六安市工程地质分区
❶ 地质环境条件复杂程度的分区
综上所述,输油管线穿越不同的构造单元,穿越地貌类型多样,沿线出露除中生界以内外的华北容地台上所有地层,岩性岩相较复杂,地质构造条件复杂,新构造运动强烈,地下水类型复杂多样,矿产资源分布不均,人类工程—经济活动强烈程度不等,地质灾害发育程度差别较大。其中地质环境条件简单的分布区段189.23km,占全线总长的37.3%;地质环境条件中等的分布区段203.27km,占全线总长的40.0%;地质环境条件复杂的分布区段115.49km,占全线总长的22.7%。各区段地质环境条件复杂程度说明见表9-8和图9-7。
❷ 工程地质分区与评价
5.4.1 区域稳定性分区
海口地区区域稳定性分为二级。其中一级分区主要依据构造稳定性划定,划分为两个区,基本上以马袅-铺前断裂为界,以南为次稳定区,以北为不稳定区;二级分区主要考虑岩土体稳定性和地面稳定性划分为4个地段(见图5.1、表5.4)。
图5.1 海口地区环境工程地质图
表5.4 海口市城市调查区区域稳定性分区表
5.4.1.1 文明村、府城薜村、灵山、道殿村次稳定区(A)
(1)火山岩台地稳定地段(A1):①岩土体稳定性:该地段为火山岩台地,岩性为褐红色粘土(玄武岩残坡积土),局部(美楠村一带)玄武岩裸露。土体呈可塑—硬塑状,承载力特征值230~660kPa,岩体饱和单轴抗压强度53.8~184.4MPa,软化系数0.1~0.84。岩体稳定性较好。②地面稳定性:本区除局部红土较厚和台地坡度较陡的地段出现有冲沟、水土流失较严重外,就整个火山岩台地来说,地形起伏不大,水系不发育,地面稳定性较好。
(2)海积三级阶地较稳定地段(A2):①土体稳定性:以可塑—硬塑含砾粘土、粉质粘土为主,承载力特征值180~660kPa,稳定性一般。②地面稳定性:该地段地形波状起伏,冲沟发育,地表遭受侵蚀切割,常引起崩塌,水土流失严重,地面稳定性差。
5.4.1.2 长流、秀英、海口、桂林洋不稳定区(B)
(1)长流-秀英海积阶地基本不稳定地段(B1):①土体稳定性:主要为可塑状粉土、粉质粘土,承载力特征值140~270kPa,稳定性一般;局部分布膨胀土,膨胀土膨胀率2.1%,收缩率3.0%,自由膨胀率43%,具有湿胀干缩特征,常对建筑物造成破坏,土体稳定性差;沿海一带为沙堤沙地和淤泥,土体结构松散,具流变性、触变性,稳定性很差。金牛岭一带为玄武岩,稳定性相对较好。②地面稳定性:本地段为沿海地带,地势低平,常受洪潮侵袭,地下水埋深小,局部地段地下水对混凝土具腐蚀性,地面稳定性较差。
(2)海口、桂林洋三角洲平原不稳定地段(B2):①土体稳定性:主要为含砂粉质粘土、淤泥质粉质粘土和膨胀土。含砂粉质粘土为可塑状,承载力特征值50~240kPa;淤泥质粉质粘土,具有高压缩性、流变性和触变性,强度低;膨胀土膨胀率8.57%~13.07%,自由膨胀率43%~57%,具有湿胀干缩特征,常对建筑造成破坏;沿海是海湾、海滩沉积,松散状。土体稳定性差。②地面稳定性:该地段地形低平,易受台风、洪潮侵害,土体具流变性,常引起地基不均匀沉降或挤出,南渡江沿岸,由于河流侵蚀,常出现崩塌,而沿海出现海岸淤积。地下水埋深浅,局部地下水对混凝土具侵蚀性。地面稳定性差。
海口城市环境地质调查区的区域稳定性评价工作,以地质调查为基础,尽可能收集了各方面的资料,综合分析了本区的构造、岩土体和地面稳定性,对海南岛东北部进行初步的稳定性评价和分区。基本上以马袅-铺前断裂为界,南部稳定性较好,北部稳定性差。海南岛东北部设防地震基本烈度为Ⅷ度,设计基本地震加速度值为0.30g。因此,对重大工程建筑要考虑其稳定性,采取相应的措施,进行防震设计。
5.4.2 工程地质分区与评价
在区域稳定性分区的基础上,以地貌条件和岩土体工程地质特征为主要依据,结合物理地质现象、环境工程地质问题和水文地质条件等因素,并考虑地域上的连续性,对海南岛东北部进行工程地质分区,共划分为5个区8个亚区(见图5.1)。
5.4.2.1 新海-府城海风积平原沉积土区(I)
(1)新海海风积沙堤沙地松散砂类地基土亚区(Ⅰ1):主要分布于新海林场一带沿海,呈堤状,为海相堆积,后经风力改造加高而成,顶部常见草丛、沙丘、沙垄等。岩性以细砂、中砂或含砾中砂为主,局部为含砾粗砂,松散—稍密状,宜作一般小型工民建筑地基,但由于其浅层土层松散,侧压力大,边岸、基坑易崩塌,另外,本区台风作用强烈,常使沙丘迁移造成工程设施的破坏或掩埋。
(2)荣山海积一级阶地淤泥地基土亚区(Ⅰ2):分布于荣山—博养一带,地形低平,上部为含贝壳砂、淤泥或中粗砂、粉土,下部为含砾粗砂、砾砂及粉土等。顶板埋深0~4.05m,一般小于2m,具流动性、高压缩性。本区地基土软弱,承载力低,并易受洪、潮侵袭,不宜做工民建筑场地。
(3)秀英-府城海积三级阶地粘性地基土亚区(I3):分布于区内火山台地与海积一级阶地之间,地基土以更新统粉土、粉质粘土和上新统粘土为主,力学强度较高,地形平缓,外动力地质现象较少,适合各种工民建筑和道路工程。但局部陡坡地带有冲沟、崩塌等现象发生,在此地带的工程建设应注意边坡的稳定性。另外,本区地震烈度为Ⅷ度,工程建筑应采取相应的抗震措施。
(4)府城海积阶地中等膨胀地基土亚区(Ⅰ4):分布于储城东沿阶地边缘,局部受河流侵蚀切割成残丘地形,岩性以杂色粘土为主,上部覆盖层多为人工填土或北海组含砾粉土。具中等膨胀性,由于具有湿胀干缩的特征,建筑物常被破坏。如海南干部疗养所地处孤丘上,建筑物以秀英组(Q p1x)杂色粘土为天然地基,造成平房、水池等建筑物开裂。
(5)浮陵水三级阶地中等膨胀地基土亚区(I5):分布于三级阶地后缘白水塘南一带,岩性以杂色粘土为主,上部覆盖层多为北海组(Qp2 b)褐红色粉质粘土、粉土等,覆盖层厚度小于2m,局部因众多砖瓦厂开采已出露地基。本层土具有中等膨胀性,湿胀干缩常使建筑物造成破坏,工程建筑施工应对此引起足够的重视。
5.4.2.2 海口-桂林洋、河口三角洲堆积平原沉积土区(Ⅱ)
沿东部海岸和南渡江河岸分布,为全新统地层,地基土力学强度一般较低。
(1)玉沙村海滩阶地淤泥地基土亚区(Ⅱ1):分布于海口玉沙村—海甸岛一带,上部覆盖层一般为人工填土、粉质粘土、粉土、中细砂等,岩性为灰黑色淤泥,呈流塑—软塑状。
本区地势低平,易受台风洪潮侵蚀,浅部地基土软弱,淤泥具高压缩性、流变性、触变性和不均匀性,常出现地基不均匀沉降或挤出、基坑滑移等,对工程建筑不利。
(2)新埠岛-铁桥三角洲平原、河流阶地夹淤泥质地基土亚区(Ⅱ2):分布于南渡江两岸及河口一带,呈向海凸出的扇形,地形平坦,微向海倾,区内出露的为全新统沉积层,岩性和土层结构复杂。
区内地基土强度一般,但隐伏有淤泥质粉质粘土,因此工程建设时应查明其分布和埋藏条件,采取防范措施。另外,本区南渡江沿岸河流侵蚀作用强烈,常发生崩塌,且本区地势较低,易受洪涝、潮害和台风侵袭,对工程不利。
(3)桂林洋海湾一级阶地淤泥质地基土亚区(Ⅱ3):分布于桂林洋农场以北,地基土以淤泥质粉质粘土为主,埋藏较浅,一般0.80~1.25m,具高压缩性,强度低,不宜做天然地基。
本区地势低平,易受风暴潮侵袭,对工程建筑不利。本区地震烈度为Ⅷ度,邻区发生过7.5级的强震,地基土有触变性,工程建筑应特别注重防震措施,以策安全。
5.4.2.3 长流海积三级阶地粘性地基土区(Ⅲ)
分布于长流附近,被后期熔岩所包围,地形平坦或略有起伏,地基土强度一般,物理地质现象不发育,适宜各种工民建筑和道路工程,但地震烈度为Ⅷ度,应设防。
5.4.2.4 道殿村海积三级阶地粘性土地基土区(Ⅳ)
分布于桂林洋农场北道殿村一带,地形平坦,地基土强度一般,适宜一般工民建筑,但由于地势低平,易受风暴潮等影响,且地震烈度较高(Ⅷ度),应采取防范措施。
5.4.2.5 火山岩台地残坡积地基土区(Ⅴ)
分布于长流文明村、府城薜村及灵山等地,美楠村一带为玄武岩裸露区,但由于分布范围较小,未进行分区而归并于本区。残坡积土岩性为褐红色粘土,局部含铁豆砂,下部为玄武岩。区内岩土力学强度较高,地形平缓,适宜各类工民建筑场地,但由于残坡积土孔隙比大,具高压缩性,厚度变化大,土层中常见球状风化玄武岩块,易造成建筑物的不均匀沉降,所以兴建工程应查明其厚度变化,采取防范措施。
❸ 烟台市工程地质分区与地质-生态环境质量评价
一、地质环境质量现状评价
1.市区工程地质环境质量评价
工程地质环境质量评价系统是一个多层次、多因素的复杂系统,结合烟台市本身的特点,建立了烟台市区工程地质环境质量评价指标,将评价结果分为Ⅰ类区、Ⅱ类区、Ⅲ类区和Ⅳ类区,因此,各评价因素取4级变化指标。
本次评价范围为烟台市区,以1∶5万工程地质图为底图,将评价区域划分为5939个500m×500m的单元,对每个单元进行评价,根据评价结果,编制出烟台市区工程地质环境质量分区图。
计算中首先确定每个单元工程地质环境质量评价指标特征值,然后,根据工程地质环境质量分级与对应评价指标的取值,并参考在烟台市区从事地质环境监测、工程地质勘察、城市规划等专家对工程地质环境质量分级的意见,选定39个样本(单元)为神经网络BP模型学习样本,并分别给出每个样本的目标值。计算中样本输入指标数量为15个指标,输出节点为1个,学习率为0.7,隐层数为1个,隐节点为25个,最大总误差为0.01,最大个体误差为0.001,只需训练200次左右即可,正常系统误差数点后6位,系统收敛情况很好。样本学习结束之后,就可以判断其余样本的归属问题,根据输出结果,判定某一样本属于哪一类工程地质环境质量区。整个计算根据上述神经网络的BP模型,由计算机完成。
计算结果与实际情况吻合相当好,烟台市区的工程地质环境质量分为Ⅰ、Ⅱ、Ⅲ、Ⅳ类区。
计算结果表明,Ⅰ类工程地质环境质量区,主要分布在烟台市区的低山丘陵区,如塔山、磁山等,该区一般基岩裸露,岩石类型以花岗岩、片岩、片麻岩、石英岩为主,地基承载力高,地下水综合污染指数小于0.3,除了个别地段边坡不稳定外,一般无其他环境工程地质问题发生,该区域人口密度低,人类工程活动强度低,是工程地质环境质量好的地区;Ⅱ、Ⅲ类工程地质环境质量区,地域分布情况有两种,一是在山前、河谷平原,二是在人类工程活动强烈的丘陵地带或地质灾害与环境工程地质问题发育地带,前者具有双层岩土体结构,一般无淤泥质软弱层,地下水综合污染指数在0.3~1.0之间,人类工程活动强度较高,后者为矿山开采或边坡失稳地段,是工程地质环境质量较好或中等地区;Ⅳ类工程地质环境质量区,分布在烟台市区滨海地带,以夹河下游、养马岛南部分布面积最大,地貌单元属滨海平原,地基土中均含淤泥质软土,地基承载力较低,地下水位低,局部地段具侵蚀性,地下水综合污染指数大于1.0,海水入侵现象较普遍,粉细砂、粉土地段有沙土液化现象,该区人口密度大,人类工程活动强度高,是工程地质环境质量差的地区。
2.区域地质环境质量现状评价
正确选择评价指标是真实地揭示地质环境质量优劣的前提和基础,评价指标体系是由若干个单项评价指标组成的层次分明的有机整体,本次地质环境质量评价一般应满足:一级评价3个指标,二级评价14个指标。
本次评价范围以烟台市环境地质问题分布图作为底图,将评价区域划分为2224个2.5m×2.5km评价单元,对每个单元的指标进行赋值评价。
上述各指标赋值的方法有3种:一是根据实测结果得到,如地形高度等;二是根据统计计算得到,如人口密度、单位面积国民生产总值等;三是根据实际情况及地质环境质量分级指标,对Ⅰ、Ⅱ、Ⅲ、Ⅳ类工程地质环境质量分别用1、2、3、4标度。
评价模型仍采用上述神经网络BP模型,根据烟台市区工程地质环境质量的评价经验,参照分区指标,确定50个样本(单元)为学习样本,输入指标12个,输出层神经元1个,隐层神经元1个,隐节点数20个,误差要求同上,迭代次数只需几十次即可,系统收敛情况很好。然后将其余样本输入计算机,进行判断并输出结果,根据该模型的判断结果,编制烟台市地质环境质量分区,其地域分布见图13-3。
图13-3 烟台市地质环境质量评价与分区
计算结果表明,烟台市分Ⅰ、Ⅱ、Ⅲ、Ⅳ类地质环境质量区,它们所占的比例分别是35.61%、40.96%、15.96%和7.46%。Ⅰ类区分布在莱州东北、招远市附近、龙口北部、牟平北部、莱阳和海阳市附近地区,为地质环境质量最好地区;Ⅱ类区分布在莱州市附近、栖霞西部、蓬莱北部、福山北部、莱阳和海阳市附近的广大区域,是地质环境质量较好地区;Ⅲ类区分布在烟台市沿海一带,是地质环境质量中等地区;Ⅳ类区主要分布在北部沿海一带和中部矿产资源开发地区,是地质环境质量较差地区。
二、烟台市地质-生态环境质量风险度与风险评价
1.地质-生态环境质量风险评价优势指标与层次结构分析模型
地质-生态环境风险评价是按计算的地质-生态环境恶化程度分成不同等级风险区,针对不同风险区的特点提出减少风险的各项策略。
根据烟台市的实际情况和现有的地质-生态环境资料,将地貌单元、场地类型、地下水开采现状、区域地壳稳定性、地震烈度、地面变形灾害、斜坡环境变异灾害、地下水污染状况、海水入侵、滨岸侵蚀、人口密度和单位面积国民生产总值17个指标作为制定烟台市地质环境与生态环境问题风险评价优势指标。
2.地质-生态环境质量风险评价优势指标权值的确定
层次分析法(AHP)是把一个复杂的问题表示为有序统一处理决策中的定性与定量因素,具有实用性、系统性、简洁性等特点,本质上是一种决策思维方式。层次分析法将复杂的问题分解成各组成要素,将这些要素按支配关系组成有序的层次递阶结构,通过两两比较的方式确定层次中诸因素的相对重要性,然后结合人的判断决定诸因素的相对重要性的总和顺序。层次分析法体现了人们决策思维的基本特征,即分解、判断、综合。具体包括:①建立层次递阶结构;②构造两两比较判断矩阵;③计算单一准则下元素的相对权重;④计算各层因素的组合权重。最终计算结果得出最低层次元素相对重要性排序,即权重向量。
于是,各区域地质环境与生态环境问题风险评价优势指标对总区域地质环境与生态环境问题风险评价优势指标据重要性权值进行总排序。经检验,总排序具有满意的一致性。
3.地质-生态环境质量风险度的定量评定与风险评价
将烟台市划分为2224个独立单元,根据分区指标对每个单元的区域地质环境与生态环境问题风险评价优势指标进行赋值、评价,将所得数值进行加权。根据17个烟台市风险度优势指标,确定每个单元内各因素(指标)的特征值(fij(x)),再乘以其权值,即得到每个单元的风险度基准值(图13-4)。
计算结果表明,当风险度基准值小于50时,表明该区域地质环境与生态环境问题风险程度小、安全,一般不用采取防治措施;当风险度基准值在50~70之间时,表明该区域地质环境与生态环境问题风险程度中等、一般,除在特别地区需注意避免问题恶化外,一般也不采取防治措施;当风险度基准值在70~90之间时,表明该区域地质环境与生态环境问题风险程度较大、较严重,应考虑区域地质环境与生态环境问题的影响,并采取一定的防治措施;当风险度基准值大于90时,表明该区域地质环境与生态环境问题风险程度大、严重,处于问题恶化的极限值,进行工程建设时,应注意评价该工程建成后将引起或遇到何种地质环境问题和生态环境问题,应进行地质环境和生态环境的预防与防治研究,避免地质与生态环境问题的进一步恶化。
图13-4 烟台市地质-生态环境质量风险评价
❹ 区域环境工程地质评价
4.3.1区域稳定性分析
黄河三角洲是在基底构造甚为破碎、济阳凹陷的一个次级负向构造单元上发育形成的。由于区内东北部位于北西向的燕山——渤海地震带及北东向的沂沫断裂地震带的交汇部位,因而与新构造运动有关的构造地震异常活跃。据山东省地震局1985年10月布设的东营—垦利、陈家庄—河口的现代形变及牛庄—新刁口的两次a径迹测量结果,埕子口断裂、孤北断裂、陈南断裂、胜北断裂和东营断裂的现代活动都有显示,说明区内的区域稳定性较差。区内新生代以来的断裂活动表现为具有继承性脉动活动的特点。尤其是5号桩,桩西至海港一带位于上述两条活动断裂地震带的交汇复合部位,新生代以来断陷幅度最大,历史上曾发生过3次7~7.5级地震,区域稳定性差。根据以上的地震预测,影响烈度一般都在Ⅶ度以上,5号桩一带为Ⅷ度。根据我国建筑规范规定,一切建筑物都应设防加固,以保安全。
区内饱和砂土、饱和粉土具有液化的宏观条件。在历史地震发生时,曾有喷水冒砂、地面裂缝等现象发生。其液化程度受以下因素影响:土的颗粒特征、密度、渗透性、结构、压密状态、上覆土层、地下水位埋深、排水条件、应力历史、地震强度和地震持续时间等。
由于黄河三角洲地质体物质组成主要是粉砂,且孔隙度较高,加之形成期堆积速率快,造成地质体中含水量高。随着时间推移,在上覆沉积物挤压下,孔隙中水逐渐被挤压,造成地质体压缩,导致地面下沉。根据1988年在黄河海港地区实测,该地区压实下沉速率可达6cm/a,因此由于地面下沉所引起的海面相对上升则更加剧了海岸侵蚀。
另外,近几十年来的人为活动加剧了本区地面沉降的发展,如:建筑地基承载力不足引起的土体压缩,地下水、石油、卤水的开采所引起的含水层、储油层压缩等。
由此可见,黄河三角洲地区环境工程地质问题颇多,本节将对直接影响东营市经济发展和规划的地表下25m土体工程地质类型及其物理力学性质、工程地质性质的区域性变化等进行深入研究。
4.3.2土体的工程地质分类及工程地质特征
区内小清河以北为黄河三角洲平原,小清河以南多为山前冲洪积平原,基岩埋深在数百米以下,表层均为第四系松散沉积物,鉴于一般工业与民用建筑物地基持力层一般均在15m以上,一般中高层建筑物持力层一般在25m以上的特点,下面仅以0~25m的土体为对象,进行分析和研究(图4-6)。
图4-6地表土体类型示意图
1.土体的岩性与结构特征
(1)土体岩性分类
区内0~25m深度内的地层多为第四系全新统地层,其沉积环境受黄河和海洋交互或共同影响,形成了以细颗粒为主的地层。所表现出的岩性以粉土最为广泛,其次为粉质粘土、粉砂、粘土,局部有细砂,其主要岩性特征见表4-6。
表4-6黄河三角洲0~25m地层岩性分类及主要特征表
(2)土体结构特点
区内土体结构无单层结构,多为多层结构,(多层结构是指一定深度内由3层或3层以上的地层构成),这也是区内的沉积环境所决定的,该区濒临渤海,是河流的最下游段,河道游荡较频繁,古地貌特点反复变化,携带泥、砂的水动力特点也随之变化,因此,区内一般无巨厚的单层岩性沉积。
2.土体工程地质特征
(1)山前冲洪积平原区土体工程地质特征该区地面下25m的沉积物为第四系全新统冲积、洪积(
(2)古黄河三角洲区土体工程地质特征该区地面下25m的沉积物为第四系全新统冲积、海积、湖沼相沉积(
(3)现代黄河三角洲平原区土体工程地质特征
该区地面下25m的沉积物为第四系全新统冲积海积物(
3.地表下0~25m土体物理力学指标的变化规律
(1)古黄河三角洲区的物理力学性质总体上好于现代黄河三角洲,这正是由于现代黄河三角洲的成陆时间晚于古黄河三角洲,其自重固结的程度差于前者。
(2)无论是古黄河三角洲区还是现代黄河三角洲区各类岩性土层的物理力学指标显示出一个较明显的规律,即从地表向下随深度的增加土层的物理力学指标以较好—较差—好发生变化。一般较差的深度段在5~10m和10~15m。这一变化规律也与区内的沉积环境相吻合,力学指标较差的深度段为1855年黄河改道以前沉积的冲湖积、冲海积相为主的地层。
4.3.3天然地基承载力、饱和砂土液化及软土与盐渍土
1.天然地基承载力
黄河三角洲地区基土承载力在不同位置、不同层位均有较大变化,从小于80kPa到大于300kPa。天然地基承载力指自地表算起的第一层或第二层基土(当第一层厚度小于3m,且第二层基土承载力高于第一层时,取第二层承载力数据)的承载力。区内天然地基承载力可分为4个等级(表4-7),其分布与变化规律与地貌单元有较密切的相关关系(图4-7)。
(1)承载力低区(fk<80kPa)的分布
① 呈条带状分布于现代黄河三角洲工程地质区内。如利津县虎滩乡西南—河口区义和镇南部、河口东南孤河水库—渤海农场总场北以及现代黄河入海口北侧等地,以上各地带多为1855年以后成陆,且位于滨海低地或洼地内,排水条件差,自重固结程度低。
表4-7天然地基承载力分区特征表
② 呈小片状分布于古黄河三角洲平原区。如东营区胜利乡南部,利津县王庄乡南部等。
(2)承载力较低区(80≤fk<100kPa)的分布
① 沿海岸线分布,宽度不一。
② 沿黄河泛流主流带边缘、前缘和洼地展布。如利津县大赵乡—虎滩—罗镇—河口区一带、集贤乡—渤海农场总场、孤北水库北部、利津前刘乡—东营区西城,以及东营区龙居乡—西范乡一带。
(3)承载力中等区(100≤fk<120kPa)的分布
① 分布于决口扇的顶部及缓平坡地区。如利津县南宋—北宋—明集,东营区龙居乡—油郭乡—六户镇—广饶县丁庄乡以及胜坨乡—高盖乡等地。
② 分布于现代黄河三角洲顶点附近。如宁海乡—汀河乡、宁海乡—傅窝乡一带。
③ 分布于现代黄河三角洲北部、东部。如河口区新户—刁口乡、孤东水库—五号桩、垦利县建林乡—孤东水库、建林—西宋乡。
(4)承载力较高区(fk>120kPa)的分布
① 分布于古黄河三角洲的南部。如牛庄—陈官—小清河一带。
② 分布于小清河以南的山前冲洪积平原区。
③ 零星分布于近代黄河三角洲平原区的地势较高处。
2.饱和砂土液化
砂土液化是指处于地下水位以下松散的饱和砂土,受到震动时有变得更紧密的趋势。但饱和砂土的孔隙全部为水充填,因此,这种趋于紧密的作用将导致孔隙水压力骤然上升,而在地震过程的短暂时间内,骤然上升的孔隙水压力来不及消散,这就使原来由砂粒通过其接触点所传递的压力(有效压力)减少,当有效压力完全消失时,砂层会完全丧失抗剪强度和承载能力,变得像液体一样的状态,即通常所说有砂土液化现象。
区内的饱和砂土、饱和粉土具有液化的宏观条件,在历史地震发生时,曾有喷水冒砂、地面裂缝等现象发生。其液化程度受以下因素影响:土的颗粒特征、密度、渗透性、结构、压密状态、上覆土层、地下水位埋深、排水条件、应力历史、地震强度和地震持续时间等。
液化判别就是根据土的物理力学性质及其他工程地质条件,对土层在地震过程中发生液化的可能性的判别。国家标准《建筑基础抗震设计规范》(GBJ11-89)中规定了饱和砂土、饱和粉土的液化判别方法,在对区内饱和砂土、饱和粉土的液化判别时,即依照了前述规范提供的方法,在液化势宏观判定的基础上,采用了原位测试资料——标准贯入试验进行了液化临界值和液化指数的计算。根据液化指数对地基液化等级的划分见表4-8。区内液化砂土的分布规律见图4-8。
(1)严重液化区
① 分布于现代黄河三角洲顶点,向北向东呈扇形展布的黄河泛流主流带的中上游部位,主要在陈庄镇—六合乡、虎滩乡—义和镇一带。
图4-7天然地基承载力分区示意图
表4-8地基液化等级表
② 零星分布于废弃河道带和决口扇,如下述地带:东营区永安乡—广北水库一线,呈条带状分布,为废弃河道带;利津县店子乡—前刘乡,呈片状分布,为决口扇的中部;东营区史口乡附近、东营区六户镇西侧、河口区新户乡东北等地。
该区内的饱和粉土、饱和粉砂颗粒均匀,粘粒含量低,沉积厚度较大,形成年代新,固结程度差,因此是最易发生液化的地区。
(2)中等液化区
① 分布于较大的决口扇及决口扇前缘坡地地带,利津县城东—明集乡—大赵乡、东营区胜利乡—董集乡—油郭乡一带。
② 分布于黄河泛流主流带或其边缘地带。宁海乡—垦利县城;陈庄镇—傅窝乡;渤海农场总场东—建林乡—新安乡;义和水库南—河口区。
③ 在滨海低地带内有零星片状分布,五号桩及以东地区;刁口码头东北—孤北水库北部;新户乡以西及以北的近海地带。该区一般位于严重液化区的外围及决口扇顶部位或零星分布于小规模的黄河主流带,饱和粉土、粉砂的粘粒含量较低,固结程度较差,因此是较易发生液化的地区。
(3)轻微液化区
① 分布于古黄河三角洲泛滥平原及决口扇边缘,如下述地带:利津县南宋乡—北宋乡;东营区龙居乡—广饶县陈官乡—丁庄乡。
② 分布于现代黄河三角洲的非黄河泛流主流带区,如下述地带:利津县王庄乡—垦利县胜坨乡;利津县集贤乡—垦利县城东部;河口区太平乡—义和水库。
该区粉土、粉砂的沉积厚度较小,粘粒含量较高,因此液化程度较轻。
(4)非液化区
① 分布于工作区小清河以南的山前冲洪积平原,该区地下水位埋藏深,水位以下的饱和粉土,粉砂密实程度较好,因此不易液化。
② 分布于沿海地带的滨海低地,该区除河口相沉积外,地层粘粒含量较高或以粘性土为主,因此不易液化。
3.软土与盐渍土
(1)软土
软土一般是指天然含水量高、压缩性大、承载力低的一种软塑到流塑状态的粘性土。如淤泥、淤泥质土以及其他高压缩性饱和粘性土、粉土等。黄河三角洲地区地处渤海之滨,具有软土的沉积环境,钻探资料亦证明,区内呈片状分布着软土。
① 软土的划分标准
本次划分软土时采用如下方法:当满足下列条件之一时,并且厚度大于0.50m,将其确定为软土:承载力标准值fk<80kPa;标贯锤击数N63.5≤2;静力触探锥头阻力qc<0.5MPa;流塑状态。
② 软土的空间分布
软土主要分布于区内的东北部滨海地带、河口—刁口码头一带。利津县罗镇—黄河故道西、垦利县下镇乡东部,另外在利津县明集乡—广南水库一线呈不连续片状、碟状分布。
③ 软土的成因及主要物理力学性质
区内的软土具有两种成因:①烂泥湾相沉积:在历次河口的两侧,沉积的以细粒成分为主的土层,一直处于饱和状态,排水固结过程进展缓慢,所以土的力学性质很差。颜色以灰褐色为主,流塑态,土质细腻,岩性以粉质粘土为主,夹粉土和粘土薄层。②滨海湖沼相沉积:颜色以灰—灰黑色为主,有机质含量较高,具腥臭味,为淤泥或淤泥质土。
图4-8地基砂土液化分区示意图
表4-9软土的主要物理力学指标统计表
从表4-9中可以看出:区内软土具有含水量高、孔隙比大、压缩性高、承载力低的特点,在荷载作用下变形较大,对建筑物极为不利。因此,在工程建设规划时,应尽量避开有软土分布的地区。在无法避开软土的建筑物,应对区内的软土有足够的重视,采取一定的处理措施,对于一般工业民用建筑可采取粉喷桩法进行处理,对于高层重型建筑物应采取深基础,如沉管灌注桩等,以避开软土的不利影响(图4-9)。
(2)盐渍土
当土中的易溶盐含量大于0.5%,且具有吸湿、松胀等特性的土称为盐渍土。区内的盐渍土为滨海盐渍土,按含盐性质则大部分属氯盐渍土,局部为硫酸盐渍土,盐渍土按含盐量可分为弱盐渍土(0.5%~1%),中盐渍土(1%~5%)、强盐渍土(5%~8%)和超盐渍土(>8%),区内的盐渍土主要为弱盐渍土,局部地段有中盐渍土(见图4-10)。
4.3.4工程地基适宜性评价
工程建筑地基适宜性受多种因素的影响,为达到评价结果清晰简洁、合理反映出区内建筑适宜性等级的目的,选用了专家聚类法(亦称总分法)进行评价。评价过程为:首先拟定评价因子,对各评价因子量化、分级并给定各级别的标准分,其次用傅勒三角形法确定各评价因子的权重,然后计算各勘测点单项因子分值和总分值,再按各点的总分值进行分区。最终的评价结果见表4-10、4-11、4-12、4-13。
图4-9软土分布示意图
图4-10盐碱土分布示意图
表4-10一般工业与民用建筑地基适宜性评价方案(评价深度10m)
① 沉降因子
② DⅠ——山前冲洪积平原;DⅡ——古黄河三角洲平原;DⅢ——现代黄河三角洲平原。
表4-11一般工业与民用建筑地基适宜性评价分区说明表
表4-12高层重型建筑物地基适宜性评价方案(评价深度25~30m)
表4-13高层重型建筑物地基适宜性评价分区说明表
一般建筑、高层建筑物地基适应性评价分区见图4-11、4-12。
图4-11一般建筑物地基适宜性评价分区示意图
图4-12高层建筑物地基适宜性评价分区示意图
❺ 如何进行工程地质分区
进行区域的靶区区分 逐步进入
❻ 工程地质分区
研究区小清河以北为黄河三角洲平原,小清河以南多为山前冲洪积平原(图2-6),基岩埋深在数百米以下,表层均为第四系松散沉积物,鉴于一般工业与民用建筑物地基持力层一般均在15m以上,一般中高层建筑物持力层一般在25m以上的特点,下面仅以0~25m的土体为对象,进行分析和研究。
1.土体的岩性与结构特征
(1)土体岩性分类
区内0~25m深度内的地层多为第四系全新统地层,其沉积环境受黄河和海洋交互或共同影响,形成了以细颗粒为主的地层。所表现出的岩性以粉土最为广泛,其次为粉质粘土、粉砂、粘土,局部有细砂,其主要岩性特征见表2-9。
图2-6 黄河三角洲工程地质分区图
Fig.2-6 Map of Engineering geology zoning in the Yellow River Delta
(2)土体结构特点
区内土体结构无单层结构,多为多层结构(多层结构是指一定深度内由3层或3层以上的地层构成),这也是区内的沉积环境所决定的,该区已濒渤海,是河流的最下游段,河道游荡较频繁,古地貌特点反复变化,携带泥、砂的水动力特点也随之变化,因此,区内一般无巨厚的单层岩性沉积。
表2-9 黄河三角洲0~25m 地层岩性分类及主要特征表Tab.2-9 Lithology of strata down to 25m depth in the Yellow River Delta
2.土体工程地质特征
(1)山前冲积洪平原区土体工程地质特征
该区地面下25m的沉积物为第四系全新统冲积、洪积(
(2)古黄河三角洲区土体工程地质特征
该区地面下25m的沉积物为第四系全新统冲积、海积、湖沼相沉积(
(3)现代黄河三角洲平原区土体工程地质特征
该区地面下25m的沉积物为第四系全新统冲积海积物(
3.地表下0~25m土体物理力学指标的变化规律
1)古黄河三角洲区的物理力学性质总体上好于现代黄河三角洲,这是由于现代黄河三角洲的成陆时间晚于古黄河三角洲,其自重固结的程度弱于前者。
2)无论是古黄河三角洲区还是现代黄河三角洲区,各类岩性土层的物理力学指标显示出一个较明显的规律,即从地表向下,随深度的增加土层的物理力学指标以较好—较差—好的规律发生变化。一般较差的深度段在5~10m和10~15m。这一变化规律也与区内的沉积环境相吻合,力学指标较差的深度段为1855年黄河改道以前沉积的以冲湖积-冲海积相为主的地层。
❼ 岩土体工程地质类型分区
平原区广泛分布以冲洪积成因为主的第四系堆积物,低山丘陵区出露多种类型的岩组,沂沭断裂带西侧的鄌郚-葛沟断裂、沂水-汤头断裂纵贯南北,总体看工程地质条件较复杂(图1-8-3)。
图1-8-3 昌乐县岩土体工程地质类型分区略图
(一)岩体工程地质类型
1.坚硬的块状侵入岩岩组
分布于营邱—河头一带,为古元古代吕梁期侵入岩,岩性以弱片麻状中粒含角闪二长花岗岩、弱片麻状中粒含黑云二长花岗岩,岩石坚硬,力学强度高,工程地质性质良好,山区风化带厚度<3m,丘陵及准平原区20~30m,fc=130~170MPa,fr=90~130MPa(fc为岩石极限干抗压强度,fr为岩石饱和极限抗压强度)。
2.坚硬的块状-似层状喷出岩岩组
主要分布在南郝—崔家埠—五图一线以南、鄌郚-葛沟断裂以西地区,为新近纪临朐群牛山组、尧山组火山喷出岩,岩性为玄武岩。岩石坚硬,柱状节理发育,工程地质性质良好。风化带厚20~30m,fc=140~160MPa。
3.坚硬的块状变质岩岩组
主要分布在鄌郚—阿陀一带,为新太古代泰山岩群山草峪组黑云变粒岩,岩石坚硬,风化带厚度30~40m,fc=180~200MPa。
4.坚硬较坚硬的中厚-厚层状灰岩岩组
仅分布于朱刘街道、五图街道一带,主要为寒武纪长清群朱砂洞组、馒头组、九龙群张夏组、崮山组和炒米店组白云质灰岩、泥灰岩、泥质条带灰岩和生物碎屑灰岩等,局部夹细砂岩。灰岩坚硬,力学强度高,泥灰岩强度低。白云质灰岩fc=50~190MPa;灰岩fc=90~160MPa,fr=70~120MPa。
5.较坚硬的中厚—厚层碎屑岩岩组
主要分布在鄌郚-葛沟断裂带与沂水-汤头断裂带,以及五图煤矿一带,岩性为白垩纪淄博群三台组砂岩、砾岩,莱阳群城山后组角砾岩、砂砾岩、砂岩,青山群八亩地组凝灰岩、集块角砾岩、粉砂岩,大盛群马郎沟组粉砂岩、细砂岩,田家楼组泥质粉砂岩、细砂岩、黏土岩,古近纪五图群朱壁店组砾岩、砂砾岩、砾岩,李家崖组黏土岩、砂岩、黏土岩、油页岩等。风化带厚度<40m,砂岩和砾岩fc=30~80MPa,fr=20~50MPa。
6.较坚硬的薄层状页岩夹灰岩岩组
局限分布在阿陀东北部,岩性为中寒武系、下寒武系及元古宇土门群页岩、博层灰岩、泥灰岩。页岩夹泥灰岩fc=30~40MPa,fr=10~15MPa。
(二)土体工程地质类型
1.北部冲洪积上层黏性土多层或双层结构
分布于北部山前平原地区,以上层黏性土多层结构为主,上层黏性土厚<5m或5~10m,仅局部>10m,黏性土岩性以粉质黏土、黏土为主,中等压缩性。砂性土为粉细砂、中细砂,其次粗砂、砾石,砂层颗粒自北至南变粗,工程地质性质良好。黏性土fk=120~180kPa,砂性土fk=140~200kPa(fk为地基承载力标准值)。
2.山前及河谷平原冲洪积上层黏性土双层、多层结构及黏性土单层结构
分布于山前坡麓、山间河谷地区,上部黏性土为粉质黏土、粉土、黏土,厚度5m左右,中等压缩性。下部砂性土为中粗砂、细砂、砂砾石,紧密状态,厚>5m。黏性土fk=140~220kPa,砂性土fk=160~250kPa。
3.山麓地区坡洪积及残坡积黏性土单层结构或上层黏性土双层结构
分布于南部低山丘陵坡麓地带,以黏性土单层结构或上层为黏性土双层结构为主。黏性土厚<5m或5~10m,以黄褐色至棕红色粉质黏土及黏土为主,含铁锰质及钙质结核,可塑—硬塑,中等压缩性,部分地区分布湿陷性黄土。下部夹透镜体状碎石土及泥钙质胶结砾岩,紧密状态,工程地质性质良好。黏性土fk=160~220kPa,碎石土fk=200~500kPa。
总之,昌乐县工程地质主要问题是沂沭断裂带的活动性,其次是地面沉陷、岩溶塌陷、局部黄土湿陷等问题。
❽ 六安市裕安区地质情况
一、地质
地层市境属于扬子地层区、大别山地层分区、六安地层小区,岩性单一。除在淠河沿岸沉积有全新统(Q4)黄色砂土、砂砾等河漫滩相地层外,大部分均被第四系上更新统(Q3)松散沉积物覆盖,主要岩性是土黄色含铁锰质结核粉质粘土与浅红色粉质粘土层。另外望城岗乡的二虎山、大岗头附近有上第三系正阳关组(N2)灰绿、灰白粘土质砂砾岩零星出露,在九里沟乡的九里沟,望城岗乡的十里铺一带出露有少量下第三系戚家桥组(E8)砖红色砂岩。
构造
市境处于合肥——六安凹陷构造单元的南西边缘地带。距市中心正南方十多公里处有一条纵贯东西的肥西(防虎山)——六安县韩摆渡深断裂带,断面倾角大于80度,落差3至4公里。在市区十里铺、望城岗和五里塘附近有一条呈北东向的正断层。肥西(防虎山)——韩摆渡断裂形成于扬子期,具有多次活动的特征。位于该断裂上的六安县杨公庙地带,距市中心仅有15公里,在近十年中已发生地震4次(1976年1月20日2.4级,1982年9月27日3.8级,1985年5月10日3.5级,1985年5月13日2.5级)。此外,呈北西西向延伸的南港——龙门冲断裂,自东向西经舒城南港,六安县毛坦厂、龙门冲、金寨县响洪甸;呈北北东向的为皖西地区主要发震构造的固镇——霍山断裂,距市境都不远。因此,本市具有受邻近地区地震波及的背景。市区地震设防烈度为七级。
工程地质
市境范围内的工程地质条件简单,按照沉积物岩性大致可以分为四区。
基岩裸露区:市境东部,红色砂岩偶有露头,岩石风化强烈,风化带内有一些粘土,其容许承载力在30——50吨/平方米,地基很好,是重工业建筑的首选基地。
粉质粘土区:淠河总干渠沿岸2公里左右范围内,黄色粉质粘土厚度一般在10米左右,其容许承载力为20--25吨/平方米,是城镇建设的良好地带;但须注意本层粘土具微弱膨缩性。
松散砂石区:淠河沿岸沉积的黄色砂土,由于沉积年代较近,几乎呈松散状态,厚度一般为15米,容许承载力在10吨/平方米以下,是开发果园、林场的良好基地。
隐伏的淤泥区:掩埋在杂填土下的老城河淤泥地带,淤泥土呈流塑状态,厚度5——10米不等,其上不宜建高层建筑物。
水文地质市境地下含水层有两类。
砂土孔隙浅层潜水层:淠河河床及漫滩相沉积的砂土层厚达15米,富水性较好,一般可采涌水量达20——50立方米/小时,地下水来源主要靠大气降水及地面流水补给,水质较好,是市境内可靠的供水源地。
裂隙含水层:市境内广布粉质粘土区和风化砂岩带,棱柱状裂隙发育,含有少量的裂隙潜水。这种裂隙自上而下发育渐弱,地下水埋藏浅,水量小,无开采价值,所以常称此为波状平原贫水区。
地下水:主要是粉砂质粘壤和砂砾堆积层的孔隙渗透水和粘土裂隙水。市境西北部埋藏深度一般为3至10米,东南部一般为28至35米,依赖降水和地表水的补充。
淠河沿岸地带底部为砂层和砂砾层的富含水层,因直接受河水影响,水量约在70立方米/小时左右。东南大岗头到省国防工业干校一带,有一东西向,宽约700米、厚8米的异常砂砾层,也为富含水层;同时发现省国防工业干校附近有温泉迹象。市区东南部粘土层厚,深部岩石发育,其水量约在50立方米/小时左右。
上述地下水清澈甘甜,可供人畜饮用。
矿产
市境已发现的主要矿产有三种。
膨润土:望城岗乡大岗头村的上第三系正阳组(NKsub>2)地层中的膨润土,其矿体夹于长石石英砂岩、砂砾岩与泥质细粉砂岩之间,占地1.08平方公里,埋藏深度3至5米;化学成份含量高,胶质价40——60%,膨润倍5至6,PH值5至8,属钙质土。物理试验,造浆率为6——10立方米/吨,脱色力较强,达193——210.8,可与德国标准土媲美(德国标准土脱色力为200);1984年1月经省计划委员会考察,测定储量为94万吨(目前小规模开采,年产量2000吨左右)。
铁砂:市境淠河河床铁砂资源丰富,每立方米河砂含10至25公斤铁砂(Fe304),属贫瘠铁砂矿(即含铁<1%);但铁砂较纯,一般含铁62——69%。
重晶石:望城岗乡小华山地层中的重晶石,可见矿体呈脉状,断续长300至400米,宽0.2至0.4米。品位成份为硫酸钡90.69%,亚硫酸钡0.61%,硫酸锌0.46%。目前尚未开采。
二、地貌
地形
市境因受大别山外围低山支脉延伸的影响,形成了东南高、西北低的波状单斜面倾覆地形。境内海拔37.4至104.3米,一般地面海拔40至60米;海拔最低点为九里沟乡五里墩村的六安市化肥厂南偏西77度200米的低洼地,最高点为位于望城岗乡大石岗村的六安市绵羊良种场南偏西88度500米的岗顶,两地相对高差为66.9米。
淠河和淠河总干渠由南向北平行流经市境。衔接于市境的六寿(六安至寿县)、六佛(六安至霍山佛子岭)两条公路,自然地将市境划分为东南岗丘和西北湾畈两个地带。东南部的望城岗乡、平桥乡三里岗村和东部的九里沟乡九里沟村均为复杂的风蚀、洪积岗丘地,其面积约46平方公里,占总面积的54%;西部平桥乡(除去三里岗村)和九里沟乡的淠河、五里墩、清水河、刘大园4个村,处于淠河两岸,由于长期的河流冲积作用,形成较为平坦的湾畈地带,其面积约38平方公里,占总面积的46%。
市境地貌较复杂。东南岗丘地势起伏不平,范围广,耕地多,林地比重大。小华山一带有成块草山,宜于放牧,有利于发展畜牧业。西北湾畈处于淠河两岸冲积地带,地势较为平坦,水利条件较好。淠河总干渠、北郊支渠贯穿其中,利用方便。但部分地区如九里沟乡的五里墩、刘大园2村处于海拔40米以下的洼地,每年6、7、8三个月菜地易涝。而淠河村则因地势较高,部分菜地灌溉困难。
地表水市境因地域较小,无全流径河流,水域面积仅有15919亩。流经的河流,一为淠河,一为淠河总干渠。淠河流经市境10.05公里,最大流量为6365立方米/秒,最小流量为3.23立方米/秒;最高水位39.58米,最低水位34.46米。淠河总干渠流经市境10.15公里,最大流量为42.2立方米/秒,正常水位48至49米,灌溉面积36000亩,是市境主要地表水资源。此外,还有小河、渠道、沟坝31处,塘堰403处。
土壤市境土壤母质以下蜀土系黄土和淠河冲积物为主,并有少量页岩、片麻岩、紫色砂岩风化物和洪积物,按土壤类型可分为西北湾畈和东南岗丘两片。
西北湾畈包括清水河、五里墩、刘大园、淠河、马巷、吴巷、胡家渡、南外、五里桥9个村,系大别山岩石风化后,受淠河水流长期冲刷沉积形成的平坦湾畈。经长期耕作,成为熟化、肥沃的水稻田和潮土;土层厚、耕层深、肥力高、质地轻到中壤,中性偏酸。
东南岗丘包括九里沟、十里铺、望城岗、大岗头、大石岗、五里塘、十里岗、三里岗8个村。境内岗、塝、冲互相交错,属古老的洪积、冲积地质变化。地表在经历长期的剥蚀切割下,形成了黄棕壤、紫色土和经长期耕作改良而成的水稻土。岗丘上的黄棕壤耕层浅,粘粒下渗,粘盘层和铁锰结核出现部位高、厚度深、有效力低。水稻土沿岗、塝、冲由高向低分布,土壤质地由轻变重,土层由薄到厚,耕层由浅到深,铁锰结核在潜育层有少量出现。土壤反应微酸性,肥力中等。
黄棕壤土类:主要分布在九里沟乡九里沟村、望城岗乡、平桥乡三里岗村、六安市绵羊良种场、六安市种猪场、小华山园艺场的岗丘和岗塝地带。由于地形和母质的差异,淋溶作用强,上层石灰已淋失,盐基不饱和,微酸性。
潮土类:主要分布在淠河沿岸的九里沟乡刘大园村、淠河村、五里墩村,清水河村、平桥乡马巷、吴巷、胡家渡、五里桥、南外村的部分地段。是经过旱耕熟化发育的土壤,因母质是酸性或中性岩石类,土壤无石灰反应;加之多次沉积,土层厚,有机质丰富,理化性能好,肥力高,是蔬菜、稻、麦、油菜的高产土壤。
水稻土:除九里沟乡刘大园、淠河、五里墩专业蔬菜村,其余14个村都有水稻土分布(多为黄白土)。市境的水稻土发育于下蜀系黄土和淠河沉积物的母质,土质中到重壤,中性、微酸,土层厚、耕层深、肥力中等。
紫色土:分布在望城岗乡锅底山南、五里塘村红石坎北岗和小华山采石场附近。母质为紫色砂岩、页岩、砂粒岩等紫色岩类风化物,土壤处于幼年发育阶段,因淋溶作用强,土质无石灰反应。薄层紫红砂土为自然土壤,紫色岗砂土已垦为茶园和耕地,土层薄,肥力低。