.5 煤层气测井评价技术
结合试验区煤层气地质特点,研制开发出煤层气测井系列和评价软件,可对含气量、封盖层、工业分析、岩石力学等参数进行定量解释。经28口井200余块样品实验室测试结果对比,含气量误差不超过6%,利用该技术每口井可节约费用20万元。
2.6 煤层气储层模拟技术
引进国外先进的COALGAS、COMET煤层气储层数值模拟软件,针对中国煤层气特点开发应用,可对各种完井方法和开采方式用三维两相的煤储层进行生产拟合和储层参数敏感性分析,能预测开采20年内采气速度、单井和井组产能、合理井距、布井几何形状及井网优化等多项开采指标,评价气藏开发水平和试验区开采效果。并在沁水盆地晋城地区、鄂尔多斯盆地大宁-吉县地区得到充分应用。
3 利用地质理论和勘探工艺技术,勘探效益显著
3.1 坚持4个层次评价研究取得明显效果
大区评价:评价全国39个含煤盆地68个聚煤单元的煤层气远景资源量,在埋深300~1500m为27.3×1012m3(美国目前18个盆地煤层气远景资源量仅为11×1012m3)。其中4大盆地有利勘探面积7.6×104km2,煤层气远景资源量19×1012m3。
区带评价:优选出鄂尔多斯盆地中部及东部、沁水、冀中—冀东、鲁西—濮阳、豫西、淮南—淮北、六盘水八大有利选区,勘探面积4×104km2,煤层气远景资源量7.1×1012m3。
目标评价:评选出沁水盆地晋城、鄂尔多斯盆地大宁-吉县、韩城、乌审旗六盘水地区格目底及西北等一批有利勘探目标,勘探面积2×104km2,煤层气远景资源量4.4×1012m3。
区块评价:拿下晋城目标樊庄和郑庄区块探明、控制储量及大宁-吉县目标午城区块控制储量。
3.2 发现我国第一个大型煤层气田——沁水气田
1997年10月晋试1井完钻,完钻井深705m,在主要目的层二叠系山西组和石炭系太原组共钻遇煤层6层12m,钻井中煤层气显示良好。1998年2月开始对本井3#煤试气,日产气稳定在2700m3以上,最高日产气为4050m3,在本区首次获得了稳定的煤层气工业气流。
1998年4~8月通过区块评价研究,在晋试1 井附近钻探了晋1-1、1-2、1-3、1-4、1-5井,与晋试1井共同组成了一个梅花形井组。该井组于1999年4~12月进行了面积法排水降压采气,4口井日产气量稳定在2400~3500m3。
在晋试1井组试气的同时,分别在樊庄和郑庄区块完钻了晋试2、3、4、5、6井,经试气单井单层日产气稳定产量2700~4400m3,最高9780m3。采用COALGAS储层模拟软件预测3#煤与15#分压合排单井平均日产气3700~4000m3。
2001年已向国家上交樊庄区块探明含气面积182.22km2,煤层气地质储量352.26×108m3;郑庄区块控制含气面积447.1km2,煤层气地质储量911.2×108m3;该登记区含潜在资源量的总含气面积1090km2,总资源量2656×108m3。
不管是采用常规钻井还是羽状水平井钻井技术,该区煤层气开发都有好的经济效益。陕京和西气东输管线靠近该区,将为改变北京及东部沿海地区大城市环境,带来难以估量的巨大的效益。
3.3 首次在鄂尔多斯东缘发现大型的煤层气田
鄂尔多斯盆地大宁-吉县地区吉试1井于山西组和太原组共钻遇煤层6层累计厚度为17.4m,其中主力煤层厚度5#煤5.4m,8#煤8.8m,煤层压力系数1.1~1.2,煤层渗透率10×10-3μm2,5#煤平均含气量20.7m3/t,含气饱和度91%,8#煤平均含气量13.8m3/t,含气饱和度77%,5#煤钻井中自溢水10m3/d,主要地质参数与美国黑勇士盆地高产富集区接近,为我国首次在鄂尔多斯东缘发现的大型中煤阶煤层气田。其中吉试4井煤层总厚7层22.8m,煤层渗透率高达 82×10-3μm2。吉试 5 井 5#煤厚 6.8m,含气量高达23.2m3/t,含气饱和度 95%,日产气 6629m3。目前初步控制该区在煤层埋深 500~1200m,煤层气含气面积885km2,控制储量800×108m3。
4 中国煤层气开发利用前景展望
21世纪是天然气的世纪,在我国未来几十年内天然气开发将获得飞速的发展。西气东输是煤层气产业发展的一次难得的历史机遇,“西气东输”工程将穿越我国众多的油气盆地和含煤盆地。根据“西气东输”工程的供气能力和设计年限估算,需要1×1012m3的天然气地质储量作保证,但目前常规天然气地质探明储量仅7000×108m3左右,急需补充气源,煤层气作为非常规天然气,其成分95%以上是甲烷,完全可以与天然气混输、混用。同时“西气东输”管线经过的地区也是煤层气资源富集的地区,塔北、鄂尔多斯盆地、沁水盆地、太行山东、豫西、徐淮和淮南等煤层气富集带,总资源量近14×1012m3,而且管线经过的沁水大型煤层气田,已经获得煤层气探明储量,在短期内优先开发这些地区的煤层气资源最具有现实性和可行性。
我国的煤层气工业和其他国家一样,将采用井下抽放和地面排采并行的方式展开,一方面在井下抽放上继续改进技术,提高抽放效率;另一方面大力开展地面排采试验。我国煤层气井下抽放已有50多年的历史,抽放技术成熟,随着环保意识的加强,更多煤层气利用设施的建成投产,以及国家和企业更加注重安全生产,预计未来10年煤矿井下煤层气抽放将会有较大的发展,到2005年井下煤层气抽放量将达到10亿m3,2010年达到14亿m3[2]。
我国煤层气地面开发试验已从单井试验向井组试验过渡,一些煤层气开发项目已显示出商业化开发前景。我国煤层气开发应采取新区与老区相结合、重点突破的原则。首先在资源条件好、勘探程度较高的鄂尔多斯和沁水盆地,进行补充勘探,集中力量开发,使煤层气生产能力在近期内有较大程度的提高,并在开发利用方面形成突破。
根据目前我国煤层气发展速度及政策导向等预测,我国煤层气产量将经过缓慢、快速和稳定三个阶段的增长,预计到2010年我国可探明(1000~2000)×108m3的可利用煤层气储量,建成3~5个煤层气开发示范基地,力争使煤层气产量达(20~30)×108m3,煤层气产业初具规模。预测2000~2010年将是我国煤层气大发展阶段,相当于美国20世纪80年代的水平,因煤层气井产量低,寿命长,必须要有优惠政策来鼓励煤层气的勘探开发,才能使我国煤层气勘探开发在此阶段取得长足进展。我国华北地区可供勘探的煤层气资源量与美国的圣胡安和黑勇士盆地之和相当,但其地质情况较复杂,勘探难度大,预计到2010年全国煤层气产量将达到20×108m3,控制储量为1500×108m3。预测2010~2020年,随着煤层气的勘探开发技术日趋成熟,勘探范围将进一步扩大到华南、东北区及西北地区,预计2020年煤层气产量将达到150×108m3。到2025年,建成5~6个煤层气生产基地,煤层气产量达200×108m3,形成完善的煤层气产业体系。
5 中国石油煤层气发展战略
在“十一五”期间中国石油将立足中东部含煤盆地,用五年的时间形成30×108m3的煤层气产能,为了实现这一目标,应从以下几个方面做好相关工作。
5.1 加大对煤层气的科技投入
我国煤层气资源丰富,洁净气体能源供需缺口大,开发利用煤层气具有紧迫性和必要性。我国煤层气储层与美国相比,大多具有低渗透、低饱和和低储层压力的“三低”特点,煤层气地质条件复杂,开采难度大。中国石油将进一步加大对煤层气的科技投入,一方面加强煤层气成藏理论、经济评价等基础理论研究,注意煤层气科学的系统性;另一方面加大煤层气攻关和示范项目的投入力度,为煤层气开发的突破创造科技支撑。
5.2 根据我国煤层气资源特点与分布,选择有利开发区块
我国煤层气资源特点突出表现为量大面广,具有显著的地区富集性和时域富集性。通过对全国煤层气资源的综合评价,以含气带为单位,对其开发前景进行分类评价,确定包括十大煤层气有利目标区作为煤层气开发的优选区块,沁水盆地、鄂尔多斯盆地东缘、两淮地区、西部低阶煤地区的煤层气开发有利区块,可作为近期勘探开发的重点工作区。
5.3 制定完整、科学的煤层气开发规划
坚持煤层气上、下游统筹规划、协调发展,评价与勘探相结合、重点突破与规模开发相结合,由浅至深、由易到难、滚动发展;坚持地面规模开发为主、带动煤矿井下抽放,地面开发与井下抽放并举,建立“先采气后采煤”的矿产资源综合开发模式。
5.4 中国石油将把煤层气开发利用纳入公司中长期能源发展规划,重视相关基础设施建设
我国煤层气基础设施弱,特别是没有煤层气长输管网,中国石油将把管线建设纳入公司发展基础建设规划,有计划地投入适度的基建资金,分期实施,以加速我国煤层气产业的形成与发展。
参考文献
[1]刘洪林等.2001.中国煤层气资源及其勘探开发潜力.《石油勘探与开发》,Vol.28,No.1,p9~11
[2]王红岩,刘洪林等.2005.煤层气富集成藏规律.北京:石油工业出版杜
[3]张建博,王红岩等.1999.山西沁水盆地有利区预测[M].徐州:中国矿业大学出版杜
[4]黄盛初等.1998.我国煤层气利用技术现状及前景.《中国煤炭》,No.5,p25~28
[5]赵文智等.2001.中国陆上剩余油气资源潜力及其分布和勘探对策.《石油勘探与开发》,Vol.28,No.1,p1~5
⑨ 中国煤层气资源分布
据最新一轮全国煤层气资源评价,全国埋深2000m以浅的煤炭资源量为59523.58×108t,煤层气评价面积374953.44km2,煤层气地质资源量36.81×1012m3,地质资源丰度0.98×108m3/km2。埋深1500m以浅的煤层气的可采资源量为10.87×1012m3。
(一)煤层气资源大区分布
我国煤层气资源主要分布在东部、中部、西部及南方等四个大区(图4-45;表4-18),其展布具有以下特点:
东部区煤炭资源量为16702.87×108t,煤层气评价面积100434.93km2,煤层气地质资源量113183.70×108m3,资源丰度1.13m3/km2,可采资源量43176.69×108m3,地质资源量和可采资源量分别占全国的30.75%和39.72%,是我国煤层气资源最为丰富的大区。
中部区煤炭资源量为20627.95×108t,煤层气评价面积128530.41km2,煤层气地质资源量104676.36×108m3,资源丰度0.81m3/km2,可采资源量19981.32×108m3,地质资源量和可采资源量分别占全国的28.44%和18.38%。
西部区煤炭资源量为18622.33×108t,煤层气评价面积101334.21km2,煤层气地质资源量103592.06×108m3,资源丰度1.02m3/km2,可采资源量28583.20×108m3,地质资源量和可采资源量分别占全国的28.14%和26.29%。
南方区煤炭资源量为3568.17×108t,煤层气评价面积44052.89km2,煤层气地质资源量46621.85×108m3,资源丰度1.06m3/km2,可采资源量16963.68×108m3,地质资源量和可采资源量分别占全国的12.26%和15.61%。
图4-45全国煤层气资源量大区分布直方图
表4-18全国煤层气资源大区分布表
(二)煤层气资源盆地分布
全国42个含气盆地(群)按照煤层气资源量的规模分为4类(图4-46;表4-19):地质资源量大于10000×108m3的为大型含气盆地(群)共有9个(图4-47),依次为鄂尔多斯、沁水、准噶尔、滇东黔西、二连、吐哈、塔里木、天山和海拉尔盆地(群);地质资源量在(1000~10000)×108m3之间的为中型含气盆地(群),有川南黔北、豫西、川渝等16个盆地(群);地质资源量在(200~1000)×108m3之间的为中小型含气盆地(群),有阴山、湘中、滇中等6个盆地(群);地质资源量小于200×108m3的为小型含气盆地(群),包括辽西、敦化-抚顺、冀北等11个盆地(群)。
其中,鄂尔多斯盆地地质资源量最多,达98634.27×108m3,占全国的26.79%;地质资源量超过30000×108m3的盆地(群)还有沁水、准噶尔和滇东黔西,分别为39500.42×108m3、38268.17×108m3和34723.72×108m3,占全国的10.73%、10.40%和9.43%。可采资源量最多的是二连盆地,达21026.38×108m3,占全国的19.34%;可采资源量超过10000×108m3的盆地(群)还有鄂尔多斯、滇东黔西和沁水,分别为17870.59×108m3、12892.88×108m3和11216.22×108m3,占全国的为16.44%、11.86%和10.32%。
图4-46煤层气资源盆地分布直方图
图4-47主要含气盆地煤层气资源分布直方图
表4-19全国含气盆地煤层气资源分布表
续表
注:鄂赣边盆地群煤层气均处于风化带中,因此,未计算其资源量。
⑩ 中国煤层气资源分布特征
8.2.1 煤层气区划的基本原则
我国煤储层的发育状况、煤层的含气特征以及煤层的渗透性等,在地域上的分布是很不均衡的,这种不均衡是我国各地区的地质背景、煤系后期变形改造特征、煤盆地的沉积和聚煤规律等因素综合作用和影响的结果。煤层气分布的不均衡性,加上区域经济因素,造成了当前我国煤层气勘探开发工作在地域上的不平衡,因此,研究和总结我国煤层气在区域分布方面的规律性,合理地进行煤层气资源分布区划,对于从宏观上阐明资源分布特征、分析煤层气勘探开发态势、指导未来煤层气勘探开发工作具有重要意义。
我国煤田地质界根据聚煤区(赋煤区)、含煤区、煤田和煤产地等不同级别的含煤区块进行煤炭资源分布区划。目前比较一致的认识是对聚煤区和含煤区的划分。根据昆仑-秦岭、阴山东西向巨型构造带和贺兰-龙门山-哀牢山近南北向巨型构造带纵横交错的关系,将全国煤炭资源分布划分为6个聚煤区;在聚煤区内,按主要聚煤作用的差异、区域构造变形特征和地域上的邻近关系等划分含煤区,全国共划分出了85个含煤区。对聚煤区的划分是依据主要成煤地质时代的聚煤沉积与构造条件,大致相当于原始的聚煤盆地或聚煤盆地群,其主要聚煤构造条件定格于早中生代以前;对含煤区的划分则主要着眼于原始聚煤盆地遭受变形改造后所保留下来的煤系分布范围;而对于煤层气含气性来说,聚煤沉积的构造条件固然重要,但后期变形改造对煤层气的保存、气含量和可采性的控制十分明显,特别是现代地质结构和地应力特征对煤层气可采性的影响更为突出和重要。因此,煤层气资源区划应不同于煤炭资源区划。
石油地质工作者对全国油气区划分的工作也十分重视。张俏从板块构造区划的角度出发,以板块活动的动力类型为依据,提出将我国划分为以大陆裂解、扩张活动为主的中国东部含油气区和以碰撞、挤压活动为主的中国西部含油气区的中国含油气区构造区划方案(张俏,1995)。吴奇之等根据中国中、新生代含油气盆地形成的地球动力学背景和基底结构,划分出东、中、西部三类盆地,进而根据地质背景、盆地类型及构造变形、沉积特点及含油气组合,同时也考虑到勘探状况及地理因素等,将我国含油气盆地划分为八大油气区(吴奇之等,1997)。戴金星等在总结国内外有关天然气聚集区、带研究现状的基础上,系统地论述了中国天然气聚集带、聚集区和聚集域的定义与分类,并在我国13个含油气盆地内部进行了天然气聚集带、聚集区的划分(戴金星等,1996)。这些工作为进行煤层气区划提供了有益的借鉴。
在全国煤层气资源评价工作中,在充分考虑煤层气特征的基础上,结合煤炭资源区划中的有关成果,并参考常规油气区划工作的经验,尝试着对中国煤层气资源分布进行了区划,主要考虑了以下5方面的因素:
1)区域地球物理资料:我国大陆自西向东,深层结构有明显阶梯式分带现象,主要的南北—北北东向深层构造陡变带有3条,自西向东依次为贺兰山-龙门山陡变带、大兴安岭-武陵山陡变带和中国东部陆缘陡变带,它们按地壳深层结构将我国划分成各具特色的4个壳-幔带(据程裕淇,1994)。这3条规模宏大的深层构造陡变带,在地貌上大多构成山链,不仅代表了中国地质构造和矿产资源沿南北—北北东向分带的界线,也是我国地势、地貌自西向东阶梯状展布的分界线,这些界线与我国宏观经济发展水平的地域差异划分大致吻合,因而对我国煤层气资源分布及勘探开发工作也具有广泛而深刻的影响。本书将3条陡变带作为煤层气区划一级单元的边界。
2)大地构造分区边界:在南北向分带的基础上,按板块边界和稳定区(陆块)与活动区(褶皱带)的界线进行东西向分块,主要有塔里木-华北陆块与天山-赤峰活动带的界线、塔里木-华北板块与华南板块的界线,以及扬子陆块与松潘-甘孜活动带的界线。这些边界对我国煤田的形成和分布具有重要的控制作用,尤其是对晚古生代煤层的影响更为突出,是划分二级单元的依据。这些二级单元的边界大多与煤炭资源区划中聚煤区(赋煤区)的边界一致,这就便于将煤田地质资料应用到煤层气地质之中。
3)区域构造和聚煤特征:煤系的沉积、聚煤特征和后期变形构造对煤层气的生成、储集和保存具有直接控制作用。我国石炭二叠纪、晚二叠世、早中侏罗世和早白垩世这4个重要聚煤期的煤层各有特定的主要聚集范围,所遭受的后期变形改造也各不相同。这些特征决定了三级单元的划分,在三级单元中,强调以一个聚煤期为主,也可能以某一个聚煤期为主,同时包含两个或多个聚煤期。
4)含气性:由于受原始沉积作用、煤变质作用、构造变形及剥蚀风化作用等多种因素的综合影响,煤层含气性的变化很大。这里所说的含气性,既指煤层气含量,也包括煤层厚度和赋存面积的大小。本次区划,对所有褐煤、无烟煤1号均未进行三级单元划分;福建、广东、滇南、西藏等省(区)的煤层,以及塔里木南部等地区的煤层,或因煤层气含量很低,或因煤层赋存面积小,或因构造十分复杂等原因,而未进行煤层气资源区划。
5)地域因素:在进行二级区划时,对华北陆块的东北部未按大地构造分区边界进行划分,而是按辽宁省与河北省的分界线划分的。这一方面是考虑到滨太平洋构造带的强烈作用效果,另一方面也是考虑到行政区划的人为因素。这样做便于区划命名和煤层气资源的统计与决策。
8.2.2 中国煤层气资源分布的区划方案
根据实际资料和工作程度,建议按煤层气大区、含气区、含气带和气田4个级别进行中国煤层气资源分布区划。
1)煤层气大区:煤层气大区是按照3条南北—北北东向深部构造陡变带划分的一级煤层气资源分布区,主要体现中、新生代以来现代板块构造对我国煤层气资源广泛而深刻的影响。共划分为4个大区,自东向西依次为:海域区、东部区、中部区和西部区。
2)含气区:是煤层气区划的二级单元,以近东西向展布的几条大地构造分区边界与近南北向构造的纵横交切而成的“块”来划分,重点反映古生代以来板块构造通过对聚煤作用、煤变质作用的控制而影响我国煤层气资源的分布。共划分为10个含气区,以行政区划的组合而命名。
3)含气带:是煤层气区划的三级单元,在含气区内主要依据煤层分布情况和含气性划分。除了前述因各种原因而未进行煤层气资源区划的范围外,其余基本按第三次煤田预测中含煤区的划法和命名来进行含气带的划分和命名,仅对少数含煤区进行了改变。全国共划分了85个含煤区,划分并命名了59个含气带,其中东部大区26个、中部大区18个、西部大区14个、海域大区1个。
4)煤层气田:是同一地质时代的若干个煤层气藏的总合,单个煤层气藏也可构成煤层气田。煤层气田的范围大致相当于煤田地质界所称的“煤产地”(矿区),所谓“煤产地”是指煤田中由于后期构造所导致的含煤区块。
由于我国现阶段煤层气勘探开发工作刚刚兴起,对煤层气藏的认识程度很有限,还没有一个正式开发的煤层气田,所以本次没有进行煤层气田的划分和命名,待以后工作深入、时机成熟后再行划分。
8.2.3 主要含气区特征
根据煤层气区划原则,将中国煤层气区划分为:东部大区,包括黑吉辽(Ⅰ)冀鲁豫皖(Ⅱ)、华南(Ⅲ)3个含气区;中部大区,包括内蒙古东部(Ⅳ)、晋陕蒙(Ⅴ)、云贵川渝(Ⅵ)3个含气区;西部大区,包括北疆(Ⅶ)、南疆-甘青(Ⅷ)、滇藏(Ⅸ)3个含气区;海域大区,只包括台湾(Ⅹ)一个含气区,全国共划分为10个大区。在10个含气区中,内蒙古东部含气区全部为褐煤,暂未评价,台湾含气区和滇藏含气区煤层气资源稀少,缺乏开发价值,未予评价,下面介绍其余7个含气区基本特征。
8.2.3.1 黑吉辽含气区
黑吉辽含气区(Ⅰ)包括东北三省,北、东起自国境线,南至阴山-燕山褶皱带东段,西至大兴安岭构造带。区内含煤地层主要为下白垩统和第三系,其次为石炭-二叠系。早白垩世含煤盆地发育,含气性较好;第三系仅抚顺盆地煤级较高,为长焰煤和气煤,含气性好,其他盆地均为褐煤,含气量小,暂未作评价。石炭-二叠纪煤层仅分布在含气区南部,煤层稳定,含气性相对较好。
该区包括三江-穆棱河(Ⅰ01)、延边(Ⅰ02)、浑江-辽阳(Ⅰ03)、抚顺(Ⅰ04)、辽西(Ⅰ05)、松辽盆地东部(Ⅰ06)和松辽盆地西南(Ⅰ07)7个含气带。其中,抚顺含气带的分布范围与抚顺矿区一致(若无特别说明,含气带的分布范围与其对应的含煤区相同,下同)。煤层气资源主要集中于黑龙江和辽宁两省,其中,三江-穆棱河、浑江-辽阳、辽西含气带较为丰富。
本区是我国最早开展煤层气资源勘探开发活动的地区。煤层气勘探活动主要集中在南部辽宁省沈阳市周围地区进行,北部鹤岗盆地的勘探结果表明情况较差;煤层气开发活动为矿井瓦斯抽放,在抚顺、铁法、鹤岗、鸡西等矿区已产生明显的经济效益和社会效益。
8.2.3.2 冀鲁豫皖含气区
冀鲁豫皖含气区(Ⅱ)的地理分布范围为华北聚煤区的太行山以东地区,大致相当于华北陆块东部。西起太行山构造带,东至郯庐断裂带,北起黑吉辽含气区南界,南至秦岭-大别山褶皱带东段。含煤地层以石炭-二叠系为主,有少量下、中侏罗统。石炭-二叠纪含煤地层沉积范围广,煤层稳定,含煤性好。含气区包括冀北东部(Ⅱ01)、京唐(Ⅱ02)、太行山东麓(Ⅱ03)、冀中平原(Ⅱ04)、豫北鲁西北(Ⅱ05)、鲁中(Ⅱ06)、鲁西南(Ⅱ07)、豫西(Ⅱ08)、豫东(Ⅱ09)、徐淮(Ⅱ10)和淮南(Ⅱ11)11个含气带。其中,徐淮含气带地理分布范围为徐州和淮北矿区,淮南含气带地理分布范围与淮南煤田一致,冀北东部含气带为冀北含煤区东段。太行山东麓含气带的含气性相对较好,豫北鲁西北、鲁中、鲁西南含气带的含气性差,其他含气带的含气性居中。
冀鲁豫皖含气区内分布有较多煤层气勘探开发前景有利的区块,如开滦、大城、焦作、安阳、平顶山、淮北和淮南等煤矿区。
该含气区是我国目前煤层气勘探比较活跃的地区,在开滦、大城、安阳、鹤壁、荣巩、焦作、平顶山、淮北、淮南和新集等处都进行了勘探工作,其中,以开滦、大城、淮北和淮南矿区进展比较明显。
8.2.3.3 华南含气区
华南含气区(Ⅲ)在构造上相当于扬子陆块东部地区和华南活动带的范围。位于秦岭-大别山褶皱带以南,武陵山构造带以东的大部分地区,包括我国广大的东南和华南地区。区内主要发育晚二叠世含煤地层。由于受华夏和新华夏系构造的影响,晚二叠世煤田仅局部保存较好,煤层较稳定,含气性好。华南含气区包括鄂东南赣北(Ⅲ01)、长江下游(Ⅲ02)、苏浙皖边(Ⅲ03)、赣浙边(Ⅲ04)、萍乐(Ⅲ05)、湘中(Ⅲ06)、湘南(Ⅲ07)和桂中北(Ⅲ08)8个含气带。
煤层气资源主要集中于江西和湖南两省,其中,以萍乐和湘中含气带煤层气资源较为丰富,而其他含气带煤层气资源较为贫乏。本区其他含煤区的煤田或煤产地规模小,构造复杂,煤系分布零星;煤变质程度很高,已达无烟煤1号阶段。
本区煤层气勘探活动已在丰城、冷水江矿区进行,以丰城矿区的效果较好。
8.2.3.4 晋陕蒙含气区
晋陕蒙含气区(Ⅴ)是我国煤层气资源最为丰富的地区之一,其地理分布范围包括华北聚煤区的太行山以西地区,大致相当于华北陆块的西部。西起贺兰山-六盘山断裂带,东至冀鲁豫皖含气区西界,北起阴山-燕山褶皱带西段,南至秦岭-大别山褶皱带西段。该区含煤地层有石炭-二叠系和下、中侏罗统,含煤性好,煤层大面积发育稳定。晋陕蒙含气区包括冀北西部(Ⅴ01)、大宁(Ⅴ02)、沁水(Ⅴ03)、霍西(Ⅴ04)、鄂尔多斯盆地东缘(Ⅴ05)、渭北(Ⅴ06)、鄂尔多斯盆地北部(Ⅴ07)、鄂尔多斯盆地西部(Ⅴ08)、桌-贺(Ⅴ09)、陕北(Ⅴ10)和黄陇(Ⅴ11)11个含气带,其中,冀北西部含气带为冀北含煤区西段。沁水、霍西含气带的含气性好,陕北、黄陇含气带的含气性较差,其他含气带的含气性居中。
有许多煤层气勘探开发前景最有利区块分布于晋陕蒙含气区,如阳泉、寿阳、潞安、临兴、屯留、晋城、柳林、三交和韩城等。该含气区是我国目前煤层气勘探开发活动最为活跃的地区,特别是沁水盆地的晋城、屯留以及产出河东煤的柳林、临兴等地已成功获得小型试验性开发,展现出良好的开发前景。
8.2.3.5 云贵川渝含气区
云贵川渝含气区(Ⅵ)的地理分布范围为华南赋煤区的西部,西起龙门山-哀牢山断裂带,东至华南含气区西界,北起晋陕蒙含气区南界,南至国境线。区内主要发育二叠纪含煤地层,沉积范围广,煤层稳定,含煤性好,含气性也好。云贵川渝含气区包括华蓥山(Ⅵ01)、水荣(Ⅵ02)、雅乐(Ⅵ03)、川南黔北(Ⅵ04)、贵阳(Ⅵ05)、六盘水(Ⅵ06)和渡口楚雄(Ⅵ07)7个含气带。
其中,六盘水含气带煤层气资源最为丰富,煤层气资源丰度也最高;其次为华蓥山、永荣、川南黔北和贵阳含气带;而雅乐、渡口楚雄含气带煤层气资源较为贫乏。渡口楚雄含气带大部分地区为第三纪煤层,煤变质仅达褐煤阶段,含气量很低;只有宝鼎煤田攀枝花矿区,为晚三叠世煤层,煤层气资源丰度较高,但规模小,煤层厚度变化很大。
受地形条件限制,本区煤层气勘探活动较其他含气区相对滞后,目前正在贵州省的盘江矿区进行。区内矿井瓦斯抽放工作十分活跃,尤以重庆地区的松藻、南桐、中梁山等矿区闻名全国;另外四川的芙蓉,贵州的六枝、盘江、水城、林东等矿区的抽放工作成效也十分显著。
8.2.3.6 北疆含气区
北疆含气区(Ⅶ)的地理分布范围为新疆的天山褶皱带及其以北地区。区内发育众多早、中侏罗世含煤盆地,主要有准噶尔、吐-哈、伊犁等盆地。煤层较稳定,厚度大,含煤性好;但煤级低,多为长焰煤。煤层含气性一般比较低,仅在局部地段由于受到了高异常古地热场的叠加影响而使煤级增高,从而导致煤层含气性相对变好。北疆含气区包括吐-哈(Ⅶ01)、三塘-淖毛湖(Ⅶ02)、准噶尔中(Ⅶ03)、准噶尔东(Ⅶ04)、准噶尔北(Ⅶ05)、伊犁(Ⅶ06)、尤尔都斯(Ⅶ07)和焉耆(Ⅶ08)8个含气带。据目前掌握的资料,仅准噶尔南含气带含气性较好。
受地区经济发展相对落后和煤炭、石油及常规天然气等能源供应充足等因素的影响,本区煤层气资源勘探开发工作起步较晚,仅吐-哈盆地施工了少量煤层气勘探井。
8.2.3.7 南疆-甘青含气区
南疆-甘青含气区(Ⅷ)的地理分布范围为西北聚煤区的天山以南地区。北起天山-阴山褶皱带西段,南至昆仑-秦岭褶皱带西段,西起国境线,东至晋陕蒙含气区西界。区内有早、中侏罗世含煤盆地和石炭-二叠纪含煤盆地。南疆-甘青含气区包括蒙甘宁(Ⅷ01)、西宁-兰州(Ⅷ02)、河西走廊(Ⅷ03)、柴达木北(Ⅷ04)、塔里木东(Ⅷ05)和塔里木北(Ⅷ06)6个含气区。其中,河西走廊含气带包含中祁连和北祁连两个含煤区。南疆-甘青含气区,早、中侏罗世煤层煤级低,多为长焰煤,煤层含气性较差。二叠纪煤层的煤级普遍较高,但含煤地区分布局限,煤层气资源贫乏。本区至今还是我国煤层气资源勘探开发的空白区。