当前位置:首页 » 地质工程 » 国际地质灾害

国际地质灾害

发布时间: 2021-02-05 22:24:41

❶ 国内外地质灾害风险研究开展情况

一、国外地质灾害风险研究概述

区域地质灾害风险评估是以区域地质灾害为研究对象,以地质灾害的区域危险性空间分布规律和承灾体的易损性评估为主要研究内容,是建立地质灾害区域空间预警系统工程的必要环节,主要为制定合理的防灾减灾决策和区域土地规划政策及为减灾防灾管理服务。

自20世纪60年代末或70年代初就开始了以滑坡灾害为主体的地质灾害危险性区划研究,如:60年代末,美国西部多滑坡的加利福尼亚州的滑坡敏感性预测区划及县行政级别的斜坡土地使用立法研究;70年代法国提出的斜坡地质灾害危险性分区系统(ZERMOS)等。进入80年代,世界许多国家和地区都开始了区域地质灾害危险性分区及预测问题研究,如意大利、瑞士、美国、法国、澳大利亚、西班牙、新西兰、印度等。从90年代起,为了推进广泛的国际协调与合作,联合国在1987年通过决议,确定在20世纪最后十年开展“国际减轻自然灾害十年”活动。1991年,联合国国际减灾十年(IDNDR)科技委员会提出了《国际减轻自然灾害十年的灾害预防、减少、减轻和环境保护纲要方案与目标》(PREEMPT),在规划的三项任务中的第一项就是进行灾害评估,提出:“各个国家对自然灾害进行评估,即评估危险性和易损性。主要包括:①总体上哪些自然灾害具有易损性;②对每一种灾害威胁的地理分布和发生间隔及影响程度进行评估;③估计评估最重要的人口和资源集中点的易损性。”把自然灾害评估纳入实现减灾目标的重要措施。围绕国际减灾十年计划行动,北美及欧洲许多国家在已有地质灾害危险性分区研究基础上,开展了地质灾害危险性与土地使用立法的风险评估研究,把原来单纯的地质灾害危险性研究拓展到了综合减灾的系统研究。

美国于1970年开始,对加利福尼亚州的地震、滑坡等10种自然灾害进行了风险评估,1973年完成,得出1970~2000年加利福尼亚州10种自然灾害可能造成的损失为550亿美元。与此同时,由美国地调局和住房与城市发展部的政策发展与研究办公室,联合支持对洪水、地震、台风、风暴潮、海啸、龙卷风、滑坡、强风、膨胀土等9种自然灾害进行预测评估,对美国各县发生的灾害建立了一套预测模型,估算9种灾害到2000年的期望损失。美国组成了一个由10位成员组成的专门委员会,制定了减灾十年计划,把自然灾害评估列为研究的重要内容,要求开展单类的或者综合的灾害风险评估工作。日本、英国等一些国家近年来也陆续开展了地震、洪水、海啸、泥石流、滑坡等灾害风险分析或灾害评估,并把有关成果作为确定减灾责任与实施救助的重要依据。

瑞士是世界上开展地质灾害风险区划研究十分成功的国家之一。为了确保农业用地、建筑用地的安全,预防自然灾害的损失,瑞士联邦政府1979年从立法的高度提出:“在保障国家土地完整性和协调发展的前提下实现土地的合理使用”,并颁布了联邦政府土地管理法(Loi Fédéral sur l’Aménagement Territoire),该法律第22条规定:“各州需要调查并确定处于受自然动力严重威胁的土地范围”。以联邦政府法律为依据,各州政府制定了相应的州政府法律。如沃州(Vaud)1987年制定的土地管理法律第89条规定:“受自然灾害,如雪崩、滑坡、崩塌、洪水威胁的土地,在未得到专家评估、充分论证或危险排除之前,禁止在灾害危险区进行任何建筑活动”。随后制订计划并开展了1∶25000比例尺的斜坡地质灾害风险区划图和1∶10000比例尺危险性区划图的编制和研究工作。瑞士已形成了以国家宪法为指导、州制定具体法、县级政府必须实施的灾害风险评估与预防体系。灾害高危险区域内的建筑一方面属于违法,另一方面作为高风险财产范畴,保险公司绝对拒绝接纳灾害高危险区的财产保险业务,从而保证了瑞士全国范围内对自然灾害的最有效控制。瑞士灾害的风险区划不仅直接服务于建筑规划、政府决策,而且也间接服务于社会保障系统。虽然瑞士是世界上滑坡、崩塌等地质灾害最严重的国家之一,无论是最后一次冰川作用以来,还是近一、二百年以来,瑞士都发生过较为重大的滑坡灾害事件(Flims、Elm、Handa等特大滑坡事件),但由于得益于全国灾害风险区划体系,使其近二、三十年来的灾害损失却是世界上较少的国家之一。

法国是洪水、滑坡、崩塌、雪崩等灾害较为严重的国家之一,早在20世纪70年代就开始全国范围的自然灾害危险性区划研究,区划图直接服务于减灾和防灾工作,从而最大限度地减少了自然灾害的损失。法国在1977年制定的城市发展规划法(Code del’Urbanisme)规定:洪水、水土流失、滑坡、雪崩等灾害危险区的建筑必须受到严格限制。1981年该规划法对自然灾害易发区的土地使用方法又作了具体限制,例如,滑坡灾害危险区分为两类,一类是建筑活动必须禁止的严重危险区,另一类是必须经过充分论证方可从事建筑活动的较危险区。1982年,法国又颁布了自然灾害防治法,并制定了洪水、雪崩、滑坡和地震四种主要自然灾害防治计划。为了进一步预测和尽可能减少灾害所造成的损失,根据该防治计划编制了灾害易发区危险性区划图,包括红色区域(高危险性区)、白色区域(以一种灾害为主的危险区)、蓝色区域(虽然有灾害,但可以预防)。在红色区域,一切新开工的建筑活动是绝对禁止的,而在蓝色区域,进行建筑需要提供充分的论证及灾害后果可靠性评估报告,如果五年之内不采取相关防治措施,财产保险公司可以对建筑方因自然灾害所造成的人员伤亡和财产损失不予赔偿。到1989年,根据全法国的灾害危险性区划结果,法国共有 15600个乡镇受到洪水、雪崩、滑坡和地震四种主要自然灾害的威胁,约占全国乡镇总数的三分之一。由于采取了灾害区划及相应的防治措施,法国的灾害损失得到了有效的控制。

二、国内地质灾害风险研究概述

近20年来,国家十分重视减灾工作,如《中国21世纪议程》关于防灾减灾行动指出:“开展全国自然灾害的风险分析,包括风险辨识、风险估算、风险评估三个部分”。这表明我国已把灾害风险评估作为防灾减灾建设的重要内容,并将之纳入国家可持续发展体系。大多数地方的21世纪议程都把防灾减灾作为可持续发展能力建设的重要任务之一,提出了灾害风险评估行动方案。在我国研究比较系统深入的灾害风险评估是地震灾害。其代表性的工作成果是由国家地震局先后完成的三代《中国地震烈度区划图及使用规定》。该图在对全国区域地震危险性评估基础上,确定了不同地区一般场地条件下在未来一定期限内可能遭遇超越概率为10%的烈度值,即地震基本烈度。综合性自然灾害风险研究也取得了一些研究成果。例如,黄崇福等用模糊集方法建立了城市地震灾害风险评估的数学模型。水利、农林、气象等部门的一些专家分别开展了一些区域性的洪水灾害、森林火灾、台风灾害等风险分析或灾情预测评估研究,编制了风险图,提出了灾情评估或风险评估的方法和技术。虽然这些工作还不够深入和系统,但对指导行业减灾、提高灾害风险管理水平发挥了积极的作用。

我国地质灾害管理工作,自1999年国土资源部发布《地质灾害防治管理办法》,标志着我国地质灾害防治工作逐步走向法制化轨道,为进一步贯彻落实好《地质灾害防治管理办法》,从源头上抓好地质灾害防治,国土资源部发布了《关于实行建设用地地质灾害危险性评估的通知》。通过几年的管理实践,以及适应全社会减灾防灾的需要,2004年3月1日,国务院正式发布《地质灾害防治条例》,使我国地质灾害防治工作有了法律保证。该《条例》规定,在地质灾害易发区内进行工程建设应当在可行性研究阶段进行地质灾害危险性评估,并将评估结果作为可行性研究报告的组成部分;明确要求“在编制地质灾害易发区内的城市总体规划、村庄和集镇规划时,应当对规划区进行地质灾害危险性评估”。明确了评估的主要地质灾害种类,包括崩塌、滑坡、泥石流、地面塌陷、地裂缝和地面沉降。随着我国地质灾害风险评估和灾害防治管理向科学化、法制化方向的逐步发展,我国土地资源的合理与安全使用得到进一步优化,为控制和减少人为诱发的地质灾害起到了重要的作用。

我国地质灾害的风险评估(价)研究工作自20世纪90年代开始兴起,在这一领域的研究中,已经取得了较为丰富的成果,为减灾管理发挥了重要作用。例如,苏经宇(1993)提出了判别泥石流危险性分布的标志和方法。刘希林等(1988)对区域泥石流风险评估进行了研究,给出了区域泥石流危险性评估的8个指标和人与财产的易损性计算公式,并提出了判断泥石流危险性程度和评估泥石流泛滥堆积范围的统计模型,对云南和四川省泥石流灾害风险进行了评估。张梁(1994)等根据环境经济学理论,初步论证了地质灾害的属性特征和风险评估的经济分析方法。张业成(1995)对云南省东川市泥石流灾害进行了风险分析。张梁、张业成、罗元华及殷坤龙、晏同珍等对滑坡灾害危险性和斜坡不稳定性的空间预测与区划进行了系统研究,先后提出了定量评估的信息分析模型、多因素回归分析模型、判别分析模型等,并对秦巴山区和三峡库区滑坡灾害进行了危险性分析与区划。朱良峰(2002)等研究开发了基于GIS的区域地质灾害风险分析系统,对全国范围的滑坡泥石流灾害进行了危险性分析、易损性分析和最终的风险分析。殷坤龙等经过多年研究,开发出MapGIS的滑坡灾害风险分析系统(IASLH)。在该系统中,提出了滑坡灾害危险性分析的信息量模型。该模型根据滑坡分布信息与各滑坡影响因素之间的关系,计算出产生滑坡的信息量,据此,进行滑坡危险性区划,并应用IASLH系统对中国汉江流域旬阳地区的滑坡灾害以及中国滑坡灾害进行了评估。

当前,地质灾害风险研究正处于方兴未艾之时,今后将得到更加迅速的发展,其研究内容将更加广泛,理论方法更加丰富、先进。可以预见,不久的将来,它将成为一项具有完善理论和技术方法的新兴领域。其基本趋势是:向着评估定量化、综合化、管理空间化的方向发展。主要表现为:

(1)从历史与现状分析趋向预测与研究相结合;

(2)从个体分析趋向个体与区域研究相结合;

(3)从定性分析趋向定量化评估;

(4)从单项要素分析趋向综合要素评估;

(5)从单纯的风险评估理论研究发展为风险评估与减灾管理相结合,风险评估与防治相结合,风险评估的目的是为了服务于社会经济建设和减灾管理;

(6)以GIS空间化技术为支撑的多因素信息模型化评估与空间化管理空前发展,将逐步取代传统的调查统计和手工制图,并向网络技术化发展;

(7)研究理论与方法趋向于内容更丰富,形成多学科的融合与交叉,特别是与社会学紧密相结合。

尽管经过20多年的发展,国内外的地质灾害风险研究与评估在理论和实践方面都取得了较为丰富的成果,然而还未形成系统完善的理论与方法体系,也没有统一的评估标准,国内在这一领域的研究还很薄弱,地质灾害的各专业灾害评估仍处于日益深入的探讨和总结过程。主要存在的问题包括:

(1)目前滑坡泥石流灾害破坏损失只考虑了直接的经济损失,对其间接经济损失评估方法的研究很少;

(2)现有的滑坡泥石流灾害风险评估框架与指标体系的目标和构成都不够明确,指标体系不够完整,各分析层面之间的逻辑关系,不同的学者有不同的表述,缺乏普遍共识的评估框架体系;

(3)对于滑坡泥石流灾害的风险可接受水平的研究非常薄弱,没有令人信服的标准体系;

(4)滑坡泥石流灾害风险评估理论和方法还不完善;

(5)滑坡泥石流灾害风险评估中的易损性分析还是一个相当薄弱的环节。在易损性分析中,一般仅考虑了滑坡泥石流灾害的历史灾情中的人员伤亡,而对历史灾情中的经济财产和资源环境的损失很少予以考虑。

❷ 地质灾害易发区国内外研究现状

4.1.1 国外现状

由于研究的地域范围不同和对地质环境认识的差异,国内外研究者对地质灾害易发区的理解也有不同。

国外对地质灾害敏感性评价类似我国的地质灾害易发程度评价。美国灾害敏感性评价以地质、地形条件和以往发生的灾害空间分布情况为依据进行评价(Nilsen,1977;Shek,1977;Carrara,1983,Brabb,1984,Brand,1988;Cross,1998等)。美国地质调查局在《美国国家滑坡减灾战略——减少损失的框架》(2003)中认为,可供规划和决策使用的滑坡编目和滑坡敏感度图对全国滑坡多发区是绝对必要的。

欧洲国家在阿尔卑斯山较多地开展了滑坡敏感度和危险性评价,并把评价结果应用于滑坡灾害的减灾管理。意大利P.Aleollt(2000)采用GIS技术对意大利北部阿尔卑斯山前缘的Piedmont地区的滑坡、洪水、雪崩、山谷口堆积等灾害的敏感性、危险性及总的风险进行了区划性制图研究。A.Car-rara,M.Cardinali和F.Guzzetti等(1991)利用GIS技术将统计模型应用于意大利中部某小型汇水盆地的滑坡敏感性和危险性评估。亚洲国家,如日本、韩国在一些滑坡地质灾害多发区也开展了滑坡敏感度和危险性评价,H.Haruyama和H.Kawakami(1984)利用数学统计理论对日本活火山地区由降雨引起的滑坡灾害进行了敏感性和危险性评价,Saro Lee对韩国的一些地区分别应用多元统计和神经元网络模型进行了滑坡灾害敏感性和危险性评价。一些国家,如澳大利亚直接开展斜坡地质灾害风险评价,其中敏感性和危险性评价是其基础,如M.Michael-leiba等(2000)在澳大利亚的一项城市发展规划项目的斜坡地质灾害研究中,把斜坡灾害的敏感性、危险性、易损性、风险评价作为一体,以GIS软件为技术平台,分别采用平面和三维评价系统,对Cairns地区进行了斜坡地质灾害的敏感性、危险性和风险评价。Mario Mejia-Navarro和Ellen E.Wohl(1994)在分析哥伦比亚的Medellin地区滑坡、泥石流等斜坡不稳定性引起的区域地质灾害敏感性和土地及生命易损性的基础上,利用GIS技术将两者合成制作了风险评价分区图。

4.1.2 国内现状

进入21世纪以后,在原有研究的基础上,我国在全国范围内有计划地开展了全面的地质灾害调查与防治,积极吸取国际地质灾害防治研究的先进方法,并公布实施了《地质灾害防治条例》,将地质灾害易发区的研究纳入了国家法制的轨道。

1)1999年以来,在全国地质灾害严重区开展了以县(市)为单元的“县(市)地质灾害调查与区划”工作。调查灾种为崩塌、滑坡、泥石流、地面塌陷、地裂缝等,截至2005年,共进行了700个县(市)地质灾害的调查与区划工作。中国地质环境监测院已完成545个县(市)信息系统的集成和综合研究。

在各调查县(市),根据野外调查的结果和地质环境资料,结合灾害点和灾害隐患点的密度,划分地质灾害易发区并编制“地质灾害分布与易发区图”是其主要任务之一。《县(市)地质灾害调查与区划实施细则》明确指出“地质灾害易发区”是指容易产生地质灾害的区域。基于地质灾害现状,地质灾害易发区可划分为高易发区、中易发区、低易发区和不易发区四类。

2)从2002年开始,各省陆续开展了分省地质灾害防治规划工作,主要依据1∶50万环境地质调查和县(市)地质灾害调查成果,对省内地质灾害易发区进行了初步划分,22个省编制了分省地质灾害易发区图(1∶50万~1∶200万)。

3)张梁等(2002)将地质灾害易发区表述为地质灾害危险性评估,并认为地质灾害危险性(易发程度)评估就是研究不同地层单元组合、区域地质构造单元特征、地形地貌条件下的区域地质灾害规律,以及气象、人类活动方式条件下的区域地质灾害诱发规律和时间活动规律。前三类因素是决定地质灾害区域分布规律的背景因素组合,这些因素具有空间上的分布规律,而且随时间的变化性极小,属于稳定型的控制因素,是地质灾害易发程度的背景条件。后两类因素属于地质灾害的触发因素,随时间的动态变化较大,它们与背景条件的组合状况决定了地质灾害的时空规律。

4)岑嘉法(2003)认为,地质灾害易发区是指地质环境条件脆弱,具备发生地质灾害条件,容易产生地质灾害的区域。如在地球内动力作用强烈地区(高地震烈度区、活动断裂区、区域构造交会处等)、地球外部营力作用强烈带(如暴雨中心区、河流侵蚀带、岩土体松散分布区等),以及人类工程经济活动剧烈地区(如人口密度大,工业、农业、城镇、交通建设强度大区)等。只要有触发因素,即可产生地质灾害。该区的确定,主要通过较大比例尺的环境地质与灾害综合调查后实际圈定,经济建设与工程安排应尽量避免在易发区内。如果需在易发区内建设,要进行工程项目地质灾害危险性评估工作。对工程建设作出地质灾害现状、工程建设可能诱发或加剧地质灾害的预测和综合评估,并提出地质灾害防治措施对策。现进行的县(市)地质灾害调查与区划,就是要实地圈定地质灾害易发区范围。

5)刘传正等(2003)提出的“潜势度”是某一地区在没有任何降雨、地震、人类活动等情况下发生地质灾害的潜在条件的量化指标,具体是指地质灾害基础因子(地形地貌、地表植被、地层岩性和地质构造)与响应因子的综合表现,并编制了三峡库区地质灾害潜势度、危险度等图。

6)全国山洪灾害防治规划编写组和水利部长江水利委员会进行的山洪灾害易发程度评价,是利用各省(区、市)1∶50万或1∶100万泥石流、滑坡分布图,以泥石流、滑坡的“线密度”和“规模”所反映的“可能成灾点”的多少进行评价,即“可能成灾点”越多,灾害易发程度越高;“可能成灾点”越少,灾害易发程度越低。在参考相关部门成果及进行实地调查的基础上,以小流域为单元,划分出了泥石流或滑坡灾害高易发区以及中易发区和低易发区。各区的划分具体指标如表4.1所示。

在上述工作的基础上,编制各省(区、市)1∶50万或1∶100万山洪诱发的泥石流、滑坡灾害易发程度分布图。该图除反映泥石流、滑坡灾害的易发程度以外,还通过编绘地形坡度分区和地层岩性分区,标示地貌区划和区域构造形迹,综合反映了由山洪诱发的泥石流、滑坡灾害易发程度区划与地形地貌、地层岩性及地质构造的相互关系。从而可以通过图件,分析出不同区域地质背景与地形地貌条件下,泥石流、滑坡灾害高、中、低易发区的分布规律。并以此进行逆向校核、修正,使泥石流、滑坡灾害易发程度区划图更为科学、合理、可靠。

表4.1 山洪诱发泥石流、滑坡灾害易发程度分区标准

7)2003年11月,我国国务院公布了《地质灾害防治条例》(中华人民共和国国务院令第394号),并规定2004年3月起施行。该条例要求“实行地质灾害调查制度”,并在此基础上编制地质灾害防治规划,规划所包括的5项内容之一就有“地质灾害易发区、重点防治区”。2004年颁布的《地质灾害防治条例释义》进一步明确指出,地质灾害易发区,是指具备地质灾害发生的地质构造、地形地貌和气候条件,容易或者可能发生地质灾害的区域。地质灾害易发区必须经过地质灾害基础调查才能划定。易发区是一个相对的概念,并且可按照灾害种类划定,不同灾种其易发区范围不同。

❸ 地质灾害调查

进入世纪以后,在社会变革和科技进步的双重驱动下,全球经济进入快速发展阶段。与此同时,自然灾害发生频次不断增加,环境污染日益扩大,成为威胁经济社会发展的重大问题。据联合国国际减灾战略机构统计,重大地质灾害从1900~1909年的40次增长到2000~2009年的358次(图6-3)。为了应对日益增多的自然灾害所带来的巨大挑战,20世纪80年代末,联合国大会上通过关于成立国家减灾委员会的决议,提出“国际减轻自然灾害十年”计划,由此推动各国政府把减轻灾害列入国家发展规划。针对地质灾害,专门成立了国际滑坡研究组等组织,实施全球地质灾害编图计划。2000年联合国通过了国际减灾战略,成立了相应的国际减灾战略机构,继续推进各国的减灾行动。2005年1月,第二届世界减灾大会在日本神户召开,与会专家学者们一致呼吁加强区域综合减灾能力建设,提高应急管理水平,从而实现区域的可持续发展。目前,各个国家的地质调查部门均把地质灾害的调查、监测和防治作为其重要的工作内容。

图6-3 1900~2009年世界地质灾害发展趋势示意图

美国地质调查局长期致力于滑坡、地震、火山等地质灾害的研究和预警预报工作。经过长期的积累与努力,美国地质调查局成为世界公认的滑坡灾害权威机构,设有国家滑坡信息中心,负责滑坡灾害研究并提供实时灾害信息。2000年,美国地质调查局制定了《国家滑坡灾害减灾战略》,确定了美国减轻滑坡灾害的重点工作方向,包括滑坡过程与发生机制研究、灾害填图与评估、实时监测、信息收集传输与解译、指导与培训、公众教育、灾害防治、应急反应与救灾9大方向[8]。目前,正在执行滑坡灾害项目2005~2010年规划,强调采用新的机理模型和监测技术来研究滑坡灾害。挪威地质调查局和挪威岩土工程研究所等机构联合开发建立国家滑坡灾害数据库,对挪威境内的滑坡进行登记入库,包括灾害分布图、危险性分区图、滑坡历史数据、灾害评价资料等。从2004年开始,挪威地质调查局负责进行全国的滑坡灾害填图。澳大利亚1994年启动的国家环境地质科学填图协议,把灾害调查、灾害风险评估作为其中一项重要的内容。澳大利亚地球科学机构与地方政府合作进行滑坡灾害调查与评估工作,重点对发生滑坡的区域开展灾害预测,对滑坡易发区进行灾害风险评估。日本泥石流灾害发生频繁,不得不投入大量的人力、财力进行泥石流灾害研究,取得了显著的成效。近年的研究工作重点强调利用先进技术建立泥石流原型综合观测系统,同时进行一系列规模大小不一的模拟实验,开展泥石流产生、搬运和堆积机理的理论研究[9]

近年来,国外地质灾害调查的主要研究集中在以下几个方面:

(1)地质灾害数据库及灾害的风险填图。例如,意大利建立了GEOS数据库,收集的数据包括岩石、古今滑坡、对人造建筑的损害、土壤最易过饱和和滑动的地区、河道特征等。根据需要,可以绘制各种1∶10万至1∶25万比例尺的图件,如脆弱性图、洪水多发区图等。加拿大启动了自然灾害填图项目,目的是提供加拿大自然灾害的背景信息,包括历史事件数据和风险图等。美国编制了自然灾害风险图,表明了易受各类自然灾害危险的地区。

(2)地质灾害预测和预警系统。在进行灾害预警系统研究中,广泛采用了现代化的技术方法。例如美国采用GIS技术确定各个地区对地震灾害的脆弱性,并实时监控地质活动带获取相关数据。

(3)先进技术在地质灾害调查中的应用。例如,采用遥感技术对中小流域地质灾害进行区域性评价,查明地质灾害时空分布规律,结合地面调查划分地质灾害危险性等级。同时将灾害危险性等级与土地资源的可利用性联系起来,使地质灾害研究成果更容易为公众所接受,扩大成果的应用服务。

(4)灾害系统和灾害链的研究。研究表明,各种地质灾害的发生有着成生联系,往往会发生连锁反应,例如大洪水常伴生有滑坡、泥石流、地面塌陷等灾害。由于灾害的共生性使灾害事件和灾害系统非常复杂,对单一灾害的研究往往不能解决实质性的问题,各国加强了对地质灾害系统的研究。

❹ 地质灾害

自然因素或者人为活动引发的崩塌、滑坡、泥石流等地质作用或现象,危及经济社会生命和财产安全时,就形成了地质灾害。随着土地、水和矿产等地质环境要素的不断变化,诱发地质灾害的自然条件和人为活动随之改变,地质灾害对经济社会和生态系统的负面影响日益凸显。近年来,全球重大地质灾害发生总体呈上升趋势,因灾死亡人数得到了有效控制,经济损失快速增加。

表1-5 1940~2012年世界各地区重大地质灾害统计

(数据来源:联合国国际减灾战略机构(UN/ISDR)EM-DAT数据库,2013)

图1-10 1940~2012年全球重大地质灾害发生频次变化

(数据来源:联合国国际减灾战略机构(UN/ISDR)EM-DAT数据库,2013)

重大地质灾害发生频次不断上升。联合国国际减灾战略机构(UN/ISDR)收集整理了世界各个国家发生的重大自然灾害,形成了EM-DAT国际灾害数据库。入库的重大自然灾害应至少满足下列条件之一:造成10人以上死亡;100人以上受到灾害影响;政府宣布应对灾害紧急状态;政府在救灾过程中呼吁国际援助。据统计,1940~2012年,全球发生重大崩塌、滑坡、泥石流地质灾害649次,造成6.3万人死亡,有记录的经济损失约86.5亿美元(表1–5)。图1–10绘出了1940~2012年全球重大地质灾害发生频次变化情况。可以看出,重大地质灾害发生频次在时间上总体呈上升趋势,从20世纪40年代到80年代初重大地质灾害增长较慢,80年代以后重大地质灾害发生频率快速增加,从80年代初的年均不足10次增加到近十年来的年均19次,表明崩塌、滑坡、泥石流灾害发生频次有较大幅度的增加。虽然每年重大地质灾害发生频次增加,但是因灾死亡人数没有明显增长,单次地质灾害造成的死亡人数总体上是下降的,从1970~1979年的136人/次下降到2000~2009年的40人/次,说明随着各国对地质灾害的日益重视,地质灾害防治取得了一定成效。然而,地质灾害造成的经济损失自80年代以来快速增加,从1970~1979年的1.4亿美元增加到2000~2009年的10.2亿美元(图1–11)。

图1-11 1940~2012年全球重大地质灾害死亡人数与经济损失情况

(数据来源:联合国国际减灾战略机构(UN/ISDR)EM-DAT数据库,2013)

不同国家地质灾害防治水平存在显著差异。美国1960~2009年地质灾害共造成336人死亡,直接经济损失12.4亿美元(按1960年折算)。1970年以后,随着地质灾害防治科技进步,美国地质灾害造成的死亡人数保持在很低的水平,平均年死亡人数在4人以下。1985年以前地质灾害造成的直接经济损失呈快速增加趋势,之后直接经济损失则呈减少的趋势,说明美国地质灾害防治取得了明显的成效。从5年累计数值来看,美国地质灾害防治将减少人口伤亡放在首位,在有效避免灾害伤亡之后,尽力减少灾害造成的直接经济损失(图1–12)。墨西哥1970~2011年地质灾害呈增加趋势,1997年以前地质灾害发生在低水平波动,平均每年发生10次左右,平均每年导致近14人死亡;1998年以来,地质灾害显著增加,平均每年发生的地质灾害增加至86次,平均每年导致50人以上(不含1999年)死亡(图1–13)。从地质灾害死亡率来看,1982年以前单次地质灾害造成的平均死亡人数总体上呈增加趋势,1982年以后(如果不考虑1999年)总体上地质灾害死亡率呈下降趋势。尼泊尔1971~2011年地质灾害发生总体上可划分为两个阶段:第一阶段(1971~1992年)年发生地质灾害频次保持稳定,多在19次上下波动;第二阶段(1993~2011年)地质灾害频次明显增加并呈周期性波动,平均每年发生120次以上,在地质灾害高发年可达380次以上。地质灾害致死人数呈缓慢增加趋势,地质灾害死亡率在1989年以后明显下降。

地下水持续超采引发的地面沉降成为世界很多地区不得不面对的环境问题。据统计,目前世界上已有60多个国家和地区发生地面沉降。其中,地面沉降比较明显的区域有墨西哥的墨西哥城(2004~2006年沉降300mm/a),美国加州Coachella Valley(2003~3009年沉降70mm/a),越南Hanoi(沉降0.10~0.15m),日本Sagamigawa平原(1975~1995年累计沉降0.32m),伊朗Yazd-Ardakan盆地(1985~2010年累计沉降0.5~1.2m),印度尼西亚Semarang(2007~2009年沉降80mm/a),中国西安(截至1996年累计沉降量超过100mm的面积达150km2)、天津(2010年市区沉降量20.4mm)等。

图1-12 1960~2008年美国5年累计直接经济损失和死亡人数

(数据来源:美国南卡罗来纳大学美国灾害与损失数据库SHELDUS,2011)

图1-13 1970~2011年墨西哥地质灾害发生与死亡率变化

(数据来源:拉美灾害预防研究网络(LA RED)DesInventar灾害信息管理系统,2013)

❺  当今地质灾害研究的重点与发展趋势

近十年来,地质灾害问题日益受到国际社会的广泛关注和高度重视。联合国已将地质灾害纳入了“国际减灾十年计划”,并成立了国际滑坡研究组等专门组织,实施了“全球滑坡灾害编图计划”。与此呼应,还提出了一些洲际或大区域的地质灾害编图计划。如由日本地调局组织的“东亚自然灾害编图计划”。国际地科联地质环境委员会目前则正在组织编制区域性和全球性地质灾害目录清单,尤其是影响城市地区的地质灾害目录清单,目的旨在帮助和指导主要由一些国际组织如联合国教科文组织等管理的地质灾害防治和减轻方面的特别援助项目计划。一些发达国家如美、英、日等早在70年代便开始了全国性的地质灾害调查与评价,其它一些国家如加拿大、澳大利亚、巴西、俄罗斯、意大利、西班牙、葡萄牙等,从80年代后期始,也分别开展了全国性或区域性的地质调查评价和研究工作。目前我国正在实施新一轮国土资源大调查工作,“地质灾害预警工程”是其中的一项重要内容。从国内外地质灾害研究和工作部署来看,总体呈现以下趋势:①建立地质灾害数据库及灾害风险填图;②地质灾害实时监控与定量评价及其灾害预警系统研究;③注重群发或诱发的灾害系统研究;④建立地质灾害快速反映部队;⑤工作部署重点包括快速发展地区、城市走廊带、工程和交通走廊的地质灾害主题填图及其监测研究计划。

❻ 全球地质灾害态势及防治趋势

随着全球气候变暖,地壳活动进入一个相对活跃期,再加上重大工程的开工建设等人类活动的影响,世界各国正在遭受前所未有的地质灾害威胁。崩塌、滑坡、泥石流等突发性地质灾害日益增加。地质灾害已经成为当代地球科学的热点领域。本届大会除了在“每日主题”报告会中专门设立地质灾害专题外,还有多个讨论会涉及地震、火山活动、海啸(风暴潮)、滑坡、崩塌、泥石流等主要地质灾害类型,其他灾害如暴雨、洪水等气象灾害也被纳入到地质灾害专题。

纵观本届国际地质大会,与地质灾害专题有关的地球科学热点领域包括以下几个方面。

一、地质灾害调查检测新技术和新方法

干涉雷达测量和差分干涉雷达测量技术作为快速、精确(毫米级)的获取地形数据的技术,日益受到重视,有很多的研究都是利用这两种技术开展滑坡监测和制图。随着GIS制图和数据分析处理能力的日益增强,有限元理论的2D或3D模型应用于滑坡、崩塌等的稳定性计算和评价已经很普遍。安吉·梅瑞(Andrea Merri)等采用Flac3D软件对意大利思特朗博利火山进行3D地质建模,从而分析不同岩浆构造状态下应力—应变状态的变化,并对岩浆流动状态进行预测。英国地质调查局已将3D地质建模纳入战略科学计划(2005~2010年),与1999年出台的战略科学计划相比,最重要的变化就是从2D地质调查技术向3D地质调查技术转变,例如“英国大陆的3D地学框架”和“海岸、大陆架和大陆边缘的3D表征”等研究计划。随着地理信息系统的发展,目前甚至已经出现了4D理论。

二、地质灾害监测预警

地质灾害早期预警系统不仅是一套技术设备,人类因素、社会元素和信息通信也是重要的组成部分。挪威是崩塌、滑坡和泥石流等突发性地质灾害频发的国家(地区),于2005年成立Geo Extreme研究计划,拟用4年时间对挪威今后50年地质灾害情况进行评估。这个课题共包含4个研究模块:模块A主要目标是进行气象参数与滑坡和崩塌之间的耦合性研究,为了进行这方面的研究,已经建立了包含滑坡和崩塌事件的数据库;模块B主要进行区域气候前景预测,重点是进行降水和飓风等极端气候事件研究;模块C利用模块A和B研究结果生成关于挪威将来可能发生地质灾害的分布图,这项模块主要研究4个能代表不同气候区域的关键区域;模块D研究过去和预测将来由地质灾害引起的经济损失情况,主要因素有由自然灾害引起的破坏和减灾措施所需要的费用、经验能力培训、预案方面的变化以及对于政策制定者的影响。

三、地质灾害风险管理

地质灾害风险评估与管理一直是国际上倡导和推广的减灾防灾有效途径之一。“降低风险、增加防御”是本次大会地质灾害的主题,也是2008国际地球年的十个主要研究课题之一。本主题集中讨论了4方面问题:①人类是如何改变了岩石圈、生物圈和自然景观,并因此产生对人类生命和环境有害的变化并诱发地质灾害,同时增加了社会对地球(地质、地貌和水文气象)适应的脆弱性?②我们应该采取什么样的方法和技术来评估人类和场地对灾害的适应性,以及在全球范围内我们该如何采用这些方法和技术?③在目前监测、预测和减灾能力条件下,各地质灾害类型之间相对比是什么样一种状态,以及我们要采取什么措施才能够在短期内改变这种状态?④在风险运用与政府(以及其他机构)掌握的对于每一种地质灾害的风险、降低脆弱性措施及计划(包括减灾)之间存在什么障碍?为了解决这些问题,本主题致力于与其他国际组织中的各研究项目达到一个整体平衡,主要焦点在这些问题怎样与联合国国际减灾战略兵库行动框架的五个行动主题相衔接。

四、重大地质灾害应急系统

尽管本届大会很少有地质灾害应急系统研究方面的论文,但是在专题讨论过程中,不少研究者都提及了这一问题。地质灾害应急系统的建设主要是根据各地区地质灾害发育特征,开展地质灾害信息系统建设、防灾减灾演习和制定应急救灾预案等。目前各国都有不同的地质灾害应急办法,但是在推广应用方面还存在一定差距。西尔弗斯特·哥利姆斯达尔(Sylfest Glimsdal)等对挪威西部Akneset地区的一个斜坡体进行研究后发现该斜坡体有一块很大的不稳定块体,如果这些不稳定块体整体滑动,这个滑坡将会诱发海啸,并会对这个海湾上的多个建筑物造成破坏性损失,通过对斜坡体数字建模、波浪数字建模和进行2D和3D数字建模对斜坡体稳定性、海啸的产生和传播过程进行模拟分析,最终预测了海啸。在2008年的四川汶川大地震中,桑枣中学在地震发生后,只用了1分36秒,就组织2000多名学生下楼,全校师生无一人伤亡,创造了该次地震中的一个奇迹,这个奇迹的创造归功于该校平时进行的消防防灾演习和对建筑物的修缮、加固。对于地震、海啸等破坏力强的地质灾害,也可以通过先进的地震、海啸预警系统,提前发出警报,让人员和车辆在海啸到达之前转移到安全地带,是最有效的方法之一。

五、把地质灾害风险性评估纳入城市规划和管理

随着世界人口的增加和城市化进程的加快,各种地质灾害成为制约城市发展规划的消极因素,在城市规划和管理中加强地质灾害危险性评估工作是一项具有重要意义的工作。在本次大会上,有关学者介绍了所在国家(地区)的一些做法。英国是一个国土面积较小、海岸线狭长的国家,却有非常多和正在增长的人口,对于土地利用方面的竞争一直很激烈,因此在一些可能遭受地面沉降、滑坡和洪水的地区进行土地利用和开发就有相当大的压力,此外,还有一些被工业污染的土地需要进行改良和开发,在这些地区进行土地开发和建设时需要对这个地区的地质灾害发育情况有较深入的了解。维克托·奥斯波夫(Victor Osipov)主要考虑莫斯科地质灾害类型有滑坡、喀斯特、岩溶侵蚀过程和地下水洪流等,在地质灾害发生过程评估的基础上,绘制了莫斯科1∶5万的地质环境现状图,并分析了根据市政规划和职能分区的不同地质环境现状的区域分布状况,把莫斯科地区划分为了非常不适宜地区、不适宜地区、较适宜地区和适宜地区等4类。

六、地质灾害国际合作

尽管全球地质工作者开展了大量的工作,但地质灾害仍然呈现大量增长趋势。气候的变化让事态变得更加糟糕。2005年1月,由联合国发起和建议在日本神户通过了“2005~2025兵库行动框架”。这项计划有165个成员国讨论通过,并且是截至目前在全球范围内减少灾难性自然灾害最重要的文件之一。这项计划明确了在世界各国及各国际组织应该采取什么积极措施来达到较好的减灾效果,另外,还阐明了世界减灾委员会应该承担的责任与义务。总之,这项行动计划的基本观点就是国际社会应该承担起保护市民避免遭受灾害的威胁。行动框架按地震、海啸、滑坡和火山爆发等对地质灾害进行了划分,并且每类地质灾害都有灾难性事件的例子以及死亡率和经济损失统计数据。在本项行动框架中,对合适的判别方法的重要性、风险减少措施(包括早期预警系统)、加强制度管理(包括建筑物容纳能力)等3个主要内容进行了更加详细的讨论。

由于国际科学理事会亚太地区办公室所负责的地区人口占世界大多数,并且因地质灾害死亡的人数占全球总死亡人数的80%,因此该办公室决定创建一个关于地质灾害和灾难的科学计划,该计划初步考虑地震、洪水和滑坡等3种主要地质灾害,目标是减轻自然灾害。2002年提出了实施方案,后来这个方案发展成为全球观测战略8个主题之一,并由欧洲空间机构对外发布。2007年这项计划又由法国地质矿产局改进。兵库行动框架提出后,意大利、中国、日本等国家进行了相关的工作,2005年9月在北京召开的亚洲减灾大会上,落实了兵库行动框架,讨论了十年内亚洲地区减灾重点领域和区域合作内容。2007年第六届亚洲工程地质灾害区域会议在韩国首尔举行,中韩之间签订了合作协议,对亚洲地区的地质灾害合作研究进行了深入探讨。2008年11月还将在日本东京召开国际滑坡会议,对相关问题开展进一步的探讨。

(张永双吴树仁郭长宝张岳桥执笔)

❼ 美国和日本等国地质灾害预警服务

目前,实现地质灾害预警的国家和地区,一般具备如下条件:

1)模型方法方面:对降雨和地质灾害的发生进行深入研究,获得了地质灾害预警的理论模型方法。

2)降雨监测和降雨预报方面:一是降雨预报数据,能够实现区域未来一段时间内的降雨预报;二是实时降雨监测数据,该数据一般可以通过两种方式获得:

a)雨量计,通过在区域上埋设一定数量的雨量计,实时精确掌握点上的降雨情况,从而实现区域上实时降雨的获得。通过安装自动遥测雨量监测仪(截至1995年,在旧金山湾地区安装了60台),当雨量每增加1mm时,通过电波自动传送数据到任何可接收到信号的地方(要求有接收器、计算机、数据接收分析显示的软件)。

b)降雨雷达,通过多普勒雷达(通过降雨云层上反射的雷达波)数据来进行降雨实时监测,该方法的难题在于,雷达回波值与地面上的降雨自动遥测值之间的关系确定上。原因有二:一是冰的反射能力远远大于水滴,因此温度成为一个关键的因素,且云中水滴的大小与温度、高度都相关,同时,除了水滴外,粉尘、昆虫、鸟等都能反射雷达的能量,都有回波;二是地面发散,即接近地面的雷达回波存在问题,特别是受到地形的影响。因此,将雷达回波值转换到降雨强度难度较大,且不同地区转换关系又不一样。

3)预警系统:根据降雨引发灾害的理论模型方法,实时进行分析预警。

4)预警信息发布平台:一般通过广播电台或电视台,向公众发布预警信息。

存在不足:理论模型方法需要更多的校验;缺乏有关斜坡岩土体方面的实时监测。

1.4.1 美国

美国是最早开展区域泥石流灾害预警的国家之一。

1.4.1.1 旧金山海湾地区

1985年,美国地质调查局(USGS)和美国气象服务中心(NWS)联合在旧金山海湾地区正式建立了泥石流预警系统。该系统于1986年2月12~21日在旧金山海湾地区的一次特大暴雨灾害中用于滑坡预报,并得到检验。由于技术复杂、机构变动和人员变动等方面原因,该预警系统在1995年被迫停止运行。

基于1982年1月3~5日在美国旧金山海湾地区发生的一次特大暴雨所引起的滑坡灾害数据,这次特大暴雨持续了34h,降雨量616mm,引发了大量的滑坡,造成25人死亡和超过6600万美元的经济损失。Mark&Newman通过对1982年1月的降雨情况分析得出,当前期雨量超过300~400mm,暴雨量超过250mm,即超过年平均降雨量的30%时,滑坡将大规模发生。该系统的基本原理是考虑了临界降雨强度和持续时间,并且考虑地质条件、降雨的空间分布,以及地形条件。美国地质调查局和美国气象服务中心在整个旧金山海湾地区共设计了45个自动降雨记录点,当降雨每增加1mm时,降雨观测点就通过自动方式将数据传送到美国地质调查局的接收中心和计算机系统。同时,为了监测降雨期间地下水压力的变化,工作人员还设置了若干个孔隙水压力计以观测斜坡中地下水压力变化。当降雨量和降雨强度将要超过临界值时,提前进行滑坡灾害的预报,以减少滑坡灾害的损失和可能的人员伤亡。

旧金山海湾地区实时区域滑坡预警系统包括降雨与滑坡发生的经验和分析关系式,实时雨量监测数据,国家气象服务中心降雨预报以及滑坡易发区略图。

1986年2月12~21日的滑坡灾害预警首先由美国地质调查局决定,通过当地电台、电视台以及美国气象服务中心的特别预报的方式来进行的。这次滑坡灾害的预警分为两个阶段:第一阶段是2月14日的6h灾害危险期;第二阶段是17~19日之间的60h的灾害危险期。由于地质条件的复杂性和地形条件的变化,这两次预报主要是针对整个旧金山海湾地区,而不是某一个特定的滑坡灾害地点。根据滑坡灾害发生后的调查,10处滑坡灾害点有目击者能提供精确的时间,其中有8处滑坡所发生的时间与预警的时间段是完全一致的(图1.17)。

图1.17 累计降雨量、滑坡预警时间(水平线段)、滑坡发生时间空心三角为滑坡;实心三角为泥石流

进一步研究要点:

a) 降雨—滑坡关系需精练,要考虑长期中等强度的降雨影响,使降雨与滑坡发生之间有更准确的模型,同时要针对滑坡的临界值,而不仅仅是泥石流;

b) 土体含水量和孔隙水压力的测量方法要更精确、有效;

c) 预警系统需要模式化和自动化,以便在暴雨期能够更快、更有效地得到数据;

d) 与滑坡有关的地形、水文和地质条件等内容,需进一步考虑,以使今后的预警更准确、有效。

作为第一个预警系统,从 4 个方面保证运行:

a) 降雨方面: 国家气象服务中心降雨预报( 未来 6h 预报) ,降雨实时连续监测( 多于 40个实时雨量计) ;

b) 预警方法方面: Canon and Ellen( 1985) 的临界降雨判据;

c) 预警运行上: 美国地质调查局根据降雨预报和实时降雨监测,实时预警系统进行分析;

d) 美国地质调查局和气象服务中心共同确定预警,并向社会发布。

1.4.1.2 俄勒冈州

1997 年,美国的 Oregon 政府建立了泥石流预警系统。该系统,由林业部的气象学家、地调系统( DOGAMI) 的地质学家、交通部( ODOT) 的工程师一起创建的。预警信息和建议通过 NOAA 天气节目和 Law Enforcement Data System 进行广播发布。DOGAMI 负责向媒体和相关地区提供关于泥石流的追加信息; ODOT 负责在更风险时段向机动车辆提供预警,包括在高泥石流风险路段安装预警信号。

1.4.1.3 夏威夷州

1992 年建立了类似的 I-D 的预警模型,并进行了数次实时预报( Wilson 等,1992) 。

1.4.1.4 弗基尼亚州

2000 年建立了类似的 I-D 的预警模型,并进行了数次实时预报( Wieczoic 等,2000) 。

1.4.1.5 波多黎各岛

1993 年,加勒比海的波多黎各岛建立了与旧金山海湾类似的 I-D 的预警模型,并进行了数次实时预报( Larsen & Simon,1993) 。

1.4.2 日本福井县

Onodera et al.( 1974) 通过研究发现,在日本,累计降雨量超过 150 ~ 200mm,或每小时降雨强度超过 20 ~30mm 时,大量滑坡将发生滑动。

日本在泥石流预警系统研制和开发方面处于国际领先地位。以发展具体一条或相邻沟的小规模地区的泥石流预报系统为主,通过上游泥石流形成区降雨资料的统计分析,确定临界雨量值和临界雨量报警线,通过上游雨量实时数据采集、演算和比较判别,自动发出报警信号。

山田刚二等( 1977) 通过滑坡的位移和地下水压力的监测,认为滑坡位移速率以及地下水压力不仅与当天降雨量有关,而且还与以前的降雨量有关,所以用有效雨量来表示雨量,有效雨量可以从下式求得:

中国地质灾害区域预警方法与应用

式中:Rc为有效雨量;R0为当天降雨量;Rn为日前降雨量;α为系数;n为经过的天数。

通过对山阴干线小田—天仪之间403km,400km附近的滑坡研究发现,日有效降雨量、位移速率、地下水压力随时间而变化的曲线,位移速率v,Rc与地下水压力(p)之间关系分别是二次曲线和直线:

中国地质灾害区域预警方法与应用

目前,日本在福井县开展了地质灾害预警预报工作。以点代面,根据区域地形、地貌和环境地质特征以及灾害可能发生的危险程度,在全县范围内布设了 66 个预警预报监测点,实现了定点、定时和灾害程度的预警预报。同时通过该系统还可以了解过去某一时间的雨量情况和发布情况等内容。

1.4.3 巴 西

Guidicini and Iwasa( 1977) 通过对巴西 9 个地区滑坡记录和降雨资料的分析,认为降雨量超过年平均降雨量的 8% ~17%,滑坡将滑动; 超过 20%,将发生灾难性滑坡。

1996 年,里约热内卢( Rio de Janeiro) 州建立了预警系统( Geo-Rio) 。由地质力学所设计并安装了 30 台自动雨量计,向中心计算机( Geo-Rio) 发送数据。中心计算机接收数据,并发布预警。2001 年滑坡灾害中,对里约热内卢的部分地区发布了预警,但在向北 60 km 处的 Petropolis 损失惨重。由于火灾,Geo-Rio 系统于 2002 年 11 月被迫停止。

❽ 2011-2012国际地质灾害有哪些

2011年3.11日本大地震及其引发的海啸等等

❾ 地质灾害分几个级别各自程度如何

震级是指地震的大小,是表征地震强弱的量度,是以地震仪测定的每次地震活动版释放的能量权多少来确定的。震级通常用字母M表示。我国目前使用的震级标准,是国际上通用的里氏分级表,共分9个等级。通常把小于2.5级的地震叫小地震,2.5-4.7级地震叫有感地震,大于4.7级地震称为破坏性地震。震级每相差 1.0级,能量相差大约30倍;每相差2.0级,能量相差约900倍。比如说,一个6级地震释放的能量相当于美国投掷在日本广岛的原子弹所具有的能量。一个7级地震相当于30个6级地震,或相当于900个5级地震,震级相差0.1级,释放的能量平均相差1.4倍。
按震级大小可把地震划分为以下几类:
弱震震级小于3级。如果震源不是很浅,这种地震人们一般不易觉察。
有感地震震级等于或大于3级、小于或等于4.5级。这种地震人们能够感觉到,但一般不会造成破坏。
中强震震级大于4.5级、小于6级。属于可造成破坏的地震,但破坏轻重还与震源深度、震中距等多种因素有关。
强震震级等于或大于6级。其中震级大于等于8级的又称为巨大地震。

❿ 国际地质灾害防治科技研究现状与发展趋势

10.1.1 地质灾害形成机理与调查评价科技研究

(1)降雨诱发型滑坡和泥石流的形成机理

近30年来,降雨型滑坡研究是滑坡研究中的热点课题之一,其核心是通过研究降雨与滑坡的各种关系,预测可能的滑坡状态。据初步统计,全球至少有23个国家的学者对降雨型滑坡进行了不同程度的研究,美国、意大利、日本、英国、澳大利亚、新西兰以及中国香港和内地学者发表的研究论文较多。1984年后,中国香港政府加大了对降雨型滑坡的研究力度。除每年进行降雨滑坡的调查外,特别加强从更深层次上研究滑坡与降雨的关系,降雨滑坡分布发育规律,降雨入渗的水文地质模型,以及应用概率统计和其他数学方法建立更精确的滑坡—降雨关系。随着研究程度的深入,研究者一致认为香港火成岩风化层的非饱和土和残积土特有的性质控制着浅层降雨型滑坡的形成机理。研究结果表明,降雨型滑坡形成机理的本质在于雨水入渗斜坡后破坏了斜坡的应力平衡。因而,从理论上解释雨水入渗后斜坡应力的变化过程,以及雨水在斜坡中的渗透特性和渗透过程,是降雨型滑坡成因机理研究的关键。

(2)岩溶塌陷发育机理和判据研究

日本学者Nogushi(1970)、苏联学者Xоменко(1986)、美国学者Ralphj Hodek(1984)和Thom-as M.Tharp(1995)、俄罗斯学者Anikeev(1999)等,先后采用物理模型试验或数值分析的方法,系统研究了非黏性土潜蚀塌陷的过程。国外一些学者还尝试采用岩土工程离心机进行塌陷试验,如:Borms和Bennermark(1967),Marir(1984),Bertin(1978),Howell和Jenkins(1984),Sterling和Ronayne(1984),Craig(1990),Ablla和Goodings(1996),运用离心机模拟塌陷破坏机理和导致塌陷的临界组合条件,重点研究了上覆在洞穴上方的弱固结砂层的塌陷破坏与洞穴开口大小、洞穴自身强度、弱固结砂层强度和厚度、上覆砂层的厚度,以及地表荷载的关系。

美国、意大利、英国开展的基于GIS技术的地质灾害的风险评价工作中,包含了岩溶塌陷危险性评价。

(3)区域滑坡和泥石流调查与危险性评价

早期的地质灾害空间预测主要依据野外调查与航空相片解译情况,由专家进行地质灾害敏感性判断和评价,故称之为专家评价法(Aleotti和Chowdhury,1999)。该方法评价结果精度取决于野外调查的详细程度和专家的知识与经验,评价中运用的隐含规则使结果分析与更新困难,而且不同调查者与专家得出的结果无法进行比较。

20世纪70年代,以美国加利福尼亚旧金山地区圣马提俄郡的滑坡敏感性图为代表,利用多参数图的加权(或不加权)叠加得到区域滑坡灾害预测图的方法得到大力推广。该方法的优点是克服了使用隐含规则的问题;缺点是权重的确定仍保持主观性,模型的推广应用有一定困难。

20世纪80年代,受统计回归分析和判别分析在石油运移与矿床预测中应用的启发,Carrara(1983)将多元统计分析预测方法引用到区域滑坡空间预测中,并使该技术在世界各国得到迅速发展与推广。如Haruyama和Kawakami(1984)利用数学统计理论对日本活火山地区降雨引发的滑坡灾害进行了危险度评价。Baeza和Corominas(1996)利用统计判别分析模型进行了浅层滑坡敏感性评估,其斜坡破坏的正确预测率达到96.4%,说明了统计预测的适用性。Carrara,Cardinali和Guzzetti等(1991)将统计模型与GIS结合,应用于意大利中部某小型汇水盆地的滑坡危险性评估,结果证明统计分析与GIS的综合使用是一种快速、可行、费用低的区域滑坡危险性评价与制图方法。

20世纪90年代以来,随着计算机技术和信息科学的高速发展,以处理和分析地理空间数据为主要特点,具有属性数据库与图形库动态连接功能的地理信息系统(GIS)技术得到了空前发展,其与定量化的地质灾害空间预测模型方法的结合也成为地质灾害研究的新领域。

Mario Mejia-Navarro和Ellen E.Wohl(1994)在哥伦比亚的麦德林(Medellin)地区分析滑坡、泥石流等斜坡不稳定性引起的区域地质灾害敏感性和土地及生命易损性的基础上,利用GIS技术将两者合成产生了风险评价分区图。Anbalagan和Bhawani Singh(1996)在Anbalagan(1992)关于山区滑坡灾害评估和区划制图研究的基础上,提出了风险评价制图的新方法——风险评价矩阵(RAM)。

Aleollt(2000)采用GIS技术对意大利北部阿尔卑斯山前缘的皮埃德蒙特(Piedmont)地区的滑坡、洪水、雪崩、山谷口堆积等灾害的危险性及综合风险进行了区划性制图研究。Michael-Leiba等(2000)在澳大利亚的一项城市发展规划项目的斜坡地质灾害研究中,把斜坡灾害的危险性、易损性、风险评价作为一体,以GIS软件为技术平台,分别采用平面和三维评价系统,对凯恩斯(Cairns)地区进行了斜坡地质灾害的危险性和风险区划研究。Ragozin(2000)从理论上研究了滑坡灾害风险评价中的危险性、易损性和风险性。提出了考虑危险性评估目标有效期限在内的单个滑坡灾害危险性指标,并用其主要控制因素的概率乘积表示;对于区域性滑坡灾害评估,用给定地区的面积、滑坡发生面积、滑坡数量和时间之间的关系建立定量模型。

10.1.2 监测预报技术方法研究

(1)诱发滑坡和泥石流的临界降雨量与气象预警研究

在诱发地质灾害的降雨临界值研究方面,各国学者用来确定降雨诱发滑坡临界值的方法很多,其不同点在于考虑的因素不同。Glade(1997)建立了确定诱发滑坡的降雨临界值的三个模型,并在新西兰的惠灵顿地区进行了验证。三个模型要求的基本数据为:日降雨量、滑坡发生日期和土体潜在日蒸发量(通过Thornthwaite method方法计算得到)。模型建立的前提是:①假设最大日降雨量的地区,蒸发量最小;②滑坡由最大降雨量诱发。这三个模型基本概括了当前确定诱发滑坡的降雨临界值的方法。

在对美国旧金山湾地区1986年2月12~21日的滑坡和泥石流灾害预警工作中,首先由美国地质调查局分析确定,通过当地电台、电视台以及美国国家气象中心的特别预报方式来进行预警。这次滑坡泥石流灾害的预警分为两个阶段:第一次是2月14日的6个小时灾害危险期,另一次是17~19日之间的60小时的灾害危险期。由于地质条件的复杂性和地形条件的变化,这两次预报主要是针对整个旧金山海湾地区,而不是某一个特定的滑坡灾害地点。根据滑坡泥石流灾害发生后的调查,10处滑坡泥石流灾害发生点有目击者能提供精确的时间,其中有8处滑坡泥石流所发生的时间与预警的时间段一致。

据研究,旧金山湾地区的6小时降雨量达到4英时(即101.6mm)时,就可能引发大面积泥石流。为了监测降雨期间地下水位的变化,他们还设置了若干个孔隙水压力计以观测斜坡中地下水位变化。旧金山海湾地区实时区域滑坡预警系统包括降雨与滑坡发生的经验和分析关系式,实时雨量监测数据,国家气象服务中心降雨预报以及滑坡易发区略图。

1984年开始,香港地区采用雷达图像解译小范围地质构造,用于确定滑坡发生的潜在区域。进而建立了用于滑坡灾害的降雨量监测网络,其中自动雨量计1999年由48个扩展为86个。将雨量资料定时传给管理部门。如预测24小时内降雨量达到175mm或60分钟内市区内雨量超过70mm,即认为达到滑坡预报阈值,即由政府发出通报。香港平均每年约发出三次山洪滑坡暴发警报。

(2)滑坡和泥石流灾害监测技术方法研究

对于滑坡和泥石流的监测,在美国、瑞士、意大利、日本、韩国等发达国家已经做了很多工作,特别是单体滑坡已经达到真正实时监测的阶段。监测内容包括地面位移、地裂缝、地下位移、地下水位(水压力)和水温、地声等。监测技术采用常规监测、自动观测、GPS和卫星通信等相结合(图10.1,10.2)。在我国的香港特别行政区,也建立了比较完善的基于降雨监测的地质灾害监测网络。

图10.1 使用太阳能无线遥控系统(左图)和变形计(右图)

图10.3 分层标自动监测系统及原理示意图(据Amelung等,1999)

在美国加利福尼亚州萨克拉门托,GPS测量已经取代了区域性的地面标高的水准测量。1986年在该区建了38个GPS监测站,1989年后达到了68个。采用严格的测量程序,其大地高程的精度可达到毫米级。我国上海经过近两年应用Ashtech Z12双频GPS信号接收机测定大地高程,于1999年也取得了大地高程精度达3mm的好成果。其优点是对于区域性地面沉降的大范围监测具有事半功倍的效果。

根据美国地调局资料,美国用于探测地面沉降的干涉合成孔径雷达(InSAR)技术还处于开发和试验之中(图10.4)。Gabriel等率先于1989年发表了《测绘大区微小高程变化:雷达干扰测量法》的文章。1993年,Massonet等利用雷达干扰测量法测绘了着陆器地震的地面形变场区。Van der Kooij等用太空飞船干涉卫星孔径雷达资料调查研究了荷兰格洛宁根(Groningen)天然气开采区的地面沉降问题。Marco等利用美国实验研究学会干涉卫星孔径雷达资料对美国贝尔瑞吉(Belridge)油田1992~1996年的地面沉降进行了详细的研究。由于这种探测技术的使用,地面沉降测量的精度已达毫米级,其探测结果能很好地处理成平面二维沉降等值线图。而且该方法可以省去常规水准标石测量的许多人力和物力的投入。因此,不能低估这一新技术的开发应用前景,在目前情况下可以参照国外成功的经验在我国进行试验。

(4)岩溶塌陷监测技术研究

美国学者Benson(1987)提出利用地质雷达进行监测预报的方法,并在美国北卡罗来纳州威尔明顿(Wilmington)西南部的一条军用铁路进行了试验,监测周期为半年,取得了良好的效果。2002年,在国土资源大调查项目的支持下,中国地质科学院岩溶地质研究所在广西桂林柘木镇建立了我国第一个岩溶塌陷灾害监测站,为深入系统地研究岩溶塌陷预测预报方法提供了良好的条件。

图10.4 合成孔径雷达干涉测量获得的内华达州拉斯维加斯谷地

(5)地质灾害监测预警信息传输处理与发布系统研究

发达国家和地区已经越来越重视地质灾害监测的信息化工作。例如美国、日本、意大利、法国和韩国等建立了地质灾害实时监测系统,在实际应用中可以做到实时预警。针对单种地质灾害开展监测预警方面的研究工作较多,多灾种的集成系统尚不多见。

10.1.3 地质灾害治理工程技术研究

(1)地质灾害防治理论

重视基于地质灾害形成机理的地质灾害防治理论研究。如日本针对温泉地区的滑坡特点,研究采用排气工程和地下水截水工程进行滑坡综合防护;法国针对降雨诱发的粘土滑坡采用虹吸排水技术;美国和日本在研究植被覆盖好的地区发生的浅层滑坡,开展采用调整植物类型的生物措施研究等。在地质灾害的防治工程中,普遍采用生物防护系统,注重生态环境保护,日本在滑坡治理中,抗滑桩和建筑地基结合,实现防治工程与土地开发利用相结合。

(2)地质灾害防治工程设计技术方法

国外对于复杂支挡结构设计技术、地下水排水技术设计,基于环境和景观设计的技术规程和实用的计算机软件开发等方面,都进行了大量研究,形成了比较配套的设计计算理论方法和产业化软件。如:美国开发了三维连续体的快速拉格朗日分析软件——FLAC3D,三维模拟离散元程序——3DEC;加拿大开发的地质工程问题和地质环境模拟分析的软件包——GEO-SLOPE Office(GEO-SLOPE Office 5.0 for Windows),已经广泛应用于世界上许多国家的滑坡等地质灾害防治工程设计,形成了模块化的设计软件和方法。

(3)地质灾害治理工程技术

在治理技术上,广泛应用土工织物、预应力复杂支挡结构、地下水排水技术。尤其以美国、西欧、日本和我国的香港特别行政区在地质灾害治理方面投入大,成就显著。如日本地附山滑坡治理工程,耗资达150亿日元(约15亿人民币),可算得上地质灾害防治工程的博物馆。

国外对崩塌和滑坡灾害治理的常见技术工程包括:①冲刷防护工程:防冲坝、沉积坝、护岸、防波坝、丁坝;②减重和反压工程;③地面排水工程:地面排水沟、防渗工程;④地下排水工程:地下排水沟、泄水洞、水平钻孔、集水井和虹吸排水工程;⑤地下截水工程:隔渗芯墙截水,灌浆截水,化学固化法截水;⑥支挡工程:挡土墙、格栅墙、抗滑桩、岩石锚杆;⑦排气工程:用于治理温泉地区的滑坡;⑧生物护坡技术和轻型网状防护系统结合用于崩塌和小型滑坡灾害的治理。

由于水是形成滑坡的重要诱发因素,地面排水工程和地下排水工程总是被首先考虑的治理技术,也是在大型滑坡防治中首选采用的治理技术。美国、日本、新西兰等国在滑坡治理中广泛应用地下排水工程技术,采用水平钻孔排水和排水井、排水隧洞联合排水技术治理滑坡。法国采用虹吸排水技术治理100多处降雨诱发的粘土滑坡。它是一个密封的聚氯乙烯管系统。该技术的最大优点是可以自流排水,降低滑坡的地下水位。

在支挡工程技术应用方面,研究应用大截面抗滑桩、锚索抗滑桩、锚索、小型钢架桩加锚索、微型桩群等多种支挡结构,并在锚索防腐技术、通用的计算方法、设计软件和技术标准方面取得明显进展。减重和反压工程是经济有效的防治滑坡的工程措施。英国Huchinson提出的“中性线”方法为减重和反压计算提供了理论依据。

近年来,发达国家在地质灾害防治工程实践中,在崩塌和小型滑坡灾害治理中应用轻型网状防护系统与生物护坡系统的配合技术,使防治工程进一步向轻型化和美观化方向发展。如SNS柔性支护系统和生物护坡系统,在欧洲许多国家应用比较普遍。

10.1.4 国际地质灾害防治科技研究发展趋势分析

地质灾害防治科技未来总体发展趋势是:重视地质灾害早期预测、预警能力建设,提高地质灾害领域防灾减灾科技水平和能力,建立3S(即:RS——遥感,GPS——全球定位系统和GIS——地理信息系统)技术平台,发展和建立区域地质灾害动态实时监测网站和预测预警信息系统,建立地质灾害信息系统平台和共享通道,提高地质灾害减灾防灾技术的支撑能力。

对地质灾害形成机理的深入研究一直是国际地质灾害研究的难点,而降雨型滑坡研究是滑坡研究中的热点课题之一,重点是研究诱发泥石流、浅层滑坡的临界降雨量随区域和气候变化而变化,揭示降雨与滑坡的各种关系,预测可能的滑坡状态。

应用GIS技术开展地质灾害的区域特征分析和灾情空间制图正成为热点。通过计算机高技术手段(GIS,GPS,RS等)将灾情分析与危险性评价、风险性预测有机结合起来,形成实时预警决策体系将成为灾害地质研究的一个重要趋势。

在各种监测技术方面,发达国家在加强各类地质灾害实时监测台站建设的同时,均十分重视高新技术的应用,高科技空间对地观测技术在地质灾害方面的应用研究也是发达国家的重要研究方向。各种更为先进的遥感探测系统的应用逐步深入,美国、法国、意大利和日本等国都将GPS、干涉雷达遥感在滑坡、地面沉降等动态调查和监测中的应用作为重点研究方向。

近年来,发达国家在地质灾害治理工程技术方面具有如下特点和发展趋势。

在防治理论上:重视基于地质灾害形成机理的地质灾害防治理论研究;注重防治工程与生态环境保护和土地利用结合;形成模块化的设计软件和方法,研究开发新的治理技术方法。

在灾害信息处理方面:各种高速的数值预报已逐步实现;高速、智能化、综合化的通信网络技术、分布式数据库技术和海量数据操作技术的发展,又使灾害通信、计算机网络和信息开发处理融为一体,形成了综合的灾害信息网络系统,使各种分散的灾害信息真正做到资源共享;人工智能、多媒体和三维模拟技术的发展,推动了灾害信息产品的应用和再加工。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864