当前位置:首页 » 地质工程 » 堤防工程地质勘察

堤防工程地质勘察

发布时间: 2021-01-28 22:45:45

⑴ 水库工程地质勘察包括哪些内容

水利工程来地质勘察源通常分阶段进行,一般按工程规模大小、重要性和地质条件复杂程度而定。大型工程分四个阶段(规划、可行性研究、初步设计和技施设计),中小型工程可适当简化,对河道堤防或地质条件简单的小型工程可不分阶段,一次作完。各阶段的任务是:①规划阶段要了解河流或河段的区域地质和各规划方案的基本地质条件,初步分析第一期开发工程的主要工程地质条件,普查天然建筑材料;②可行性研究阶段要确定地震基本烈度,对区域构造稳定性作出结论,选择坝址并确定基本坝型,对库、坝区主要工程地质问题作出初步评价,初查天然建筑材料;③初步设计阶段要为确定主要建筑物轴线、形式,查明工程地质条件,对库区专门性工程地质问题作出评价,提出各项长期观测网的设计,详查天然建筑材料; ④技施阶段除补充必要的工程地质勘察外,主要是进行工程地质专门性问题的研究,完善观测系统,通过施工开挖核实地质资料并进行施工编录。

⑵ 地址勘察是干什么的

这是我为你找的:对水利建设场地及有关地区进行地质调查和研究。主要任务是查明与工程建设有关的地质条件并作出评价,预测可能出现的工程地质问题,提出所需的防治措施与建议,为规划设计和施工提供必要的地质资料。工程地质勘察是水利工程建设的基础工作,直接关系到工程的运行安全、建设周期和工程造价。

勘察内容 一般有:区域构造稳定问题和水库地震水库渗漏和渠道渗漏、塌岸、浸没及其他环境地质问题;水利工程建筑物地基的渗透稳定、动力稳定、抗滑稳定和不均匀沉陷;地下洞室围岩稳定;天然边坡和开挖边坡的稳定(见边坡稳定);天然建筑材料调查;地下水的测试与水质评价等。

勘察阶段 水利工程地质勘察通常分阶段进行,一般按工程规模大小、重要性和地质条件复杂程度而定。大型工程分四个阶段(规划、可行性研究、初步设计和技施设计),中小型工程可适当简化,对河道堤防或地质条件简单的小型工程可不分阶段,一次作完。各阶段的任务是:①规划阶段要了解河流或河段的区域地质和各规划方案的基本地质条件,初步分析第一期开发工程的主要工程地质条件,普查天然建筑材料;②可行性研究阶段要确定地震基本烈度,对区域构造稳定性作出结论,选择坝址并确定基本坝型,对库、坝区主要工程地质问题作出初步评价,初查天然建筑材料;③初步设计阶段要为确定主要建筑物轴线、形式,查明工程地质条件,对库区专门性工程地质问题作出评价,提出各项长期观测网的设计,详查天然建筑材料; ④技施阶段除补充必要的工程地质勘察外,主要是进行工程地质专门性问题的研究,完善观测系统,通过施工开挖核实地质资料并进行施工编录。

勘察方法 工程地质勘察成果的质量,主要取决于勘察方法的完善程度及其合理的选用。水利工程地质勘察的基本方法有:工程地质测绘、工程地质勘探(含工程地球物理勘探)、工程地质试验和工程地质监测等。勘察方法的选用,要根据勘察任务的要求,结合具体的地质条件,因地制宜,综合采用各种勘察方法。布置勘察工作,必须遵循由面到点,点面结合,由地表到地下,由宏观到微观,由定性到定量的原则,坚持先测绘后勘探、试验的工作顺序,以免遗漏重要的地质现象,作出错误的分析和判断,同时也可避免盲目布置勘探工作而造成浪费。
看好了自己做好人生的选择哦~!

⑶ 水库堤坝岩土工程勘察

一、深圳水利工程建设现状

深圳市自建市后,水利事业蓬勃发展,特别自1992年以来,新建扩建了一大批水利工程,引东江上游水入深、全市供水体系形成网络、兴建调蓄水库和战略储备水库、开展雨洪利用、整治河道提高河道防洪和景观功能等等,为深圳市的可持续发展提供了水资源保障。

深圳市常见的水利工程主要有:水库、枢纽建筑物、输水或泄水隧洞、堤防、泵站、水闸、渡槽和输排水管等。水库大坝依其材料不同可分为混凝土坝、砌石坝、堆石坝和土坝等。

截至2007年底,全市共有172座水库,其中在建的公明水库总库容1.5×108m3,为大(二)型水库,坝体总长4.6km,最大坝高54m;正在勘察拟建的清林径水库,总库容为1.8×108m3,总坝长1.8km,最大坝高44.2m;已建的东部供水水源工程,全长56.3km,其中7.2km为隧洞;已建供水网络干线工程,全长472km,其中80%为隧洞。

在建设和使用这些水利工程的过程中,曾遇到了大量的工程地质问题,它们大多与地表水、地下水有很大关系,这是水利工程地质专业的主要特点。由于有了水,岩土体饱和软化,抗剪强度降低,水头压力抬高,渗流作用加强;由于有了水,水工建筑物岩土设计计算变得复杂,运用工况多样化;由于有了水,岩土工程勘察需采用综合勘探方法,各类试验项目繁多,地质参数的取值和地质评价结论需要综合判断确定。对于水利工程,由于勘察水平不高而导致相关工程地质问题未查明,其后果是严重的,要么导致整个工程失败(如溃坝、决堤、水库无法蓄水);要么工程建成后问题很多,影响正常运行;或者由于相关地质参数和评价结论过于保守而导致大量的投资浪费。

因此,水利岩土工程勘察是一项复杂而重要的专业性较强的地质工作,在具体实施过程中,除了严格执行行业规程规范之外,地区性工作经验亦很重要,尤其在项目建议书、可行性研究阶段或者勘探工作量不足的一些中、小型工程显得尤为突出。

二、水利水电工程常见工程地质问题

根据深圳地区所处的地质背景和水文气象条件,修建水利工程后常见的工程地质问题有:

1.区域构造稳定性

深圳地区地震基本烈度为Ⅶ度,区域构造稳定性相对较好,各工程研究对象主要指活动性断裂对水工建筑物长期运行的影响。以深圳断裂带为代表,重点关注水库诱发地震、地应力集中、断裂构造的年位移量等。

2.水库库区渗漏

蓄水水库产生永久性的过量的渗漏,不仅影响水库的效益,同时还会因渗漏引起其他一些不良后果。罗屋田水库的岩溶渗漏是一典型例子,由于水库渗漏严重,水库始终无法正常蓄水。

3.库岸稳定性

水库蓄水后,库岸自然地质环境发生急剧变化,岩土体饱水及强度降低,库水涨落引起地下水位波动变化,波浪冲刷作用加剧变化等,使得原来处于平衡状态的岸坡发生破坏,达到新的平衡,其破坏形式包括:崩塌、滑坡、塌岸等。库岸失稳破坏的后果将直接危及滨岸地带居民及建筑物安全,淤塞库区,高位能的快速崩滑体还可以造成巨大涌浪,危及大坝及坝下游安全。

4.水库浸没

水库蓄水后,引起库岸周围一定范围内地下水水位抬升(壅高),当壅高后的地下水位接近或引出地面时,将可能导致农田沼泽化、土地盐碱化、建筑物地基饱和恶化等不良后果。深圳地区一般多为山区性水库,库容面积有限,水库浸没问题不严重。

5.坝区渗漏

坝区渗漏包括坝基渗漏和绕坝渗漏,分别产生于坝基和坝肩。坝基渗漏是现有水库大坝普遍的地质现象,渗透量过大将影响水库的效益,或者渗透水流作用危及坝体的安全。深圳地区常见的坝区渗漏方式有建基面渗漏(接触面渗漏)、浅层风化岩渗漏、断裂构造带渗漏、冲洪积砂砾层渗漏和岩脉带渗漏等。

6.坝基岩土体的压缩变形与承载力

不同类型的坝对坝基压缩变形与承载力要求不同,其共同点均要求建坝后不致产生过大的沉降变形和不均匀沉降变形,以免引起坝体开裂或剪切滑移而导致的破坏。对中低土石坝而言,深圳地区常见的高压缩地层主要包括人工松散填土、软黏土、淤泥和泥炭等。

7.坝基(肩)岩土体的抗滑稳定

对于土石坝而言,坝基如有抗剪强度低的软弱地层(如软黏土、淤泥、松散填土等),则坝基不仅存在沉降变形问题,亦有沿软弱层滑动问题;对混凝土坝、砌石坝而言,根据滑动破坏面位置的不同,坝基岩体滑动分为表层滑动(通常指混凝土与岩石接触面)、浅层滑动和深层滑动(软弱结构面滑动);对于坝肩抗滑稳定主要体现陡地形状况下的结构面滑动问题。

8.水工隧洞围岩稳定与变形

地下隧洞开挖以后,洞壁围岩由于失去了原有的岩体的支撑而向洞内松张变形,如果变形超过围岩本身所承受的能力,围岩将产生破坏。围岩的变形破坏程度常取决于围岩应力状态、岩体结构及洞室断面形状等。竣工后的水工隧洞往往要承受内外水压力的长期作用。深圳地区隧洞浅埋段较多,断裂构造发育,岩性岩相多变,地下水位高,隧洞施工遇塌方、冒顶现象相对较多,施工后纵向与横向裂缝也时有所见。

9.隧洞涌水

隧洞涌水问题包括隧洞段涌水量预测、掌子面突水、突泥预测和地面沉降预测等,因其影响因素多,各项参数准确取值较难,隧洞涌水预测大多带有经验性质。尽管如此,隧洞涌水仍是一项重要而复杂的水文地质工作内容。以往的工程实例表明,隧洞涌水预测不可靠,施工措施不到位,往往会导致严重的人员伤亡、经济损失甚至一定范围的社会安定问题。

10.天然建筑材料

深圳地区水库一般适合建当地材料坝,以土石坝最多,黏性土料和坝壳料用量也最为庞大。例如公明水库大坝实际用量达1100×104m 3,勘察储量为其2~3倍。既要不破坏当地生态环境并尽量减少征地费用。又要寻找足够储量的、质量好的、开采方便的、运距近的料场,是水库工程建设期突出的工程地质问题,也是一大前期勘察难点。

11.深基坑支护

深圳地区地下式泵站较多,大多涉及深基坑问题,有的基坑深达30~40 m,这些泵站一般建在地势低洼处,软土层和砂砾层较厚,地下水丰富,地下水位普遍较高,工程地质水文地质条件复杂,基坑支护体系需要考虑隔水、浅层支护、深层支护、上下水工建筑物平面布置及基坑内方便输水隧洞施工等要素。

其他的一些工程地质问题,如隧洞施工岩爆问题,放射性污染问题,闸、坝建筑物的抗冲刷问题等等,因一般不常见这里不单独列出。

三、水库库区岩土工程勘察评价工作经验

限于自然条件,深圳地区拟建和已建水库规模有限,绝大部分为中、小型水库,坝高15~50m,水库周边区域以花岗岩类和砂页岩类为主,地形地貌多为低丘陵和台地,植被覆盖良好,岩体风化一般较深厚,断裂构造较发育,物理地质现象不发育,工程地质条件一般属于中等复杂。

水库库区岩土工程勘察与评价工作一般应注意:

1.勘察工作

勘察工作应以水文地质、测绘、调查访问、资料收集为主,勘探工作为辅。注意研究地形地貌特点,河床变迁历史,泉水露头情况,区域性自然边坡和人工边坡失稳现象,周边水库群常见的水库地质问题等。当基岩露头较好时,重点调查断层和裂隙发育特点;当基岩露头不好时,重点调查风化土和覆盖层的工程特性与分布状况。

2.勘察方法

针对水库渗漏问题,首先根据水文地质成果确定可能的渗漏形式,然后根据不同的渗漏形式采用适当的勘察方法。单薄分水岭渗漏一般较为常见,分水岭岸坡一般分布有一定厚度的残坡积土和全风化土,勘察工作以调查上部土层作为天然防渗铺盖的厚度、平面范围和渗透特性为重点,均衡布置浅钻孔或探坑,并进行注水和试坑渗水试验。对于下部基岩的渗透特征,需选择代表性位置布置勘探剖面,各勘探点进行分段压水、注水、抽水(提水)试验。对于断层或裂隙密集带渗漏问题,可先布置物探工作,再布置钻探与现场试验工作。此外有些水库发现也有风化岩中岩脉带渗漏问题,在花岗岩类地区应重视。从目前已建水库的运行情况来看,大多数水库渗漏问题并不严重,未超过水库设计渗漏量,这与深圳地区岩土层的弱透水性有关,也与库水深度较浅、断裂构造的密闭性较好等有关。但应注意的几点是:

1)库外未见有渗水溢出点并不代表水库没有渗漏,从有些水库常年观测资料来看,仍有相当一部分渗流量是通过潜流作用形成的。

2)强风化岩全段、弱风化岩上段部分试验段渗透系数较大,钻孔钻进中常有涌水或失水现象,但大部分试验段渗透系数为弱透水,将这两层视为相对隔水层或相对透水层时应慎重,需根据渗透系数大值的平面位置、埋深、上部地层渗透性、地下水的径流排泄方式以及水库防渗级别等综合确定。

3)峡谷区和台地区水库渗漏评价方法有区别。

4)水库渗漏除了定性评价外,还要尽量进行定量计算评价。

5)在可能渗漏部位布置水文地质长期观测孔,可有效判断水库渗漏情况。

6)龙岗岩溶地区水库渗漏问题很复杂,评价结论需特别慎重。

3.边坡勘察

深圳地区库岸坡度一般较平缓,库岸稳定问题常表现为浅层滑坡或滑塌,主要产生于残坡积层中,方量有限,一般为数十立方米至数百立方米,对水库运行安全不会有太大的影响。但有些供水水库在某些时段可能取水量很大,存在库水位骤降的情况,应注意大面积浅层边坡稳定问题。另外在深圳东部沿海地区所建水库存在高陡岩质边坡问题。边坡勘察工作仍以地质测绘为主,在初步确定有问题的地段才布置勘探工作量。边坡勘察与评价应注意的事项:

1)定性与定量评价互为补充,且有侧重点,对于小规模的对水库安全影响不大的边坡问题应以定性评价为主,反之,则以定量评价为主。

2)砂页岩地区常有浅层滑塌现象,坡积层偏厚,颗粒组成多为粗粒,易降水入渗和导水,也易浸水软化,岸坡较陡时常有边坡稳定问题。

3)计算边坡稳定性,应有正常运行、库水位骤降、地震作用等多个工况的组合计算。

4)对于环库公路的边坡问题,因其位于库水位以上,一般按公路勘察设计规范进行评价,但应注意高位能的不稳定体坍塌,可能产生大的涌浪问题。

5)对于库盆内开采建坝材料的水库,需有合理的开挖断面和坡度。

4.地下水勘察

现有水库正常蓄水位水边线周边大多为斜坡地形,库内无农田,少居民,少建筑物,鉴于广东地区的气候条件,一般不存在浸没现象。对于库外水位雍高引起的浸没问题,主要根据水库防渗条件,可能浸没区的水文地质条件和危害性质进行评估。地质勘察工作应重点置于库水沿单薄分水岭和断裂构造带径流排泄方式和渗流量评价,注意可能浸没区地形地貌特征和地下水位,是否有较低的排水条件差的洼地地形,必要时布置勘探剖面,并进行地下水雍高值和地下水临界深度的试验和计算。

5.判定标志

水库诱发地震的形成机理十分复杂,目前的判定方法往往根据工程实例进行类比,一般采用的判定标志有:

1)坝高大于100m,库容大于10×108m3

2)库坝区存在构造断裂带,活动断裂呈张(扭)性或张(压)扭性。

3)库坝区为中、新生代断陷盆地或其边缘升降明显。

4)深部存在重力梯度异常或磁异常。

5)岩体深部张裂隙发育,透水性强。

6)库坝区有温泉。

7)库坝区历史上曾有地震发生。

深圳地区没有修建高坝大库的条件,区域地质地震条件表明,一般产生破坏性地震(M s>4.7级)的可能性不大,但不排除产生小震的可能。已有工程实例显示,有些中低坝水库也会产生诱发地震,因此一般对大、中型水库的诱发地震问题亦要进行评价。工作方法以搜集分析区域地质地震资料为主,适当布置一些专门性勘探工作(常采用地球物理勘探和深钻孔),必要时需委托地震研究单位在进行地震危险性评估的同时,对水库诱发地震问题进行专门论证。

四、堤坝勘察方法、经验与工程地质条件评价

深圳地区堤坝类型大多为土石坝,有少量混凝土坝和堆石坝。不论哪种坝型,坝体、坝基均存在稳定、变形、渗流三大问题。其中土石坝出现问题的最多,一般以坝体或坝基渗漏与不均匀沉降最为常见,个别堤坝也曾产生坝后坡严重滑坡,而渗透稳定问题多见于水闸。

因大坝产生破坏性质是灾难性的,因此水库工程勘察的重点在于坝址,前期勘察工作标准要求高,历时长。限于篇幅,这里仅介绍新建坝坝址的一些勘察方法与经验。

1)对于坝址区(含附属建筑物)勘察方法,水利水电工程地质勘察规范(GB50287-1999)和中、小型水利水电工程地质勘察规范(SL55-2005)各章节有明确规定,内容涵盖规划、可行性研究、初步设计和技施设计各个阶段,包括不同坝型、不同坝基以及不同建筑物。总体来讲,水利行业勘察规范比较简明宽泛,具体实施过程中需要地质人员充分发挥主观能动性,根据场地地质条件,灵活掌握规范精神,既要达到“查明”的精度,又不浪费勘探工作量,也不能死搬硬套规范。

2)在工作开展之前,需要编制勘察工作大纲,内容尽量详尽,必要时还可编制单项作业指导书。勘察工作大纲首先应根据前期勘察成果确定该工程可能存在的主要工程地质问题,或应重点查明的地质要素,然后围绕这些工程地质问题或地质要素布置适用的勘探工作,确定勘探工作的重点、要点、难点。

3)工作当中需根据实际地质条件变化,及时调整计划的工作方法和工作布置,这就要求地质人员随工程进度及时跟进分析,以免野外作业结束后才发现问题,导致关键地质问题未查明,需要进行补充勘察。

4)坝址常用的勘探方法有钻探、物探、坑探、现场试验和室内试验,其中关于岩土渗透试验的方法种类较多,精确度不一,如何较准确地确定各地层渗透系数并划分相对隔水层、相对透水层是技术人员的一大难点,这些参数的可靠性关系到工程安全,亦关系到大量的工程投资。例如公明水库坝基防渗工程,设与不设混凝土防渗墙相差工程投资达1.5亿元人民币。弱、微风化岩一般进行压水试验,按压水试验规范操作即可。强风化岩一般难于进行压水试验,深圳地区的经验是:当地下水较高时,选择抽水试验或提水试验;当地下水位较低时选择注水试验,并注意钻进中回水量的变化;当需要初步确定灌浆效果时,应设法进行压水试验,可将栓塞置于先期预设的混凝土孔壁即可,但成本较高。强透水的砂砾石层常用抽水试验。对于中-弱透水的残坡积土层、全风化岩(土),常根据注水、提水、试坑渗水、室内渗透试验成果综合确定渗透系数值,前3种方法的计算公式为近似性质,测值有一定误差,但可反映整个试验段的透水性,室内试验测值虽较准确,但反映某一点的渗透性,代表性具局限性。

5)评价地基的工程地质条件,除了有足够数量的试验数据支持外,尚需根据地区经验,岩心鉴别、地质测绘成果综合给出定性评价结论和定量地质参数。例如,对于花岗岩残积土或全风化岩(土),室内试验往往显示其为高压缩性土,对于土石坝需要进行大面积的坝基处理,而根据工程经验,该类土一般为黏土质砂砾,属中压缩性土,可不进行处理。再如,如何看待总体弱透水性地层中渗透试验渗透系数大值(i×10-4cm/s或i×10-3cm/s)问题,是关系到划分为相对透水层还是相对隔水层的大问题,仅凭试验数据是难以给出准确结论的,需要根据其上、下地层的渗透特征与分布情况,以及蓄水后地下水的渗透形式等因素综合判定。

五、天然建筑材料勘察方法与评价

深圳乃至华南地区土石坝建筑材料大多采用风化岩料,主要利用残积土、全风化岩和强风化岩,其中前二者一般作为黏性土料,后者作为坝壳料使用。工程实践表明,风化料易于压实,具有较高的压实度、抗剪强度和较低的渗透性,非常适合于修建中低坝。但风化料也有其缺点,由于岩性相变、地形起伏和地质构造等原因,风化料往往颗粒组成不均一,含水率等物理力学性质差异较大,压实控制指标选择较难,针对风化料的这些特点,前期勘察阶段应注意:

1)勘察方法宜选择钻孔、探坑(井)、洛阳铲,勘探密度除执行规程规范要求的以外,应切实结合地形地貌特征布置勘探点,坡顶、斜坡、坡脚和台地均应有足够的勘探点控制。选择每个微地貌代表性位置连续取原状样,主要测其含水率和粘粒含量等基本物理指标。选择每个微地貌代表性位置取击实样(结合未来立面开采的深度)进行击实和击实后试验,每个勘探点均应测静止地下水位。

2)室内试验类别应齐全,勿漏项。原状样主要测含水率、天然密度、土粒密度、塑液限、颗粒分析(至小于0.005mm);击实样主要测最大干密度、最优含水率、水溶盐含量、倍半氧化物含量、有机质含量、pH值、自由膨胀率和烧失量等;击实后试验控制压实度为0.96~0.98(与工程等级有关),试验项目有渗透系数(水平和垂直)、剪切试验(饱和与非饱和)、压缩固结试验(饱和与非饱和),剪切试验具体类别应根据设计计算工况具体确定,一般应进行三轴剪切试验,直剪试验可作为参考,新建坝应测不固结不排水剪、固结不排水剪、固结排水剪,同时测孔隙水压力系数。

3)根据风化料原岩变化情况和试验成果进行料场分区,主要依据颗分、塑性指数与压实特征进行划分。不同类型的风化料如果不分区,往往难以确定土坝控制指标,难以选择碾压设备和碾压参数,并使大坝处于不安全状态或渗漏量过大。

4)风化料地质参数应在充分统计分析的基础上慎重选择,对其质量评价根据大坝不同填筑部位的具体要求区别对待,一般分均质坝土料、防渗体土料和坝壳料3种类型。具体分析的项目有:含水率变化规律分析、粘粒含量变化规律分析、击实曲线特征分析(宽或窄级配)、渗透系数特征分析和剪切试验成果分析(不同类型剪切试验成果对比分析)等。针对料源的特征,提出建议开采的季节、开采设备、开采方式和碾压试验与上坝填筑的一些注意事项。根据已建水库的勘察资料,深圳地区上坝风化料原岩大部分为花岗岩和砂页岩,风化料的主要工程特性指标较好,但pH值往往偏低,倍半氧化物含量不能满足规程要求,经分析认为,对于深圳地区中低坝而言,这两个指标对工程影响不大,上坝料质量评价可不作为控制性指标。鉴于水库大坝的重要性,风化料室内击实和击实后试验宜选择两家以上试验单位进行平行试验。

5)料场储量计算应采用平均厚度法、平行断面法和三角形法,选择一种方法计算,取另一种方法校核。

六、水工隧洞勘察方法、经验与工程地质条件评价

1.前期勘察工作布置方法和原则

水工隧洞常用的勘察方法有卫星遥感、地质测绘、物探、钻探、水文地质试验、原位测试和室内试验等方法相互印证的综合勘探方法,勘察工作主要布置于浅埋段、过沟段、断层位置、岩层分界位置及洞口位置,具体做法为:

1)洞口位置布置纵向勘探剖面,重要洞口还布置横向勘探剖面。

2)埋深小于50 m洞段大体等间距布置勘探钻孔,兼顾沟谷负地形位置、正地形丘顶位置、断层位置、岩性界线位置、隧洞拐弯和交叉位置。

3)埋深大于50 m洞段有选择性布置勘探点,主要布置于深切沟谷、断裂构造、岩性分界和其他用途段:埋深大于100 m钻孔,当下部岩心完整段较长时可不要求钻孔打到洞身,这种钻孔常见于花岗岩地区。一般隧洞埋深大于100 m地段重型勘探工作量布置很少。

4)断裂构造位置、沟谷地段、傍山地段宜布置地震法和电法物探,一些重要钻孔进行声波测井,这些工作可大体给出不同深度、不同地貌单元各种波速值和物性参数,利于围岩分类和地质参数的提出。

5)水文地质工作方面,关注水位变化和钻进用水量变化,有选择地在富水孔段进行抽水(提水)试验,大部分钻孔在洞身附近进行压水(注水)试验。

6)重视轻型勘探工作,包括地质测绘、槽探等;重视收集资料和研究已有资料,特别关注区域地貌发展史和第四纪地质。这些工作花钱不多,但往往可得到事半功倍的效果,此外对跨城市区域隧洞,因原始地貌已遭破坏,应特别注意收集旧的地形图和地貌图。

7)其他方面,如地应力水平和放射性测试等,可先初判,根据初判结果确定是否进行野外测试工作。按《水利水电工程地质勘察规范》(GB50287-99)和《中小型水利水电工程地质勘察规范》(SL55-93)灵活运用。

8)对于长距离引调水工程,因其穿越地貌类型多,勘察工期紧,野外施工困难,不同的业主对勘察的工作的重视程度不一,有些业主对前期勘察工作经费投入不足,针对这些特点,在规范中应强调前期勘察工作抓关键地质问题,不要求每个工程段都达到查明精度。现在许多隧洞采用新奥法施工,边掘进施工边设计支护形式,充分利用围岩拱的作用,施工单位也多采用单价合同,但其前期条件是对关键性地质问题要查明,如大断层、地应力总体状态、放射性、膨胀岩、易溶岩、松散体、软弱岩、喀斯特化岩层等,此外施工过程中要有选择地进行超前预报。

2.关于围岩类别划分与评价

对于围岩类别的划分,不同部门不同规范有不同的划分方法,根据深圳地区工程经验,提出如下建议:

1)对于预测可研究勘察阶段或勘探资料不足的隧洞,应主要采用《工程岩体分级标准》(GB50218-1998),因该规范划分的方法既有定量指标,亦有定性指标,易于操作。

2)对于可研究-初设勘察阶段,各种勘察资料比较丰富,可分别采用《水利水电工程勘察规范》(GB50287-1999)、《工程岩体分级标准》(GB50218-1998)、地质力学分类法(RMR法)、Q系统分类法进行分类,综合判定围岩类别;所依据的地质要素不同,所以分类结果有差别。对于涉外工程,岩体分类最好用后两种方法;对于国内工程,采用前两种方法较好,对于土洞,按《土工试验规程》(SL237-1999)分类法。

3)对于施工地质阶段,围岩划分最适宜用《水利水电工程勘察规范》(GB50287-1999),此阶段地下水状态、结构面状态、主要结构面产状均比较清楚,岩体强度和完整性状态可取样试验和波速测试进行确定,工作性质较简便。

4)目前的水利水电工程勘察规范围岩分类采用五级制,这样的分法在围岩状态较差时,不利于支护形式的确定。例如,同为V类围岩,有些自稳时间较长,有些自稳时间很短,有些用普通钢拱架支护,有些要用加强的钢拱架支护,甚至还有其他的加强措施。因此,建议在Ⅲ类、Ⅳ类和V类围岩中增加细分的内容,可定根据工程需要具体确定,初拟各类围岩分两级,分别为Ⅲ-1、Ⅲ-2、Ⅳ-1、Ⅳ-2、V小V -2。深圳地区中小型水工隧洞围岩类别与主要物理力学参数见表2-3-40。

表2-3-40 中小型隧洞(直径<5m)围岩主要物理力学参数

⑷ 工程地质勘察论文

论堤防工程地质勘察的发展进程与《规程》的执行

在近年来较大范围的堤防工程地质勘察工作中,一些共性的问题不断地引起了同行们的关注,很有必要深入探讨下去。例如在执行《堤防工程地质勘察规程》时,怎样理解原则性与灵活性的准确把握,如何处理规程中明显与工程实际不相符合的条款规定;堤防险情与隐患的分类;堤基工程地质分段分类方法;堤防勘察资料的整理等等,我们都进行了一些粗浅讨论。关于堤防工程地质分段分类的问题,一直是各勘测单位颇感难以照顾周全的焦点,我们提出的分类法但愿对此有所帮助,并希望有助于堤防工程勘测设计工作的进一步深化。
一、堤防工程地质勘察的过去与现状
我国已建江河堤防工程总长20余万公里,98特大洪水后尚有大量堤防工程正在规划建设中。许多已建堤防工程过去基本上没有进行过真正工程意义上的工程地质勘察,更谈不上各大江河湖海堤防工程系统化规范性的地质资料的汇编与分析整理工作。正因为如此,许多堤防工程在98特大洪水期间险象环生,出险堤段堤基的地质条件没有足够的资料可供抢险分析,为确保万无一失,只能按最坏情况进行抢险,其人力物力的巨大付出实在是不得已而为之;洪水期间上至中央下到地方的各级领导以及全国人民的精神紧张程度和精力耗费更是无法用实物价值去衡量。如此被动局面,一方面是大自然教训人类的生动一课,另一方面则是祖先给我们留下的世纪难题。
建国以来,随着大规模工程建设的需要,工程地质专业从无到有,日益发展壮大,成为国家工程建设不可缺少的重要基础性专业。工程地质勘察的法规性准则也逐渐成熟与完善,与工程地质相关的规程规范相继出台,并结合工程实践的反馈信息进行修订修编。水利部1997年2月发布了行业标准《堤防工程地质勘察规程》(以下简称《规程》,编号SL/T188,同年5月1日起实施),这是我国堤防工程地质勘察的第一部法规性行业标准。而国家标准《堤防工程设计规范》(以下简称《规范》,编号为GB50286-98,自1998年10月15日起施行)则是98特大洪水之后出台的。
如需Q传给你

⑸ 水利工程地质勘察的勘察阶段

水利工程地质勘察通常分阶段进行,一般按工程规模大小、重要性和地质条件复回杂程度而定。大答型工程分四个阶段(规划、可行性研究、初步设计和技施设计),中小型工程可适当简化,对河道堤防或地质条件简单的小型工程可不分阶段,一次作完。各阶段的任务是:①规划阶段要了解河流或河段的区域地质和各规划方案的基本地质条件,初步分析第一期开发工程的主要工程地质条件,普查天然建筑材料;②可行性研究阶段要确定地震基本烈度,对区域构造稳定性作出结论,选择坝址并确定基本坝型,对库、坝区主要工程地质问题作出初步评价,初查天然建筑材料;③初步设计阶段要为确定主要建筑物轴线、形式,查明工程地质条件,对库区专门性工程地质问题作出评价,提出各项长期观测网的设计,详查天然建筑材料; ④技施阶段除补充必要的工程地质勘察外,主要是进行工程地质专门性问题的研究,完善观测系统,通过施工开挖核实地质资料并进行施工编录。

⑹ 《堤防工程施工规范》规定干砌石应符合哪些要求

大概给你列了一下,还有一些未常用的。具体遇到需要的时候你也可以自己去查阅。质量有关的规程、规范、标准及其他要求清单类别序号发布日期或标准号规程、规范、标准名称备注国家标准01GB8564-8801水轮发电机组安装技术规范02GB50203-200202砌体工程施工质量验收规范03GB50212-200203建筑防腐蚀工程施工及验收规范04GB50236-9804现场设备、工业管道焊接工程施工及验收规范05GB50086-200105锚杆喷射混凝土支护技术规范06GB50202-200206建筑地基基础工程施工质量验收规范07GBJ201-8307土方与爆破工程施工及验收规范08GBJ208-83;GB50208-200208地下防水工程施工及验收规范09GBJ97-8709水泥混凝土路面施工及验收规范10GBJ112-8710膨胀土地区建筑技术规范11GB50194-9311建设工地施工现场供用电安全规程12GB/T50123-199912土工试验方法标准13GB/T15481-200022检测和校准实验室能力的通用要求14GB/T14538-9325综合水文地质图图例及色标15GBJ/T138-9026水位观测标准16GB50179-9327河流流量测验规范17GB/T10156-199728水准仪18GBJ108-8730地下工程防水技术规范19GB50287-9931水利水电工程地质勘察规范20GBJ/T145-9032土的分类标准与质量有关的规程、规范、标准及其他要求清单类别序号发布日期或标准号规程、规范、标准名称备注21GB/T50218-9433工程岩体分级标准国家标准22GB/T50266-199934工程岩体试验方法标准23GB50290-9836土工合成材料应用技术规范24GF-2000-020837水利水电土建工程施工合同条件25GB50164-9238砼质量控制标准26GB50224-9539建筑防腐蚀工程质量检验评定标准27GBJ107-8740砼强度检验评定标准28GB50205-200141钢结构工程施工质量验收规范29GB50204-200242砼结构工程施工质量验收规范30GB/T19001-2008idt44质量管理体系要求31GB/T19004–2008idt45质量管理体系业绩改进指南32GBJ/T146-9046粉煤灰砼应用技术规范33GB/T15406-9447土工仪器的基本参数及通用技术条件34GB/T14173-9359平面钢闸门技术条件35GB4052-8360全断面岩石掘进机名词术语36GB50201-9461防洪标准37GB50286-9863堤防工程设计规范38GB3838-8867地面水环境质量标准39GB50268-9768给水排水管道工程施工及验收规范40GB50288-9970灌溉与排水工程设计规范与质量有关的规程、规范、标准及其他要求清单类别序号发布日期或标准号规程、规范、标准名称备注国家标准41GB/T50265-9771泵站设计规范42GB/T16453.1-199673水土保持综合治理技术规范坡耕地治理技术43GB/T16453.2-199674水土保持综合治理技术规范荒地治理技术44GB/T16453.3-199675水土保持综合治理技术规范沟壑治理技术45GB/T16453.4-199676水土保持综合治理技术规范小型蓄排引水工程46GBJ71-8481小型水力发电站设计规范(试行)47GB50168-9282电气装置安装工程电缆线路施工及验收规范48GB50169-9283电气装置安装工程接地装置施工及验收规范49GB50254-9684电气装置安装工程低压电器施工及验收规范50GB50255-9685电气装置安装工程电力变流设备施工及验收规范51GB50257-9686电气装置安装工程爆炸和火灾危险环境电气装置施工及验收规范52GBJ148-9087电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规范53GB/T18110-200088小水电站机电设备导则54GB/T755-8790旋转电机基本技术要求55GB/T814-8993弧形闸门通用技术条件水利行业标准56SL52-9301水利水电工程施工测量规范57SL237-199902土工试验规程58SL73-9503水利水电工程制图标准与质量有关的规程、规范、标准及其他要求清单类别序号发布日期或标准号规程、规范、标准名称备注水利行业标准59SL264-200104水利水电工程岩石试验规程60SL176-199605水利水电工程施工质量评定规程(试行)61SL168-9606小型水电站建设工程验收规程62SL239-199907堤防工程施工质量评定与验收规程(试行)63SL38-9208水利水电基本建设工程单元工程质量等级评定标准(七)碾压式土石坝和浆砌石坝工程64SL260-9809堤防工程施工规范65SL62-9410水工建筑物水泥灌浆施工技术规范66SL26-9211水利水电工程技术术语标准67SL/T231-9812聚工烯(PE)土工膜防渗工程技术规范68SL48-9413水工碾压混凝土试验规程69SL234-199914泵站施工规范70SL223-199915水利水电建设工程验收规程71SL/T225-9816水利水电工程土工合成材料应用技术规范72SL18-200417渠道防渗工程技术规范73SL105-9518水工金属结构防腐蚀规范74SL47-9419水工建筑物岩石基础开挖工程施工技术规范75SL27-9121水闸施工规范76SL35-9222水工金属结构焊工考试规则77SL/T242-199923周期式混凝土搅拌楼(站)与质量有关的规程、规范、标准及其他要求清单类别序号发布日期或标准号规程、规范、标准名称备注水利行业标准78SL32-9224水工建筑物滑动模板施工技术规范79SL46-9425水工预应力锚固施工规范80SL47-9426水工建筑物岩石基础开挖工程施工技术规范81SL49-9427混凝土面板堆石坝施工规范82SL53-9428水工碾压混凝土施工规范83SL73.1-9529水利水电工程制图标准基础制图84SL73.2-9530水利水电工程制图标准水工建筑图85SL73.3-9531水利水电工程制图标准勘测图86SL73.6-200132水利水电工程制图标准水土保持图87SL20-9233水工建筑物测流规范88SL24-9134堰槽测流规范89SL58-9335水文普通测量规范90SL196-9736水文调查规范91SL247-199937水文资料整编规范92SL19-200138水利基本建设项目竣工财务决算编制规程93SL252-200039水利水电工程等级划分及洪水标准94SL251-200040水利水电工程天然建筑材料勘察规程95SL166-9641水利水电工程坑探规程96SL25-9242水利水电工程钻孔压水试验规程与质量有关的规程、规范、标准及其他要求清单类别序号发布日期或标准号规程、规范、标准名称备注水利行业标准97SLJ1-8143水利水电工程钻孔抽水试验规程(试行)98SL212-9844水工预应力锚固设计规范99SL228-9845砼面板堆石坝设计规范100SL274-200146碾压式土石坝设计规范101SL266-200147水电站厂房设计规范102SL214-9848水闸安全鉴定规定103SL60-9449土石坝安全监测技术规范104SL101-9450水工钢闸门和启闭机安全检测技术规程105SL169-9651土石坝安全监测资料整编规程106SL210-9852土石坝养护修理规程107SL230-9853砼坝养护修理规程108SL268-200154大坝安全自动监测系统设备基本技术条件109SL110~118-9555土工试验专用仪器校验方法110SL119~122-9556岩石专用测试仪器校验方法111SL123~138-9557水工砼试验仪器校(检)验方法112SL36-9258水工金属结构焊接通用技术条件113SL39-9259露顶式弧形闸门液压启闭机系列标准114SL40-9260QPG型卷扬式高扬程启闭机系列标准115SL41-9361水利水电工程启闭机设计规范116SL74-9562水利水电工程钢闸门设计规范与质量有关的规程、规范、标准及其他要求清单类别序号发布日期或标准号规程、规范、标准名称备注水利行业标准117SL15-9163水利水电专用砼泵技术条件118SL/T64-9464两栖式清淤机119SL/T65-9465SLWY-60型水陆两用液压挖掘机技术条件120SL/T66-9466SLQY-30型两栖式清淤机技术条件121SL254-200067泵站技术改造规程122SL/T153-9568低压管道输水灌溉工程技术规范(井灌区部分)123SL190-9669土壤侵蚀分类分级标准124SL204-9870开发建设项目水土保持方案技术规范125SL193-9771小型水电站技术改造工程126SL17-9072疏浚工程施工技术规范127SL/T4-199973农田排水工程技术规范128SL63-9474地表水资源质量标准129SL227-9875橡胶坝技术规范130SL/T191-9676水工砼结构设计规范131SLJ01-8877土石坝沥青砼面板和心墙设计准则132SL/T205-9778水电站引水渠道及前池设计规范133SL253-200079溢洪道设计规范134SL265-200180水闸设计规范135SL/T3381水工沥青砼试验规程136SL/T152-9582透水板

⑺ 求一篇有关工程地质的论文

工程地质学是世纪才建立和发展起来的一门地球科学。工程地质专业在工程建设中具有十分重要的位置。工程地质工作的质量,对工程方案的决策和工程建设的顺利进行至关重要。由于地质问题引起的工程事故时有发生,轻则修改设计延误工期,严重时造成工程失事给人民生命财产带来重大损失。近年来,工程地质勘察质量有下滑现象,工程地质分析不够深入,有的甚至出现工程地质评价的结论性错误。今后十年,将有可能成为水利水电工程建设的又一个事故高发期。工程地质对地球环境的保护要发挥重要作用。工程地质面临着新的机遇和挑战。关键词 。

关键词:工程地质 水利水电 勘察 环境 分析 人才 机遇

工程地质对于工程师来说并不陌生。然而,由于人类工程活动引起地质环境的改变,工程地质问题造成工程建设的被动与失败的若干实例证实,许多人对工程地质又是陌生的。
人类历史刚刚翻开新千年新世纪的第一页,一场以高新技术为前导的产业革命却早已开始了,工程地质学科必将在这场革命中获得新生。当然,我们更应该看到技术的每一次革命性进步,都伴随着矛盾与冲突,特别是体制和机制问题,是生产力与生产关系的相互作用,需要协调与适应,改革就成为必然。
当前,工程地质学科正在经历着前所未有的挑战,工程地质专业正面临着新的发展机遇。人类与自然的关系不是斗争而是相互作用和相互影响;人类工程活动不是改造自然而是如何顺应自然。人类赖以生存的地球环境问题,工程地质学家和地质师都要认真关注,并勇敢地承担起应尽的职责。
1 工程地质学科的起源与发展
工程地质学是研究人类工程建设活动与自然地质环境相互作用和相互影响的一门地球科学。20世纪初,为了适应兴建各种工厂、水坝、铁路、运河等工程建设的需要,地质学家开始介入解决工程建设中与地质有关的工程问题,不断地进行着艰苦的工程实践和开拓性的理论探索,首次出版了“工程地质学”专著,工程地质学开始成为地球科学的一个独立分支学科,工程地质勘察则成为工程建设中不可缺少的一个重要组成部分。二次世界大战以后,全世界有了一个较为稳定的和平环境,工程建设的发展十分迅速,工程地质学在这个阶段迅速成长起来了。经过半个多世纪的工程实践和理论探索,工程地质学大为长进,内涵和外延都焕然一新,成为了现代科学技术行列中的重要分支学科。
中国的工程地质事业在解放前基本上是空白,建国后才有了长足的进步和发展。50年代初开始引进苏联工程地质学理论和方法,走过了我们自己的工程实践和理论创新的辉煌历程,形成了有自己特色的工程地质学体系。特别是在水利水电行业,举世瞩目的三峡、小浪底等特大型水利枢纽工程的开工建设,澜沧江、红水河、雅砻江、乌江、黄河等大江大河众多大型梯级水电站的兴建,以及若干正在开展前期工作的其它水利水电工程,充分积累了在各类岩性地区和各种复杂地质条件下进行地质工作的丰富经验,建立了一套比较完整的工程地质勘察规程规范。重大工程建设不断地将数理学科的新成就和高新技术及时吸收进来,极大地丰富了工程地质学科的内容,有力地促进了工程地质学科的发展,使我国工程地质学达到现代科技水准,逐渐成为国际工程地质界的重要成员之一。
今天,工程地质专业学科的内涵已经远远超出了传统工程地质定性描述和定性评价的范畴,发展成为集多种勘探手段去获取基础性地质资料,并对这些资料进行归类汇总、整理分析、定性评价、定量评价、地质预测、工程措施的建议等等既特殊又复杂的综合性专业。任何一个成熟的设计师,都会清楚地意识到工程地质专业在工程设计中的重要位置。无数重大工程成败的实例足以证明工程地质专业在工程建设中的权威性。
在学术界,有国际工程地质学会,国内的中国地质学会、中国水利学会和水力发电工程学会等全国性学术组织都专门设立有工程地质专业委员会,水利水电行业中全国性的学术组织还有“水利水电工程地质信息网”。此外,全国性的勘测技术协会主要还是工程地质专业。这些学术组织为我国各行各业的工程建设作出了重大贡献,发挥了巨大作用。
2 水利水电工程地质的特点
2.1 特殊性与复杂性
在水利水电、电力、工民建、交通、港航、航天、航空、地矿、市政建设等等凡是存在土建工程,要与地质体(地基)打交道的行业,都有工程地质专业,因此,我们称工程地质专业是工程建设的基础性专业,是不必争议的。由于水利水电工程建设自身的特殊性和复杂性,使得水利水电工程地质又是所有这些不同行业的工程地质专业中涉及面最广、问题最复杂、任务最艰巨、声望最高、最具权威性的业界龙头。
水利水电工程建设的特殊性首先表现在工程建筑物的特殊性。工业与民用建筑到处可以见到基本相同甚至完全相同的建筑物,可以部分或全部套用标准设计图纸。而水工建筑物则不然,世界上有成千上万座水库大坝,你就很难找到两座完全相同的大坝。决定大坝的规模、坝型、结构等工程要素的自然条件很复杂,而工程地质条件则是最主要的自然条件之一。水工建筑物的第二个特殊性是与水打交道,所承受的主要荷载是水荷载。水利水电工程不允许失事,一旦失事,损失将十分惨重。
水利水电工程建设的复杂性主要表现在工程规模大,专业多,涉及面广,投资大,工期长,建筑物的形式、结构、功能、荷载组合等等都十分复杂,特别是大型特大型水利水电工程更是如此。例如举世瞩目的三峡水利枢纽工程,涉及到中国的政治、经济、社会、资源、环境、文化等方方面面,你很难找到其它基建工程可以等同于这样的水利水电工程。因此,水利水电工程地质专业的特殊性与复杂性是由水利水电工程建设的特殊性和复杂性所决定的,同时,工程区自然地质环境的复杂性也决定了这个专业的技术难度。
2.2 实践性与经验性
水利水电工程地质的另一特点是强烈的实践性与经验性。在中国水利学会勘测专委会1999年度学术研讨会上,工程地质界知名前辈专家天津院的李仲春教授语重心长地警示工程界:工程地质这个专业太难了,工程地质决策不是通过计算和试验所能左右的,很大程度上取决于我们的工程经验,即是十分成功的工程,也很难证明它既安全可靠又经济合理。李仲春教授的肺腑之言充分表达了工程地质专业的实践性与经验性的深刻含义。
工程地质理论上的任何一项新进展,新方法,新技术,都必须通过大量试验研究、分析论证和工程实践的检验。例如,近二十年来随着数理基础学科和计算机技术的发展,坝基、洞室和边坡稳定性分析计算的理论和方法有了长足的进展,但是这些计算成果仍然只能是工程设计和决策的一种参考,因此在工程界有一种通用说法:不可不信也不可全信。许多工程实例足以说明采取慎重态度的必要性。有些工程从分析计算上看是安全的,实际上却出了问题;而另一些工程通过计算认为不安全,但却安全运行了数十年。因此我们搞工程建设,工程经验往往又是起决定作用的。
2.3 工程地质问题的长期性与隐伏性
水利水电工程地质的第三大特点:在地质体中留下的工程隐患具有长期性和隐伏性,甚至具有不可预见性。法国Malpasset拱坝失事和意大利Vajont水库大滑坡,均为水工史上震惊世界的惨痛教训,其地质隐患在整个勘测设计施工的全过程中没有丝毫警觉。葛州坝工程坝基软弱夹层问题导致工程停工,重新补充勘探并对设计进行重大修改。南盘江天生桥二级水电站厂房建在一个古滑坡上,开工后实在施工不下去了,搬出滑坡体后又位于另一个滑坡体的脚下。该电站的引水隧洞工程地质条件更是复杂得令建设者们防不胜防。由于地质体中留下的工程隐患造成的工程事故,轻则修改设计,重则工程报废,或造成生命财产的重大损失,这样的例子实在太多,举不胜数。
2.4 工程地质测不准原理
著名的量子力学测不准原理:“不能同时测准粒子在某一瞬间的速度和位置”。我们不妨借用这个原理来揭示工程地质的一些本质性问题。事实上,地质体中的某些性质的确是测不准的。例如某一组结构面的产状,你只能用一个区间值来表述,如果仅用一个确定值来表述则肯定不符合客观实际。又如工程地基岩体的物理力学参数,它只能是一个区间值或统计值,因为地质体中每一点的性质都可能是变化的。地质参数精确到某一个具体数值的时候,千万不要把它当成是绝对准确的,否则会误导精确评价的可信性。据此,我们可以将工程地质测不准原理表述为:“地质体的工程性质不可能用绝对准确的参数来确定,它们只能是通过地质测绘、勘探、试验、分析、统计和经验判断后提出一个建议区间值,供设计师根据建筑物的性质在这个区间值中选取设计采用值”。近二十年来,概率统计、模糊数学、灰色理论等数理学科广泛应用于工程地质分析领域,可以说是对工程地质测不准原理的有力支持。有些设计师不能理解地质师为什么只能提出区间值,而不提出确定的数值,当他们对测不准原理透彻理解之后,这种疑问将会自然消除。3 工程地质的技术进步
工程地质勘察技术近二十年来有了长足的进展。测量、物探、钻探、试验等在仪器、设备、新技术、新方法、新手段方面不断推陈出新,为工程地质提供了强有力的技术依托。由于有了各种新技术的支持,工程地质分析从定性到定量就成为可能。定量分析的新理论层出不穷,在学术界十分活跃。
计算机技术的发展对工程地质来说是一场真正的技术革命,从外业资料收集和内业资料整理的工作程序、工作方法、产品成果、质量标准等等均与传统的工程地质有较大的差异,应用前景振奋人心。“工程地质计算机应用技术协作网”业已正式成立,必将对工程地质技术进步起到积极的推动作用。工程地质计算机应用主要包括六大课题:①数值计算;②制图;③数据库;④文档管理;⑤专家系统;⑥网络系统。这六大课题既是多年来本专业计算机应用的实践,也是我们将继续探讨的主要课题,还需要在今后的实践中赋予新的内涵。
4 工程地质专业的任务与责任
工程地质专业的主要任务是:①选址,选择在地质条件上相对最优的工程建筑地区或场地;②评价,阐明工程建筑区或场地的工程地质条件,进行定性和定量的工程地质评价,准确界定工程地质问题;③预测工程建筑物兴建和运用过程中地质条件的可能变化,为研究改善和治理工程地质缺陷的措施提供依据;④调查工程建筑物所需的天然建筑材料等。归纳起来的表述:为工程建设提供基础性和专门性地质资料,为工程选址、建筑物设计以及不良地质条件的工程处理提供技术依据,同时对地质环境的变化作出预测。
为了完成以上任务,需要针对工程建筑物区进行工程地质勘察和工程地质分析,界定和研究主要工程地质问题。工程地质勘察需要勘察目的明确,工程概念清晰,勘察手段多样,勘探精度满足要求。工程地质分析要求方法正确,计算可靠,参数可信,建议措施符合工程实际。工程设计最关心的是建筑物地基的工程地质条件和物理力学性质,因此工程地质工作的最终体现是工程地质定性和定量评价。
工程地质专业只对提交给设计采用的地质资料负责,其物理力学参数也仅仅是建议值,不在建议值范围之内的设计采用值和不适应地质条件的设计方案,地质师不负责。但是,地质师有责任对不符合或不适应地质条件的设计方案提出质疑,对可能存在的工程隐患要与设计师充分交底,对不良工程地质缺陷有责任提出工程处理措施的建议。
一般说来,正规勘测设计院的勘测队伍,已经过几十年工程实践的检验,在正常情况下都可以完成以上任务并尽到地质专业的责任。本文以下章节列出的工程地质工作中存在的若干问题,是归纳了笔者从事工程地质工作十多年来的所见所闻,供地质师们分析问题时参考。
5 工程地质工作存在的问题与对策
5.1 工程地质勘察的质量问题
在工程地质勘察过程中,一般问题较多的是工程概念不清,勘探侧重点不明确,针对性不强,方法不当,手段落后;工程地质分析工作中所选择的理论、方法、计算公式等与实际情况有较大出入,其适应条件的物理意义混淆不清;地质报告中基本地质条件不清楚,主要工程地质问题界定不准确或论证不充分,有问题遗漏甚至结论性错误;有些地质报告没有地质结论,也有些工程没有做多少地质工作就先下结论,极不严肃。此类问题往往造成阶段性工程审查不能一次性通过,可能延误开发时机;或者尽管通过了审查,但却给工程留下了隐患,这种情况的危险性更大。
5.2 相关专业的理解问题
一种情况是地质师对其它专业不理解,这需要加强跨专业的学习。另一类现象是设计施工等相关专业对工程地质的不理解。有的不懂地质却偏要提出一些不切实际的勘探要求,有的工程由设计人员来布置地质勘探工作;有的设计人员对地质专业知其然不知其所以然,自以为是包打天下,不结合地质条件设计不当;也有的是不尊重自然地质规律,野蛮施工,严重破坏地质体的自然结构,造成重大工程事故。所有这些非地质专业的问题,往往在出了问题之后又向地质专业推卸责任,令地质师们不知所云。工程地质界知名专家学者孙广忠教授指出:“实际上,在地质工程实践中脱离地质实际的实例随手可拾,可以说,地质工程施工中出现事故的绝大部分是设计和施工脱离地质实际的结果,或者是对工程地质条件没有搞清楚或认识不清的结果,如果离开了地质基础,则其理论必将脱离地质实际必将作出错误的结论”。
潘家峥院士等前辈专家早已强调过地质学水工,水工学地质。足以可见专业之间的交叉渗透问题,早已被专家们的真知灼见道出了关键,就看我们作何行动。
5.3 勘测周期不合理的问题
从工程地质勘察到地质报告的提交需要一定的工作周期,这是再简单不过的道理。但有些工程没有基础性的前期投入,一旦要报项目,立即就要求提交地质报告;还有些工程是今天提交了可研报告,明天就提交初设报告。此类情况多为地方性工程,一般国家投资的大型工程出现这种局面的不多。没有足够的勘测周期所造成的后果是严重的,地质条件不清楚,投资控制不住,施工后修改设计,或由于地质问题造成承包商巨额索赔等等。更可怕的是留下了工程隐患,可能造成重大工程事故。
5.4 规程规范的问题
规程规范的问题较多,甚至产生了一些混乱。水利系统与水电系统的勘测设计阶段不一致,规程规范也有区别。历经十多年的编写报批,1999年才颁布的国家标准《水利水电工程地质勘察规范》,在勘测程序和新技术的应用方面都已经明显地落后于时代的发展,一经颁布实施就难以把握。更为令人难以理解的是另一部国标《岩土工程勘察规范》并不完全适合于水利水电工程地质,而建设部的一些工程勘察监督机构则以此为依据对水利水电勘测设计单位实施质量检查,使勘测单位不得不准备满足两种规范的两套地质报告分别对付审查和检查。规程规范的修订和出台周期太长,完全不能满足工程建设的需要。水利与水电分家之后,对于工程地质这个专业来说其工作性质是一样的,但却存在不同的技术标准和勘测程序,这种情况还要继续下去,需要寻求解决或协调方案。
5.5 人才问题
文革十年造成的人才断层已经出现。有丰富工程实践经验的前辈地质师相继离岗,各勘测设计院明显缺地质总工人才,八十年代期间各院比较整齐的地质副院长和院级地质总工,近年来在一些勘测设计院已经相继断档,或后继无人,或后备人才尚不成熟。勘测行业不景气,社会地位和经济地位与工程地质专业不相适应,工作环境、工作条件的局限,人才资源开发机制的问题,择业行为中的浮躁动机等等,都不同程度地影响着优秀地质师的成长。
高质量高水平的工程地质分析成果,出自于高水平高素质的地质师。有人说二、三年就可以培养出地质专家,实属无知。要培养出一个具有工程地质分析能力,能够解决复杂问题的地质师,没有十年以上的功夫,大量的工程实践,自身的敬业精神,理论联系实际,相关学科专业的学习和渗透,是决不可能的。十年树木百年树人,在地质师的培养过程中可以充分体现出来。培养优秀地质师的难度可以说远远超过培养博士、研究员和教授的难度。
社会的发展和日趋激烈的竞争市场,对地质师素质的要求也将越来越高,最好是跨专业的复合型人才。竞争的实质是人才的竞争。勘测队伍要走向市场,必须重视高素质人才的培养,重视人才资源的开发。
5.6 技术管理问题
工程地质勘察质量的控制,技术管理是主要环节之一。近年来一些单位提交的勘测设计报告中的地质章节不是地质师写的,报告的编制人中没有地质专业负责人,或地质报告没有院级地质负责人审查把关,报告和图纸中的错误较多。这种情况给总院增加了审查难度,同时也有损勘测设计单位的质量和水平形象,还会延误工程报批的时机。当然也有上级单位工程审查把关不严,助长了这种技术责任心不强的现象。
5.7 其它问题
前期工作投入不够,有些地方部门长期拖欠勘测经费;体制问题,市场竞争不规范,非水利水电勘测单位从事水利水电勘测工作存在工作方法、技术要求和工程地质评价等方面的差异;勘测工作经费仍然按落后的实物工作量计算,造成多勘探多争钱,地质分析多出力多赔本的事实上的不合理现象,长期以来得不到解决。勘测技术的科技含量低,新技术新方法投入少,不能满足现代工程技术发展的要求。
5.8 今后十年将进入工程事故的高发期
鉴于对以上若干问题的担忧,今后十年有可能是我国水利水电工程事故的又一个高发期,这一悲观性预测有些危言耸听,但愿不要成为被不幸言中的事实。
5.9 解决问题的对策
解决问题首先要分清责任。规程规范和部分技术管理方面的问题应该由总院负责;勘测周期不合理,前期工作投入不够等问题应该是地方部门或者计划部门负责;质量、人才、相关专业的协调等问题自然应该由勘测设计单位负责;其它问题大家都有责任,但主要还是取决于大环境。
责任分清楚了,落实到要有人来抓,所有问题虽然我们不敢说都能很好地得到全面解决,但至少可以前进一大步。最可怕的是大家都在畅谈必要性重要性,结果都是纸上谈兵,没有实际行动。笔者在这里也就是夸夸其谈而已,不可能提出可以操作的具体解决方案,这种方案也不该我们提,该谁提?当然应该是谁负责抓,谁就提方案追落实精指挥勤检查,最终归结到谁领导的关键问题上。到此为此,我们的对策就算出台了。
其实,我们这里列出来的众多实际问题,本质上和深层次的是体制和机制问题,需要通过改革才能从根本上解决。随着勘测设计市场化进程的加快,新技术与旧管理的冲突,老观念与新思想的交锋,既是矛盾又是改革的动力,这是不难理解的。
6 工程地质要抓住机遇迎接挑战
汪恕诚部长曾经讲话强调:“不能老修改设计,因为搞招投标尤其是国际合同,修改设计就意味着被索赔”。少修改或不修改设计,是对工程地质提出的更高要求。基本地质资料不准,修改设计就是必须的。高标准严要求就是挑战和机遇。
人类社会的进步与发展,实际上又是一部人与自然相互协调和相互影响的壮丽史诗。以前我们把人与自然的关系当成是与天斗与地斗的斗争关系,实践证明,人与大自然斗争的结果,虽然取得了一些局部性的小胜利,而大自然反过来对人类的惩罚却是灾难性的。人类的每一次产业革命,无不与工程建设有直接关系,与地质环境有直接或间接关系。建国以来,我国的基本建设此起彼伏,水利水电工程建设从无到有,新一轮的建设高潮正在兴起。在多专业组成的基建队伍这个庞大乐团中,地质师要起到指挥和首席演奏家的作用,甚至还要担负起独奏华彩乐章的作用。
尽管工程地质学科正在经历着前所未有的挑战,工程地质工作也存在着这样那样的问题和难题,然而这更是机遇。抓住机遇迎接挑战,顺应自然,保护环境,防止灾害,造福人类,是工程地质学家和地质师的艰巨任务和不可推卸的责任。主要参考文献:
1 王思敬,工程地质学的任务与未来,《工程地质学报》1999年第3期
2 崔政权,《系统工程地质学导论》水利电力出版社,1992.5
3 孙广忠,论地质工程的基础理论,《工程地质学报》1996.第4期
4 黄鼎成等,《走向21世纪的中国地球科学》河南科技出版社,1995年10月
5 张明定等,《水文地质与工程地质的系统思维》西北工业大学出版社,1993年12月
6 陈祖安,工程地质学,《中国电力网络全书水力发电卷》中国电力出版社,1995年5月
7 韦港,水利水电工程地质实例剖析,《工程地质-面向21世纪》中国地质大学出版社,1997年11月
8 陈祖安等,水利水电工程地质计算机应用概述及设想规划,《水利水电工程地质》1995年第1期
9 韦港、冀建疆,关于堤防工程地质勘察规程中若干问题的探讨,《水利水电技术》1999年第10期
10 瑞德尼克[苏],《量子力学史》科学出版社,1979年9月转贴于 中国论文下载中心 http://www.studa.net[首页]

⑻ 垃圾处理场工程地质勘察规程有没有执行

论堤防工程地质勘察的发展进程与《规程》的执行

在近年来较大范围的堤防工程地质勘察工作中,一些共性的问题不断地引起了同行们的关注,很有必要深入探讨下去。例如在执行《堤防工程地质勘察规程》时,怎样理解原则性与灵活性的准确把握,如何处理规程中明显与工程实际不相符合的条款规定;堤防险情与隐患的分类;堤基工程地质分段分类方法;堤防勘察资料的整理等等,我们都进行了一些粗浅讨论。关于堤防工程地质分段分类的问题,一直是各勘测单位颇感难以照顾周全的焦点,我们提出的分类法但愿对此有所帮助,并希望有助于堤防工程勘测设计工作的进一步深化。
一、堤防工程地质勘察的过去与现状
我国已建江河堤防工程总长20余万公里,98特大洪水后尚有大量堤防工程正在规划建设中。许多已建堤防工程过去基本上没有进行过真正工程意义上的工程地质勘察,更谈不上各大江河湖海堤防工程系统化规范性的地质资料的汇编与分析整理工作。正因为如此,许多堤防工程在98特大洪水期间险象环生,出险堤段堤基的地质条件没有足够的资料可供抢险分析,为确保万无一失,只能按最坏情况进行抢险,其人力物力的巨大付出实在是不得已而为之;洪水期间上至中央下到地方的各级领导以及全国人民的精神紧张程度和精力耗费更是无法用实物价值去衡量。如此被动局面,一方面是大自然教训人类的生动一课,另一方面则是祖先给我们留下的世纪难题。
建国以来,随着大规模工程建设的需要,工程地质专业从无到有,日益发展壮大,成为国家工程建设不可缺少的重要基础性专业。工程地质勘察的法规性准则也逐渐成熟与完善,与工程地质相关的规程规范相继出台,并结合工程实践的反馈信息进行修订修编。水利部1997年2月发布了行业标准《堤防工程地质勘察规程》(以下简称《规程》,编号SL/T188,同年5月1日起实施),这是我国堤防工程地质勘察的第一部法规性行业标准。而国家标准《堤防工程设计规范》(以下简称《规范》,编号为GB50286-98,自1998年10月15日起施行)则是98特大洪水之后出台的。
如需Q传给你

⑼ 黄河水文勘察测绘局的专业领域

六十复年来,黄河水文勘察测绘局制立足黄河、服务社会。先后建立了黄河下游C、D级GPS平面控制和二、三等高程控制网。一直担负着黄河河道演变测验、水下地形、黄河下游标准化堤防建设、建筑物变形观测、施工放样及二级悬河治理、质量检测和黄河工程地质分析等多项勘察、测绘任务。同时不断拓展业务范围,建立航测遥感、地理信息数据库,为“三条黄河”建设,提供了大量的基础数据,为黄河防汛、治理、规划与研究等工程提供了重要的技术支持。
黄河水文勘察测绘局在圆满完成黄河防汛工程的同时,积极为地方经济建设服务。先后完成了多项大中型水电站、桥梁等施工控制网、数字化地形测图、水下地形测量和工程变形监测、高速公路、土地调查、地籍测绘及数据库建设等项目以及各种工程地质勘察业务,其范围涉全国大部分省份,取得了良好的经济效益和社会效益。

热点内容
鹿特丹港国家地理 发布:2021-03-15 14:26:00 浏览:571
地理八年级主要的气候类型 发布:2021-03-15 14:24:09 浏览:219
戴旭龙中国地质大学武汉 发布:2021-03-15 14:19:37 浏览:408
地理因素对中国文化的影响 发布:2021-03-15 14:18:30 浏览:724
高中地理全解世界地理 发布:2021-03-15 14:16:36 浏览:425
工地质检具体干些什么 发布:2021-03-15 14:15:00 浏览:4
东南大学工程地质考试卷 发布:2021-03-15 14:13:41 浏览:840
中国地质大学自动取票机 发布:2021-03-15 14:13:15 浏览:779
曾文武汉地质大学 发布:2021-03-15 14:11:33 浏览:563
中国冶金地质总局地球物理勘察院官网 发布:2021-03-15 14:10:10 浏览:864