当前位置:首页 » 地质工程 » 工程地质数值模拟的理论

工程地质数值模拟的理论

发布时间: 2021-02-04 04:48:02

『壹』 地质工程学基础理论

随着人类对地球空间利用的不断扩大,工程规模不断增大,在工程建筑中出现了一类新的工程类型,即地质工程。在国内外这一类型工程迅猛地发展,类型之多,规模之大令人吃惊。日本的青涵海底隧道,英吉利海峡的海底隧道,中国的秦岭隧道,都是梦想变成现实的惊人之作。在国内外已有不少科技工作者提出了地质工程命题,并对这个问题进行了论述。在今天的中国,地质工程已经不是一个概念,而已经变成了实际,已经变成了一个行业,一个学科。

随着地质工程的深入开展,人们对地质工程的认识愈来愈深,对地质工程性质的认识愈来愈清楚,对地质工程给出了明确的定义。狭义的地质工程的定义是:以地质体做建筑材料,以地质体做建筑结构,以地质环境做建筑环境建筑起来的一种特殊工程谓地质工程;广义的地质工程定义是大地改造工程或者地质环境改造工程。都江堰从宝瓶口劈山筑渠引水灌溉1000多万亩成都平原耕地、保卫兰银铁路的沙波头固沙工程都是典型的大地改造工程;长江三峡链子崖危岩体防治也是一种大规模的大地改造工程。改造地质环境,改造大地面貌,是一种广义的地质工程。大量实践经验证明,地质工程的建筑必须以地质为基础,一刻也离不开对地质条件及地质环境的认识,如果离开了对地质的认识就会造成失误。采矿工程是一种典型的地质工程,这项工程不仅要保证矿山开采安全,提高采矿的经济效益,也要保证环境不遭到破坏。可是由于采矿界对这项地质工程的特点认识不够,只顾采矿,不顾及对地质环境的保护,因而使采矿引起的地质灾害经常发生,盐池河山崩和乌江鸡冠岭山崩就是由此引起的。

实践教育着人们,提高着人们的认识,人们经过总结,逐渐地认识到建筑地质工程的规律,概括上升成为地质工程建筑的理论。理论的作用可以指导人们思考分析问题,没有理论指导的行动是盲目的行动,盲目的行动是要失败的,没有理论的知识领域,构不成学科。每一个人的思维活动都是在一定理论指导下进行的,不是在正确的理论指导下进行,就是在错误的理论指导下进行,不同理论导致不同的结果,这就是理论的重要性。

地质工程学现在有没有自己的理论呢?如果没有自己的理论那就没有它特殊的地方了,也就形成不了学科。经过十多年来的地质工程实践和40 年来的工作经验,著者认为已经建立起了地质工程学的基础理论。一般来说,地质工程理论是由地质和工程两个方面的理论构成的。实践经验表明,地质工程建设中发生问题主要是在地质工程设计和施工中由于对地质条件不重视或认识不清造成的。归根结底地说,对地质工程建设成败起控制作用的是地质因素。据此,著者认为:地.质.工.程.学.的.基.本.原.理.是.地.质.控.制.论.。地质控制论的作用表现在3个方面:①是指导工程地质勘察、地质工程设计和施工的基本理论;②是指导地质工程施工的施工地质超前预报理论;③是指导地质灾害防治的地质体改造理论。地质控制论对基岩地区是很明显的,对土体也照样是适用的。它包括对地质环境的控制,也包括对岩体结构和土体结构的控制,对岩体力学的控制作用,对土体力学的控制作用。

地质超前预报问题在地质工程工作里非常重要,再好的再精的地面测绘和钻探结果也搞不清掌子面前方的真实的地质情况。我们在军都山隧道施工中作过统计,1∶2000的地面地质勘探获得的结构面,仅仅相当于地下开挖揭露出来的9%~10%。结构面在地下变化错综复杂,地质超前预报对地质工程施工十分重要。

地质超前预报是一项具体技术。地质超前预报包括地质条件超前预报、成灾可能性预报和地质灾害防治方案预报3个部分,这3个部分的基础都是地质。目前,一般施工单位对地质超前预报还不太认识,做得也不多,但是做与不做大不一样,做了效果很显著。

还可以举一个如著者曾指导过在黄土中建大型竖井工程的实例。竖井直径达25m,建设单位邀请著者给他们当顾问。著者明确提出,这是一个地质工程,不管怎么设计,怎么施工,有一条必须遵守,这就是必须了解地质情况,而地质情况仅根据勘察结果不行,在施工过程中要进行地质超前预报。勘察时提出地面18m以下有一层厚层的砂卵石夹层,砂卵石层以下都含地下水。著者的经验是西北黄土中18m以下都位于地下水里是不多见的,故表示怀疑,建议在施工过程中做超前预报。具体的办法是在已经挖成的井底超前挖一个2m深的探坑,进行超前探测,探明情况。如果井下地质情况和设计时判断的情况一样,就按原设计继续施工;如果不一样那就修改设计。他们照做了,挖到18m左右出现了砂卵石层,但是没有像原先认为的那样厚3m,只有80~100cm,这一层强行通过了。下面部分有没有水?开挖结果没有水,但是节理十分发育,这是预先估计到的,老黄土里面有节理,这是西北黄土的普遍规律。但是向下挖时,沿着黄土节理面出现掉块儿现象。他们认为是塌方,急忙把著者找到现场,著者看后,告诉他们这不是塌方,而是黄土中节理切割局部掉块。建议采取短进尺,快支护措施解决。一次进尺80~100cm,及时封闭,暴露面大了,时间长了不行,就容易掉块。为了缩短暴露时间,建议把井壁划分为1/4或1/8,分段开挖,挖一段挂网喷射混凝土封闭一段。他们按这个方法做了,结果顺利通过。里面有没有水呢?节理面内有吸附水,有时往外渗,水量很小。这个例子很好地说明在土体里施工也要实行地质超前预报。

地质体改造及保护,一般叫加固或支护,著者认为叫地质体改造好。这里有一个概念问题。目前在地下工程中防治岩体失稳的措施叫支护。支护是对着岩体失稳后作用于支护上的荷载而言,其基本概念是荷载支护体系。许多施工中,不管土体和岩体的好坏,都认为要产生塌落,塌落下来的地质体压到衬砌上,为此而采取支护。实践表明,大部分工程衬砌后面常常是空的,根本没有支护上,有的根本不需要支护。这样做的结果,有的是虚设,有的是有潜在危险的。因为现在没有支护上,时间长了,有的地方塌了,形成了偏压,隧道衬砌最怕偏压。支护在理论上和实践上都有许多问题。著者提出地质体改造概念主要的出发点是认为地质体自身存在有自稳能力。对地质工程来说它可能某一部分或某一方面不能满足地质工程稳定性的要求,可以对其薄弱部分进行改造,使之满足地质工程稳定性的要求。如果是地质材料强度不足,可以利用灌浆的办法对地质体进行加固。如果是节理裂隙发育,岩体的完整性差,可以采取锚固的办法将结构体串起来或采用灌浆的办法将结构面粘结起来,增加其完整性,提高岩体强度。如果属于应力差太大,σ3太小,可以采用预应力锚索或支护的办法提高σ3,减小应力差,提高地质工程稳定性。这是对症下药的办法。哪儿出问题了就解决哪儿的问题,是材料强度不足就解决材料问题;是结构薄弱就解决结构问题;是环境条件问题就解决环境条件;如属于地下水的问题则可以采取疏干地下水或封堵地下水的办法解决问题;属于地应力就解决地应力问题。对建筑基坑工程问题,为了保证基坑稳定性,目前都是采用按土压力计算来加一个抵抗,采用挡墙或护坡桩支挡来做。这个做法是不确切的。最好的方案是采取合适措施维持基坑开挖前的地质环境条件。

1992年著者在北京黄寺做了一个基坑工程。这个基坑距已建成的12层楼房的8m处。地基土是淤泥,建筑方担心基坑开挖时,老楼会遭到破坏,要求保护老楼。我们采取的办法是保持老楼现在的地质体赋存环境条件,让老楼地基内的地下水尽量少改变,尽量慢改变,使老楼地基均匀沉降,就不会出现导致老楼破坏的差异变形。为此我们提出一方面在新楼与老楼之间作一道帷幕灌浆防渗,使地下水位尽量慢的变动;另一方面是地应力,开挖卸掉了侧压力,从而使地基土向基坑方向变形。一般的基坑支护是防止基坑壁的土体产生破坏。这里的问题不仅是不允许产生破坏,而且不允许产生过大的变形。根据这一要求我们设计了采用护坡桩控制老楼地基内的应力状态,实际上完全保持是不可能的,设计的目标是让桩端的变形不超过老楼允许的倾斜变形。为此,护坡桩直径取800mm,间距1.8m,桩长22.5m,桩顶设有联梁并在联梁上加有拉索。在施工过程中进行了监测,开挖以后,桩顶变形15cm,基坑深已经达到9.5m,基本达到了设计的要求。所以说,对基坑支护不能简单的根据土压力计算,要根据工程工作目的要求来设计。地质工程设计要根据防止产生工程地质灾害的要求对地质体进行改造的目的进行设计。也就是根据地质体的成分、地质体结构、地质体的赋存环境条件,来满足地质工程稳定的要求对地质体进行改造来设计。在黄寺那个工程,因为土质为淤泥,为了增加它的强度,还在护楼桩后面进行了灌浆,提高淤泥的强度,减小土压力,也就是进行土质改造。采取综合措施,保持住老楼的地质环境,保持住了老楼的安全。地质体改造的概念和过去的支护概念最大的不同之处在于,最重要的则是承认不承认地质体有自稳能力。荷载支护观点不承认地质体有自稳能力,地质体改造观点认为地质体是有自稳能力的,而且这样做的结果符合地质实际。我们利用这些综合理论来对工程建设中与地质有关部分的地质工程,如边坡、地基和地下洞室,包括地质灾害防治和地质环境改造工程工作是有效的。

经过10余年的实践,地质工程学已经形成了它的基础理论。这个理论不是简单的由一个两个定理构成的,而是一个理论体系。它包括有基本原理、应用基础理论和应用技术理论,是一个理论体系,概括起来可以称谓地质控制论,这个理论可由图1-1展示。

图1-1 地质工程学基础理论框图

这个框图表明,地质工程学的理论基础是地质控制论,它有两个层次,第一个层次是地质工程基本原理,也就是说地质工程工作必须紧紧地依靠地质。在搞清地质条件基础上,进行设计和施工,这个观念必须时刻牢记。它的具体内容包括:地质构造控制论、岩体结构控制论、土体结构控制论和地质体赋存环境条件控制论。这既是地质控制论的基本内容,又是地质工程学的基本原理;它不仅有其自身的规律和技术理论,也是建立应用基础或应用技术理论的指导理论。地质工程学应用基础理论和应用技术理论是地质工程学基础理论的第二个层次。这里列出了7项应用基础理论:地质环境(包括地壳稳定性)评价理论和方法、岩体质量评价理论和方法、工程地质探测和测试理论和方法、工程地质超前预报理论和方法、地质体改造理论、方法和技术、岩土体稳定性分析理论和方法、地质工程设计和施工指导理论。这是解决地质工程问题时经常用到的实用基础理论,必须在搞清地质条件基础上实施,如果离开了地质,必将脱离地质实际,做出错误结论。可能有人认为,这些提法是人所共知的,没有什么新鲜内容。著者认为不是这样,实际上,在地质工程实践中脱离地质实际的实例随手可拾。可以说地质工程施工中出现事故的绝大部分是设计和施工脱离地质实际的结果,或者是对工程地质条件没有搞清楚或认识不清的结果。据著者所作的粗略统计,目前在地质工程施工中由于对地质条件没有搞清楚或认识不清,致使在施工中出现事故所延误工期约占总工期的30%,这是一笔巨大的浪费。其原因就在于对地质工程的基础理论没有掌握,口头上讲是知道的,实际上是没有真正知道或没有真正按照去做。因此,在地质工程实践中不认识地质控制论,由此便不重视地质条件对地质工程的控制作用,地质工程施工和设计缺乏针对性,事故层出不穷。

上面谈到的基本理论和应用基础理论并不是并列的,它们之间是有主有从的。地质构造控制论是所有理论的基础,它对所有理论都有控制作用,是地质控制论的核心理论。它也是所有地质工作的指导思想,是地质工程理论的核心理论。

上面仅就地质工程学基本原理做了概括的论述,在此再强调一点,现有的规程、规范常常脱离地质实际,所推荐的理论往往不符合地质实际,应该牢记地质工程学的基础理论是地质控制论。地质工程实践中必须抓住地质控制条件,特别是上述的地质工程学基本原理的控制作用来进行工作才能奏效。地质环境评价必须抓住大地构造背景,地质构造控制理论在这里具有重要的控制作用;岩体质量评价必须抓住岩体结构、结构面的级序控制作用及地质环境赋存条件进行分析才能得到正确的结论;工程地质探测和测试必须抓住地质构造的控制作用,布置勘探网,进行测试设计才能取得符合实际的资料;工程地质超前预报必须抓住地质规律、地质体结构、地应力的地质规律、地下水的地质规律来进行才能取得成效。地质体改造及保护则更是如此,必须抓住地质体结构、地应力和地下水条件进行设计地质体改造及保护方案和选取地质改造及保护技术才能取得可靠的效果;岩土体稳定性分析必须抓住岩土体结构和岩土体赋存环境条件控制作用,正确地确定力学模型和岩土体力学参数,选取合适的分析方法,才能取得正确的结果。归根到底一句话就是这些应用基础理论是为地质工程服务的应用基础理论,必须在研究清楚地质体规律基础上才能取得为地质工程服务的积极成效。

『贰』 数值模拟流程

不同的软件进行数值模拟时所需的参数、计算方法、剖分格式等不尽相同,数值模拟的过程也不同,但大致相同,本文以TOUGHREACT为例介绍CO2地质储存数值模拟的流程。

(一)研究范围的确定

一般情况下,独立的天然水文地质系统是计算区最好的选择,它具有自然边界,便于较准确地利用其真实的边界条件,避免人为边界在资料提供上的困难和误差。但是在实际工作中,常常不能完全利用自然边界,这就需要充分利用勘察和长期观测资料等建立人为边界。在确定计算区域时,除了保证范围足够大以外,还应使假定的边界条件尽可能接近真实状态。

计算范围的划定应充分考虑研究目的、区域地质构造、储层岩性、储层岩石矿物组成及地下水化学成分等多方面因素。数值模拟时间根据研究目的不同具有不同的时间尺度。就CO2地质储存数值模拟而言,如果不考虑地球化学作用,封存系统在1000年数量级的模拟时间内基本上已达到平衡或稳定。在划定边界时还应考虑CO2在储层中的扩散距离,与研究区地质模型的孔隙度,渗透率等参数关系密切。为了保证所选模型范围边界在模拟期内不影响模拟结果,尽量通过具有相同地质条件的天然CO2气田(藏)进行类比,确定大体的计算范围的边界。如果考虑地球化学反应,由于CO2注入引发的水-岩-气反应对围岩岩性改变较显著,制约着CO2注人的速度和径向运移的距离等。

(二)明确研究目的

在进行数值模拟以前首先要明确利用数值模拟技术要解决什么样的问题。对于CO2地质储存工程而言,进行数值模拟的目的主要是在CO2地质储存工程实施前,通过数值模拟技术对工程的选址、方案设计进行优化,工程实施期技术指导、运行期监测及后期CO2泄漏的风险评估等进行预测,以指导项目科学、合理地实施,将CO2泄漏风险降至最低。

研究目的决定着前期资料的收集类型、地质建模的侧重点、地质模型离散的精密度以及初始、边界条件的处理方式等过程。

(三)资料的收集整理

1)通过遥感、综合地质调查、物探、钻探和各类样品测试分析等手段获取场地深部地层岩性、地质构造、水文地质、水文地球化学、岩石矿物资料和数据;

2)搜集和分析CO2地质储存场地地质岩性、区域构造格架、活动断层与地震活动情况等;

3)采用钻井岩心、测井和地震反射方法,调查CO2地质储存场地目标储层和盖层的空间分布形态,埋深、厚度和规模等;

4)使用X射线衍射、扫描电镜等方法研究分析封存场地岩石矿物组成、孔隙结构特征及其物理化学性质;

5)通过采取浅部、深部含水层水样进行水质全分析,获得储盖层地层水及浅部含水层初始水化学成分。

不同的数值模拟软件其数学模型的数值解法不同,空间离散方式也不尽相同,所需的模型参数也有一定的差异,表9-1即为TOUGHREACT数值模拟所需要的主要参数。

表9-1 CO2地质储存模拟过程中需要的主要参数(以TOUGHREACT为例)

图9-3 网格剖分

网格剖分对计算的精度及计算的效率有很重要的影响。精度越高对模拟结果刻画的越精细,但是数据的计算量越大,对计算机的要求也越高。建议在进行地质模型剖分时先采用较粗的网格剖分,如果这种剖分方式下模拟结果合理然后再进行精细化剖分,用于对模拟结果更加详细的刻画。

2.参数和初始条件

初始条件是指在初始时刻(t=0)时研究区内求解数学模型主要状态变量的初始值。选择的应用软件不同所需的状态变量数量、种类不同。如TOUGHREACT所需的初始主要状态变量包括压力、温度和组分浓度的空间分布。地质参数包括孔隙度、渗透率、密度、压力、温度、毛细压力等参数值。这些数值一部分采用室内实验测得,另一部分采用参考文献的经验值;地层水的化学成分的初始值采用实际地层水的化学分析,主要是8大离子的浓度、盐度和pH 等。如果研究区深部地层中的水样难以获得,如盖层,则采用静态平衡的方法,利用具有与储层相同盐度的咸水与含有原生矿物的地层岩石在原地层环境下进行化学反应,获取平衡状态下的地层水化学成分的初始值;通过岩矿分析、电子扫描、Ⅹ衍射等手段,获得组成CO2地质储层盖层的原生矿物成分体积含量初始值,并根据原生矿物的组成合理判断次生矿物。

从原则上讲,初始时刻是可以任意取定的,只要该时刻所需的参数和状态变量值已知即可。因此我们不应该把初始条件理解为研究系统的初始状态。具体如何取,应该视问题的需要、资料来源、计算方便与否等因素而定。

3.边界条件

边界条件是某一实际问题数学模型具有定解的必要条件之一。地下水流问题和溶质运移问题边界条件的定义不尽相同,但一般概化为以下三种。

(1)一类边界条件(Dirichlet条件)

解决水流问题时,此类边界条件为在边界上所有点的水头是给定的;对于溶质运移问题,一类边界条件是指研究区边界上的溶质浓度分布已知。解决CO2—水两相流动问题时,此类边界条件为在边界上所有点的压力是给定的。

(2)二类边界条件(Neumann条件)

当已知某一边界的单位面积流入或流出的流量时,可视作解决流动问题的二类边界;相对溶质运移来讲,此类边界又称给定弥散通量边界,即边界上的弥散通量随时间变化规律已知。

(3)三类边界(Cauchy条件)

当研究区一部分满足一类Dirichlet条件,而另一部分满足二类Neumann条件时,这类问题称为混合边界问题,称为三类边界。对溶质运移而言,此类边界为边界上溶质通量随时间变化规律已知。

在CO2地质储存数值模拟过程中,由于储层地层多在800m以下,地质模型的顶部和底部根据实际需要可以处理为不透边界;为了避免边界对模拟结果的影响,研究区的范围一般比实际CO2所能运移到的范围大得多,因此,在处理四周边界时一般设置为无穷一类边界或不透边界。在确定边界条件时,应根据水文地质条件以及现有的资料来综合考虑。

4.源汇项处理

在多孔介质中流动和溶质运移的问题中,对流、水动力弥散和溶质源或/和汇,是决定含水层中任一内点上溶质质量时变率的两大因素。源汇项问题在水质与水量计算中以及正确处理对流-弥散方程和渗流基本微分方程中占有重要地位。作为源汇项的方式很多,如越流补给、含水层弹性释放补给以及抽(注)井的补给等。

对于深部咸水层CO2地质储存系统而言,系统的顶部一般为具有低渗、低孔的泥岩、页岩等致密性岩层,越流补给较难发生。整个CO2地质储库系统的源汇项主要指对流(如侧向边界)和抽(注)井。

(八)模型的校正与验证

模型识别是建立地下流体数值模型最重要的环节之一,正确理解和进行拟合对于提高数值模型的仿真性是至关重要的。在有实测结果的情况下如示范工程,可将模拟结果与实测结果进行比较,对相关参数进行适当合理的调整,使模拟结果在给定的误差范围内与实测结果吻合。若误差较大,应该重新检验概念模型的可靠性,甚至重新建立概念模型。在识别校正以后,应采用校正好的模型继续计算,并与未用来识别校正的实际数据比较,验证模型的准确性和可靠性。若存在较大误差,需重复前面的过程。在没有实测结果的情况下,数值模型的可靠性可通过类比相关资料或根据个人经验和理论判断。

(九)模拟预测

模型预测是实施数值模拟技术的主要目的。对于CO2地质储存工程而言,由于CO2地质储存技术的提出为时尚短,针对CO2在深部咸水层中的运移、扩散、与地层水和围岩产生的化学反应,以及由于CO2灌注引起的储盖层物理、化学性质变化研究均处于研究和发展阶段。因此,在工程实施过程中急需具有技术指导性的工具产生,避免造成投资的浪费和CO2泄漏等风险的出现。

利用经过识别校正与验证过的数值模型对CO2地质储存过程进行模拟预测,有针对性地对模拟数据进行后期处理,如统计分析、比较等手段对结果进行解译,以此达到场地的优选,目标储层灌注能力、储存潜力的评估,CO:扩散运移途径和速度、不同捕集方式封存量及它们之间的时空转化等过程的详细刻画与模拟仿真等目的。同时可以预测CO2在已有、重新激活或新生成的裂隙中逃逸的可能性及时间、CO2泄漏风险评估以及评价CO2泄漏对浅层地下水的水质、水量及对地表环境的影响等。

上述结果的分析只是数值模拟技术所能解决问题的冰山一角。对于数值模拟结果的处理要根据所研究的目的进行有针对性的提取和解译。通过对处理后的数据进行总结分析,发现问题从而解决问题,并掌握内在规律,为CO2地质储存工程的前期设计、工程实施、中期监测管理提供理论支持和科学的技术指导,并可以提前开展风险预测,尽早制定预案防范CO2地质储存工程实施及运行过程中可能出现的隐患。

『叁』 我是学工程地质的,正在读研,我的研究方向就是边坡的数值模拟,数值应用到岩土工程中的前景怎么样

数值分析在实际工程中当然是有应用的,不过主要的运用比较“高端”,得出专来的数据也就骗骗不懂属行的甲方,实际中,懂行的技术人员普遍不信任数值分析,因为数值分析中普遍存在“调参”的问题,经过调整过的数据,让内行人怎么信任得过。再说了,实际的边坡计算中,根本就没有纯粹依靠参数计算的,工程人员的工程经验占有很大很大的比重。

『肆』 海洋工程地质问题包括哪些内容

海洋工程地质是研究与人类工程建筑活动有关的地质问题的学科,是地质学的一个分支.海洋工程地质学的目的在于查明建设地区或建筑场地的地质条件,分析、预测和评价可能存在和发生的海洋工程地质问题,及其对建筑物和地质环境的影响和危害,提出防治不良地质现象的措施,为保证工程建设的合理规划、建筑物的正确设计、顺利施工和正常使用,提供可靠的地质科学依据.海洋工程地质学还要研究海洋工程地质条件的区域分布特征和规律,预测其在自然条件下和工程建设活动中的变化,和可能发生的地质作用,评价其对工程建设的适宜性.
研究方法
包括地质学方法、实验和测试方法、计算方法和模拟方法. 地质学方法即自然历史分析法,是运用地质学理论,查明海洋工程地质条件和地质现象的空间分布,分析研究其产生过程和发展趋势,进行定性的判断.它是海洋工程地质研究的基本方法,也是其他研究方法的基础. 实验和测试方法,包括为测定岩、土体特性参数的实验、对地应力的量级和方向的测试,以及对地质作用随时间延续而发展的监测. 计算方法,包括应用统计数学方法对测试数据进行统计分析,利用理论或经验公式对已测得的有关数据,进行计算,以定量地评价海洋工程地质问题. 模拟方法,可分为物理模拟(也称海洋工程地质力学模拟)和数值模拟,它们是在通过地质研究,深入认识地质原型,查明各种边界条件,以及通过实验研究获得有关参数的基础上,结合建筑物的实际作用,正确地抽象出海洋工程地质模型,利用相似材料或各种数学方法,再现和预测地质作用的发生和发展过程. 电子计算机在海洋工程地质学领域中的应用,不仅使过去难以完成的复杂计算成为可能,而且能够对数据资料自动存储、检索和处理,甚至能够将专家们的智慧存储在计算机中,以备咨询和处理疑难问题.
特征和规律
海洋工程地质学还要研究海洋工程地质条件的区域分布特征和规律,预测其在自然条件下和工程建设活动中的变化,和可能发生的地质作用,评价其对工程建设的适宜性. 由于各类工程建筑物的结构和作用,及其所在空间范围内的环境不同,因而可能发生和必须研究的地质作用和海洋工程地质问题往往各有侧重.据此,海洋工程地质学又常分为水利水电海洋工程地质学、道路海洋工程地质学、采矿海洋工程地质学、海港和海洋海洋工程地质学等. 海洋工程地质学的主要研究方法包括地质学方法、实验和测试方法、计算方法和模拟方法. 地质学方法即自然历史分析法,是运用地质学理论,查明海洋工程地质条件和地质现象的空间分布,分析研究其产生过程和发展趋势,进行定性的判断.它是海洋工程地质研究的基本方法,也是其他研究方法的基础. 实验和测试方法,包括为测定岩、土体特性参数的实验、对地应力的量级和方向的测试,以及对地质作用随时间延续而发展的监测. 计算方法,包括应用统计数学方法对测试数据进行统计分析,利用理论或经验公式对已测得的有关数据,进行计算,以定量地评价海洋工程地质问题. 模拟方法,可分为物理模拟(也称海洋工程地质力学模拟)和数值模拟,它们是在通过地质研究,深入认识地质原型,查明各种边界条件,以及通过实验研究获得有关参数的基础上,结合建筑物的实际作用,正确地抽象出海洋工程地质模型,利用相似材料或各种数学方法,再现和预测地质作用的发生和发展过程. 未来发展 海洋地质
电子计算机在海洋工程地质学领域中的应用,不仅使过去难以完成的复杂计算成为可能,而且能够对数据资料自动存储、检索和处理,甚至能够将专家们的智慧存储在计算机中,以备咨询和处理疑难问题.

『伍』 工程地质物理模拟

1 工程地质模拟试验概述

一些与重大工程有关的复杂地质现象,在分析评价研究中,往往需要采用模拟研究手段,对其做更深入的论证与评价,模拟研究按采用的手段可分为物理模拟与数值模拟两大类型。前者包括有光弹模拟、电模拟和相似材料地质力学模拟试验等多种方法;后者采用有限元、边界元和离散元等数值计算方法。

模拟研究的基本任务是通过再现复杂地质现象的形成和演化过程,对于某些或全部课题做出论证:①验证地质分析所建立的机制模型或概念模型是否符合实际,对其演化机制作更深入的(量化)分析;②量化评价地质现象演化过程中,各主要控制要素之间及其与主导内、外营力间的相关性,论证所建立的评价模型是否合理;③量化评价地质现象或过程在所处环境条件下的演化发展趋势,论证所建立的预测模型是否可信;④量化评价工程设计或治理措施的效果,论证拟定的对策和方案是否有效和优化。

近十多年以来,我国工程地质模拟试验研究取得了长足的进展。在广泛引进国外先进技术的基础上,探索出适合于我国实际情况的研究途径,其特点是重视原型建模分析和全过程演化模拟,在研究地质灾害和复杂岩体稳定问题的模拟研究中,已逐步形成具有我国特色的研究系统。这里着重介绍相似材料地质力学模拟(geomechanical model test)的基本原理、方法和应用。

2 地质力学模拟试验原理与方法

2.1 模型的设计

按相似理论,除要求几何的、力学的相似以外,还要求原型和模型材料具有相似的变形破裂过程特征,它们的应力(σ)和应变(ξ)曲线应符合如下关系:

地壳浅表圈层与人类工程

式中:Cξ为应变相似系数(原型Cp与模型Cm的比值,下同);Cξ为残余应变相似系数。根据量纲分析,可导出如下关系:

地壳浅表圈层与人类工程

式中Cσ、CE、CL、Cδ和Cρ分别为应力、弹模(变模)、几何尺寸、位移量和材料密度的相似系数。

模型设计中,按照设计拟定的几何相似系数,则可根据公式(2)推算出其他各项

系数,据此确定材料的选择、模型制作及加载系统的设计。

2.2 模型材料

通常可采用重晶石粉、氧化锌粉、硅藻土、磁铁矿粉、铁粉、铅粒、聚苯乙烯粒、石英砂等作为骨料。胶结剂可采用石膏、石蜡油、甘油、机油和环氧树脂等。

采用石膏作为主要胶结材料的模块,其力学特征决定于骨料的配比和胶结料的水膏比,长江科学院岩基室做了系统研究(表1)。采用石蜡油等做胶结材料,需用一些特殊的制作模块的设备压制成块,或用夯实的办法制模。模块的力学特征除与骨料选材和配比有关外,很大程度上决定于制模施加压力的大小或模块密度ρ(表2)。

表1 石膏胶结模块力学性能试验成果表

表2 粉粒材料压缩模块力学性能测试成果表

2.3 结构面模拟

通常以抗剪强度作为控制条件。摩擦系数相似系数Cf=1,黏聚力CC=Cσ。硬性结构面(如节理、裂隙等)用模块接触面模拟。模块的形状应根据裂隙的组合形式确定。在需要考虑裂隙连通率时,可将模型制成嵌合模块。

软弱结构面(如连续性较好的断层、软弱夹层、层面、地质接触面等),采用铝箔、聚乙烯薄膜作夹层材料模拟,其中还可喷上滑石粉,以获得低摩擦系数。模拟的f值可变化在0.08~0.75之间。需要模拟断层等软弱结构面的高压缩性能时,可选择适当厚度的马粪纸或软木作为垫层。

2.4 加载系统

外部荷载采用不同型号的千斤顶或压力枕(袋)等加载。模拟孔(空)隙水压力可在模块中采用砂垫充气(水)法,也可通过不同方式将水直接注入模型中。

动荷载可在作用面上安装震动器施加,按要求模拟震动效应。更为完善的办法是将整个模型置放在震动台上,由三维震动台模拟动力环境。

自重荷载是体积力。为了使模型在试验过程中能充分反映岩(土)体自重在演进中的作用,最好能使模型的密度与原型接近。大型模型试验中,必要的自重荷载补偿,可采用拉杆补压系统对模型分层加压。拉杆通过橡皮圈与施加拉力的底座相联结,橡皮圈的多少确定了拉杆承受的拉应力的大小,以此模拟重力场梯度。小型模型试验,可将模型放在离心机转斗中,通过高速旋转增加自重应力。我国长江科学院、水利水电科学院已安装了6m直径的大型高速离心机。

2.5 量测系统

测量位移的常规方法是用千分表直接测定,或采用应变片或位移传感器通过多点应变仪测量;这种测试在试验中十分必要,但有很大局限性,由于所获得的数据仅能反映固定测点的信息,难以描述全断面曲变形破裂迹象。某些材料很软的模型,也不适宜采用这种方法。根据模型试验的特点和特殊要求,我国开发采用了下列测试技术:①跟踪摄影或快速摄影;②静电复印碳粉网格,用以观察量测模型大变形后破裂出现部位和特征;③白光散斑法,量测重点测试部位全断面内微量位移形迹;④投影网格法,用以测量软材料模型大断面群点面内位移;⑤影像云纹法,用以测量较软材料模型全断面或一定面积的离面位移。

3 工程岩体稳定性评价中的应用

3.1 坝基岩体稳定性模拟

拟建的长江三峡大坝坝高175m,坝基为前震旦系闪云斜长花岗岩,岩质坚硬完整。但左厂房坝基中倾向下游的缓倾角裂隙相对较发育,又有断层与之相交,构成可能的楔形滑移体(图1a)。厂房坑段整体稳定性需要考虑以下几个主要问题:①可能的滑移体产生的条件及其对大坝稳定性的影响;②从岸边向河床方向建基面高程相差79m,是否会造成有害的不均匀压缩变形;③迎水和背水方向基坑开挖最大深度达120m,边坡稳定性如何?为论证上述问题,必须了解各坝段在设计荷载下的位移场、超载下的安全度及可能的破坏机制,为基础处理提出建议。为此长江科学院在意大利模型结构试验研究所(ISMES)提供技术咨询和量测制模设备的条件下完成了大型地质力学模型试验(图1b)。模型的CL=150,Cρ=1,CE=Cσ=CL。采用重晶石粉、机油(代替石蜡油)、立德粉(代替氧化锌粉)等压缩模块制模。缓倾裂隙和断层连通率分别为10%~50%和50%。采用系列千斤顶加载,浮托力用改变岩体密度(ρ)来表征。

图1 三峡大坝左厂房坝段稳定性地质力学模拟

试验获得以下主要结论:

(1)在设计荷载下各坝段安全储备能满足要求,而建基面安全储备又高于缓倾角裂隙面。超载(3.5N)时个别坝段出现沿下伏第一缓裂隙面滑移或伴有踵处拉裂。

(2)设计荷载下坝址与厂房相对位移很小。相邻坝段最大水平位移11.1mm,沉降相对错动最大值仅4.1mm,有利于压力管道和坝间止水设施的设计。

(3)设计荷载条件上、下边坡均稳定,超载(3.5~3.8N)时,个别坝段下边坡沿缓倾裂隙面出现明显滑移。

试验结果建议对个别南段下伏缓倾角裂隙及断层作适当补强措施。

3.2 地下洞室围岩喷锚支护作用机制模拟

试验研究了中等强度均质岩体中地下洞室围岩在不同措施条件下的稳定状况。试验模型采用石膏、沙子等材料制成四个50 cm×50 cm×20 cm的模型(图2a),分别模拟无支护(图中I)、锚杆支护(Ⅱ)、喷锚联合支护(Ⅲ)和锚杆补强(Ⅳ)等四种情况。锚杆补强是在成洞后洞壁变形已基本达到稳定状态时再插锚杆。模型放在三向加载试验装置中加压,用以模拟地应力场。模型材料抗压强度RC=2MPa,抗拉强度St=0.2MPa,弹性模量E=1.25×104MPa,泊松比μ=0.17,φ=41°,c=0.45MPa。喷层材料采用石膏、碳酸钙和水的混合料:RC=1.45MPa,St=0.28MPa,E=1.8×10MPa,喷层厚约3mm。

获得如下主要结论:①均质材料洞室中,喷锚支护同样具有明显加固效果;②不同措施,洞室围岩变形破坏形式无明显差别(图2b);③锚杆支护和锚杆补强均对提高洞室承载能力和变形刚度有明显效果。

图2 洞室支护措施作用机制模拟试验

4 西安地裂缝形成机制模拟研究

西安地裂缝的成因有多种观点。本项研究以再现地裂缝形成演化过程为依据,论证“构造重力扩展”成因观点能否解释这种特殊地质现象。地裂缝发育在厚约5km 的新生界盖层中,周围有四条张性断层。南侧的临潼-长安大断层为盆地与秦岭褶皱带的分界断层,是一条活动性正断裂。地幔隆起轴在西安市区附近,呈 NEE向通过。模型采用重晶石粉、硅藻土和石蜡油混合料,逐层铺垫夯实,围限在代表周边断层的框架中,C L=10000。东西两侧用有机玻璃板作为剖面观察窗。底座放在拱形钢梁上,可以抬动模拟地幔隆起。南侧挡板可拉开倾斜,模拟临潼-长安断裂拉张活动。顶面采用影像云纹法测试微量离面位移(图3)。

5 长江鸡扒子滑坡与暴雨关系的模拟研究

1982年7月24日,长江云阳县城附近在暴雨作用下,发生了鸡扒子滑坡,是老滑坡的局部复活。为了论证滑坡复活与地下水水力坡度的量化关系,开展了模拟研究。模型采用细碎石、砂、土按不同比例以原型结构为依据分层制作而成。滑动面k铺上聚乙烯薄膜。沿纵剖面不同深度引出橡皮管,测量侧压管水头。人工喷水模拟降雨和暴雨。

模型中“降雨”近20h以后,于凌晨3点半钟下滑。滑后外观可与实际情况对照。起动时滑体中地下水水力坡度为1.9%,与实际推算值相近。该值可作为评价滑坡在暴雨条件下稳定性时的参考值。

图3 西安地裂缝地质力学模拟

『陆』 那位知道2009长安大学地质工程的考研初试和复试的参考书目

2009年硕士招生简章及专业目录发布

我校2009年硕士研究生研究生招生简章与专业专目录已经发布,属考生请在本网站资料下载栏目下载查阅。09年我校硕士招生专业目录不再提供初试科目的参考书,只提供初试科目的考试内容范围。初试科目的考试内容范围将在9月份在本网站发布,请考生到时下载查阅。
初试你只能看09年以前的。09内容可以看这里http://202.117.64.78/zhaosheng/html/42.htm

另外你是跨专业的吧,应该不用加试的,那不是同等学历的吗。

『柒』 地质统计学理论在水文数值模拟中的应用

邢永强1李金荣2杨振放2

(1.河南省国土资源科学研究院,郑州 450016;2.郑州大学环境与水利学院,郑州 450001)

《安徽农业科学》,文章编号:0517-6611-(2007)-14-04101-02

摘要 在地下水资源评价中,用数值方法进行水流模拟时,需要给出每个节点上含水层底板标高值。将地质统计学应用于空间分析学科,已被越来越多的学者所利用。文中着重阐述了地质统计学的基本原理及它们在含水层底板标高估值中的应用,通过计算结果可以得出克立格方法是进行含水层底板标高估值的空间最优估计方法。

关键词 数值模拟 区域化变量 变差函数 克立格方法

人类的各种活动使地表水或地下水的水质和水量发生很大的变化,因此为保护水环境我们需要进行水资源评价。水流模拟是水资源评价的一个核心内容,往往采用有限元或有限差分法(李俊亭,1989)进行评价,但是由于实际条件的限制,我们掌握的节点数据往往是有限的,因此需要根据已知点的数据来求未知点的资料信息。传统的插值方法是根据已知测量值按人工线性插值查出其他节点上的变量值,其速度慢且精度低,况且没有考虑研究对象的空间变异性,而地质统计学中的克立格方法正好克服了这一缺点(孙洪泉,1990)。

克立格方法最初是由南非矿山地质工程师D.G.Krige(克立格)于1951年提出并以他的名字命名的方法,随后由法国学者完善并发展形成目前的地质统计学理论(孙洪泉,1990)。地质统计学最早应用于脉状矿山品位、储量研究;随着研究的深入,该方法广泛应用于矿产资源评价、钻探工作、采样工作;另外,还应用于化探、冶金、土壤(李恩羊等,1989)等研究领域。20世纪80年代之后,克立格方法在水文地质学领域得到了广泛应用(许多项,1993)。李金荣等(2003,2002)采用克立格法对含水层底板标高进行估值,得出克立格方法是对空间变量进行估值的一种较好的方法。

1 地质统计学的基本理论

1.1 区域化变量

区域化变量理论是地质统计学的理论基础。它的定义(孙洪泉,1990)是:以空间点x的3个直角坐标xu,xv,xw为自变量的随机场Z(xu,xv,xw)=Z(x)称为一个区域化变量。区域化变量在观测前,可以看做是随机场;观测后就得到Z(x)的一个实现,每一个实现Z(x)就是一个普通的三元实函数(或空间点函数)。它的显著特征是具有随机性、结构性。

含水层底板标高可以看成是区域化变量,它具有随机性和结构性。所谓随机性是指空间点x固定后,Z(x)为一随机变量,所谓结构性是指不同点x与x+h 处的 Z(x)与Z(x+h)之间具有空间相关性。

1.2 变差函数

变差函数是克立格方法计算的基础。它描述区域化变量的空间结构性,也描述其随机性。我们把区域化变量Z(x)在x和x+h两点处样本值之差的方差之半定义为Z(x)在x方向上的变差函数(又称变异函数),记为γ(x,h),即

环境·生态·水文·岩土:理论探讨与应用实践

实际工作中我们用实验变差函数γ*(h)的公式计算:

环境·生态·水文·岩土:理论探讨与应用实践

式(2)中N(h)为相对于空间向量h、区域化变量Z(x)变异的统计点对数。对于不同的h可计算出相应的γ*(h)值。

为了对区域化变量的未知值作出估计,还需要将实验变差函数拟合成相应的理论变差函数模型。拟合的模型有多种,其中常用的模型为球状模型(孙洪泉,1990):

环境·生态·水文·岩土:理论探讨与应用实践

式中:C0为块金常数,由微观结构变化和观测误差所决定的一种随机变化成分;C为拱高,Z(x)结构变化的最大值;C0+C为基台值,反映一定方向上Z(x)结构变化与随机变化的总的变化幅度;a为变程,反映Z(x)变化的影响范围或变异速度。

1.3 克立格方法

从数学上讲,克立格法是一种对空间变量分布数据求最优、线形、无偏内插估计量的方法。它是以反映变量空间结构特征的变异函数为基础,以取得估计方差最小为目标,在无偏性约束条件下求优的一种估计方法。无偏性消除了系统误差,估计方差最小则表明有较高的精度,所以称最优估计。从水文地质角度讲,它根据已知观测点上水文地质变量(本文中针对含水层底板标高)的实测数据,对水文地质变量进行结构性(变差函数的模型确定)分析之后,为了对待估点作出一种线形、无偏、最小方差的估计,而对周围已知点的测量值赋予一定的权系数,进行加权平均来估计待估点水文地质变量的方法。

令区域化变量底板标高为B,设位于x0点处含水层底板标高变量的待估值B*(x0)是周围全部已知的测量值B(xi)(i=1,2,…,n)的线形组合,则:

环境·生态·水文·岩土:理论探讨与应用实践

式中:λi为克立格权系数(i=1,2,…,n);n 为已知观测点总数。

式(4)中待定权系数λi(i=1,2,…,n)的确定应满足无偏性条件和最优性条件,才能保证估计量B*(xi)的线形、无偏、最优估计。

假定区域化变量底板标高B满足本征假设(孙洪泉,1990),即

环境·生态·水文·岩土:理论探讨与应用实践

(1)根据无偏性条件

环境·生态·水文·岩土:理论探讨与应用实践

经推导可得

环境·生态·水文·岩土:理论探讨与应用实践

(2)根据最优性条件(即估计方差最小条件)

环境·生态·水文·岩土:理论探讨与应用实践

欲使得式(8)估计方差

在满足无偏性条件下达到极小,就要利用求条件极值的拉格朗日乘数法,即要求:

环境·生态·水文·岩土:理论探讨与应用实践

达到极小时的诸λi(i=1,2,…,n)和μ。式(9)中F是n个权系数λi(i=1,2,…,n)和μ的(n+1)个元函数;μ 是拉格朗日乘数。

环境·生态·水文·岩土:理论探讨与应用实践

由此推导可得普通克立格方程组:

环境·生态·水文·岩土:理论探讨与应用实践

式(11)共包含了n+1个方程,可求解出n+1个未知的λi(i=1,2,…,n)和μ。

根据求出的λi(i=1,2,…,n)和μ,则可得到普通克立格方差表达式:

环境·生态·水文·岩土:理论探讨与应用实践

值得注意的是,式(11)和式(12)均只取决于变差函数及信息点与待估点之间的相对几何特征,而与信息样品数据B(xi)(i=1,2,…,n)无直接关系,故它能够预测估计精度。

最后根据求出的λi(i=1,2,…,n)和μ,根据式(4)可计算出任一点的含水层底板标高值B,根据式(12)可得出任一点的估计方差。

2 应用

以陕西省咸阳某一水源地地下水资源评价为例。该研究区处于冲积平原上,评价的目的层为第四系含水层。用有限元法对该区地下水进行数值模拟,采用不规则三角形网格剖分,将全区剖分成674个单元,共382个节点,总面积为203km2(图1)。根据野外实测资料,取得含水层的底板标高系列数据n=68,作为含水层底板标高等值线图的绘制依据,利用前面所述的地质统计学方法理论,编制了相应的计算机程序,用该方法理论可计算出各节点的含水层底板标高估值和克立格估计方差,绘制了含水层底板标高等值线图(图2)。

图1 研究区单元剖分图

Fig.1 The unit analysis map of research area

从计算模拟结果(由于计算较多,这里不再一一列出)可以看出,用地质统计学方法计算出来的底板标高值与其实测值误差较小,最大达10.82m,最小为0.07m,平均为3.47m。用克立格方法计算的各实测点上的估计方差较小,最大达1.394 2,最小为0.003,平均为0.301 6。其绝对误差和相对误差值也很小。因此说克立格方法是一种较好的空间模拟方法。

图2 用克立格方法模拟的底板标高等值线图(单位:m)

Fig.2 The isoline map of lower bed level estimation simulated by Kriging method

3 结论

(1)区域化变量理论能够反映变量空间分布的随机性与结构性特征,变差函数是地质统计学的基本工具,是对变量空间分布特征估计最为有效的方法之一。从模拟计算的结果可以得出克立格法是一种最优、线性、无偏的模拟空间变量的方法。

(2)含水层底板标高这一变量具有明显的空间变异性。对这种变量的最优估计方法是以能反映含水层底板标高空间分布的随机性与结构性特征的克立格方法的基本理论为基础,在无偏性约束条件下寻求估计方差最小的一种克立格方法。

(3)由于克立格方法有不依赖于信息样品数据(含水层底板标高)的特征,在事先不知道待估点实际值的情况下,直接给出估计精度,且估计精度较高。

参考文献

李俊亭.1989.地下水数值模拟.北京:地质出版社.

孙洪泉.1990.地质统计学及其应用.北京:中国矿业大学出版社.

李恩羊,袁新.1989.作物需水量的最优估计.水利学报,(10):45~49.

许多项.1993.数学插值方法在水文地质学中的应用探讨.长春地质学院学报,(10):423~429.

李金荣,杨振放,李云峰,李金玲.2003.两种方法在地下水位估值中的应用.水文地质工程地质,(3):42~46.

李金荣,杨振放,郭建青.2002.变差函数在地下水位估值中的应用研究.西北水资源与水工程,13(4):6~9.

Utilization of Geostatistics in Hydrologic Numerical Simulation

Xing Yong-qiang1Li Jin-rong2Yang Zhen-fang2

(1.Sciencial Researchinstitute of land and resource of Henan Province,Zhengzhou 450016;2.College of Environment and Water Conservancy,Zhengzhou Univ.,Zhengzhou 450001)

Abstract:In many cases of water resource assessment.,When numerical method is oftenadopted in groundwater flow modeling,lower bed level value of aquifer on each node should be given.The geostatistics is used in spatial analysis,it has been advocated by more and more experts.The geostatistics method and their basic application in estimating lower bed level value of aquifer is expounded.Through the result,the author can draw an important conclusion:Kriging method is spatial optimal estimation one in estimating lower bed level of aquifer.

Key words:Numerical Simulation;regionalized variable;variogram;Kriging method

『捌』 工程地质学的特点是什么有哪些具体的学习要求

工程地质学是研究与人类工程建筑等活动有关的地质问题的学科。地质学的一个分支。工程地质学的研究目的在于查明建设地区或建筑场地的工程地质条件,分析、预测和评价可能存在和发生的工程地质问题及其对建筑物和地质环境的影响和危害,提出防治不良地质现象的措施,为保证工程建设的合理规划以及建筑物的正确设计、顺利施工和正常使用,提供可靠的地质科学依据。研究方法包括地质学方法、实验和测试方法、计算方法和模拟方法。地质学方法,即自然历史分析法,是运用地质学理论查明工程地质条件和地质现象的空间分布,分析研究其产生过程和发展趋势,进行定性的判断,它是工程地质研究的基本方法,也是其他研究方法的基础。实验和测试方法,包括为测定岩、土体特性参数的实验、对地应力的量级和方向的测试以及对地质作用随时间延续而发展的监测。计算方法,包括应用统计数学方法对测试数据进行统计分析,利用理论或经验公式对已测得的有关数据,进行计算,以定量地评价工程地质问题。模拟方法,可分为物理模拟(也称工程地质力学模拟)和数值模拟,它们是在通过地质研究深入认识地质原型,查明各种边界条件,以及通过实验研究获得有关参数的基础上,结合建筑物的实际作用,正确地抽象出工程地质模型,利用相似材料或各种数学方法,再现和预测地质作用的发生和发展过程。电子计算机在工程地质学领域中的应用,不仅使过去难以完成的复杂计算成为可能,而且能够对数据资料自动存储、检索和处理,甚至能够将专家们的智慧存储在计算机中,以备咨询和处理疑难问题,即所谓的工程地质专家系统(见数学地质)。

『玖』 数值模拟技术简介

(一)研究现状

地下多相、多组分流体运移数值模拟是在质量和能量守恒的基础上,建立的多相流体运动以及反映地球化学运移扩散的数学模型,通过离散建立大量的线形或非线形方程组,然后利用计算机计算求解,再通过图像显示模拟结果,达到对工程问题和物理问题乃至相关其他问题研究的目的。CO2地质封存数值模拟就是利用计算机模拟的方法,来解决CO2进入地质封存系统后运移、转化、水-岩-气之间的相互反应、CO2泄漏对浅部含水层影响及诱发的储盖层物性变化等一系列问题,从而指导CO2地质封存工程的实施。

目前,国内外已开展的关于CO2地质封存数值模拟的研究工作包括以下几个方面:

1.超临界CO2-水多相流体运动模拟

Pruess等(2003)模拟了均质各向同性咸水含水层中以恒定流量灌注CO2条件下,灌注井井周非等温径向流情况。当忽略重力和惯性力效应时,模拟结果中存在相似变量ζ=R2/t(其中,R为径向流动距离,t为时间),CO2饱和度、溶解CO2质量分数、沉淀盐的体积分数及流体压力都是相似变量的函数。这与O' Sullivan(1981)及Doughty和Pruess(1992)的结果一致。两相流的模拟考虑了CO2和水的相对渗透率及毛细管力作用问题(Van Genuchten,1980),考虑了流体密度、黏度和CO2溶解性随压力、温度和含盐度的变化,以及盐的沉淀导致含水层渗透率的减小等因素。

Doughty和Pruess(2004)利用Fro咸水含水层封存CO2监测资料,反推了CO2灌注后发生的物理和化学过程。他们采用TOUGH2数值模拟软件对两相(液、气)三组分(CO2、水和溶解NaCl)系统进行模拟。考虑15MPa和65℃条件下,超临界CO2在咸水中为非混溶流体,并能部分溶解于咸水的情况,分析了多相流系统边界设定的影响及相对渗透率取值问题,即模拟中对侧向边界的设置为均开(或均闭),结果导致压力的模拟结果与实际相比过低(或过高)。研究表明,由于上覆断层对CO2的封堵作用,侧向边界对CO2弥散羽的影响不大。模拟结果还显示,相对渗透率函数对CO2弥散羽的演化有很强的影响。如何确定一个合适的相对渗透率以表征CO2灌注咸水含水层的变化,仍是亟待解决的问题。Doughty和Pruess模拟了两种CO2残余饱和度条件下的CO2羽扩展随时间的变化,发现存在较大差异。残余饱和度较大的情况下,CO2羽表现出紧缩状,在浮力作用下运移较慢;相反,在残余饱和度较小的情况下,CO2羽流弥散很快,溶解性显著提高。

2.多组分反应地球化学运移模拟

水-砂岩-CO2相互作用往往形成一系列次生矿物,或次生矿物组合。Worden et al.(2006)通过岩石学和CO2灌注长石砂岩的地球化学模拟表明,北海Magnus油田上侏罗统浊积亚长石砂岩中的铁白云石、高岭石和石英可能具有成因联系。其中,铁白云石中的碳来自有机成因的CO2。Watson et al.(2004)通过CO2气与CH4气储集砂岩的比较岩石学研究,证实澳大利亚Otway盆地Ladbroke Grove CO2气储集砂岩中与CO2气灌注有关的次生矿物组合为铁白云石-高岭石-次生石英。

Xu et al.(2005)利用一维砂岩-页岩系统模型模拟了储层中灌注的CO2与矿物发生的化学反应过程,以及对储层环境的影响。模拟显示,在砂岩环境下,CO2主要被方解石所固定,而方解石的沉淀导致孔隙度减小,进而导致渗透率相应减小。10万年间,砂岩封存能力达到90kg/m3的封存能力,这些被矿物固定下来的CO2可以永久封存。Zwingmann等运用地球化学模拟软件EQ3/6进行的水-矿物-CO2相互作用模拟也表明,若将CO2灌注到日本本州岛中北部新潟盆地更新世灰爪组砂岩,CO2以溶于水和形成碳酸盐矿物两种形式封存,其中后者封存量最大为21.3mol/kgH2O,可达总封存量的90%,形成的碳酸盐矿物中也出现了片钠铝石。

3.耦合岩石力学模拟

从目前发表的论文及各国研究计划的综合报告上看,在CO2咸水含水层封存研究方面,对于CO2运移机制的分析和模拟很少考虑应力场的耦合作用。事实上,CO2灌注压力和超临界CO2的浮力作用将改变地层应力状态,即CO2在上浮运移和侧向扩散过程中,孔隙压力可能会对原始裂隙和断裂产生影响;CO2在咸水含水层中的长时期(千年级尺度以上)的封存,将改变含水层的地球化学状态,CO2-咸水-含水层矿物的化学作用将可能导致岩体力学和水力学性质发生变化。

日本因位于4大板块交界处与环太平洋构造带中,活断层密集发育,地震频繁,地应力分布复杂,在CO2地质封存评价方面,非常重视CO2地质封存的力学稳定性研究(李琦等,2002;李小春等,2003)。李琦等(2002;2004;2006)提出了一个考虑初始地应力场、灌注压力、CO2浮力及含热传导作用的热-水-力(THM)耦合模拟框架,考虑盖层底部附近存在不同倾角断层的二维平面应变地质封存问题。采用有限元算法,对灌注CO2流体对断层稳定性的影响进行模拟分析。计算结果表明,为了避免断层位移需要特别注意对灌注压力的控制,因为CO2灌注压力对断层滑动的影响远大于CO2羽流浮力带来的影响。停止灌注CO2后,CO2羽流的上升则成为应力场扰动的主要因素。

(二)主要软件介绍

近年来,计算机模拟技术在许多研究领域得到了广泛的应用,开发出了许多优秀的模拟软件和程序。同样,可用于研究CO2地质封存的数值模拟软件也很多,主要有PHREEQC、GEM、ECLIPSE、TOUGHREACT、PetroMod、MUFTE-UG和NUFT等,它们都有各自的特点和适用性。在进行数值模拟之前,需对这些数值模拟软件进行评价分析,选择适用于所研究问题的模拟软件。现对国际上常用的几款软件简介如下。

1.PHREEQC

PHREEQC是一款用于计算多种低温水文地球化学反应的计算机软件。以离子缔合水模型为基础,PHREEQC可完成以下任务:(1)计算物质形成种类与矿物的溶解饱和指数;(2)模拟地球化学反演过程;(3)计算批反应与一维运移反应。另外,与多组分溶质-运移模型耦合的PHREEQC可生成PHAST,一个用于模拟地下水流系统的三维反应-运移模拟器。但由于PHREEQC是在单相水流的基础上建立的模型,因而不能模拟超临界CO2-水的两相流运动。

PHREEQC最简单的应用就是计算溶液中各种化学物质的分布,以及溶液中矿物与气体的饱和状态。反演模拟功能可推导和量化在流动过程中,能够反应化学物质变化的化学反应方程。PHREEQC可处理的反应方程包括建立矿物、表面配合物、阳离子交换剂、土壤溶液、气体组分单位分压、给定压力或给定体积气相间平衡的物质运移反应。在模拟这些均衡反应的同时,PHREEQC还可以模拟动力化学与生物反应,以及模拟从简单的线性衰变(代谢物降解或放射性衰变)到复杂的依赖于溶液化学组成和微生物数量确定的反应速度。这些反应处理功能可在批反应模拟或一维对流、弥散、反应型运移模拟中使用。

2.GEM

GEM v.2009.13(Nghiem et al.,2004)是一款用来模拟利用CO2和酸性气体提高石油采收率的模拟器,该模拟器完全耦合了地球化学组成状态方程。GEM采用一步求解法进行状态方程的求解。GEM可以用来模拟:对流和弥散流体、油(或超临界CO2)、气和咸水间的平衡、水相物种间的化学平衡,以及矿物的动态溶解和沉淀。该模拟器采用自适应的隐式离散技术利用一维、二维或者三维模型来模拟孔隙介质中溶质的运移。油相和气相用一个状态方程来模拟,气体在水相的溶解度采用亨利定律模型来计算。水通过蒸发进入到气相、盖层的穿透、热效应和裂隙的封闭作用也可以利用GEM来模拟。

3.ECLIPSE

ECLIPSE是一个并行化的可以模拟黑油、组分、热采等问题的成熟软件。1994年,胜利石油管理局引进了ECLIPSE油藏数值模拟串行软件,广泛开展了从油藏到气藏,从常用油田到特殊油气田、从常规模拟研究到特殊模拟研究等多方面的应用。主要模块有主模型、黑油、组分、热采、流线法、运行平台和ECLIPSE Office等。

ECLIPSE是一个商业软件,在使用中其内核部分是封闭的,使用者只能将其作为一个“黑箱”来操作。其不足之处有:不可能免费的获得和随意地使用和修改;无法耦合最前沿的地质流体热力学模型;无法加入更多影响因素来研究具体问题。因此,ECLIPSE不适宜用于前沿科学研究。

4.TOUGH2/TOUGHREACT

TOUGH2是Transport of Unsaturated Groundwater and Heat(非饱和地下水流及热流传输)的英文缩写,是一个模拟一维、二维和三维孔隙或裂隙介质中,多相流、多组分及非等温的水流及热量运移的数值模拟程序。TOUGH2使用积分有限差分(Integral Finite Differences,IFD)(图3-8)的方法来解决多相流动和多组分化学运移模拟中的空间离散化问题(Pruess et al.,1999s;Xu et al.,2004)。为了满足大规模计算需要,Zhang et al.(2008)开发了TOUGH2的平行计算版本,即TOUGH2-MP。

该方法在对地质介质的离散化上是比较灵活的,允许使用不规则的网格,十分适合对多区域非均质系统和裂隙岩石系统中流体流动、运移和水岩相互作用的模拟。而对于规则的网格剖分,积分有限差分方法相当于传统的有限差分法。其中,对于任意区域Vn,它的质量(对于水、气体和其他化学组分)和能量(对于热)守恒方程可以用积分的方式(式3-5)表达:

图3-8 积分有限差分法中的空间离散化和几何参数数据构成图

中国二氧化碳地质封存选址指南研究

式中:下角标n为表示一个单元格;下角标m为表示和单元格n互相连接的网格m;Δt为时间步长;Mn为单元格n的平均质量或能量密度;Anm为单元网格n和m交界的面段;Fnm为通过面积为Anm的质量或能量通量;qn为单元格n内单位体积的平均源汇率。

许天福等(1998)在TOUGH2的框架基础之上,增加了多组分溶质运移和地球化学反应的模拟功能,形成了一套较为完善的可变饱和地质介质中非等温多相流体反应地球化学运移模拟软件——TOUGHREACT。该软件不仅包括了TOUGH2的全部功能,而且适用于不同温度、压力、水饱和度、离子强度、pH值和氧化还原电位(Eh)等水文地质和地球化学条件下的热-物理-化学过程。还可以应用于一维、二维或三维非均质(物理和化学的)孔隙或裂隙介质中的相关数值模拟研究。在理论上可以容纳任意数量的以固相、液相或气相存在的化学组分(但是在实际模拟中会受到计算能力和计算时间等硬件条件的限制),并且考虑了一系列化学平衡反应,如溶液中的配合反应、气体的溶解或脱溶、离子吸附作用、阳离子交换及受平衡控制或反应动力学控制的矿物溶解或沉淀反应等。可以说TOUGHREACT、是TOUGH2的升级版,近年来在世界范围内CO2地质封存研究和工程实践中得到了广泛的应用。

除包含TOUGH2所有的功能外,TOUGHREACT还可以应用于一系列的反应性流体和地球化学迁移问题。比如:(1)伴随Kd线性吸附和放射性衰变的污染物迁移问题;(2)在周围环境条件下,自然界中地下水的化学演变;(3)核废料处置地点评估;(4)深部岩层的沉积成岩作用;(5)CO2地质处置。多相流体运动,多组分反应地球化学,各种封存形式封存量以及随时间空间变化;(6)矿物沉积(如表生铜矿富集);(7)自然和补给环境下热水系统中的矿物变化。

通过最近几年相关研究者的不懈努力,TOUGHREACT在实际应用中得到了进一步完善和提高,增加了部分新功能,如水相内部反应动力学和生物降解作用,改进了矿物-水反应表面积计算方法,以及气-水反应中气的活度系数的修正等。

5.PetroMod

由德国IES(Integrated Exploration System)公司研究开发的PetroMod多组分、多相态的多维含油气系统模拟软件综合平台已被世界石油业所公认。该软件融入了断层活动性、盐丘上涌和刺穿、火山岩的侵入、气体扩散效应、油气水三相运移和油气吸附模型等相关技术。

该模拟软件平台推出和采用的油气运移组合模拟算法(Hybird)是当今最先进的油气运移模拟算法,既可以保证模拟的精度,又可以极大地提高模拟的运算速度。其中的PetroFlow3D用于油气运移、聚集、圈闭和散失等情况的模拟,同时PetroCharge Express为我们提供了基于图件的油气运移和圈闭模拟的快速分析工具。

6.MUFTE-UG

MUFTE-UG是MUFTE和UG.MUFTE的结合。MUFTE即多相流(Muliphase Flow)、运移(Transport)和能量(Energy)模型。该软件包主要包括物理模型概念和孔隙裂隙介质中等温和非等温多相多组分流动和运移过程的离散方法(Helmig,1997;Helmig et al.,1998)。它能对裂隙孔隙介质进行离散性描述(Dietrich et al.,2005)。UG是非结构性网格(Unstructured Grid)的缩写,它提供的数据结构能快速解算以平行、自适应多网格法为基础的离散型偏微分方程。具有模块化结构的MUFTE-UG很容易解决各种有特殊要求的问题。

模块化结构的MUFTE-UG具有许多不同的环境与技术应用。例如,在环境应用领域,MUFTE-UG能够模拟如下两个问题。

(1)NAPL(非液相流体)向饱和与非饱和土壤的渗流。优化改进的修复技术在MUFTE中具有广泛的研究和发展空间。

(2)地下CO2的消散。CO2以高温高压灌注地表以下几百米的地层中,MUFTE-UG可用于非均质含水层(对流和弥散运移)中羽状体演化评价,伴随温度效应(由于膨胀和压缩)和组分间相互溶解(卤水和CO2)。

7.NUFT

NUFT(Nonisothermal Unsaturated-Saturated Flowand Transport model)是一套用来解决在多孔介质中多相、多组分非等温流动和溶质运移过程中地下污染物运移的数值解法器。此软件利用简单的代码来利用通用的实用程序和输入文件的格式。最近,此代码在Unix和DOS系统下运行成功。

该程序利用一套完整的有限差分空间离散法求解平衡方程组。每一个时间步长内利用Newton-Raphson方法求解非线性方程组,而在每一步迭代过程中利用直接解法和预共轭梯度法求解线性方程组。该模型可以解决一、二和三维水流及溶质运移问题。将来该模型会耦合进毛细滞后、非正交网格离散、有限单元剖分和固体非线性等温吸附等功能。

(三)研究方法

通常情况下,CO2地质封存数值模拟包括以下主要过程。

(1)建立概念模型:根据各种方法获取的实际资料来概化和建立CO2地质封存概念模型,包括边界范围、地层或储盖层高程、储盖层确定、参数及分区、源汇项、主要物理化学过程以及模型维度(一维、二维和三维)。

(2)建立数学模型:建立一套描述深部咸水层中多相流动和多组分反应性溶质运移的偏微分方程组,包括初始条件和边界条件问题。

(3)模型离散化:把概念模型中的各种信息通过网格剖分进行离散,形成大量的网格单元,然后通过有限差分、有限单元和积分有限差分等方法转化成单元的质量和能量守恒方程组,再用多种方法将非线性方程组线性化,形成线性代数方程组,然后求解方程组。

(4)模型识别和校正:根据模型计算结果和实际监测数据进行对比拟合,适度合理调整参数,使模型能够综合反映实际情况。在历史拟合过程中出现较大误差,应重新检查概念模型,修正概念模型。对所建模型进行参数敏感性分析,对于较敏感的参数应该慎重选取,甚至需要做大量的试验来确定。

(5)模型预测:建立了可靠的模型后,便可以进行模拟预测。

数值模拟的关键是地质模型概化、计算精度和计算速度。由于计算的精度取决于离散的程度,而离散的程度又决定了计算的速度,这是一对矛盾,要根据解决问题的需要来选择离散化的程度和计算速度。

CO2在储层中的运移、溶解以及与围岩的化学反应形成了一个多相、多组分的反应体系,涉及的主要数学方程有超临界CO2-水的两相流体运动控制方程、溶质运移控制方程和化学反应方程等。建立数值模型时,通常采用有限差分法、有限元法和积分有限差分法等。

由于实际应用时多采用已有的数值模拟软件对CO2地质封存的某一过程进行模拟,不涉及软件的开发及程序代码的编写,只需根据研究的需要选择合适的软件进行模拟预测,而软件一旦选定,数学模型和数值模型基本上已经确定。

『拾』 工程地质学的研究方法

包括地来质学方法、实验和自测试方法、计算方法和模拟方法。地质学方法,即自然历史分析法,是运用地质学理论查明工程地质条件和地质现象的空间分布,分析研究其产生过程和发展趋势,进行定性的判断,它是工程地质研究的基本方法,也是其他研究方法的基础。实验和测试方法,包括为测定岩、土体特性参数的实验、对地应力的量级和方向的测试以及对地质作用随时间延续而发展的监测。计算方法,包括应用统计数学方法对测试数据进行统计分析,利用理论或经验公式对已测得的有关数据,进行计算,以定量地评价工程地质问题。
模拟方法,可分为物理模拟(也称工程地质力学模拟)和数值模拟,它们是在通过地质研究深入认识地质原型,查明各种边界条件,以及通过实验研究获得有关参数的基础上,结合建筑物的实际作用,正确地抽象出工程地质模型,利用相似材料或各种数学方法,再现和预测地质作用的发生和发展过程。电子计算机在工程地质学领域中的应用,不仅使过去难以完成的复杂计算成为可能,而且能够对数据资料自动存储、检索和处理,甚至能够将专家们的智慧存储在计算机中,以备咨询和处理疑难问题,即所谓的工程地质专家系统(见数学地质)。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864